

Gitano - A Git service written in Lua

Daniel Silverstone <dsilvers@digital-scurf.org>

 Burble about who you are
 Explain - no evil token parser stuff

What is it?

 Git Server
 Written in Lua
 Configured in Git where plausible
 To do this I needed to write a bunch of libs

Technology choices
(or things was too lazy to write)

 Git - odd to list, but I mean configuration is in git
 rulesets are in git, etc.etc.etc.
 Lua - I like Lua, it's easy to prototype and write stuff
 Luxio
 libgit2/luagit2 - Way faster than invoking git commands
 although Gitano *can* operate without them
 cgit rather than gitweb - much faster, caches, prettier

Gall - Git Abstraction Layer (in) Lua

 Git abstraction - obviously necessary. Uses Luxio's
 subprocess to run git commandline and luagit2/libgit2 via
 LuaNativeObjects by Robert G. Jakabosky to work in
 process.

r = gall.repository.new("/path/to/gitano-admin.git")
c = r:get(r.HEAD).content
t = gall.tree.flatten(c.tree.content)
b = t['site.conf']
print(b.obj.content)

Lace - Lua Access Control Engine

 Lace - Access control lists. No syntax I came up with in
 Lua was neat enough for non-Lua programmers to accept.
 Turing complete ACLs are also a fairly bad idea. Show
 example, show that Lace comes with instructions

define success equals want_to_pass yes
allow "Ok" success

 Simple example showing definition, match type, and arguments.
 list of defined predicates on the allow line must all pass

Clod - Configuration Language Organised (by) Dots

 Designed to keep track of ordering of entries (and spaces)
 Currently doesn't track comments (because that's super
 hard) Humans and the library tend to edit files in similar
 ways meaning diffs are sane

project.head "refs/heads/master"
project.description "Black box testing of Unix programs"
project.owner "liw"

 Three simple string entries as might be found in a
 repository configuration in Gitano.

description "Gitano Instance Administrators"

members["*"] "dsilvers"

 Clod also supports lists which remain ordered. This is an
 example group file in a Gitano repository

Supple - Sandbox [(for) Untrusted Procedure Partitioning (in) Lua] Engine

 Supple allows me to run hooks provided by project owners
 safely without risking them gaining access to the server
 in any unusual way.
 Hooks are run as Lua code with a limited set of functions
 and only the data relevant to the event they're hooking
 (along with a read-only repository object they can use to
 interrogate other things a bit)

To limit the attack surface...

The "untrusted" code runs in a (limited) Lua sandbox.

That sandbox is soft-limited in terms of VM opcodes and memory.

The sandbox is monitored and IO marshalled externally.

 Your "untrusted" code is run inside a Lua sandbox which
 has only a limited set of Lua's functionality exposed to
 it.
 That sandbox is soft-limited (optionally) in terms of VM
 opcodes and memory allocated by Lua
 The sandbox is run inside a monitoring Lua VM instance
 which is responsible for carefully marshalling calls etc
 into and out of the sandbox. All your comms go via this
 monitor.

Just in case...

The monitor is a Lua VM anyway, and it's all inside a separate process.

The sandbox process is in an ephemeral chroot.

 The monitor is, itself, a Lua VM anyway, inside a process
 which is separate from the process you're doing untrusted
 work on behalf of.
 The sandbox process is created using a rootly helper so
 that it's put into an isolation state consisting of a
 directory which is owned by root which is set as your root
 via the chroot call, but which is also rmdir'd so it's
 ephemeral. Your process drops privileges back to the
 calling UID so it cannot do anything inside its CWD
 anyway.

And if that's not enough...

Solid rlimits in terms of memory and open FDs

And on Linux, memory is pre-allocated and we enter seccomp mode 1.

 On top of that, the sandbox has some pretty solid rlimits
 set in terms of max CPU usage, max VM size, max FDs open,
 and max size of any file it writes. As such, it can't
 create > 0 byte files in the directory it doesn't have
 access to, and could only do that if it closed the FD to
 the host process which is its only communications avenue.
 Then, if you're on Linux, we go one step further and
 pre-allocate enough memory for the interpreter to not hit
 the rlimit and then enter seccomp mode 1 which limits the
 syscalls permissible to read, write, _exit and sigreturn
 so even if you could have circumvented any/all of the
 limits above, you now can't make syscalls to take
 advantage of them.
 If that's not sandbox enough, please tell me how to
 improve matters further.

