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Abstract. In steel structural design, especially concerning tall buildings, it may be desired to minimize its cost and
improve its performance concerning horizontal displacements, dynamic behavior, and structural stability. Also, the
predefinition of which bracing system geometric configuration is more suitable for each objective is not evident,
and usually, it is made according to the designer’s experience. Thus, solving this problem considering different
cases of three simultaneous objectives is not a trivial task. Therefore, this paper deals with the tri-objective op-
timization of spatial steel frames, considering the bracing system configuration as a design variable. The third
evolution step of generalized differential evolution (GDE3), the success history-based adaptive multi-objective
differential evolution (SHAMODE), and the multi-objective meta-heuristic with iterative parameter distribution
estimation (MM-IPDE) are the differential evolution algorithms adopted in this paper. In addition, a multi-criteria
tournament method is used to extract desired solutions from the Pareto front according to the decision-maker
preferences.

Keywords: 3D-steel frames; Multi-objective optimization; Maximum displacement; Global stability; Bracing
systems.

1 Introduction

A general structural optimization problem regarding steel frames has the sole purpose of minimizing the total
cost of the structure, or in a simplified way, its weight. However, in real engineering problems, the goal may be to
minimize the weight of a structure and improve its performance, such as minimizing horizontal displacement due
to wind or improving its dynamic behavior or its global stability. Moreover, it is not possible to know in advance
which configuration of the bracing system leads to the best results for a particular objective and is generally
determined by the experience of the engineer. Bracing systems are required for tall buildings to stiffen the structure,
making it function as a vertical truss, which redistributes internal forces in a more balanced way and improves
overall structural performance in horizontal displacements and vibrations.

This work consists of tri-objective optimizations of 3D steel frames considering different configurations of
bracing systems as a design variable. The objectives concern the total structural weight, the horizontal displace-
ments, and the critical load factor for the first global buckling mode. Some bracing system configurations com-
monly used in practice such as diagonal, “Z”, “V”, and “X” is encoded by an integer index in the candidate solution.
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Besides, in a tri-objective problem, the result is a 3D-Pareto curve of several solutions in the objective functions
space, from where the engineer must extract the most suitable ones according to the “importance” of each objec-
tive. For that, a multi-criteria decision-making developed by Parreiras and Vasconcelos [1] is applied. The search
methodology employed in this paper is four differential evolution-based algorithms mentioned in Section 3.

Other studies that consider different bracing systems configuration in multi-objective problems can be found
on the literature, such as: Kicinger and Arciszewski [2], Kicinger et al. [3], Richardson et al. [4] and Babaei and
Sanaei [5]. However, there is no proven better way of considering different configurations of bracing systems, and
the present work presents an alternative to what is done in the cited works. However, there is no proven best way
to consider different bracing systems configurations and this paper presents an alternative to what is done in the
cited works.

The remainder of this paper is organized as follows: Section 2 describes the formulation of the optimization
problem. Section 3 briefly presents the four search methods employed. The multi-criteria decision-maker is
described in Section 4. Numerical experiment and its analysis are detailed in Sections 5 and 6, respectively.
Finally, conclusions and future works are reported in Section 7.

2 Formulation of the optimization problem

The structural optimization problem presented in this paper consists in finding a bracing system configuration
and a set of commercial steel profiles, designated by an integer index vector x = {I1, I2, ..., Ii} (design variables),
in which the first index indicates which configuration of bracing elements will be applied and the others point to
commercial profiles. This vector is a candidate solution, and have to minimize the first objective function W (x),
the second objective function δmax(x), and maximize the third objective function λcr(x) subjected to structural
design constraints (eq. (1)). Where W (x) is the total weight of the structure, δmax(x) is the maximum horizontal
displacement and λcr(x) is the critical load factor concerning the global stability, which it is obtained by solving
an eigenvalue problem concerning the elastic and geometric stiffness matrices (McGuire et al. [6]).

min W (x) and min δmax(x) and max λcr(x)

s.t. structural constraints

xL ≤ x ≤ xU

(1)

The problem’s constraints are the inter-story drift, the LRFD (Load and Resistance Factor Design) interaction
equations for combined axial force and bending moments, the LRDF shearing equation, and geometric constraints
referring to column-column connection. The value the maximum inter-story drift is taken as d̄ = h/500, where
h is the height between two consecutive floors (eq.(2)), according with both Brazilian ABNT [7] and American
ANSI [8] codes.

dmax(x)

d̄
− 1 ≤ 0 (2)

The frame elements must satisfy the LRFD equations for unsymmetrical bending (eq.(3)), and shearing (eq.
(4)) effects. Pr, Mrx, and Mry are the required axial strength, required flexural strength about the major axis and
the minor axis, respectively. The available axial and flexural members strength are named as Pc, Mcx, and Mcy .
For the allowable shearing strength equation, Vr is the required shearing strength, and Vc is the available shearing
strength. The methodology of determining the allowable strengths are similar in both ABNT [7] and ANSI [8] and
adopted in this paper. 
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(3)

