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Abstract. This work evaluates the influence of high-order terms in the strain tensor associated to Timoshenko 

beam theory for a geometric nonlinear analysis. The tangent stiffness matrix of the studied element considers an 

updated Lagrangian formulation, shear deformation and the high-order terms in the strain tensor. A complete 

geometric nonlinear analysis with robust nonlinear solution schemes are performed for structures with a 

moderate slenderness ratio. The response is compared with a conventional updated Lagrangian formulation 

disregarding the high-order terms in the strain tensor, and with a corotational formulation. Examples evidence 

the importance of the high-order terms in strain tensor to perform geometric nonlinear analyses when 

considering an updated Lagrangian formulation. Moreover, the analysis with reduced element discretization, 

using the proposed formulation, provides equilibrium paths that are closer to highly discretized models 

compared to the others formulations. 
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1  Introduction 

Distinct aspects influence the behavior of a beam-column in a geometric nonlinear analysis using the Finite 

Element Method (FEM). The kinematic description of motion, the bending theory, the interpolation functions, 

and the strain tensor terms considered play an important role in these analyses. 

The updated Lagrangian description of motion (McGuire [1], Bathe [2], Yang and Kuo [3]) leads to 

satisfactory results for the geometric nonlinear response of frames. In most works (Rodrigues et al. [4]), the 

formulation usually considers only Euler-Bernoulli beam theory. However, Rodrigues et al. [4] has shown the 

importance of considering the effects of shear deformation (Timoshenko beam theory) in the analysis of beam-

column elements with a moderate slenderness ratio or with materials that have a small ratio of elastic to shear 

modulus. That study considered only the pre-critical phase. 

Furthermore, Rodrigues et al. [4,5] also explored the strain tensor by using high-order terms to derive the 

local tangent stiffness matrix of a frame element considering the Timoshenko theory. While Rodrigues et al. [4] 

used cubic interpolation functions (as presented in Martha [6]), Rodrigues et al. [5] considered the influence of 

internal axial force and employed complete interpolation functions (Burgos and Martha [7]) to perform 

geometric nonlinear analyses with reduced structural discretization in the pre-critical phase. 
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The analysis of post-critical behavior of frames usually requires a refined discretization of the structure and 

a robust incremental-iterative method to solve the problem due to the possibility of complex equilibrium paths 

with critical points and multiple responses to a given load level (Rangel [8]). Thus, many authors work on the 

development of algorithms for this type of analysis (Leon et al. [9], Crisfield [10], Pacoste and Eriksson [11]). 

Rodrigues et al. [12] used these methods with a complete formulation of the stiffness matrix and reduced 

discretization, reaching an efficient behavior in the pre-critical phase and satisfactory results in the post-critical. 

This research studies the element proposed in Rodrigues et al. [4] considering the updated Lagrangian 

formulation, the Timoshenko beam theory, and high-order terms in the strain tensor, in association to a robust 

incremental-iterative method to explore how these aspects influence the post-critical behavior of geometric 

nonlinear analyses of framed structures. The computational implementations were made in the NUMA-TF 

(NUMerical Analysis of Truss and Frames) program [13], an open-source MATLAB program. 

2  Element formulation 

The element studied was formulated in Rodrigues et al. [4]. This element considers high-order terms in the 

strain tensor of a Timoshenko beam-column with an updated Lagrangian description. The geometric stiffness 

matrix was derived using the interpolation functions of a Timoshenko element and the principle of virtual work. 

2.1 Timoshenko beam theory (TBT) 

In the Timoshenko beam theory (TBT), the shear distortion ( ) is an additional cross-section rotation, so 

the transverse displacement is decoupled from the cross-section rotation, as shown in Fig. 1. The displacement 

field is written according to eq. (1).  
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Figure 1. Timoshenko beam displacement field (Rodrigues et al. [5]) 
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The equilibrium of an infinitesimal element is depicted in Fig. 2, and the differential equation of the 

problem is given in eq. (2). Equation (3) can be written by replacing the shear force acting on a section ( ), 

where   is the shear modulus,   is the cross-section area, and   is the factor that defines the effective shear area 

of the cross-section.  

dx 
x 

y 
q (x) 

p(x) 
dx 

M + dM 

N + dN 

Q + dQ 
M 

Q 

N 

q 

O 
p 

 

Figure 2. Timoshenko beam displacement field (Rodrigues et al. [4]) 
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Using the dimensionless factor Ω, introduced by Reddy [14], the homogenous solution of the differential 

equation is given by eq. (4). 
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This solution can be used to write interpolating functions of nodal transverse displacements and rotations: 
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2.2 Updated Lagrangian formulation 

The local stiffness matrix is developed in Rodrigues et al. [4]. Considering an updated Lagrangian 

formulation (McGuire et al. [1], Yang and Kuo [3]), the virtual work of the problem is written as in eq. (6).  

