
Interface specification & verification

Wim Couwenberg
Lua workshop 2011

2

Overview

About Océ

Component technology

Interface traces

Trace file analysis

Specification & verification

3

About Océ

Production printing in Color and B/W

4

About Océ

Founded 1877 in Venlo, The Netherlands

~20,000 staff worldwide

1,600 specialists at 10 R&D sites in nine countries

Active throughout printing system value chain

Worldwide distribution in ~100 countries

Total revenues 2010: EUR 2.7 billion

Became a Canon Group company in 2010

Aiming for global leadership in printing industry

www.oce.com

5

Component technology

Single PC distributed software (~50 processes)

Proprietary component technology

IDL similar to Corba and COM in XML format

basic types

structs and arrays

interfaces

Single server multiple clients per IDL file (“protocol”)

star topology

reference counted object lifetime

Targets different languages

C, C++, C#, Java, Python

6

Component technology

Process 1

Process 3Process 2

S

C
C

S

C

C

7

Interface traces

Each method call is a “send” and “reply” pair

send: object, method, in parameters

reply: out parameters, return value

Server and clients handle concurrent calls

Reference count is “just a call”

Each (binary) send and reply part is logged

only server side needed (star topology)

timestamp, connection, call id, binary data block

Logged trace file captures all interactions

uniform and complete traces

post mortem analysis

8

Interface traces

SC2C1

send: a.foo()

reply: a.foo()

send: b.bar()

reply: b.bar()

send: c.baz()

reply: c.baz()

 1 send a.foo
 2 send b.bar
 1 reply a.foo
 3 send c.baz
 2 reply b.bar
 3 reply c.baz

Trace file:

9

Trace file analysis

IDL
file

Trace
file

Decoder
(Lua)

Plug-in
(Lua)

10

Trace file analysis

Trace file decoder written in 100% Lua

Parses IDL file

Reads binary trace file entries (send and reply)

Demarshals each block and adds meta data

timestamp, connection, call id, object, method

struct field names, enum symbols

in/out and parameters with their names, return value

all relevant type information

Passes each block as a Lua table to a plug-in script

generic plug-in for human readable logging

generic plug-in to verify protocol compliance

specific plug-ins for specific analysis

11

Specification & verification

IDL can specify formal requirements in Lua snippets

Supported specifications

constructors for non interface types

constructors and destructors for interface types

pre and post conditions for interface methods

Only used for post mortem analysis

Verification done by a generic decoder plug-in script

parses IDL

generates verification code from collected snippets

checks all send and reply blocks

emits warnings or asserts on violations

12

Specification & verification

Basic type constructors, typedefs and enums
<integer name=“byte”>

<check>
-- byte value must be in range
assert(self >= 0 and self < 256,

“out of range [value=%d].”, self)
</check>

</integer>

<enum name=“model”>
<check>

warn(self ~= “oldtimer”, “deprecated”)
</check>
<item name=“oldtimer”/>
…

</enum>

13

Specification & verification

Basic type constructors, struct

<struct name=“rectangle”>
<check>

-- check top left and bottom right order
assert(left <= right and top <= bottom,

“wrong coordinates [%d,%d,%d,%d]”,
top, left, right, bottom)

</check>
<item name=“top” type=“integer”/>
<item name=“left” type=“integer”/>
<item name=“bottom” type=“integer”/>
<item name=“right” type=“integer”/>

</struct>

14

Specification & verification

Interface constructor & destructor

<interface name=“foo”>
<check type=“ctor”>

-- setup some state for this object
self = {

state = “disconnected”,
}

</check>
<check type=“dtor”>

-- must be disconnected
assert(self.state == “disconnected”,

“wrong state [state=%s]”, self.state)
</check>
…

</interface>

15

Specification & verification

Method pre and post conditions

<method name=“connect”>
<check type=“pre”>

-- must not be connected yet
assert(self.state == “disconnected”,

“wrong state [state=%s]”, self.state)
</check>
<check type=“post”>

-- set state to connected
self.state = “connected”

</check>
…

</method>

16

Specification & verification

Automatically verify test runs of nightly builds

Failed assertion also gives context of the failure

Refers to logging (call id) for further info

Failed assertion in foo dtor: wrong state…
[1438] in foo::remove_ref
[0010] foo created in bar::make_foo
[0001] bar created in bar::connect

17

	Interface specification & verification
	Overview
	About Océ
	About Océ
	Component technology
	Component technology
	Interface traces
	Interface traces
	Trace file analysis
	Trace file analysis
	Specification & verification
	Specification & verification
	Specification & verification
	Specification & verification
	Specification & verification
	Specification & verification
	Slide Number 17

