SEAM Phase I Interpretation Challenge 1

Description of the challenge

SEG Advanced Modeling Corporation

Overview

- The task of the challenge taker
- Data Description
 - SEAM Phase I model
 - SEAM Phase I simulation
 - Interpretation Challenge 1 RTM
 - Interpretation Challenge 1 datasets
- Summary

The Task of the Challenge Taker

Interpret key structural horizons

- Water bottom
- Salt body
- Top Miocene
- Top Oligocene
- Top Cretaceous
- Find 3 reservoir prospects
 - Map the prospects
 - Determine gross rock volume (GRV) P10 P50 P90
 - Determine net present value (NPV) P10 P50 P90
 - Evaluate reservoir seal
 - Determine 1st drill location

SEG Advanced Modeling Corporation

Society of Exploration Geophysicists The international society of applied geophysics

Background

Geophysical techniques have routinely proven helpful, and sometimes fundamental, in reducing the uncertainty in this integrated process involving the geological, geophysical, and reservoir engineering disciplines. The goal of a reserves evaluator is to use all of the interpretations from these disciplines to obtain low (P90), best (P50), and high (P10) estimates of the reserves and/or resources. It is clear that each of the disciplines has its strengths and weaknesses. Rather than focusing on these, the reserve/resource evaluator should utilize the combined contributions of each discipline to minimize the global uncertainty in these low, best, and high reserve and resource estimates (figure 1).

http://cseg.ca/assets/files/members/cgf/Chapter3_PRMS_COGEH_CGF_DEC2011_FINAL.pdf

You are the early explorationist

Figure 1. Temporal trends in reserves estimates. As more data (primarily production data) is collected over time, the range of uncertainty in reserves diminishes; an estimate incorporating geophysical data (red lines in figure) reduces the uncertainty of the estimate in the life of a hydrocarbon Pool/Field.

SEAM Phase I model

The SEAM Phase I Earth Model is a generalized 3D representation of petroleum interests in the deep-water Gulf of Mexico. It included a complex salt body and Green Canyon like fine-scale stratigraphy with oil and gas reservoirs. The model covers a 1400 km² area (approximately 60 OCS blocks) and measures 35 km east-west by 40 km north-south by 15 km of depth. It was built on a 20 x 20 x 10 m gridded interval. Construction of the model is an excellent example of multi-company sharing and volunteerism. A huge amount of hands-on work was done in gOcad by ConocoPhillips with the methodology defined by Chevron. It started with a complex salt body donated by Hess. The salt body was altered, using several different company suggestions, to increased rugosity on a dirty salt top, addition of suturing and trapping of sediments internal to the salt, the addition of a winged base to the allochthonous salt, and a deep grotto creating more extensive overhangs. Realistic sedimentary macro layers, overturned bedding, and radial fault structures were offered by BHPBilliton. They were designed to have realistic edge truncations to the depositional growth of the glaciated diapered salt body. Within the macro layers stratigraphic variation were created parametrically using a geostatistical method developed and offered by Chevron. All model properties are derived from fundamental rock properties including Vshale (volume of shale) and porosities for sand and shale that follow typical Gulf of Mexico compaction gradients below water bottom. Hence, properties have subtle contrasts at macro layer boundaries, especially in the shallow Pleistocene section, generating very realistic synthetic data. Well control was used to define the general physical sedimentary properties that were correlated to the rock properties and extrapolated throughout the model. The much finer scaled stratigraphic elements represent the rich fabric of depositional variation near and below the seismic resolution. They also provide a natural framework for the inclusion of reservoirs. 15 oil reservoirs, 3 with gas caps, were added as stacked braided stream channels, local turbidities, or sheet turbidities. The reservoirs have a variety of incorporated fluid properties. The end results is a realistic earth model that is 100% fully known.

SEAM SEG Advanced Modeling Corporation

Society of Exploration Geophysicists 12/31/2014

6

SEAM Phase I simulation

The SEAM Phase I project generated several simulations over the model with a variety of technologies. Both seismic and non-seismic data were acquired. Seismic included isotropic acoustic with density, anisotropic (TTI) acoustic with density and isotropic elastic with density. Collections were made with or without free surface conditions (with and without free surface multiples). The data were recorded by surface hydrophones, ocean-bottom 4-component, and/or borehole 4-component receivers. Marathon donated the free-air and Bouguer gravity at both sea level and 150 m altitude. Other non-seismic simulations were contracted and include a very dense controlled source electromagnetic (CSEM), and two versions of magnetotelluric (MT). Many classic datasets were created from the variety of simulations over the model.

