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Abstract

Barros, Guilherme Coelho Gomes; Martha, Luiz Fernando (Advisor).
Stress Recovery in the Finite Element Method Considering
Linearly Dependent Strain Constraints. Rio de Janeiro, 2019. 60p.
Tese de Doutorado – Departamento de Engenharia Civil e Ambiental,
Pontifícia Universidade Católica do Rio de Janeiro.

In this work a stress recovery procedure for linearly dependent strain
constrained finite element models is presented. Strain constraints arise in
several applications such as modeling incompressible materials, inextensible
and rigid frame elements. The formulation proposed in this work allows for the
treatment of any sort of strain constraint. These constraints are incorporated
into the governing equations of the model through the addition of Lagrange
multipliers to the total potential energy. A simple mathematical programming
problem arises from the discretisation of this modified functional. However,
the presence of linearly dependent constraints makes this problem infeasible.
The displacements that satisfy the governing equations can be found replacing
the constraint matrix by its reduced row echelon form. Nonetheless, this
replacement alters the physical meaning and the dimension of the Lagrange
multipliers vector space, which are crucial for satisfying the original equilibrium
equations and, consequently, to determine the stress field of the model. Hence,
this work presents a methodology to recover the Lagrange multipliers of
the original problem based on the difference of nodal forces between the
constrained and the unconstrained models. In addition, the calculation of
the stress field follows from the variation of the modified functional. Several
numerical examples are presented to demonstrate the generic characteristic
of the proposed methodology and its accuracy. In conclusions, the elastic
parameters of the unconstrained model plays an important role on the stress
field, and they should be chosen as close as possible to the values that satisfy
the constraints.

Keywords
Strain constraints; Linearly dependent constraints; Stress Recovery.

DBD
PUC-Rio - Certificação Digital Nº 1712781/CA



Resumo

Barros, Guilherme Coelho Gomes; Martha, Luiz Fernando. Recupera-
ção de Tensões no Método dos Elementos Finitos com Restri-
ções de Deformação Linearmente Dependentes. Rio de Janeiro,
2019. 60p. Tese de Doutorado – Departamento de Engenharia Civil e
Ambiental, Pontifícia Universidade Católica do Rio de Janeiro.

Neste trabalho, é apresentada uma metodologia para a análise de modelos
de elementos finitos com restrições de deformações linearmente dependentes.
Restrições de deformações aparecem em diversas aplicações, como modelagem
de materiais incompressíveis e consideração de elementos de pórticos inexten-
síveis e rígidos. A formulação proposta neste trabalho permite que quaisquer
restrições sejam impostas às deformações. Tais restrições são incorporadas às
equações que governam o modelo através de multiplicadores de Lagrange adi-
cionados ao princípio da mínima energia potencial total. A discretização desse
funcional leva a um problema de programação matemática de simples resolu-
ção. Entretanto, a presença de restrições linearmente dependentes torna esse
problema impossível. Os deslocamentos que satisfazem às equações do modelo
podem ser encontrados substituindo a matriz de restrições por sua versão es-
calonada. Todavia, essa substituição altera o significado físico e a dimensão
do campo vetorial dos multiplicadores de Lagrange, e os multiplicadores de
Lagrange do problema original são necessários para atender às equações ori-
ginais de equilíbrio e, consequentemente, para determinar o campo de tensões
do modelo. Dessa forma, é apresentada neste trabalho uma metodologia para
recuperar os multiplicadores de Lagrange do problema original baseado na mi-
nimização da diferença entre as forças nodais do modelo com restrições e as do
modelo sem restrições. Ademais, é apresentada a formulação para a determina-
ção do campo de tensões baseado na variação do funcional modificado. Diver-
sos modelos, tanto contínuos, quanto reticulados, foram analisados e pôde-se
constatar a eficiência e precisão da formulação proposta. Também foi notada a
influência dos parâmetros elásticos da solução sem restrições no campo de ten-
sões do modelo com restrições. Logo, concluiu-se que esses parâmetros devem
ser tão próximos quanto possível àqueles que atendem às restrições.
Palavras-chave

Restrições de Deformação; Restrições Linearmente Dependentes; Recu-
peração de Tensão.
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"Knowledge is like a sphere, the greater its
volume, the larger its contact with the

unknown."

Blaise Pascal, quote.
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1
Introduction

Linear constraints involving a set of degrees of freedom (dof) associated
with different nodes, generally known as multipoint constraints, can be used
in structural analysis to model rigid links, diaphragm constraints and skewed
supports, join incompatible meshes, and impose cyclic symmetry, among other
applications. Thus, the capacity to properly handle linear constraints is an
essential part of finite element (FE) software.

Strain constraints are a special case of multipoint constraints because
the constraints are written in terms of strain primarily and then written in
terms of displacements through finite element approximation. Direct multi-
point constraints, on the other hand, are written in terms of displacements
directly. Strain constraints are particularly important since the stresses within
constrained elements are a matter of interest for the analysis.

Strain constraints are useful in the analysis of framed structures with
inextensible and rigid members, i.e., bars without axial and bending strains,
respectively. Rigid members can be used in practical applications to model stiff
floor systems (rigid diaphragm constraint). In addition, inextensible members
may be useful in educational software, since they allow a comparison with re-
sults obtained by the classical methods for analysis of statically indeterminate
structures that neglect member axial deformation.

The formulation presented in this work allows for a general treatment
of strain constrained finite element. Therefore, the aforementioned problems
and less commonly practical ones, such as distortion-free elements, rigid finite
elements in continuum media, axial-only finite elements, and others are all
modeled within the same framework.

The three main approaches to constraint handling are: transforma-
tion, penalty function and Lagrange multiplier methods (COOK et al., 2002;
FELIPPA, 2017; ZIENKIEWICZ; TAYLOR; ZHU, 2013; BARLOW, 1982;
MARTÍN; BENAVENT-CLIMENT; GALLEGO, 2010). The transformation
methods, also known as master-slave elimination, use each constraint to elim-
inate one equilibrium equation, reducing the number of degrees of freedom
(DOFs). Since they generate exact results and reduce the number of equa-
tions, several different transformation methods have been proposed in the liter-
ature (CURISKIS; VALLIAPPAN, 1978; ABEL; SHEPHARD, 1979; WEBB,
1990). However, this approach is difficult to implement for the strain con-
straint case, due to the complexity of choosing the master DOFs for general
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Chapter 1. Introduction 12

constraints, especially when the same DOF appears in several constraints (FE-
LIPPA, 2017). Moreover, the transformations applied to the equilibrium equa-
tions can increase the bandwidth and skyline of the stiffness matrix, increasing
the computational cost (BARLOW, 1982). In addition, the main drawback of
this approach is that the resulting solution may violate equilibrium conditions
(COOK et al., 2002). Hence, the calculated stress may not be in equilibrium
with applied forces.

The penalty method can be developed using the so-called Courant
quadratic penalty function (FELIPPA, 2017). The penalty function for each
constraint is multiplied by a penalty factor (or weight) and the resulting
“penalty energy” is added to the total potential energy. Minimization of this
augmented energy results in a system of equations including the effect of
constraints, but with the same size of the original system. As the penalty
factor increases, constraint violation decreases (COOK et al., 2002; FELIPPA,
2017).

This approach can easily handle linearly dependent constraints. In addi-
tion, the increase in computational cost is negligible for strain constraints, since
it does not affect the size and sparseness of the stiffness matrix. On the other
hand, as the penalty factor increases, the stiffness matrix becomes increasingly
ill-conditioned, leading to large solutions errors. Some approaches have been
proposed to find the best penalty factor that minimizes the total error (FE-
LIPPA, 2017; NOUR-OMID; WRIGGERS, 1987; FELIPPA, 1977). However,
the total error cannot be lowered beyond a threshold value (FELIPPA, 2017),
which depends on the conditioning of the original (i.e. unconstrained) stiffness
matrix.

The Lagrange multiplier method is based on the minimization of the to-
tal potential energy with equality constraints (COOK et al., 2002; FELIPPA,
2017; MARTÍN; BENAVENT-CLIMENT; GALLEGO, 2010; HOULSBY; LIU;
AUGARDE, 2000; DUBOIS-PÈLERIN; PEGON, 1998) and has a solid math-
ematical basis on the optimization theory (MEYER, 2000). This approach
increases the number of variables and does not have a unique solution in the
case of linearly dependent constraints. However, it leads to exact results, can
be easily extended to nonlinear problems, and requires no parameters, as in
the penalty function approach, and no external data requirement, as in the
transformation approach.

