
Lua/APR: An extended
standard library* for Lua

Peter Odding

September 9, 2011

Apache
Portable Runtime Project

h t t p : / / a p r . a p a c h e . o r g /

Lua

Abstract

Lua is a very elegant programming language, both
because of its conceptual simplicity and the small
size of its implementation, but this small size comes
at a price: Lua’s operating system interfaces are
quite minimal and (in a sense) this makes Lua a
second-class citizen on popular platforms like
Windows and UNIX systems. My solution was to
write a binding to the Apache Portable Runtime.

Contents

I About me

I Why the Apache Portable Runtime?

I The origins of APR

I Getting started ... took a while

I Design choices & technical challenges

I Example: HTTP client

I Master plan: Rewrite Apache in Lua

About me

I Hi all, I’m Peter Odding from the Netherlands

I Been programming since I was 12 (I’m now 24)

I Just finished a computer science study &
received my bachelor’s degree this July

I Started working as a Python developer and
parttime server system administrator

I In case anyone wants to contact me:
peter@peterodding.com

mailto:peter@peterodding.com

Why the Apache Portable Runtime?

I Around 2006 I fell in love with Lua :-)

I However I was quickly disappointed by the lack
of cross platform operating system interfaces!

I In 2007 I decided to create a binding to one of
the well known ‘portable runtimes’:

I Apache Portable Runtime (APR)
I Very comprehensive, lots of tests

I Netscape Portable Runtime (NSPR)
I Seemed less comprehensive than APR

I ACE, commonc++, Qt (all C++)
I All disqualified because they’re written in C++

which is way over my head...

http://apr.apache.org/
http://www.mozilla.org/projects/nspr/
http://en.wikipedia.org/wiki/Adaptive_Communication_Environment
http://www.hyperrealm.com/main.php?s=commoncpp
http://en.wikipedia.org/wiki/Qt_(toolkit)

The origins of APR

I Started life in the Apache web server code base

I Eventually split off into a separate library

I Insists on using memory pools everywhere
(which makes sense in a server context)

I Very comprehensive, dozens of modules:
directory handling, filename matching, file I/O, network sockets,

multi threading, shared memory, process management, signal

handling, option parsing, cryptography, date handling, relational

database interfaces, LDAP connection handling, option parsing, ...

Getting started ... took a while

I Started writing in 2007

I Didn’t publish until September 2010
I What happened in between?

I Back in 2007 I didn’t know C and very naively
thought “How hard can it be?!”

I Learned more than I ever wanted to know about
memory (de)allocation, off by one errors,
segmentation faults, debugging binary code, etc.

I Basically “I bit of more than I could chew”, or
rather it took me quite a while to digest :-)

I In the end I’m glad I persisted – user feedback
now motivates me to keep developing Lua/APR

Design choices & technical challenges

I Memory pools: completely hidden from Lua

I Multi threading: using a very simplified
model (create(), status(), join())

I I/O interface: same as Lua, a real pain to
implement on top of APR (worth it though!)

I Error handling: APR error codes are not
portable, so using strings instead

I Code generation: boring stuff like mapping
of error codes and signal numbers to strings

I Inline documentation: Docs in comments,
extracted using custom script to generate
HTML docs

Example: HTTP client

function download(url)

local socket = apr.socket create()

local components = apr.uri parse(url)

local port = components.port or apr.uri port of scheme(components.scheme)

local pathinfo = apr.uri unparse(components, ’pathinfo’)

socket:connect(components.hostname, port)

socket:write(’GET ’, pathinfo, ’ HTTP/1.0\r\n’,
’Host: ’, components.hostname, ’\r\n’,
’\r\n’)

local , status, reason = socket:read():match ’^(%S+)%s+(%S+)%s+(.−)$’
local headers, data = apr.parse headers(socket:read ’*a’)

if status:find ’^30[123]$’ and headers.Location then

return download(headers.Location)

elseif status == ’200’ then

return data

else

error(reason)

end

end

print(download(’http://lua.org/’))

http://peterodding.com/code/lua/apr/docs/#apr.socket_create
http://peterodding.com/code/lua/apr/docs/#apr.uri_parse
http://peterodding.com/code/lua/apr/docs/#apr.uri_port_of_scheme
http://peterodding.com/code/lua/apr/docs/#apr.uri_unparse
http://peterodding.com/code/lua/apr/docs/#apr.parse_headers
http://www.lua.org/manual/5.1/manual.html#pdf-error
http://www.lua.org/manual/5.1/manual.html#pdf-print
http://lua.org/'

Master plan: Rewrite Apache in Lua

My ultimate goal with Lua/APR is to be able to
rewrite the core of Apache in Lua. If I ever succeed
I can consider Lua/APR to be finished. Until a new
version of APR is released that is :-)

Thank you! Questions anyone?
Thanks for listening! If you’re interested in
Lua/APR you can find more information in the
following places:

I peterodding.com/code/lua/apr

I github.com/xolox/lua-apr

If you want to try Lua/APR, the following packages
are available:

I luarocks install lua-apr

(mind the dependencies)

I apt-get install liblua5.1-apr1

(available on Debian and Ubuntu)

http://peterodding.com/code/lua/apr
http://github.com/xolox/lua-apr
http://luarocks.org/repositories/rocks/#lua-apr
http://packages.debian.org/search?keywords=liblua5.1-apr1
http://packages.ubuntu.com/search?keywords=liblua5.1-apr1

