

Lua as a business logic
language in high load

application

Ilya Martynov
ilya@iponweb.net
CTO at IPONWEB

mailto:ilya@iponweb.net

Company background

● Ad industry
● Custom development
● Technical platform with
multiple components

Custom web server
● One of the components of
our technology stack

● Written in C++
● Uses Lua as an embeded
scripting language

Adserving requirements

● High load
● Complex logic about what ads
to show and how to track them

● Hardware is not always cheaper
than developer's time

What is high load

What is high load

How do we come to use
Lua?

● First version of adserver is
pure C++

● Runs fast
● Development is slow

How do we come to use
Lua?

● Developers who can write low
level code and can write business
logic code are rare animals

● Operational costs: there is a
better balance between cost to
run and cost to develop

How do we come to use
Lua?

● Separation of church and state
● C++ for low level and
performance critical bits

● Scripting language for
business logic

So what do we use as a
scripting language?

Why Lua?

● So that I can attend Lua
workshop as a speaker!

Why Lua?

Game developers like Lua
for good reasons

● Fastest scripting language
● Easiest to embed scripting
language

● Simple but expressive
● Can be sandboxed

Why NOT Lua

● Poor libraries (compared to
competition)

● But this is NOT as big deal
for development in special
domain (advertising)

Architecture

Multithreaded C++ server

● Worker thread per CPU
core

● One Lua interpreter state
per worker

Multithreaded C++ server

● Multiple coroutines in each
Lua interpreter state

● New HTTP request → new
coroutine in idle Lua
interpreter state

Sandbox environment

● Only safe subset of Lua
standard library available

● Special high level IO APIs to
access external world

● Only allow what is really
required

Why coroutines

● Networking IO APIs mean Lua
code may wait for responses

● Coroutines can be paused
until response so that we can
process other requests
meanwhile in worker thread

API design

● Hide as much complexity
from Lua developers as
possible

API design example

● Networking APIs: Allow
parallel requests without
async or multithreading
programming model

● Separate operations to create
requests and to wait for results

API design example

HTTP client API example

Business logic

● Select ad creative (banner)
to show from all ad
campaigns

● Track important evens for
ad creative like clicks

Selecting ad creative

● Complex targeting rules
● Ad campaign delivery
optimization

● Money calculations

Selecting ad creative

Business data as native
Lua data

● Most of data our business logic
works with is read-only

● Amount of data required in real-
time is relatively low

● Solution: use Lua data
structures as in-memory storage

Business data as native
Lua data

● Very natural Lua code – it is
all just iterations over Lua
data structures

● Very fast – you cannot beat
in-memory data

Problem with data

Out of memory

● You cannot share Lua data
between Lua interpreter states

● More CPU cores → higher
memory usage

● Projects became bigger too →
more data

Out of memory: LuaJIT

32 bit
Linux

32 bit
application

3 GB of RAM

64 bit
Linux

32 bit
application

4 GB of RAM

64 bit
Linux

64 bit
application

all RAM available
but LuaJIT can
use only 1GB

Memory problem solution

● Switch to stock Lua?
● Not as fast as LuaJIT
● Fixes immediate problem
but with higher memory
usage breaks due to GC

Memory problem solution

● Move business data out of
Lua

● But we need backward
compatibility with existing
Lua codebases

Attempt #1: userdata

● userdata + metatables to
expose C++ managed data
storage as “fake” Lua tables

● Each field access via userdata
is C function call → slow
compared to native Lua data

Attempt #2: FFI cdata

● FFI – alternative interface to C code
from Lua available in LuaJIT

● FFI is designed to be LuaJIT friendly
● cdata is sort of like userdata for FFI
– also can use metatables to “fake”
Lua tables

How does LuaJIT work?

● Runs parts of your code as interpreted
and parts of it as JIT compiled

● As long as hot spots are covered you
are good

● If code not written with LuaJIT in mind
then most of it will not be compiled

FFI: leap of faith

FFI: leap of faith

FFI Lua 1 Lua 2
jit 1.57 1.87 2.00
nojit 55.1 5.05 5.95

3rd party benchmark – source at

https://github.com/client9/ipcat/tree/master/lua

FFI: leap of faith

● If you introduce FFI in your
application it will run slower

● Until you manage to get
LuaJIT to JIT compile
enough parts of it

How to make LuaJIT
happy

● Use compilation traces to
find why code doesn't
compile

● Unfortunately for uninitiated
they look like gibberish

Compilation trace

LuaJIT challenge

● Requires special low level
knowledge to make code
run fast

● Sometimes leads to non-
intuitive Lua code

LuaJIT quiz

LuaJIT challenge

● Breaks our abstractions –
Lua developers forced to
work on lower level than
normally needed

Wraping up

● Lua: unique challenges
● Lua: despite everything very
powerful and successful
technology

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