This work presents a general treatment of strain constraints in the FE
analysis using the Lagrange multipliers formulation. The additional variables
needed for the solution, the Lagrange multipliers, are found crucial in the de-
termination of element stresses. Therefore, they may not be seen as additional
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Chapter 1. Introduction 13

computational cost but as important variable for accurate analysis.
The handling of linearly dependent constraints is thoroughly discussed

in this work, in both physical and mathematical terms, since this issue has
been overlooked in the literature in the context of strain constrained finite
elements. A reduced row echelon form (rref) of the constraint matrix is used to
eliminate the redundant constraints and the Lagrange multipliers are obtained
augmenting the problem with the kernel of the constraint matrix. Since linearly
dependent strain constraints of a FE model results in infinite solutions for
corner forces, in this work a novel procedure is proposed to find an unique
solution. Such solution is achieved minimizing the difference between the corner
forces of the constrained and the unconstrained models. Finally, the accuracy
and robustness of the proposed treatment is assessed using a set of numerical
examples.

This work is organized in eight major chapters. Chapter 3 presents
the proposed Lagrange formulation applied to solving finite element models
considering strain constraints. It also shows how to handle linearly dependent
constraints in order to make the solution for displacement unique. The basis
for that is the formulation and solution of a reduced problem, instead of the
original one. Chapter 4 describes how to determine the Lagrange multipliers
of the original problem based on the Lagrange multipliers of the reduced
problem. The Lagrange multipliers of the original problem are fundamental
for the calculation of stresses, as detailed in Chapter 5. Chapter 6 Describes
the formulation of stiffness and constraint equations for frame elements,
considering axial and bending behavior. It presents the basics of this type of
analysis and then two possible approaches: the direct finite element approach,
and the structural matrix analysis approach. Also, it presents the matrix
formulation for local strain constraints, describes the assemblage of the local
constraints to the global solution, and addresses the detection of linearly
dependent constraints on simple frames for elucidation purpose. Chapter 7
presents several examples of two-dimensional beam and frame models with
inextensible or rigid members to assess the accuracy and robustness of the
proposed formulation. Finally, Chapter 8 states some concluding remarks
about the proposed general treatment for rigid and inextensible members
within matrix structural analysis.
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2
Formulation of Constrained Model

The minimum total potential energy principle states that the structural
response of a elastic body subjected to conservative forces is given by the
deformed shape that minimizes the body’s total potential energy, given by,

Π = U + V , (2-1)
where, V is the potential energy of external loads, given by

V = −
∫

Ω
uTb dΩ −

∫
Γ

uTt dΓ , (2-2)

where u are the displacements, b are the body forces, and t are tractions on
the boundary. Additionally, U is the strain energy, given by

U =
∫

Ω

∫
σdϵ dΩ , (2-3)

where ϵ and σ are the strain and stress fields, respectively. The constitutive
equation that relates these two fields are given by

σ = Dϵ , (2-4)

in which D is the constitutive matrix. Substituting equation (2-4) into equa-
tion (2-3) one may find,

U =
∫

Ω

1
2ϵTDϵ dΩ . (2-5)

Substituting equations (2-2) and (2-5) into equation (2-1) one may find

Π =
∫

Ω

1
2ϵTDϵ dΩ −

∫
Ω

uTb dΩ −
∫

Γ
uTt dΓ . (2-6)

When strain constraints are added to the model, one additional equation
must hold:

Aϵ = e , (2-7)
in which A and e are constant, allowing a constraints on the linear combination
of strains only. The minimum total potential energy principle is then rewritten
as a new functional that incorporates the constraints (COOK et al., 2002;
ZIENKIEWICZ; TAYLOR; ZHU, 2013; BATHE, 1996). This new functional
is defined as

Π̃ = Π +
∫

Ω
γT (Aϵ − e) dΩ , (2-8)

in which, γ is a vector function known as Lagrange multipliers. This new
functional is hereinafter referred to as generalized potential energy.
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Chapter 2. Formulation of Constrained Model 15

An analytical solution of equation (2-8) is a structural response that
minimizes the total potential energy and meet the imposed constraints. How-
ever, analytical solutions are only available to a limited number of examples.
Therefore, instead of seeking analytical solutions for that problem, this work
presents how to formulate and determine approximate solutions through the
Finite Element Method.

Introducing the displacement interpolation as in any finite elements
formulation,

u = Φd , (2-9)
in which, Φ is the interpolation matrix containing shape functions and d are
nodal displacements. The strain is then given by

ϵ = ∇u , (2-10)
in which, ∇ is the differential operator of mechanics. The kinematic rela-
tionship between the strain vector ϵ and the nodal displacements vector d is
obtained substituting equation (2-9) into equation (2-10) as

ϵ = ∇Φd = Bd , (2-11)
in which the B matrix, also known as compatibility matrix, is given by
B = ∇Φ, the derivatives of the shape functions.

Analogously to the displacement interpolation, when seeking approxi-
mated solutions to constrained problems, the Lagrange multiplier function
also needs an approximation. Hence, it is defined

γ = Gµ , (2-12)
Substituting equation (2-11) into the strain energy, equation (2-5), and

equation (2-9) into the potential energy, equation (2-2), one may find the
discrete form of the total potential energy

Π = 1
2dT

∫
Ω

BTDB dΩ d − dT
(∫

Ω
ΦTb dΩ +

∫
Γ

ΦTt dΓ
)

, (2-13)

or, even further,

Π = 1
2dTKd − dTf . (2-14)

where

K =
∫

Ω
BTDB dΩ (2-15)

is the stiffness matrix and
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Chapter 2. Formulation of Constrained Model 16

f =
∫

Ω
ΦTb dΩ +

∫
Γ

ΦTt dΓ (2-16)
are equivalent nodal forces.
In order to formulate a discrete form of the generalized potential energy,

the Lagrange multipliers interpolation, equation (2-12), is substituted into
equation (2-8). Hence,

Π̃ = Π + µT
∫

Ω
GTAB dΩd − µT

∫
Ω

GTe dΩ , (2-17)
or, even further,

Π̃ = Π + µT (Cd − q̃) , (2-18)
where

C =
∫

Ω
GTAB dΩ (2-19)

and

q̃ =
∫

Ω
GTe dΩ (2-20)

are the discretized constraint matrix and vector, respectively.
Since the shape functions on FEM are defined using local support they

are only valid within each element. Therefore, to avoid ambiguity the element
stiffness and constraint matrices are hereinafter called Ke and Ce, respectively,
with the superscript e denoting that they refer to the e-th element. The same is
then applied to the nodal equivalent force vector and constraint vector, which
are hereinafter denoted f e and qe, respectively.

The global stiffness matrix K is assembled summing up the contributions
of each element and applying boundary conditions, as in any FE formulation.
Similarly, a global constraint matrix C is assembled from the contribution of
Ce matrix of each element. One difference from the assembling of C to the
assembling of K deserves special attention: in the assembling of C the terms
of Ce are not summed, but simply stacked.

While assembling K, the equilibrium of each dof is considered. The
stiffnesses of each element contribute when a dof is mobilized. On the other
hand, in assembling C the only consideration that has to be taken into account
is that all strain constraints must hold disregarding the interaction between
elements.

Another worth mentioning aspect on the assembling of the global strain
constraint equations is that the procedure of adding the information of
known (prescribed) displacement to the right-hand side of the equation holds.
Therefore, consider the system of constraint equations regarding all, known
and unknown, degrees of freedom,
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Chapter 2. Formulation of Constrained Model 17

[
C Cs

] d

ds

 = q̃ , (2-21)

in which, Cs is the constraint matrix regarding known displacements ds and
q̃ is the global right-hand side constraint vector, obtained by stacking the qe

vector of each element constraint. Thereafter, it is possible to write:

Cd = q , (2-22)

in which,
q = q̃ − Csds . (2-23)

Thereby, substituting equation (2-14) into equation (2-18) and taking
into account boundary conditions, one may find the final form of the discrete
generalized potential energy,

Π̃ = 1
2dTKd − dTf + µT (Cd − q) . (2-24)
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3
Solution of Constrained Model

The structural response is then obtained minimizing the total potential
energy (Π) subjected to the constraints displayed in equation (2-22). Thus,

minimize
d

Π = 1
2dTKd − dTf ,

subject to Cd = q ,
(3-1)

in which, f is the global nodal force vector.
Equation (3-1) is a quadratic programming (QP) problem (NOCEDAL;

WRIGHT, 2006). A primal-dual solution is sought in this work, since both
the primal and dual variables are necessary for complete structural response.
The primal variables are the displacements, while the dual variables are the
so-called Lagrange multipliers, that, as demonstrated later in this work, are
necessary in the calculation of stresses.