 ∫                
   ∫    

       
   ∫    

 
 

        
(    ) (6) 

The first integral leads to the elastic stiffness matrix, while the third integral leads to the geometric stiffness 

matrix. The second integral represents the virtual work of forces acting on the element in configuration t and is 

usually presented on the right-hand side of the expression (Rodrigues et al. [5]). Typically, the higher-order 

terms are disregarded in the Green-Lagrange strain tensor, which is written as in eq. (8), leading to the reduced 

stiffness matrix presented in eq. (9). 
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To derive the geometric stiffness matrix taking into account the higher-order terms in the strain tensor, 

Rodrigues et al. [4] considered the nonlinear part of the Green-Lagrange strain tensor (  ) associated with the 

displacements field of the Timoshenko beam, provided eq. (1), leading to eq. (10). 
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Therefore, by using the interpolation functions of eq. (5), the virtual work of eq. (6), and the nonlinear part 

of the Green-Lagrange strain tensor of eq. (10), Rodrigues et al. [4] reached the geometric stiffness matrix 

presented in eq. (11). 
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Finally, the internal forces are calculated considering large displacements. According to McGuire et al. [1], 

the rigid body motions should be separated from the natural deformations (Fig. 3). The displacements are limited 

to axial displacement (  ) and nodal rotations (       ). By employing robust solution schemes to solve the 

nonlinear problem, Rodrigues et al. [12] explained that the forces at the end of a load step {²F} are calculated 

considering the forces at the beginning of the step {
1
F} and their increment {dF} up to the current iteration: 

{   }  {   }  {  }   The increment of forces should be calculated with the tangent matrix, as in eq. (12). 

 

Figure 3. Element forces and displacements (McGuire et al. [1]) 

 {  }  [     ][                          ]
  (12) 

2.3 Corotational formulation 

The corotational formulation is well presented in Crisfield [10] and Rangel [8]. The tangent stiffness matrix 

in the global system is calculated as follows: 

 [ ]  [ ][  ][ ]
    ⁄ { }{ }  

       
  
⁄ ({ }{ }  { }{ } ) (13) 

where [ ] { } and { } are transformation matrices and vectors. The natural system matrix, Ke, corresponds to the 

elastic matrix, which is given by eq. (14) when considering the Timoshenko theory. 
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3  Numerical analysis 

The results obtained with the proposed Timoshenko Large formulation (higher-order terms in the strain 

tensor – TBT-Large) were compared with other formulations considering different discretization levels: 

conventional Timoshenko theory (TBT-Small), Euler-Bernoulli theory considering higher-order terms in the 

strain tensor (EBBT-Large), corotational formulation (TBT-Corotational). The influence of higher-order terms in 

the strain tensor considering the Timoshenko beam theory (TBT) was studied with three models (Fig. 4): a 

Toggle frame, a Roorda, and a Lee frame. In the first two, the structure was discretized with 2 and 5 elements per 

bar, and only 5 for the Lee frame due to its higher nonlinearity. Moreover, the corotational formulation with a 

high discretization of 10 elements per bar was taken as a reference solution for all models. Examples consider a 

length of L = 1 m, Young’s modulus of E = 10
7
 kN/m

2
, Poisson’s ratio of ν = 0.3, cross-section form factor of  

= 5/6, and reduced slenderness ratio of L/h = 4. The resulting equilibrium paths are shown in Fig. 5 to Fig. 9. 

 

 

 

 

 

Figure 4. (a) Toggle frame, (b) Roorda frame, (c) Lee frame  

 

Figure 5. Toggle frame equilibrium paths for 2 elements in each bar - L/h = 4 

 

Figure 6. Toggle frame equilibrium paths for 5 elements in each bar - L/h = 4 
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Figure 7. Roorda frame equilibrium paths for 2 elements in each bar - L/h = 4 

 

Figure 8. Roorda frame equilibrium paths for 5 elements in each bar - L/h = 4 

It can be observed that considering only 2 elements per bar in the Toggle and Roorda frames, the 

equilibrium paths overlap in the pre-critical phase and the buckling load is slightly better approximated with the 

TBT_Large formulation. In the first example, the buckling load predicted by the corotational formulation is 

similar to the EBBT elements. Meanwhile, for the discretization with 5 elements per bar, all curves of the 

Timoshenko theory approach the reference response. In the Toggle frame, the Large formulation provides a 

slightly better agreement. In the Roorda frame, the corotational formulation has the best agreement in the 

beginning of the post-critical phase, followed closely by the Large formulation, which approaches the reference 

solution better in the end of the post-critical phase. 

 

Figure 9. Lee frame equilibrium path for 5 elements in each bar - L/h = 4 
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The equilibrium paths of the Lee frame indicate that the consideration of higher-order terms in the strain 

tensor (TBT_Large) leads to similar results to other formulations during the pre-critical phase and in the 

beginning of the post-critical phase. However, when this effect is disregarded (TBT-Small), there is a point in 

the post-critical phase in which the solution cannot follow the reference result, generating a wrong behavior. The 

corotational formulation provides the equilibrium path with the best agreement with respect to the reference 

response in the post-critical phase, and it is well followed by the Large formulation. Finally, the example shows 

that assuming the Euler-Bernoulli beam theory for structures with small slenderness provides incorrect results. 

4  Conclusions 

The results showed the influence of higher-order terms in the strain tensor and the assumption of 

Timoshenko beam theory. For small slenderness ratios, it is fundamental to consider the shear deformation 

during the bending of elements, and it is also important to take into account the high-order terms in the strain 

tensor. The post-critical behavior is clearly affected if a Large or a Small formulation is employed and if they are 

associated with Euler-Bernoulli or Timoshenko beam theory. The consideration of higher-order terms 

approximates the equilibrium paths to the reference response of a highly discretized structure in pre-critical and 

post-critical phases. When using a reduced discretization, the consideration of high-order terms leads to an 

equilibrium path with better approximation of the buckling load and better agreement with reference response in 

the beginning of the post-critical phase. The corotational formulation is better approximated by the updated 

Lagrangian formulation with higher-order terms in the strain tensor especially in the post-critical phase. 
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