

Garbage Collection in Lua

Roberto Ierusalimschy

Automatic Memory Management

● Releases memory automatically, when it is not
needed anymore.

● Two main approaches:
– reference count

– garbage collection

● Lua uses garbage collection.
– main reason: in dynamically-typed languages,

reference count adds overhead even if a program
never allocates memory

The Lua GC

● All objects in Lua are subject to garbage
collection.
– tables, functions, “modules”, threads (coroutines),

etc.

● Only objects accessible from the root set are
preserved.
– root set: the registry and shared metatables.

– the registry contains the global table (_G), the main
thread, and package.loaded.

The Lua GC

● The collector operates on top of standard
allocation functions.

● All objects linked in a long list.

Lua GC until Version 5.0

● Basic mark & sweep collector.
● Mark: traverse the object graph, starting from

the root set, marking the live objects.
● Sweep: traverse the long list of all objects,

deleting those not marked.
● Between mark and sweep, the collector

separates and resurrects objects to be
finalized.

The Collector's Pace

● The pace of a collector is a key component in
system's performance.

● A collector that never runs has zero CPU cost,
but a huge memory cost.

● A collector that runs all the time has zero
memory overhead, but a huge CPU cost.

● The sweet spot is somewhere in between.
– New collection when memory use is twice the use

at the end of last collection.

Lua GC until Version 5.0

● Main drawback of Mark & Sweep: pauses in the
program execution during a GC cycle can be
very long.

In version 5.1, Lua got an incremental
collector. An incremental collector
interleaves the execution of the collector
with the main program.

The Mutator

● From the garbage collector's point of view, the
program is just some nuisance changing the
data it is trying to collect: the mutator!

Tri-color Collector

● Each object is in one of three states: white,
gray, or black.

● Non-visited objects are marked white.
● Visited but not-traversed objects are marked

gray.
● Traversed objects are marked black.

Invariants

● Objects in the root set are gray or black.
● A black object cannot point to a white object.
● Gray objects define the boundary between the

black objects and the white objects.
● Collection advances by traversing gray objects,

turning them black.
– which may create new gray objects

● Collection ends when there are no more gray
objects.

Barriers

● The mutator can break the invariant of black
objects not pointing to white ones.

t.x = {}

● A write barrier tests this case and restores the
invariant if necessary.
– slows down all assignments

● It can either move forward the white object to
gray or move backward the black object to gray.

Some Heuristics

● Objects moved back to gray are kept in a
separate list to be traversed only in the atomic
phase.
– avoids a ping-pong

● Stacks are kept gray.
– avoids barriers when writing to the stack!

Some Heuristics

● Assignment to tables moves a black table back
to gray.

for i = 1, N do a[i] = <exp> end

● Assignment of a metatable moves a white
metatable forward to gray.

setmetatable(obj, mt)

The Atomic Step

● The mark phase is ended by an atomic step.
● This step traverses all “gray again” objects.

– including stacks

● It clears weak tables.
● It separates objects to be finalized, resurrecting

them and their graphs.
● It clears weak tables (again?).

The Incremental Collector's Pace

● An incremental collector runs alternated with
the mutator.

● At what pace?
● Most collectors measure “time” by memory

allocation.
● How to translate bytes to GC activity?

– the fallacy of “big userdata”

The Incremental Collector's Pace

● Two variables control the pace of the
incremental collector.

● The pause controls by how much memory has
to grow before starting a new cycle.
– the fixed “2” in the old scheme.

● The multiplier controls the translation of bytes
to GC work.
– still somewhat mystifying

An incremental collector reduces the
length of pauses, but it does not reduce
the overall overhead of the collector; quite
the opposite.

The Generational Collector

● The generational hypothesis: most objects die
young.

● So, the collector could concentrate its efforts in
young objects.

● All objects are classified as young or old. They
are young when created; after surviving two
collections, they become old.

● In a minor collection, the collector traverses and
sweeps only young objects.

The Generational Invariant

● An old object should not point to a new one.
● Not so easy to keep as the incremental

invariant.
● Both moving “forward” or “backward” have their

problems.
– forward: creates too many old objects (and breaks

invariant)

– backward: breaks invariant somewhere else

?

The Touched Objects

● If a back barrier detects an old object pointing
to a new one, the old object is marked as
touched and put in a special list.
– not totally unlike the gray-again list

● Touched objects are also traversed (but not
collected) in minor collections.

● After two cycles, a touched object goes back to
regular old, unless it is touched again.

What was wrong with the generational
collector in Lua 5.2?

What was wrong with the generational
collector in Lua 5.2?

Objects had to survive one GC cycle
before becoming old.

Surviving One Cycle

collection collection

object
creation

Object may survive an infinitely
small interval before becoming old.

Surviving One Cycle

● Much simpler implementation.
● After a collection, all surviving objects become

old, so the changes cannot break the invariant.
● List of touched objects can be erased.

Surviving Two Cycles

collection collection

object
creation

Object must survive at least a full
collection before becoming old.

Surviving Two Cycles

● At the end of a collection, some new objects
become old, some do not.
– breaks the invariant!

● List of touched objects must be corrected to
next cycle.

NEW

SURVIVAL

OLD1

OLD0

TOUCHED1

OLD

TOUCHED2

Final Remarks

● When the generational hypothesis holds, a
generational collector can reduce the overhead
of the GC.

● Not always the hypothesis holds.
– batch programs

● Testing a collector is hard.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