However, the problem in equation (3-1) only has an unique primal-dual
solution if the constraint matrix is full row rank. This are often not the case
when strain constraints are considered. In statically indeterminate structural
systems, linearly dependent constraints commonly appears as exemplified in .

A way around this problem is to use the reduced row echelon form (rref)
of the constraint matrix augmented by the constraint vector, taking only the
nonzero part. Namely,

rref
([

C q
])

=
H p

˜0 y

 , (3-2)

in which, H is the reduced constraint matrix and p is its corresponding right-
hand side vector.

The second set of equations in equation (3-2) contains a all zero matrix,
represented by ˜0 and a vector y, which writes

˜0d = y . (3-3)

Thereby, a solution to equation (3-1) exists if and only if y is identically null.
That information may not be clear in equation (2-22), but is easily verified
after reducing the system.

After verifying the equality y = 0⃗, equation (3-1) may be rewritten using
the reduced constraint matrix as
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Chapter 3. Solution of Constrained Model 19

minimize
d

Π = 1
2dTKd − dTf ,

subject to Hd = p ,
(3-4)

which has an unique primal-dual solution. This solution can be found writing
the Lagrangian function associated to equation (3-4) and taking the derivative
with respect to the primal and dual variables, d and λ respectively (KUHN;
TUCKER, 1951),

L = 1
2dTKd − dTf + λT (Hd − p) , (3-5)

in which, λ are the Lagrange multipliers of equation (3-4). The Lagrangian
function, Equation (3-5), from the field of mathematical programming, is
analogous to the discrete generalized potential energy, Equation (2-24). The
only exception is that λ are the Lagrange multipliers of the reduced constraint
system, Hd = p, and µ the ones of the original constraint system, Cd = q.

Taking the derivatives with respect to the primal variables one finds
∂L
∂d

= Kd + HTλ − f = 0⃗ , (3-6)

which is the equilibrium equation of the constrained model. Thereafter, taking
the derivative of the Lagrangian function according to the dual variables one
finds ∂L

∂λ
= Hd − p = 0⃗ , (3-7)

which is exactly the constraint in equation (3-4).
The solution sought must simultaneously meet equations (3-6) and (3-

7). References (COOK et al., 2002; ZIENKIEWICZ; TAYLOR; ZHU, 2013;
BATHE, 1996) present two possible solution schemes for solving one system
of equations altogether: direct solution of the system using, for example,
Gauss elimination; and penalty functions to enforce constraints. However, the
problem with the first scheme is that it does not benefit from the sparse
characteristic of the stiffness matrix. In addition, this scheme would modify the
implementation of a conventional FE program. On the other hand, the penalty
functions scheme may potentially introduce numerical errors (MEYER, 2000),
which is demonstrated in a numerical study presented here in the first example
of Chapter 7.

The methodology proposed herein avoids these two problems. First,
equation (3-6) is solved for d

d = K−1
(
f − HTλ

)
= du − Lλ , (3-8)

in which, du = K−1f is the solution of the unconstrained model and
L = K−1HT. Equation (3-8) holds because the stiffness matrix relating
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Chapter 3. Solution of Constrained Model 20

unrestrained degrees of freedom, is nonsingular. It should be noted that there
is no need here to invert the stiffness matrix, a multiple right-hand side system
can be solved instead. Then, equation (3-8) is substituted back to equation (3-
7) giving

HLλ = Hdu − p . (3-9)
Matrix HL = HK−1HT is squared and symmetric and is nonsingular since
K is nonsingular and H is full row rank. Equation (3-9) is then solved for
λ. The solution is completed by calculating the displacements substituting
the Lagrange multipliers back into equation (3-8). If the rref process was not
performed, the solution for the Lagrange would not exist, since the resulting
matrix would be singular.

The primal solution of equations (3-1) and (3-4) are the same, however
the Lagrange multipliers are different in size and physical meaning. Since the
Lagrange multipliers of equation (3-1) are needed in the calculation of strains
and stresses, a procedure to retrieve this dual solution is presented.

This procedure begins by performing rref in the constraint matrix C

augmented by an identity matrix of order equals the number of constraints,

rref
([

C I
])

=
H Z

˜0 S

 . (3-10)

Comparing equations (3-2) and (3-10), it may be noted that

p = Zq , (3-11)

and
y = Sq . (3-12)

One possible solution for the Lagrange multipliers of equation (3-1) µ is

µ = ZTλ . (3-13)

However, if C is not full row rank that solution is not unique, and may be seen
as a particular solution.

To prove that equation (3-13) actually is a solution for the Lagrange
multipliers of equation (3-1) substitute equation (3-11) into equation (3-7),
which gives

Hd = Zq , (3-14)
and then substitute equation (2-22) into equation (3-14), finding

Hd = ZCd , (3-15)

which must hold for any d, hence

HT = CTZT . (3-16)
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Substituting equation (3-16) into equation (3-6)

Kd + HTλ = f , (3-17)

one finds
Kd + CTZTλ = f . (3-18)

The equilibrium equation found taking the derivative of the Lagrangian
function associated with equation (3-1) with respect to the displacements is

Kd + CTµ = f . (3-19)

Equation (3-13) is found by simple comparison between equations (3-18)
and (3-19).

However, equation (3-13) may be augmented by its homogeneous solu-
tion, which is any solution that does not interfere in the global equilibrium,
equation (3-19). That can be obtained by

µ = ZTλ + STα . (3-20)

It has already been proven that equation (3-13) is a particular solution of
the global equilibrium equation (3-19). Now, to prove that µ = STα is a
homogeneous solution one should seek to prove that

CTSTα = 0⃗ (3-21)

for any possible value of α. That means S is a basis of the null space of matrix
C and α produces a linear combination of these vectors, which still lies in
the null space. To prove that substitute equation (3-20) into equation (3-19),
which furnishes

CTZTλ + CTSTα = f − Kd , (3-22)
which, substituting equation (3-18) gives

CTZTλ + CTSTα = CTZTλ , (3-23)

therefore, equation (3-21) must hold.
The solution of displacement is already defined by equation (3-8) how-

ever, the complete solution, in terms of strain and stress still depends on the
Lagrange multipliers µ of the original problem equation (3-1). Equation (3-20)
results in infinite possible solutions for µ. As demonstrated, any choice will not
interfere in the global equilibrium, however the stress distribution is severally
affected by this choice. Hence, a procedure for an unique determination of µ

is presented in Chapter 4.
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4
Determination of the Lagrange Multipliers

There are infinity possible solutions for the Lagrange multipliers µ of the
original problem of minimizing the total potential energy, subjected to strain
constraints, equation (3-1). All of these solutions meets the global equilibrium
equation, equation (3-19). Each of them produces a different distribution of
stresses, as demonstrated in Chapter 5.

Therefore, infinity stress distribution are available. There is mainly the
case in statically indeterminate systems when only equilibrium equations are
available. Which is exactly the case when strain constraints are applied since
they reduce the number of available compatibility equations.

The procedure introduced in this work consists of finding the stress
distribution that resembles as much as possible the stress distribution of the
unconstrained model. In other words, the elastic stresses calculated from the
displacement vector du, disregarding constraints.

To achieve this goal, it is minimized the quadratic difference between the
corner forces of the unconstrained model

f e
u = Kede

u , (4-1)

and the corner forces of the constrained model

f e = Kede + CeTµe . (4-2)

In equation (4-1) de
u is the unconstrained element displacement vector retrieved

from the global unconstrained displacement vector du. On the other hand, in
equation (4-2) de is the element displacement vector retrieved from the global
displacement vector d and µe are the Lagrange multipliers associated with
element’s strain constraint, which is retrieved from µ.