The seismic data simulation used in this Interpretation Challenge 1 function were completed in December 2009 by Tierra Geophysical (now part of Landmark). The isotropic acoustic with density Finite Difference forward modeling code was benchmarked for accuracy with the interest in minimizing numerical artifacts. Each shot record was quality controlled to insure fidelity of positioning, amplitude, and artifacts.

12/31/2014

Interpretation Challenge 1 RTM

The input dataset used for the Interpretation Challenge 1 is called the "Acoustic Free Surface 2793-shot Classic". The decision on which input data set to use was driven by minimizing cost with a fast Reverse Time Migration (RTM) and to leave the free surface multiples in the data as noise. This classic dataset consists of sparse shots on a 600 x 600m grid and a huge collection of hydrophones spaced every 30 m in a square patch around the shot (figure 2). The data preparation step only included the designature of the delayed seismic wavelet to zero phase. The volume was migrated twice. The first migration was with the true interval P-wave velocity, from the "Acoustic Isotropic Earth Model", to provide an optimal results with this input volume. The second migration was with a perturbed velocity volume that contained increasing P-wave travel-time error in the west to east direction and increasing travel-time error in the south to north direction (figure 3). Additionally, velocity error was introduced in some areas from an incorrect definition of the salt (figure 4). The travel time error is like having migration velocity error resulting in varying degrees of poor focusing of the acoustic waves during imaging. Post migration it was found that the stacking power of the full azimuth spatially sampled data effectively attenuated the free surface multiples. To increase the challenge and make the data appear more realistic, a low level of band-limited random noise was added to the stacked volume. The noise level was defined with a SNR power set to 100. The low-fold migration edges were cropped in both N-S and E-W directions (figure 3). The processing and RTM migrations were completed in October 2014 by Advanced Geophysical Technology Inc. (AGT).

Figure 5a in RWB color and figure 5b in gray scale show an example cross-section from the 3D volume. It may also be useful to have migrated offset gathers near the wells to help understand the offset contributions to the stack. Offset gathers in an RTM procedure are much less typical than angle gathers. In order to produce a 2D line of offset gathers, 30 offset specific RTMs were run using only 3 rows of shots centered over the output line. Figure 6 shows the sparse 2D pre-stack offset dataset consisting of 33 gathers spaced every 900 meters. A full collection of 2D offset gathers spaced every 30 meters is also available.

SEAM SEG Advanced Modeling Corporation

Society of Exploration Geophysicists The international society of applied geophysics

Interpretation Challenge 1 datasets

Listing of datasets in both depth and stretched to TWT that can be used:

- Final RTM stack
- Sparse 2D offset RTM image gathers
- Full collection of 2D offset RTM image gathers
- Well #1

Name	Size
Well_1	
SEAM_Interpretation_Challenge_1_2DGathers_Depth.sgy	95,043 KB
SEAM_Interpretation_Challenge_1_2DGathers_Time.sgy	106,762 KB
SEAM_Interpretation_Challenge_1_2DSparseGather_Depth.sgy	3,140 KB
SEAM_Interpretation_Challenge_1_2DSparseGather_Time.sgy	3,527 KB
SEAM_Interpretation_Challenge_1_Depth.sgy	3,710,766 KB
SEAM_Interpretation_Challenge_1_Time.sgy	4,168,320 KB

SEG Advanced Modeling Corporation

Society of Exploration Geophysicists 12/31/2014 The international society of applied prophysics

Acquisition specifications

Figure 2. Recording and simulation patch geometry. The portion of any patch outside the model (shown in gray) is not computed or recorded. Some shots have a full complement of 436,921 traces collected at the hydrophone positions.

Map view of survey area

- Figure 3. Survey grid coordinates for the input seismic and velocity volumes.
- The color background is the cumulative vertical travel time error at a depth of 10KM. White is the true velocity and the red/blue show errors up to +/- 100 ms.
- The green line at 24,000N is the location of the sparse offset gathers.
- The black circle is the well #1 location: (23900N, 10075E)
- The inner gray rectangle shows the cropped output area for the interpretation volume with coordinates:

East	North	Inline	Crossline
2490	2490	1499	1499
2490	37530	1499	8507
32520	37530	7505	8507
32520	2490	7505	1499

12/31/2014

SEG Advanced Modeling Corporation

Society of Exploration Geophysicists The international society of applied grophysics

Crossline section at 18,990 N

Figure 4. Section showing variation in depth of the perturbed velocity model.

- The color background is the travel time error. White is the true velocity and the red/blue show errors up to +/- 100 ms. This represents approximately a +/- 4% velocity error.
- There were some modifications added to the salt structure.