Objects here, objects there, we send objects everywhere.

Proxying values (incl. functions and tables)

 Talk about how Supple proxies values across the link so
 that the sandboxed code can have do whatever it likes and
 it looks and feels like it's running in the host.
 e.g. next() works, calling things works etc.

local repo, ref, oldsha, newsha = ...

local branch = ref:match("^refs/heads/(.+)$")
if branch == "master" then
 log.state("Looking at commit history on: " .. branch)

 local commit = repo:get(newsha)

 while commit.sha ~= oldsha do
 commit = commit.content
 local parents = commit.parents
 if #parents < 2 then
 error("Detected non-merge-commit during parent walk, at " .. commit.sha)
 end
 commit = parents[1]
 end

 log.state("Commits between old and new sha seem to all be merge commits")
else
 log.state("Skipping commit history check on: " .. ref)
end

 Non-trivial example which shows an update hook for Gitano
 to prevent non-merge commits when pushing to master

local repo, ref, oldsha, newsha = ...

local branch = ref:match("^refs/heads/(.+)$")
if branch == "master" then
 log.state("Looking at commit history on: " .. branch)

 local commit = repo:get(newsha)

 while commit.sha ~= oldsha do
 commit = commit.content
 local parents = commit.parents
 if #parents < 2 then
 error("Detected non-merge-commit during parent walk, at " .. commit.sha)
 end
 commit = parents[1]
 end

 log.state("Commits between old and new sha seem to all be merge commits")
else
 log.state("Skipping commit history check on: " .. ref)
end

 Green is input arguments for the hook, passed in by the host app

 Red is an example of a module table passed over from the host

local repo, ref, oldsha, newsha = ...

local branch = ref:match("^refs/heads/(.+)$")
if branch == "master" then
 log.state("Looking at commit history on: " .. branch)

 local commit = repo:get(newsha)

 while commit.sha ~= oldsha do
 commit = commit.content
 local parents = commit.parents
 if #parents < 2 then
 error("Detected non-merge-commit during parent walk, at " .. commit.sha)
 end
 commit = parents[1]
 end

 log.state("Commits between old and new sha seem to all be merge commits")
else
 log.state("Skipping commit history check on: " .. ref)
end

 Here, blue are simple table lookups which propagate
 across the link to the host

 And yellow are function invocations which call functions
 in the host

local repo, ref, oldsha, newsha = ...

local branch = ref:match("^refs/heads/(.+)$")
if branch == "master" then
 log.state("Looking at commit history on: " .. branch)

 local commit = repo:get(newsha)

 while commit.sha ~= oldsha do
 commit = commit.content
 local parents = commit.parents
 if #parents < 2 then
 error("Detected non-merge-commit during parent walk, at " .. commit.sha)
 end
 commit = parents[1]
 end

 log.state("Commits between old and new sha seem to all be merge commits")
else
 log.state("Skipping commit history check on: " .. ref)
end

 Purple is a call to error
 Explain how errors propagate back and forth across the
 link, obeying pcalls and trying to gather stack info for
 both sides. Also note that the host can extract extra
 debugging about the entire supple transaction.

Real users of Gitano

 - git.gitano.org.uk, git.liw.fi
 - git.netsurf-browser.org, richard.maw.name/git
 - Codethink and Baserock

 Equally horrifyingly, people use this crap what I wrote.
 But, it's not enough (sound stern)

Future plans

Lots of ideas for future content, see the Trello for
some of the things I have planned.

 - https://trello.com/b/l4Id6iiC/gitano
 - (Link is on www.gitano.org.uk)

 Future - explain how background task stuff looks plausible
 using the nanomsg stuff recently talked about on list.
 Explain how currently I'm testing Gitano using a testing
 tool written in Python, but want to write a Lua equivalent
 of it.

Mailing list: gitano-dev@gitano.org.uk
IRC Channel: #gitano on Freenode
Website: http://www.gitano.org.uk/

Any questions?

 Intrusive cat says "Enough with the talkings"

Mailing list: gitano-dev@gitano.org.uk
IRC Channel: #gitano on Freenode
Website: http://www.gitano.org.uk/

Thank you for listening