Therefore the difference minimization process aforementioned is de-
scribed as

minimize
α

F =
∑

e

(f e − f e
u)T (f e − f e

u) . (4-3)

Note that the only unknowns in equation (4-3) are the homogeneous solution
parameters α. That can be seen by substitution of equations (3-20), (4-1)
and (4-2) into equation (4-3).

Retrieving µe from µ with unknown vector α, may be written as

µe = ZeTλ + SeTα , (4-4)

in which, Ze and Se are obtained retrieving the rows corresponding to
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element’s constraints from Z and S, respectively. Equation (4-4) is equivalent
to equation (3-20) at element level.

Gathering equations (4-1), (4-2) and (4-4), the term f e − f e
u in equa-

tion (4-3) may be written as

f e − f e
u = Ke (de − de

u) + CeTZeTλ + CeTSeTα . (4-5)

Note that the only unknown in equation (4-5) is α. Therefore, even though the
equation being minimized in equation (4-3) may have nine terms only three
will appear in the final solution. That happens because the solution is obtained
by taking the derivative of F in equation (4-3) with respect to α to zero. Thus,
the derivatives of terms independent of α go to zero.

The solution of α, and hence the final solution of µ is obtained from
dF
dα

= Mα + v = 0⃗ , (4-6)

in which,
M =

∑
e

(
SeCeCeTSeT

)
, (4-7)

and
v = SeCe

[
Ke (de − de

u) + CeTZeTλ
]

. (4-8)
Solving the system of equations in equation (4-6) for α completes the

determination of variables in the global equilibrium equation equation (3-
19). That solution is obtained through an iterative solver, such as conjugate
gradient, since the direct solution may not be available if element strain
constraints already contains linear dependency.

For the complete solution of the constrained model, strains and stresses
are to be determined. A procedure to obtain these results is presented on
Chapter 5. This procedure uses the determined values of de and µe, from
equation (4-4).
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5
Stress Recovery

Once the displacements and Lagrange multipliers are determined, strain
and stress calculation are the remaining step of analysis. Strains are calculated
in the standard manner, by equation (2-11). Since constraints were added into
the global solution, these strains fully meet equation (2-7). However, calcula-
tion of stresses through elastic relations, equation (2-4), leads to violations of
equilibrium relations.

In order to shed lights on this equilibrium violation two explanations are
provided. First, considering the global equilibrium equation, equation (3-19), it
is clear that the forces written in terms of displacements, term Kd, alone does
not satisfy the equilibrium equations. Therefore, stresses calculated through
the same displacements cannot be in equilibrium with the external forces.

The equilibrium violation may also be glimpsed by a more physical way.
Consider for instance an undeformable media being tensioned as depicted in
Figure 5.1, being the mesh a single Q4 element. To model this example within
the framework presented in this work, using equation (2-7), A is an identity
matrix of order three, and e is an all zero vector, of size three as well. The only
possible solution for the displacements is to be null. Therefore, all strains are
null, and the stress calculated by equation (2-4) would be null, which clearly
disagrees with the tension stress state imposed by external loads.

Therefore, the determination of the stress field can be found through
the variation of the generalized potential energy, Equation (2-8), which can be
extended as

Π̃ =
∫

Ω

1
2ϵTDϵ dΩ −

∫
Ω

uTb dΩ −
∫

Γ
uTt dΓ +

∫
Ω

γT (Aϵ − e) dΩ . (5-1)

The variation of this functional can be written as

P

P

Figure 5.1: Undeformable media Q4 patch test.
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δΠ̃ =
∫

Ω
δϵT

(
Dϵ + ATγ

)
dΩ −

∫
Ω

δuTb dΩ −
∫

Γ
δuTt dΓ

+
∫

Ω
δγT (Aϵ − e) dΩ .

(5-2)

It can be seen that the field that performs work on the variation of strains δϵ,
better known as the stress field, is given by:

σ = Dϵ + ATγ . (5-3)
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6
Frame Elements

The formulation for frame elements may follow the conventional finite
element formulation, or may be derived as in the field of structural matrix
analysis, using a fundamental system (MCGUIRE; GALLAGHER; ZIEMIAN,
2014). Both formulations lead to the same solution, since the shape functions
used satisfy the governing ordinary differential equations, for prismatic mem-
bers.

In Section 6.1 the governing differential equations are revisited and the
shape functions that satisfy them are found. Thereafter, the formulation of
stiffness equations using the principle of virtual displacements as in a generic
finite element is presented in Section 6.2. Furthermore, the fundamental system
of equations and the assemblage of stiffness matrix as in structural matrix
analysis is presented in Section 6.3.

6.1
Differential Equations

A prismatic frame member is described according to its local axes x′ and
y′ as illustrated in Figure 6.1. It may be subjected to distributed loads qx and
qy, as depicted in Figure 6.2. For the member to be in equilibrium, any part of
it must be in equilibrium. Therefore, considering the whole member one may
find that the nodal forces, in Figure 6.3, must balance the distributed loads. A
more valuable equation, however, is found when considering the equilibrium of
an infinitesimal element as indicated in Figure 6.4. The axial normal force at
the left face is N but in the right face it has an increment due to the presence
of axial distributed load qx. The balance of forces acting on the direction of
the x′ axis is given by

x′

y′

Figure 6.1: Frame member local axes.

qx

qy

Figure 6.2: Frame member distributed loads.
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f ′
1

f ′
2

f ′
3

f ′
4

f ′
5

f ′
6

Figure 6.3: Frame member nodal forces.

x′ dx′

N N + dN

V

V + dV

M M + dM

Figure 6.4: Frame member internal forces.

∑
Fx′ = 0 ∴ −N + qx dx′ + N + dN = 0 , (6-1)

which gives dN

dx′ = −qx . (6-2)
Moreover, according to Figure 6.3, the shear force at the left face is V . However,
due to the distributed load qy it is incremented of dV at the right face. Balance
according to y′ is given by∑

Fy′ = 0 ∴ V + qy dx′ − V − dV = 0 , (6-3)

which equates to dV

dx′ = qy . (6-4)
Furthermore, the distributed load qy also causes changes in the bending
moment from M at the left face to M + dM at the right face. Balance of
moments along z′-axis at point x′ + dx′ gives∑

Mx′

z′ = 0 ∴ −V dx′ − M − qy (dx′)2 + M + dM = 0 , (6-5)

neglecting high order terms and isolating V one may find
dM

dx′ = V . (6-6)

Substitution of equation (6-6) into equation (6-4) gives

d2M

dx′2 = qy . (6-7)

Considering the Bernoulli-Euler beam theory, which states that plane
sections taken in the undeformed configuration remains plane and perpendic-
ular to the structure axis as it undergoes deformation, one may find

N = EAϵa
xx , (6-8)
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M = EIκ , (6-9)
in which, ϵa

xx = du
dx′ is the axial deformation measured at the element axis, and

κ = d2v
dx′2 is the section curvature. Grouping equations (6-8) and (6-9) in matrix

form, it can be stated N

M

 =
EA 0

0 EI

ϵa
xx

κ

 . (6-10)

Combining equations (6-2) and (6-8) one may find

d2u

dx′2 = − qx

EA
, (6-11)

and, substituting equation (6-9) into equation (6-7)

d4v

dx′4 = qy

EI
. (6-12)

Equations (6-11) and (6-12) are the governing differential equations of
a frame member. As in any differential equation, the solution is given by
the summation of a particular and homogeneous solution. The homogeneous
solution of the axial problem may be given by a polynomial of order 1,

u (x′) = ax′ + b , (6-13)

whose second derivative vanishes. The solution is more often written in terms
of nodal displacements rather than constants a and b. The transformation of
constants may be found through

u (x′ = 0) = u1 , (6-14)

u (x′ = L) = u2 , (6-15)

which gives
u (x′) = ϕ1 (x′) u1 + ϕ2 (x′) u2 , (6-16)

in which,

ϕ1 (x′) = 1 − x′

L
, (6-17)

ϕ2 (x′) = x′

L
. (6-18)

Functions ϕ1 and ϕ2 are know as shape functions.
Following the same procedure for equation (6-12) gives

v (x′) = ϕ3 (x′) v1 + ϕ4 (x′) θ1 + ϕ5 (x′) v2 + ϕ6 (x′) θ2 , (6-19)
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in which,

