![]() |
Modules | |
Kernel Generators | |
Functions | |
int | imProcessConvolve (const imImage *src_image, imImage *dst_image, const imImage *kernel) |
int | imProcessConvolveSep (const imImage *src_image, imImage *dst_image, const imImage *kernel) |
int | imProcessConvolveDual (const imImage *src_image, imImage *dst_image, const imImage *kernel1, const imImage *kernel2) |
int | imProcessConvolveRep (const imImage *src_image, imImage *dst_image, const imImage *kernel, int count) |
int | imProcessCompassConvolve (const imImage *src_image, imImage *dst_image, imImage *kernel) |
void | imProcessRotateKernel (imImage *kernel) |
int | imProcessDiffOfGaussianConvolve (const imImage *src_image, imImage *dst_image, double stddev1, double stddev2) |
int | imProcessLapOfGaussianConvolve (const imImage *src_image, imImage *dst_image, double stddev) |
int | imProcessMeanConvolve (const imImage *src_image, imImage *dst_image, int kernel_size) |
int | imProcessGaussianConvolve (const imImage *src_image, imImage *dst_image, double stddev) |
int | imProcessBarlettConvolve (const imImage *src_image, imImage *dst_image, int kernel_size) |
int | imProcessSobelConvolve (const imImage *src_image, imImage *dst_image) |
int | imProcessPrewittConvolve (const imImage *src_image, imImage *dst_image) |
int | imProcessSplineEdgeConvolve (const imImage *src_image, imImage *dst_image) |
int | imProcessZeroCrossing (const imImage *src_image, imImage *dst_image) |
int | imProcessCanny (const imImage *src_image, imImage *dst_image, double stddev) |
int | imGaussianStdDev2KernelSize (double stddev) |
double | imGaussianKernelSize2StdDev (int kernel_size) |
int | imProcessUnsharp (const imImage *src_image, imImage *dst_image, double stddev, double amount, double threshold) |
int | imProcessSharp (const imImage *src_image, imImage *dst_image, double amount, double threshold) |
int | imProcessSharpKernel (const imImage *src_image, const imImage *kernel, imImage *dst_image, double amount, double threshold) |
Base Convolution with a kernel.
Kernel can be IM_INT or IM_FLOAT, but always IM_GRAY. Use kernel size odd for better results.
Supports all data types. The border is mirrored.
Returns zero if the counter aborted. Most of the convolutions use this function.
im.ProcessConvolve(src_image: imImage, dst_image: imImage, kernel: imImage) -> counter: boolean [in Lua 5]
im.ProcessConvolveNew(image: imImage, kernel: imImage) -> counter: boolean, new_image: imImage [in Lua 5]
Base convolution when the kernel is separable. Only the first line and the first column will be used.
Returns zero if the counter aborted.
im.ProcessConvolveSep(src_image: imImage, dst_image: imImage, kernel: imImage) -> counter: boolean [in Lua 5]
im.ProcessConvolveSepNew(image: imImage, kernel: imImage) -> counter: boolean, new_image: imImage [in Lua 5]
int imProcessConvolveDual | ( | const imImage * | src_image, | |
imImage * | dst_image, | |||
const imImage * | kernel1, | |||
const imImage * | kernel2 | |||
) |
Base Convolution with two kernels. The result is the magnitude of the result of each convolution.
Kernel can be IM_INT or IM_FLOAT, but always IM_GRAY. Use kernel size odd for better results.
Supports all data types. The border is mirrored.
Returns zero if the counter aborted. Most of the convolutions use this function.
im.ProcessConvolveDual(src_image: imImage, dst_image: imImage, kernel1, kernel2: imImage) -> counter: boolean [in Lua 5]
im.ProcessConvolveDualNew(image: imImage, kernel1, kernel2: imImage) -> counter: boolean, new_image: imImage [in Lua 5]
int imProcessConvolveRep | ( | const imImage * | src_image, | |
imImage * | dst_image, | |||
const imImage * | kernel, | |||
int | count | |||
) |
Repeats the convolution a number of times.