Vr

Vc
− 1 ≤ 0 (4)

The geometric constraints refer to the column-column connection, in order to establish that the upper column
must not have, neither the profile depth nor the mass, higher than the lower column. Equations (5) and (6) show
the geometric constraints, where dpi(x) and dpi−1(x) are the depth of the W section selected for the group of
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columns i and i − 1, respectively. msi(x) and msi−1(x) are the unit weight of W section selected for the group
of columns i and i− 1, respectively. NGc is the number of groups of columns.

dpi(x)

dpi−1(x)
− 1 ≤ 0 i = 1, NGc (5)

msi(x)

msi−1(x)
− 1 ≤ 0 i = 1, NGc (6)

3 Search algorithms

This work adopts four differential evolution based algorithms for multi-objective problems: (i) The Third
Evolution Step of Generalized Differential Evolution (GDE3) proposed by Kukkonen and Lampinen [9]; (ii) The
Success History Based Adaptive Multi-objective Differential Evolution (SHAMODE) introduced by Panagant et al.
[10]; (iii) The Success History Based Adaptive Multi-objective Differential Evolution with Whale Optimization
(SHAMODE-WO) also developed by Panagant et al. [10] with the insertion of the spiral movement presented
on the Whale Optimization Algorithm (WOA) created by [11]; and (iv) The Multi-objective Meta-heuristic with
Iterative Parameter Distribution Estimation (MM-IPDE) proposed by Wansasueb et al. [12]. The selection of
the candidate solutions for other generations is made applying the concepts of dominance and crowding distante,
described by Deb et al. [13].

4 Multi-criteria decision maker

A multi-objective optimization problem results in a Pareto front with multiple non-dominated solutions, mak-
ing extracting the best solution a non-trivial task. One way to get around this problem is to choose a solution based
on a pre-defined methodology in which the weighting coefficients can be determined by the importance of each
objective. The solution extraction in this paper was supported by a multi-criteria tournament introduced by Par-
reiras and Vasconcelos [1]. According to the objective functions and their respective importance weights (wi),
established by the Decision-Maker, a Multi Tournament Decision Method (MTD) ranks the best and the worst
possible solutions on the Pareto front. The complete and detailed description of the MTD method can be found in
Parreiras and Vasconcelos [1] and examples in multi-objective structural optimization in Carvalho et al. [14].

5 Numerical examples

The numerical experiment conducted in this paper is about a tri-objective optimization of a six-story and
two-bay spatial steel frame where the stories are three meters high and the bays are six meters wide. The objective
of the problem is to minimize both the structure’s total weight and its maximum horizontal displacement on the
top story and maximize its critical load factor concerning global stability. The bracing system configuration is a
variable of this problem, and the structure can assume four different configurations: (i) a 90 bars diagonally braced
frame; (ii) a 90 bars “Z” braced frame; (iii) a 114 bars “V” braced frame and (iv) a 126 bars “X” braced frame.
The first index guides the configuration in the candidate vector, assuming values one to four. The other variables
concern the profile employed on columns and beams. The search spaces for members are composed of 29 “H”
profiles for the columns and 56 “I” for beams, all of them part of the AISC profile tables. Figure 1 illustrates
the candidate vector and the corresponding phenotype of the frame according to the first index. It is important to
note that the profile variables are grouped in nine according to symmetry and solicitation, as follows: (i) corner
columns; (ii) outer columns; (iii) outer beams; (iv) inner beams; and (v) bracers. The elements of three consecutive
floors must have the same cross-sectional area, for instance, corner columns of stories one, two, and three will have
the same profile employed, as well as the corner columns of stories four, five, and six.

The structure is subjected to gravity loads of 10 kN/m on the outer beams and 20 kN/m on the inner beams,
also a wind load is considered acting on the larger façade is considered based on a basic velocity of 37 m/s (ABNT
[15]). The wind load applied is detailed in Table 1, where the middle node has twice the corner node contribution
area. It is considered that the pavement plane work as a rigid diaphragm due to the slab stiffness, it is modeled
with a multi-freedom constraint master and slave method described in Felippa [16].
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Figure 1. Candidate vector and bracing systems configurations.

Table 1. Nodal wind loads acting on each floor (kN)

Floor Corner Nodes Middle Nodes Floor Corner Nodes Middle Nodes

1 6.39 12.78 4 7.88 15.76

2 6.67 13.34 5 8.31 16.62

3 7.35 14.70 6 8.68 17.36

Ten independent runs of 200 generations with 50 candidate vectors are set for the four algorithms applied.
In the problem treated in this paper, the solutions are extracted according to three different scenarios: (i) scenario
1: the extracted solution has the structure’s weight w1 = 0.6 of importance and both maximum displacement
and critical load factor w2 = w3 = 0.2; (ii) scenario 2: the extracted solution has the structure’s maximum
displacement w2 = 0.6 of importance and both total weight and critical load factor w1 = w3 = 0.2; (iii) scenario
3: the extracted solution has the structure’s critical load factor w3 = 0.6 of importance and both total weight and
critical load factor w1 = w2 = 0.2. The best results found are displayed on Table 2 detailing the bracing system,
the profiles for each group and the values for constraints and objective functions, it is also highlighted from which
algorithm the extracted solution came, where LRFDmax(x) is the maximum value obtained by the interaction
equation for combined flexural and axial effects and Vmax(x) is the maximum value found for the shearing strength
equation. Figure 2 depicts the 3D Pareto front trade-off curve, from where are extracted solutions for each of the
three scenarios described before, also the preferential planes for each two out of three objectives are shown in
Figure 3.