ϕ3 (x′) = 1 − 3
(

x′

L

)2

+ 2
(

x′

L

)3

, (6-20)

ϕ4 (x′) = x′
(

1 − x′

L

)2

, (6-21)

ϕ5 (x′) = 3
(

x′

L

)2

− 2
(

x′

L

)3

, (6-22)

ϕ6 (x′) = x′

(x′

L

)2

− x′

L

 (6-23)

6.2
Finite Element Formulation

The finite element approach for frame elements is rooted at the definition
of the displacement fields as a function of nodal displacements interpolated by
shape functions, as in equation (2-9). Using the shape functions derived in
Section 6.1 it is stated that

u =

u

v

 , (6-24)

d =



u1

v1

θ1

u2

v2

θ2


, (6-25)

Φ =
ϕ1 0 0 ϕ2 0 0

0 ϕ3 ϕ4 0 ϕ5 ϕ6

 . (6-26)

The generic differential operator ∇, in equation (2-10), is defined for
frame elements as

∇ =
 d

dx′ 0
0 d2

dx′2

 , (6-27)

which transform the displacement field to the strains field

ϵ =

ϵa
xx

κ

 . (6-28)

The resulting B matrix, equation (2-11), is

B =
− 1

L
0 0 1

L
0 0

0 −6 (L−2 x′)
L3 −2 (2 L−3 x′)

L2 0 6 (L−2 x′)
L3 −2 (L−3 x′)

L2

 . (6-29)

Comparing equations (2-4) and (6-10) it can be seen that for frame
elements
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σ =

N

M

 , (6-30)

D =
EA 0

0 EI

 , (6-31)

and ϵ is given by equation (6-28). Thereby, performing the integration on
equation (2-15) gives the well known frame stiffness matrix,

K =



EA
L

0 0 −EA
L

0 0
0 12EI

L3
6EI
L2 0 −12EI

L3
6EI
L2

0 6EI
L2

4EI
L

0 −6EI
L2

2EI
L

−EA
L

0 0 EA
L

0 0
0 −12EI

L3 −6EI
L2 0 12EI

L3 −6EI
L2

0 6EI
L2

2EI
L

0 −6EI
L2

4EI
L


(6-32)

It is considered in the sequel the introduction of strain constraints, as per
the framework shown in Chapter 2, to model inextensible and rigid member
behavior. Consequently, the inextensible behavior can be modeled assuming

A =
[
1 0

]
, (6-33)

and

e =
{
0
}

, (6-34)
once,

Aϵ =
[
1 0

]ϵa
xx

κ

 = ϵa
xx = 0 = e . (6-35)

Substituting it back into equation (2-19) gives

C =
∫ L

0
GT dx′

[
− 1

L
0 0 1

L
0 0

]
d . (6-36)

The distribution of normal stresses in a inextensible member is known
to be constant, therefore, the Lagrange multiplier function γ is equal to the
scalar µ. In other words, the interpolation matrix G is a constant given by

G =
[
1
]

. (6-37)
Substituting it back into equation (6-36) gives

C =
[
−1 0 0 1 0 0

]
. (6-38)

Theoretically, the discretization of the Lagrange multiplier function, hence the
axial force distribution, can be enriched. However, any interpolation function
added will only generate different constants after integration, i.e., will merely
generate a linearly dependent constraint.

On the other hand, rigid behavior may be achieved taking
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A =
1 0
0 1

 , (6-39)

and
e =

0
0

 , (6-40)

since,
Aϵ =

1 0
0 1

ϵa
xx

κ

 =

ϵa
xx

κ

 =

0
0

 = e . (6-41)

Noting that, since the member is rigid, all the strain are zero, the first
term in the calculation of stresses, Equation (5-3), is null. Therefore, the stress
field, axial force and bending moment, is determined through the Lagrange
multipliers only. In addition, since A is an identity matrix, σ = Gµ, hence
the choice of interpolation function translates directly to the distribution of
forces within the member.

To shed some lights into that, it is first assumed that the Lagrange
multiplier function is constant for both constraints, ϵa

xx = 0 and κ = 0. Which
translates to assuming that the axial force and bending moment are constant
over the member. In such case one may write,

G =
1 0
0 1

 , (6-42)

which gives, substituting back into equation (2-19),

C =
−1 0 0 1 0 0

0 0 −1 0 0 1

 . (6-43)

It can be seen that the resulting constraint matrix imposes that the axial strain
is equal to zero and that the rotations of both ends should be equal. Although,
this is a necessary condition, it is still not enough to impose rigid behavior.
Therefore, a higher order of interpolation shall be used in the Lagrange
multipliers to impose rigid behavior properly. Thus, adding a linear term one
may write

G =
1 0 0
0 1 x′

 , (6-44)

which gives, substituting back into equation (2-19),

C =


−1 0 0 1 0 0
0 0 −1 0 0 1
0 1 0 0 −1 L

 , (6-45)

in which is worth noticing that a new, linearly independent constraint is found.
The new constraint in the third line of the constraint matrix bonds the rotation
of the end node with the transverse displacements of the member. Analyzing
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the impact of adding a linear upon the distribution of internal forces, it may
be stated from Equation (5-3), that the first discrete Lagrange multiplier is
equivalent to constant axial force on the member. In addition, the bending
moment will be given by

M = µ2 + x′µ3 . (6-46)
It can be seen that µ2 corresponds to the bending moment at the beginning of
the member while µ3 corresponds to the constant shear force over the member.

The equations in Equation (6-45) are enough to enforce rigid motion.
However, for the sake of investigation a quadratic term is added to the Lagrange
multiplier interpolation. Hence one may write

G =
 1

L
0 0 0

0 1 x′ x′2

 , (6-47)

which gives, substituting back into equation (2-19),

C =


−1 0 0 1 0 0
0 0 −1 0 0 1
0 1

L
0 0 − 1

L
1

0 1
L

1
6 0 − 1

L
5
6

 . (6-48)

It can be seen that the incorporation of a quadratic term furnished a linearly
dependent constraint, since the fourth line is equal to the third minus the
second divided by six. In other words, the inclusion of a quadratic term added
no additional information on the constraints.

It’s interesting to show that different interpolation functions generates
different constraints and different physical meaning of discrete Lagrange multi-
pliers. Namely, the Lagrange multiplier function for κ = 0 is given interpolated
by

γκ = µ2 + x′µ3 . (6-49)
If the function is rewritten on different basis such as

γ̃κ =
(

1 − x′

L

)
µ̃2 + x′

L
µ̃3 , (6-50)

This function is of course linear, and a relationship between the parameters
on each function can be found as µ̃2 = µ2 and µ̃3 = µ3L + µ2. Thus, the
weighting function is the same, but written through different interpolation
(basis) functions. Therefore, one may write

G =
1 0 0
0 1 − x′

L
x′

L

 , (6-51)

which gives, substituting back into equation (2-19),
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C =


−1 0 0 1 0 0
0 − 1

L
−1 0 1

L
0

0 1
L

0 0 − 1
L

1

 . (6-52)

It can be noticed that the two last lines on equation (6-45) and the two last
lines on equation (6-52) are linearly dependent. In other words, the constraints
found are the same but only written in a different manner.

The physical interpretation of the discrete Lagrange multiplier also
change. While µ2 and µ3 are, respectively, the bending moment and shear force
at the beginning of the member, µ̃2 and µ̃3 are the bending moment on each
of the end nodes of the member. In other words, changing the interpolation of
the Lagrange multiplier function changes how and in term of which parameters
the bending moment diagram is expressed.

This formulation can be used to model frame members with node
liberation, such as hinges, as well. This can be achieved by defining shape
functions according to the prescribed nodal liberation and carrying out the
same procedure to find the corresponding matrices.

6.3
Structural Analysis Formulation

The formulation more commonly used in structural analysis is based on
the concept of kinematic incidence of nodal displacements and rotations on
local axis, depicted in Figure 6.5 into a natural system, which captures the
essence of possible deformations of a frame element. The natural system must
be in equilibrium, hence a statically determined structure is used to model its
behavior.