Returns zero if the counter aborted.
im.ProcessConvolveRep(src_image: imImage, dst_image: imImage, kernel: imImage, count: number) -> counter: boolean [in Lua 5]
im.ProcessConvolveRepNew(image: imImage, kernel: imImage, count: number) -> counter: boolean, new_image: imImage [in Lua 5]
Convolve with a kernel rotating it 8 times and getting the absolute maximum value.
Kernel must be square.
The rotation is implemented only for kernel sizes 3x3, 5x5 and 7x7.
Supports all data types except complex. Returns zero if the counter aborted.
im.ProcessCompassConvolve(src_image: imImage, dst_image: imImage, kernel: imImage) -> counter: boolean [in Lua 5]
im.ProcessCompassConvolveNew(image: imImage, kernel: imImage) -> counter: boolean, new_image: imImage [in Lua 5]
void imProcessRotateKernel | ( | imImage * | kernel | ) |
Utility function to rotate a kernel one time.
im.ProcessRotateKernel(kernel: imImage) [in Lua 5]
int imProcessDiffOfGaussianConvolve | ( | const imImage * | src_image, | |
imImage * | dst_image, | |||
double | stddev1, | |||
double | stddev2 | |||
) |
Difference(Gaussian1, Gaussian2).
Supports all data types, but if source is IM_BYTE or IM_USHORT target image must be of type IM_INT. Returns zero if the counter aborted.
im.ProcessDiffOfGaussianConvolve(src_image: imImage, dst_image: imImage, stddev1: number, stddev2: number) -> counter: boolean [in Lua 5]
im.ProcessDiffOfGaussianConvolveNew(image: imImage, stddev1: number, stddev2: number) -> counter: boolean, new_image: imImage [in Lua 5]
int imProcessLapOfGaussianConvolve | ( | const imImage * | src_image, | |
imImage * | dst_image, | |||
double | stddev | |||
) |
Convolution with a laplacian of a gaussian kernel.
Supports all data types, but if source is IM_BYTE or IM_USHORT target image must be of type IM_INT. Returns zero if the counter aborted.
im.ProcessLapOfGaussianConvolve(src_image: imImage, dst_image: imImage, stddev: number) -> counter: boolean [in Lua 5]
im.ProcessLapOfGaussianConvolveNew(image: imImage, stddev: number) -> counter: boolean, new_image: imImage [in Lua 5]
Convolution with a kernel full of "1"s inside a circle.
Supports all data types. Returns zero if the counter aborted.
im.ProcessMeanConvolve(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5]
im.ProcessMeanConvolveNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5]
Convolution with a gaussian kernel with floating point values.
If sdtdev is negative its magnitude will be used as the kernel size.
Supports all data types. Returns zero if the counter aborted.
im.ProcessGaussianConvolve(src_image: imImage, dst_image: imImage, stddev: number) -> counter: boolean [in Lua 5]
im.ProcessGaussianConvolveNew(image: imImage, stddev: number) -> counter: boolean, new_image: imImage [in Lua 5]
Convolution with a barlett kernel.
Supports all data types. Returns zero if the counter aborted.
im.ProcessBarlettConvolve(src_image: imImage, dst_image: imImage, kernel_size: number) -> counter: boolean [in Lua 5]
im.ProcessBarlettConvolveNew(image: imImage, kernel_size: number) -> counter: boolean, new_image: imImage [in Lua 5]
Magnitude of the sobel convolution.
Supports all data types. Returns zero if the counter aborted.
im.ProcessSobelConvolve(src_image: imImage, dst_image: imImage) -> counter: boolean [in Lua 5]
im.ProcessSobelConvolveNew(image: imImage) -> counter: boolean, new_image: imImage [in Lua 5]
Magnitude of the prewitt convolution.
Supports all data types. Returns zero if the counter aborted.
im.ProcessPrewittConvolve(src_image: imImage, dst_image: imImage) -> counter: boolean [in Lua 5]
im.ProcessPrewittConvolveNew(image: imImage) -> counter: boolean, new_image: imImage [in Lua 5]
Spline edge dectection.
