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Company background

● Ad industry
● Custom development
● Technical platform with 
multiple components



  

Custom web server
● One of the components of 
our technology stack

● Written in C++
● Uses Lua as an embeded 
scripting language



  

Adserving requirements

● High load
● Complex logic about what ads 
to show and how to track them

● Hardware is not always cheaper 
than developer's time



  

What is high load



  

What is high load



  

How do we come to use 
Lua?

● First version of adserver is 
pure C++

● Runs fast
● Development is slow



  

How do we come to use 
Lua?

● Developers who can write low 
level code and can write business 
logic code are rare animals

● Operational costs: there is a 
better balance between cost to 
run and cost to develop



  

How do we come to use 
Lua?

● Separation of church and state
● C++ for low level and 
performance critical bits

● Scripting language for 
business logic



  

So what do we use as a 
scripting language?



  

Why Lua?

● So that I can attend Lua 
workshop as a speaker!



  

Why Lua?



  

Game developers like Lua 
for good reasons

● Fastest scripting language
● Easiest to embed scripting 
language

● Simple but expressive
● Can be sandboxed



  

Why NOT Lua

● Poor libraries (compared to 
competition)

● But this is NOT as big deal 
for development in special 
domain (advertising)



  

Architecture



  

Multithreaded C++ server

● Worker thread per CPU 
core

● One Lua interpreter state 
per worker



  

Multithreaded C++ server

● Multiple coroutines in each 
Lua interpreter state

● New HTTP request → new 
coroutine in idle Lua 
interpreter state



  

Sandbox environment

● Only safe subset of Lua 
standard library available

● Special high level IO APIs to 
access external world

● Only allow what is really 
required



  

Why coroutines

● Networking IO APIs mean Lua 
code may wait for responses

● Coroutines can be paused 
until response so that we can 
process other requests 
meanwhile in worker thread



  

API design

● Hide as much complexity 
from Lua developers as 
possible



  

API design example

● Networking APIs: Allow 
parallel requests without 
async or multithreading 
programming model

● Separate operations to create 
requests and to wait for results



  

API design example



  

HTTP client API example



  

Business logic

● Select ad creative (banner) 
to show from all ad 
campaigns

● Track important evens for 
ad creative like clicks



  

Selecting ad creative

● Complex targeting rules
● Ad campaign delivery 
optimization

● Money calculations



  

Selecting ad creative



  

Business data as native 
Lua data

● Most of data our business logic 
works with is read-only

● Amount of data required in real-
time is relatively low

● Solution: use Lua data 
structures as in-memory storage



  

Business data as native 
Lua data

● Very natural Lua code – it is 
all just iterations over Lua 
data structures

● Very fast – you cannot beat 
in-memory data



  

Problem with data



  

Out of memory

● You cannot share Lua data 
between Lua interpreter states

● More CPU cores → higher 
memory usage

● Projects became bigger too → 
more data



  

Out of memory: LuaJIT

32 bit 
Linux

32 bit 
application

3 GB of RAM

64 bit 
Linux

32 bit 
application

4 GB of RAM

64 bit 
Linux

64 bit 
application

all RAM available 
but LuaJIT can 
use only 1GB



  

Memory problem solution

● Switch to stock Lua?
● Not as fast as LuaJIT
● Fixes immediate problem 
but with higher memory 
usage breaks due to GC



  

Memory problem solution

● Move business data out of 
Lua

● But we need backward 
compatibility with existing 
Lua codebases



  

Attempt #1: userdata

● userdata + metatables to 
expose C++ managed data 
storage as “fake” Lua tables 

● Each field access via userdata 
is C function call → slow 
compared to native Lua data



  

Attempt #2: FFI cdata

● FFI – alternative interface to C code 
from Lua available in LuaJIT

● FFI is designed to be LuaJIT friendly 
● cdata is sort of like userdata for FFI 
– also can use metatables to “fake” 
Lua tables



  

How does LuaJIT work?

● Runs parts of your code as interpreted 
and parts of it as JIT compiled

● As long as hot spots are covered you 
are good

● If code not written with LuaJIT in mind 
then most of it will not be compiled



  

FFI: leap of faith



  

FFI: leap of faith

FFI Lua 1 Lua 2
jit 1.57 1.87 2.00
nojit 55.1 5.05 5.95

3rd party benchmark – source at

https://github.com/client9/ipcat/tree/master/lua 



  

FFI: leap of faith

● If you introduce FFI in your 
application it will run slower

● Until you manage to get 
LuaJIT to JIT compile 
enough parts of it



  

How to make LuaJIT 
happy

● Use compilation traces to 
find why code doesn't 
compile

● Unfortunately for uninitiated 
they look like gibberish



  

Compilation trace



  

LuaJIT challenge

● Requires special low level 
knowledge to make code 
run fast

● Sometimes leads to non-
intuitive Lua code



  

LuaJIT quiz



  

LuaJIT challenge

● Breaks our abstractions – 
Lua developers forced to 
work on lower level than 
normally needed



  

Wraping up

● Lua: unique challenges
● Lua: despite everything very 
powerful and successful 
technology
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