The natural system chosen consists of the supported beam shown in
Figure 6.6. Other choices are also possible, as illustrated in Figure 6.7.
Although ϵ1, ϵ2, and ϵ3, in Figure 6.6, are displacements and rotations, they are
treated as strains in this formulation, since the actual strains of beam theory
within the element can be calculated after them as

ϵa
xx = ϵ1

L
, (6-53)

κ =
[

2 (2L − 3x′)
L2

]
ϵ2 −

[
2 (L − 3x′)

L2

]
ϵ3 . (6-54)

Therefore, the strain vector is given by

ϵ =


ϵ1

ϵ2

ϵ3

 . (6-55)
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(a) Nodal displacements.

 

1d  2d  

3d  6d  

5d  
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u v 

4d  

(b) Deformed configuration.

Figure 6.5: Nodal displacements of frame element.

ϵ1
ϵ2 ϵ3

Figure 6.6: Frame element natural system displacements.

Figure 6.7: Alternative natural systems.
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σ1
σ2 σ3

Figure 6.8: Frame element natural system forces.

Similarly, the stress vector of this approach is the static correspondents
of ϵ1, ϵ2, and ϵ3, which are σ1, σ2, and σ3, or in matrix form

σ =


σ1

σ2

σ3

 . (6-56)

Which are actually forces and moments applied at the nodes, as shown in
Figure 6.8. The actual stress resultants can be calculated as

N = σ1 , (6-57)

M =
(

1 − x′

L

)
σ2 + x′

L
σ3 . (6-58)

The stiffness relationship between the forces σ1, σ2, and σ3 and the
displacements ϵ1, ϵ2, and ϵ3 plays the role of constitutive equation in this
formulation, and it is given by

D =


EA
L

0 0
0 4EI

L
−2EI

L

0 −2EI
L

4EI
L

 . (6-59)

Therefore, the only ingredient missing for the complete definition of the
frame element is the B matrix. As in equation (2-11) it must relate ϵ to
d. In this approach, ϵ is, as aforementioned, a displacement vector so the B

matrix will be incidence matrix. The calculation of this matrix is carried out by
applying a nodal displacement equal to one and measuring the correspondent
displacement in the natural system, as illustrated in Figure 6.9. The final
matrix is given by

B =


−1 0 0 1 0 0
0 − 1

L
−1 0 1

L
0

0 1
L

0 0 − 1
L

1

 . (6-60)

Using this formulation, the inextensible behavior may be modeled taking

A =
[
1 0 0

]
, (6-61)

e =
{
0
}

. (6-62)
While a frame element can be modeled with
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ϵ1 = −1

d1 = 1

ϵ1 = 1

d4 = 1

d2 = 1

ϵ2 = − 1
L

1
L

= ϵ3

d5 = 1

ϵ2 = 1
L

− 1
L

= ϵ3

d3 = 1

1 = d6

ϵ2 = −1

1 = ϵ3

Figure 6.9: Frame element nodal to natural system displacements.
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A =


1 0 0
0 1 0
0 0 1

 , (6-63)

e =


0
0
0

 . (6-64)

This formulation is preferable than the direct finite element approach
for frame members since the formulation of constraints is more direct, does
not requires additional integration, and does not generate linear dependent
strain constraints at the element level. Furthermore, the formulation for end
liberations is more straightforward than in the finite element approach for
frame members. In Section 6.4 analysis of simple frames are performed to
furnish a deep understanding of the methodology and the cases in which linear
dependent constraints appears.

6.4
Frame Applications

This chapter presents the application of the proposed methodology to two
simple frames to elucidate some aspects afore discussed. The first example, on
Section 6.4.1, enlightens local to global transformation of constraint equations,
assemblage of global constraint matrix and the calculation of internal forces.
The second example, on Section 6.4.2, is mainly useful for perceiving how
redundant constraints appears and how they affect the solution and the
determination of internal forces.

6.4.1
Simple frame

Figure 6.10 shows a simple frame with inextensible columns and a rigid
beam subjected to a described displacement ρ. The bending formulation of the
columns neglects shear deformation. This example is used to illustrate these
constraint relations in local and global coordinate systems.

The local constraint relations of members of the simple frame in Fig-
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Figure 6.10: Simple frame with inextensible columns and rigid beam.

ure 6.10 in the global system are, for members 1, 2, and 3, respectively:

C1 =
[
−0.6 −0.8 0 0.6 0.8 0

]
, (6-65)

C2 =


−1 0 0 1 0 0
0 −1

6 −1 0 1
6 0

0 1
6 0 0 −1

6 1

 , (6-66)

C3 =
[
0 1 0 0 −1 0

]
. (6-67)

To assemble the global constraint matrix, it is defined a stack vector, for
each constrained member, that relates local to global constraint numbering.
For example, the stack vectors of the frame of Figure 6.10 are:

s1 =
{
1
}

, (6-68)

s2 =
{
2 3 4

}
, (6-69)

s3 =
{
5
}

, (6-70)

in which, sm is the stack vector of member m. For members 1 and 3, the
stack vectors are of dimension one as they are inextensible members, with
only one constraint. On the other hand, the stack vector of rigid member 2 has
dimension 3.

The stack vectors are used to assemble the global constraint matrix in
the following way:

Ĉsm
i ,gm

j
= cm

i,j , (6-71)
in which, Ĉ is the global constraint matrix before handling boundary con-
ditions; m = 1, . . . , number of members; i = 1, . . . , number of constraints;
j = 1, . . . , number of degrees of freedom; and gm is the gather vector of mem-
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ber m, the same used in the global stiffness matrix assembling.
In the example of Figure 6.10, from the local and global numbering, the

gather vectors of the members of this frame model are:

g1 =
{
7 8 9 1 2 3

}
, (6-72)

g2 =
{
1 2 3 4 5 6

}
, (6-73)

g3 =
{
4 5 6 10 11 12

}
, (6-74)

For the simple frame of Figure 6.10, the matrix Ĉ is:

Ĉ =



0.6 0.8 0 0 0 0 −0.6 −0.8 0 0 0 0
−1 0 0 1 0 0 0 0 0 0 0 0
0 −1

6 −1 0 1
6 0 0 0 0 0 0 0

0 1
6 0 0 −1

6 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 −1 0


. (6-75)

In the example of Figure 6.10, after considering the essential boundary
conditions, as described in the equation (2-21), resulting global constraint
matrix is:

C =



0.6 0.8 0 0 0 0
−1 0 0 1 0 0
0 −1

6 −1 0 1
6 0

0 1
6 0 0 −1

6 1
0 0 0 0 1 0


, (6-76)

and the global constraint vector is:

q = −



−0.6 −0.8 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0





ρ

0
0
0
0
0


=



0.6ρ

0
0
0
0
0


(6-77)

Although there is no redundant constraint in this frame, the rref is carried
out to generalize the procedure considering redundant constraints. The reduced
constraint matrix H , obtained from equation (3-10) is

H =



1 0 0 0 0 −8
0 1 0 0 0 6
0 0 1 0 0 −1
0 0 0 1 0 −8
0 0 0 0 1 0


. (6-78)
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The corresponding Z matrix is

Z =



5
3 0 0 4

3 −4
3

0 0 0 −1 1
0 0 −1

6
1
6 0

5
3 1 0 4

3 −4
3

0 0 0 0 1


, (6-79)

which is used to find the constraint vector of the reduced problem, from
equation (3-11):

p = Zq =



ρ

0
0
ρ

0


. (6-80)

The solution of the constraint problem gives rise to the following La-
grange multipliers (see equation (3-9)):

λ =



EIρ/19
−3EIρ/76
10EIρ/57

−103EIρ/1216
0


. (6-81)

From this result, using equation (3-8), the displacement vector of the
constrained model is:

d =



32ρ/57
25ρ/76

−25ρ/456
32ρ/57

0
−25ρ/456


, (6-82)

whose physical interpretation is depicted in Figure 6.11.
Since this frame does not present redundant constraints, matrix S in

equation (3-20) does not exist. Therefore, the Lagrange multipliers are:

µ = ZTλ =



−65EIρ/1216
−103EIρ/1216

−5EIρ/171
71EIρ/2736

EIρ/304


. (6-83)

Member internal forces of this frame are obtained from Eq. (76). The
resulting member internal force vectors, f 1, f 2, f 3 are shown in the sequel:
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32 / 57  
32 / 57  

25 / 76  

25 / 456  

Figure 6.11: Physical interpretation of the displacement vector of simple frame
example.

f 1 = K1d1 + C1T
µ1

= K1



3ρ/5
−4ρ/5

0
3ρ/5

−287ρ/1140
−25ρ/456


+



−1
0
0
1
0
0


{−65EIρ/1216}

=



65EIρ/1216
−5EIρ/76

−35EIρ/228
−65EIρ/1216

5EIρ/76
−10EIρ/57


,

(6-84)
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f 2 = K2d2 + C2T
µ2

= K2



32ρ/57
25ρ/76

−25ρ/456
32ρ/57

0
−25ρ/456


+



−1 0 0
0 −1 −1
0 −6 0
1 0 0
0 1 1
0 0 −6




−103EIρ/1216

−5EIρ/171
71EIρ/2736



=



103EIρ/1216
EIρ/304
10EIρ/57

−103EIρ/1216
−EIρ/304

−71EIρ/456


,

(6-85)

f 3 = K3d3 + C3T
µ3

= K3



0
32ρ/57

−25ρ/456
0
0
0


+



−1
0
0
1
0
0


{EIρ/304}

=



−EIρ/304
103EIρ/1216
71EIρ/456
EIρ/304

−103EIρ/1216
167EIρ/912


.