Supports all data types. Returns zero if the counter aborted.
im.ProcessSplineEdgeConvolve(src_image: imImage, dst_image: imImage) -> counter: boolean [in Lua 5]
im.ProcessSplineEdgeConvolveNew(image: imImage) -> counter: boolean, new_image: imImage [in Lua 5]
Finds the zero crossings of IM_SHORT, IM_INT, IM_FLOAT and IM_DOUBLE images. Crossings are marked with non zero values indicating the intensity of the edge. It is usually used after a second derivative, laplace.
Extracted from XITE, Copyright 1991, Blab, UiO
http://www.ifi.uio.no/~blab/Software/Xite/ Returns zero if the counter aborted.
im.ProcessZeroCrossing(src_image: imImage, dst_image: imImage) -> counter: boolean [in Lua 5]
im.ProcessZeroCrossingNew(image: imImage) -> counter: boolean, new_image: imImage [in Lua 5]
First part of the Canny edge detector. Includes the gaussian filtering and the nonmax suppression.
After using this you could apply a Hysteresis Threshold, see imProcessHysteresisThreshold.
Image must be IM_BYTE/IM_GRAY.
Returns zero if the counter aborted. Implementation from the book:
J. R. Parker "Algorithms for Image Processing and Computer Vision" WILEY
im.ProcessCanny(src_image: imImage, dst_image: imImage, stddev: number)-> counter: boolean [in Lua 5]
im.ProcessCannyNew(image: imImage, stddev: number) -> counter: boolean, new_image: imImage [in Lua 5]
int imGaussianStdDev2KernelSize | ( | double | stddev | ) |
Calculates the kernel size given the standard deviation.
If sdtdev is negative its magnitude will be used as the kernel size.
im.GaussianStdDev2KernelSize(stddev: number) -> kernel_size: number [in Lua 5]
double imGaussianKernelSize2StdDev | ( | int | kernel_size | ) |
Calculates the standard deviation given the kernel size.
im.GaussianKernelSize2StdDev(kernel_size: number) -> stddev: number [in Lua 5]
int imProcessUnsharp | ( | const imImage * | src_image, | |
imImage * | dst_image, | |||
double | stddev, | |||
double | amount, | |||
double | threshold | |||
) |
Edge enhancement using Unsharp mask. stddev control the gaussian filter, amount controls how much the edges will enhance the image (0<amount<1), and threshold controls which edges will be considered, it compares to twice of the absolute size of the edge. Although very similar to imProcessSharp, produces better results.
im.ProcessUnsharp(src_image: imImage, dst_image: imImage, stddev: number, amount: number, threshold: number) [in Lua 5]
im.ProcessUnsharpNew(image: imImage, stddev: number, amount: number, threshold: number) -> new_image: imImage [in Lua 5]
int imProcessSharp | ( | const imImage * | src_image, | |
imImage * | dst_image, | |||
double | amount, | |||
double | threshold | |||
) |
Edge enhancement using Laplacian8 mask. amount controls how much the edges will enhance the image (0<amount<1), and threshold controls which edges will be considered, it compares to twice of the absolute size of the edge. Returns zero if the counter aborted.
im.ProcessSharp(src_image: imImage, dst_image: imImage, amount: number, threshold: number) [in Lua 5]
im.ProcessSharpNew(image: imImage, amount: number, threshold: number) -> new_image: imImage [in Lua 5]
int imProcessSharpKernel | ( | const imImage * | src_image, | |
const imImage * | kernel, | |||
imImage * | dst_image, | |||
double | amount, | |||
double | threshold | |||
) |
Edge enhancement using a given kernel. If kernel has all positive values, then the unsharp technique is used, else sharp is used. amount controls how much the edges will enhance the image (0<amount<1), and threshold controls which edges will be considered, it compares to twice of the absolute size of the edge. Returns zero if the counter aborted.
im.ProcessSharp(src_image: imImage, dst_image: imImage, amount: number, threshold: number) [in Lua 5]
im.ProcessSharpNew(image: imImage, amount: number, threshold: number) -> new_image: imImage [in Lua 5]