5

4

3 104

0

8 2

100

6

200

10-3 14

500

400

300

2

00

GDE3 

SHAMODE 

SHAMODE-WO 

MMIPDE

Scenario 1

Scenario 2

Scenario 3

00

0 1

100

2 2 104

200

10-3
4 3

300

6 4

8

400

5

Figure 2. 3D Pareto fronts and extracted solutions.
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Figure 3. 2D Pareto fronts and extracted solutions. (a) Total weight (W (x)) x maximum displacement (δmax(x));
(b) Total weight (W (x)) x critical load factor (λcr(x) ); (c) Maximum displacement (δmax(x)) x critical load
factor (λcr(x) ).

Table 2. Best results found for the three scenarios of the multi-objective problem presenting details of the profiles
assigned to each member group, constraints, and objective function values.

Scenario 1 2 3

Bracing System D Z Z

Group (Stories) W Profiles

CC (1-3) 310x79 310x125 310x117

CC (4-6) 200x35.9 250x85 310x79

OC (1-3) 310x79 310x125 310x117

OC (4-6) 200x46.1 310x79 250x73

OB (1-3) 310x28 460x60 460x82

OB (4-6) 200x15 360x32.9 310x23.8

IB (1-3) 310x22.7 610x113 530x72

IB (4-6) 250x17.9 460x82 310x21

BC (1-6) 150x13 150x24 150x18

Constraints values

LRFDmax(x) 0.98 0.66 0.73

Vmax(x) 0.39 0.23 0.28

dmax(x) (mm) 0.5 0.2 0.3

Objective functions values

W (x) (kg) 13068 26772 25127

δmax(x) (mm) 2.8 1 1.3

λcr(x) 198 325 395

Search method

Algorithm MMIPDE SHAMODE SHAMODE-WO

6 Results Analysis

It is necessary to consider that the extracted solutions are just examples of what a decision-maker can choose,
but the entire universe composed of the Pareto frontier is available and the designer can extract as many solutions
with different weights of importance for each objective as is most convenient.

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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It is possible to make interesting observations when analyzing Table 1. First, as expected, as the importance
of a given objective grows to the detriment of others, the opposite occurs with the value of its function in case
of minimization and the same in case of maximization. This can be seen by analyzing the first objective function
W(x), which presents values W1(x) = 13068 kg, W2(x)=26772 kg and W3(x)=25127 kg for weights of importance
w1 = 0.6, w2 = 0.2 and w3 = 0.2, respectively. The same can be seen in the other objectives. When analyzing the
results of the extracted solutions simultaneously, another point to be noted is the fact that objective 1 conflicts with
objectives 2 and 3, but objectives 2 and 3 do not conflict with each other, since when increasing the critical load
factor importance weight in scenario 3 for w3 = 0.6, the maximum displacement also reduces. In a problem with
multiple objectives, there can be the most diverse conflicting relationships between multiple objectives, hence the
usefulness of a method that considers their weighted importance to extract solutions. In terms of bracing systems,
it is interesting to note that the system adopted in the solution of scenario 1 was the diagonal bracing, while the
“Z” bracing was chosen for scenarios 2 and 3.

As for the constraints, it is important to note that only in scenario 1 the constraint of combined axial and
bending effects was close to being active (LRFDmax = 0.98), since weight was the most important function
and, therefore, presented the lightest structure. On Pareto fronts, not necessarily all solutions must present active
constraints since some constraints may be conditioned by objectives, as is the case of the inter-story drift by
the maximum horizontal displacement. Another point to note are the algorithms that were responsible for the
existence of the extracted solutions, which in scenario 1 was MMIPDE, in scenario 2, SHAMODE and in scenario
3, SHAMODE-WO.

7 Conclusions and extensions

This work consisted of a preliminary numerical experiment for a steel frame optimization problem with three
objectives and considering different bracing systems as variables of the problem. The objective of such a problem is
to generate a 3D Pareto front so that the decision-maker can extract the most attractive solution given the weighting
of importance for each objective. Three scenarios of different extracted solutions are studied and their results are
analyzed, in which it is possible to notice the use of diagonal bracing for the first and the “Z” bracing for the
others. As extensions of this work, we can mention the application of metrics and comparative studies of the
meta-heuristics used, optimization problems with more than three objectives, the application to larger structures
with multiple load combinations and more varieties of bracing systems, the orientation of the pillars as variables
and the consideration of second-order effects.
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