(6-86)

Physical representations of these internal forces are shown in Figure 6.12.
To generate the diagrams of axial force, shear force, and bending moment
shown in this figure, adequate numerical values for flexural rigidity, EI =
2.432 × 10−5 kNm2, and for the prescribed displacement, ρ = 0.003 m, were
used.
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Figure 6.12: Member internal forces of simple frame (EI = 2.432×10−5kN m2,
ρ = 0.003m).

6.4.2
Frame with redundant constraints

Although the framework presented in Figure 6.10 could have been solved
without the reduction of the constraint matrix to its reduced row echelon
form, there are cases in which the constrained problem might have redundant
constraints, which could make equation (3-9) to have infinite possible solutions.
Additionally, problems with redundant constraints might become infeasible
for a specific situation of prescribed displacements (settlements). To illustrate
this, Figure 6.13 shows a simple frame with inextensible members. Member 1
provides the constraint d2 = 0; member 2 furnishes the relation d1 = 0; and
member 3 also gives the equation d2 = 0, which is a redundant information.
That may be seen at the global constraint matrix

C =


0 1 0
1 0 0
0 −1 0

 , (6-87)

in which, the first and third rows are linearly dependent.
In spite of this redundancy, this problem has a solution for the displace-

ment vector of the type d =
{
0 0 α

}
, in which α (rotation of the central

node) may be determined through equation (3-1). However, if there were a
prescribed vertical displacement ρ at the inferior node, the problem would
be inconsistent with the inextensible member hypothesis, since the superior
node has no prescribed displacement. The described condition reflects to the
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Figure 6.13: Frame with redundant constraints.

right-hand side given as

q =


ρ

0
0

 . (6-88)

It is clear that there is no solution for Cd = q under this condition. Thus, the
problem is infeasible. However, some constraints matrix are more complicated
and such visualization is not possible directly. Therefore, the criterion described
at Chapter 3 is needed, since it is easily applied.

The rref of the augmented matrix
[
C I

]
is

H Z

0 S

 =


1 0 0 0 1 0
0 1 0 0 0 −1
0 0 0 1 0 1

 . (6-89)

Considering the prescribed displacement condition equations (3-11) and (3-12)
become

p =
{
0 0

}T
, (6-90)

y =
{
ρ
}

. (6-91)

Thereby, equation (3-3) is only verified if ρ = 0.
Continuing the solution of the problem at Figure 6.13, considering zero

prescribed displacement, the equivalent nodal force vector is given by

f =


0

− qL
2

qL2

12

 = q


0

−3
3

 . (6-92)

Calculating the displacement vector gives
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d =


0
0
3q

4EI

 . (6-93)

The resulting nodal internal force vector is:

Kd = q


−5

8

−1
8

3

 , (6-94)

which is not in equilibrium with the nodal external force vector.
In fact, the equilibrium is satisfied considering the nodal constraint force

vector:

CTµ =


µ2

µ1 − µ3

0

 , (6-95)

as shown in the modified equilibrium equation (3-19), which for the example
of equation (3-19) reduces to:

q


−5

8

−1
8

3

− q


0

−3
3

+


µ2

µ1 − µ3

0

 = {0} . (6-96)

From equation (6-96), µ2 = q 5
8 and µ1 − µ3 = −q 23

8 . Therefore, as expected,
there are infinite solutions for µ1 and µ3, since the redundant constraints are
associated to members 1 and 3.

On the other hand, the solution of the reduced problem, equation (3-
4), given by equation (3-9) has a unique solution. The modified equilibrium
equation (3-6) for the problem of Figure 6.13 considers the nodal constraint
force vector given by:

HTλ =


λ1

λ2

0

 , (6-97)

resulting in the following values for the Lagrange multipliers of the reduced
problem: λ1 = q 5

8 and λ2 = −q 23
8 .

Using equation (3-20) the Lagrange multipliers of the original problem
are given by

µ =


0 0
1 0
0 −1


 5/8

−23/8

 q +


1
0
1

α

=


0

5/8
23/8

 q +


α1

0
α1

 .

(6-98)
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It is worth pointing out that the for the example of Figure 6.13 vector α is a
scalar α1 since there is only one redundant constraint.

Analyzing the global equilibrium equation,

Kd + CTµ = Kd + CT
(
ZTλ + STα

)
= f , (6-99)

of the structural model presented in Figure 6.13, for which the first term is
given in equation (6-94) and the second is split into two

CTµ = CTZTλ + CTSTα , (6-100)

whose first evaluates to

CTZTλ =


0 1 0
1 0 −1
0 0 0



0 0
1 0
0 −1




5
8

−23
8

 q =


5
8

−23
8

0

 q , (6-101)

while the second terms becomes

CTSTα =


0 1 0
1 0 −1
0 0 0



1
0
1

α1 =


0
0
0

α1 , (6-102)

one can conclude that the global equilibrium matrix is satisfied for any value
of α.

With the Lagrange multipliers on equation (6-98), the internal forces of
member 1 may be written as

f 1 =



0
1
1
0

−1
2



q

2 +



−1
0
0
1
0
0


α1 , (6-103)

while the internal forces of member 2 are

f 2 =



0
1
2
0

−1
4



q

8 +



−1
0
0
1
0
0


5
8q , (6-104)

and, lastly, the internal forces of member 3 are given by:
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Figure 6.14: Internal forces in members of frame with redundant constraints.

f 3 =



0
3/2
1
0

−3/2
2



3
4q +



−1
0
0
1
0
0



(23
8 q + α1

)
(6-105)

It can be seen in equations (6-103) and (6-105) that the axial forces on
members 1 and 3 of the example of Figure 6.13 have infinite valid solutions, one
for each value of parameter α1. Therefore, vector α changes the distribution
of internal forces without disrupting the global equilibrium.

Applying the minimization procedure described in chapter 3 to the
example in study, shown in Figure 6.13, one may find α1 = −1.1523q. Assuming
q = 4kN/m, the internal forces of this example are shown in Figure 6.14.
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7
Results

7.1
Partially rigid beam

This example comprises a beam of stiffness and length under a mid-
span load. Moreover, half of its domain is rigid as shown in Figure 7.1. Shear
deformation of the second beam half is neglected. Its solution is found using
the penalty method to illustrate the numeral problems that may arise. Then
the solution with the proposed Lagrange multiplier methodology is presented
to validate its robustness.

The degrees of freedom used to model this structure are presented in
Figure 7.1a: ∆ (transversal displacement at mid spam) and θ (rotation of mid
spam cross-section). Since this is a statically determinate model, shear force
and bending moment responses are independent of the stiffness properties of
the beam, as shown in Figures 7.1b and 7.1c, respectively.

L L

EI1 EI2

5P
14

9P
14

2P L
7

θ
∆

P

(a) Structural model.

+5P
14

−9P
14

(b) Shear forces.

10P L
28

2P L
7

(c) Bending moment.

Figure 7.1: Partially rigid beam.

In the penalty method, a finite value, EI1, for the flexural rigidity in the
first half span is used. The flexural rigidity of the second half spam is EI2, and
the ratio between them is:
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Figure 7.2: Semi-log graph of ratio β vs. normalized bending moment at mid
span of beam.