Figure 5a. Example Cross Section

XLINE# INLINE# CDP-Y CDP-X	5801 1667 24000 3330	5801 1973 24000 4860	5801 2279 24000 6390	5801 2585 24000 7920	5801 2891 24000 9450	5801 3197 24000 10980	5801 3503 24000 12510	5801 3809 24000 14040	5801 4115 24000 15570	5801 4421 24000 17100	5801 4727 24000 18630	5801 5033 24000 20160	5801 5339 24000 21690	5801 5645 24000 23220	5801 5951 24000 24750	5801 6257 24000 26280	5801 6563 24000 27810	5801 6869 24000 29340	5801 7175 24000 30870	580 748 240 324
1000 -																				
2000 -			S	1.1							-		I)						inter a constant	
3000 -																				
4000 -													25		a di parte					
5000 -					-	L			10						tres and Anna anns					
6000 -			C.34					F	Y .					(internet						
7000 -								1												
8000 -						44		P		a financia										
9000 -			10					-	• 1											
10000 -																	S ST			
11000 -																				
12000 -																				
13000 -			and the second s	Contraction of the													sutt.			
14000 -					• •					. ≉.≱÷										
MA	SEC	A A A A A A A A A A A A A A A A A A A	SEG	AM Advan	ced Mod	leling C	orporat	ion												

Society of Exploration Geophysicists The international society of applied geophysics

12/31/2014

13

Figure 5b. Example Cross Section

XLINE# INLINE# CDP-Y CDP-X	5801 1667 24000 3330	5801 1973 24000 4860	5801 2279 24000 6390	5801 2585 24000 7920	5801 2891 24000 9450	5801 3197 24000 10980	5801 3503 24000 12510	5801 3809 24000 14040	5801 4115 24000 15570	5801 4421 24000 17100	5801 4727 24000 18630	5801 5033 24000 20160	5801 5339 24000 21690	5801 5645 24000 23220	5801 5951 24000 24750	5801 6257 24000 26280	5801 6563 24000 27810	5801 6869 24000 29340	5801 7175 24000 30870	580 740 240 324
1000 -		<u></u>											-							
2000 -								-		-		14 A.S.								
3000 -																				
4000 -													1		artigate.					
5000 -									A								Aleranda a succession of a log			
6000 -								F	2											Territoria de
7000 -								1												
8000 -								1												
9000 -								-												
10000 -			and the second sec																	
11000 -																				
12000 -																				
13000 -																				
14000 -					= =										120					

SEAM SEG Advanced Modeling Corporation

Society of Exploration Geophysicists The international society of applied prophysics 12/

Figure 6. 2D Offset image gathers

XLINE# INLINE# CDP-Y CDP-X	5801 1589 24000 2940	5801 1949 24000 4740	5801 2309 24000 6540	5801 2489 24000 7440	5801 2849 24000 9240	5801 3209 24000 11040	5801 3569 24000 12840	5801 3749 24000 13740	5801 4109 24000 15540	5801 4469 24000 17340	5801 4649 24000 18240	5801 5009 24000 20040	5801 5369 24000 21840	5801 5549 24000 22740	5801 5909 24000 24540	5801 6269 24000 26340	5801 6629 24000 28140	5801 6809 24000 29040	5801 7169 24000 30840
1000 -																			
2000 -		X		33			4 🐇	¥(14			18					
3000 -						13	3×				* *		18	22		š 🐳	8	22	
4000 -		X	* *	23	X		33	1			1.4								
5000 -			H				* =		in .					**		1	88		
6000 -						34	T	***			1. 1	-\$-\$		1				3	
7000 -		*	*3	\mathbb{R}		ē 44		N M			\$ P			2 A			33	23	
8000 -				44		á 📆	=	# =	- 34	¥35				9.2 E.S			33	38 M	
9000 -							=	a	- 20		â. \$			2.53		X.X.	2 A		
10000 -			* #			(<u>)</u>	2 7			8 A.								* *	
11000 -) T		-	* 🖾													
12000 -						4					14 J								
13000 -									, N				÷ 44	2.0	2			44	
14000 -	2. P					<u></u>				22							4.4		
22	220 220	1. 1	and and	<u></u>	1000	2 - 2 -	10-20	24.	1 all a	112 1920	12:11 22	1000 50	- Change		Section	N WOOD	12 - 25	100 3	

SEAM SEG Advanced Modeling Corporation

Society of Exploration Geophysicists The international society of applied geophysics

Summary

- The SEAM Interpretation Challenge 1 offers an excellent opportunity to:
 - learn interpretation skills
 - Evaluate interpretation software on a small well known dataset
 - Determine the uncertainty in determining important steps in risking a well being drilled