β = EI1

EI2
.

The resulting system of equilibrium equations of this problem is:

3EI2

L2

 4+β
L

2 − β

2 − β
(

4
3 + β

)
L

∆
θ

 =

P

0

 .

After solving this system of equations, the bending moment at mid beam
spam may be computed from:

M (x = L) = 2EI2

L2 (3∆ + 2θL)

Figure 7.2 depicts a graph, in semilog scale, relating the flexural rigidity
ratio β with the ratio between the computed bending moment at mid spam
and its analytical value M (L) = 10

28PL, assuming L = 1m, P = 1kN, and
EI2 = 105kN m2. It can be seen in the graph of Figure 7.2 that for values of
β greater than 1013 the numerical solution diverges, which demonstrates the
instability of the penalty method.

The solution of this problem using the proposed Lagrange multiplier
method assumes the same flexural rigidity for the unconstrained problem,
hence no ill-condition issues arise in the solution of equilibrium equation.
Thereafter, the solution found through the proposed Lagrange multiplier
method does not presents numerical instabilities.
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(a) Shear forces influence line.

(b) Bending moment influence line.

Figure 7.3: Partially rigid beam.

7.2
Influence line

This examples sheds lights on the advantage of general treatment of
strain constraints as in equation (2-7). To do so, a nonzero b vector example is
provided. It may be useful on finding influence lines of bending moment and
shear force through kinematic procedure. Shear force influence line of a section
with local coordinate x′ = a within a member of length L may be modeled as

A =


1 0 0
0 a L − a

0 1 −1

 , e =


0
1
0

 .

While, the bending moment influence line may be modeled as

A =


1 0 0
0 1 0
0 0 1

 , e =


0

L−a
L
a
L

 .

The influence lines of shear force and bending moment for the beam
model depicted on Figure 7.1a considering a = 0.5m (from left support) are
illustrated in Figure 7.3.

7.3
Shear building

This example consists of a two-dimensional model of a 2-bay and 5-storey
building with rigid floors and inextensible columns loaded by horizontal forces
of 18 kN applied to each floor, as depicted in Figure 7.4. The properties of
all members of the unconstrained model are E = 24GPa (elasticity modulus),
A = 750cm2 (cross-section area), and I = 156250cm4 (cross-section moment
of inertia). The columns of the constrained model maintain the same value of
flexural rigidity EI and do not consider shear deformation.
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(a) (b) 

Figure 7.4: Shear building structural model with (a) asymmetric loading and
(b) symmetric loading.

It should be noticed that this frame model has redundant constraints,
since only two inextensible columns are needed to restrain the rotation of the
rigid floor. Therefore, the axial deformation constraint of the third column is
linearly dependent. Hence, the axial forces of these columns are determined
using the methodology presented in Chapter 4. For this reason, the results of
the unconstrained model are necessary.

To analyze the impact of the unconstrained model results, the loading
in the shear building are considered in two different manners. Firstly, the
loads are applied on the left-hand-side of the frame, hence asymmetrically,
as illustrated in Figure 7.4(a). Secondly, the loads are symmetrically divided
on each floor, as shown in Figure 7.4(b). Figure 7.5 shows the axial forces
in all members of the unconstrained structural model considering asymmetric
loading, in Figure 7.5(a), and symmetric loading, in Figure 7.5(b).

It may be observed in Figure 7.5 that the unconstrained model response
for asymmetric loading is not symmetric. Consequently, the response of con-
strained model, axial forces shown in Figure 7.6, are symmetric only if the
loading is symmetrically applied. Since the symmetric response is intuitively
expected for the shear building model, the structural responses of displace-
ments, shear forces, and bending moment are illustrated in Figure 7.7, con-
sidering symmetric loading. The dependency of the constrained response on
the results of the unconstrained model might be a drawback of the proposed
methodology.
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(a) (b) 

Figure 7.5: Shear building axial force diagram (kN) of unconstrained structural
model: (a) Asymmetric loading, (b) Symmetric loading.

7.4
Asymmetric strip footing

An asymmetric strip footing under constant pressure p = 1kN/m2 is
herein analyzed. The soil material parameter are: Young modulus E = 3MPa
and Poisson ratio ν = 0.3. The footing is considered rigid, but the soil should
be free to deform transversally under the footing. This behavior is modeled
with a constraint ϵyy = 0 and a very low Young modulus E = 1kPa for the
footing, so that the displacement in the x-direction is practically free. The
mesh discretization used is shown in Figure 7.8. The footing geometry and
mesh is shown in detail in Figure 7.9.

The stress σyy of the footing is depicted in Figure 7.10 along its deformed
configuration. It can be seen that the stress are successfully calculated.
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(a) (b) 

Figure 7.6: Shear building axial force diagram (kN) of constrained structural
model: (a) Asymmetric loading, (b) Symmetric loading.

 

(a) (c) (b) 

Figure 7.7: Shear building responses for symmetric loading: (a) deformed
configuration (deformed factor = 6000), (b) shear force diagram (kN), and
(c) bending moment diagram (kNm).
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Figure 7.8: Strip footing geometry and mesh discretization.
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Figure 7.9: Strip footing geometry and mesh discretization – detail.
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Figure 7.10: Stress σyy on the footing.

Figure 7.11: Stress σyy on the soil.
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Figure 7.12: Stress σyy on the soil next to footing.
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8
Conclusions

This work deals with the finite element method for structural analysis
considering strain constraints, such as framed structures with inextensible and
infinitely rigid member, i.e., with null axial and bending deformations. Rigid
and inextensible members may be useful in educational software because they
capture the essence of structural behavior with a reduced number of variables.

The proposed methodology considers structural member deformation
constraints using Lagrange multipliers. It consists of adding strain constraints
into the total potential energy minimization, leading to a quadratic program-
ming problem. The solution gives rise to one Lagrange multiplier per con-
straint, which is essential for computing member internal forces. In addition,
the adopted approach is suitable for computational implementation, since it
preserves the generic characteristic of a matrix structural analysis: direct as-
semblage of element matrices to global model matrix.

However, there are situations in which the constraints of rigid and
inextensible members can be redundant, resulting in infinite solutions for
member internal forces. In these situations, it is not possible to determine the
values of dependent Lagrange multipliers. The adopted solution to eliminate
linearly dependent constraints and the associated Lagrange multipliers is to
find the reduced row echelon form (rref) of the redundant global constraint
matrix, reformulating the problem in terms of the reduced matrix.

There is still the problem of defining the internal forces of a redundant
constraint problem. The solution is found by minimizing the difference between
member internal forces of the constrained and the unconstrained models. For
this, the reduced vector of Lagrange multipliers is augmented by adding to the
particular solution any linear combination of vectors belonging to the kernel
of matrix.

The dependency on an unconstrained response for obtaining internal
forces in members of a constrained model may be a drawback of the proposed
methodology. In fact, the results of the shear building example of Section
5.3 with the penalty method would not depend on symmetric or asymmetric
loadings. One alternative that may be explored in the future would be to
minimize the difference between the internal forces obtained by the proposed
Lagrange multipliers method and the ones obtained by the penalty method.
The problem with this is that the penalty method sometimes fails due to
numerical problems.
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The presented methodology is implemented in the educational software
Ftool and will be available in its next distributed version. Future developments
are related to finding constraint equations for influence lines of internal
forces in cross-sections of infinitely rigid members. These influence lines
correspond to the deformed configuration resulting from the application of
unitary discontinuities of displacement or rotation at the target cross-section.
In addition, the proposed methodology for considering frame member with
deformation constraints is being extended for geometric non-linear analysis in
Ftool.

As aforementioned the calculation of matrix L in equation (3-8) does
not represent a computational hurdle since it is the same of multiple right
hand side system of equations. On the other hand, the solution of equation (3-
9) may be a significant overhead for highly constrained mesh discretization,
since if is a system of equation of the order of the linear independent
constraints. Additionally, one has to assemble and solve equation (4-6) which is
in general less time consuming given that the number of redundant constraints
is generally small. For the stress recovery processes, one small system of
equations has to be solved. This is not considered overwhelming since it is
on element level and involve solely the degrees of freedom of each element
separately. The major observed computational drawback is the computation
of the reduced row echelon form of the constraint matrix. Therefore, it can be
observed in future works a methodology to circumvent that issue.
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