
Wim Couwenberg

Simulating complex systems with Lua

Simulating Complex Systems September 3, 20062

What is this talk about?

 Copier/printer is built up of many parts
 Scan engine
 Print engine
 Print file interpreters (PCL, PS, …)
 Local user interface
 Controller

 Different hardware platforms
 Intel
 ARM
 ASIC/FPGA

 Slow (cheap!) connections between these parts
 How to predict behaviour?

Simulating Complex Systems September 3, 20063

A quick experiment with Lua…

 Use Lua to simulate everything
 All processing is done by “scriptlets”

 Scriptlets are just functions or script files executing in
separate coroutines

 The main simulator loop runs a scriptlet scheduler

 Scriptlets can post timed events
 Scriptlets can wait for events (yield)
 Shared resources are modeled on top of events

 Semaphore
 Processor (process for X secs. with Y% load)
 I/O (limited bandwidth)

 Time is “virtual”: a numeric property (ordering) of
events

Simulating Complex Systems September 3, 20064

A simple example

 Spawn server and client scriptlets
 Scriptlets produce csv logging (easy visualization)

-- load simulation module
local sim = require “sim”

-- schedule server scriptlet to run at time 0
sim.spawn(0, “server”, “server.lua”)

-- schedule 3 clients with different arguments
sim.spawn(10, “client1”, “client.lua”, 120)
sim.spawn(15, “client2”, “client.lua”, 310)
sim.spawn(17, “client3”, “client.lua”, 225)

-- run the simulation
sim.run()

Simulating Complex Systems September 3, 20065

A simple example (2)

Simulating Complex Systems September 3, 20066

Events & scheduling

event = {
 time = scheduled time (can be infinite),
 thread = scriptlet that posted event,
}

events = least time in first out queue (heap)

function sim.getevent()
 return coroutine.yield()
end

function sim.run()
 for event in pop(events) do
 sim.time = max(sim.time, event.time)
 coroutine.resume(event.thread, event)
 end
end

Simulating Complex Systems September 3, 20067

Applications of event scheduling

 sim.time == infinite indicates a deadlock!
 Time of scheduled event can be changed in queue
 Example: “semaphore”

 “Release” up to n events when semaphore count
increases by n

 Release means: set event time from infinite (blocking) to
current simulator time

 Example: scriptlets sharing an “I/O channel”
 The more traffic, the longer I/O events take
 Event times are updated when I/O events start or expire

 Example: “processor” load shared among scriptlets
 Events take longer to “complete” when total load > 100%
 Event times are updated when load changes

Simulating Complex Systems September 3, 20068

Example: semaphore

function sem:lock()
 while self.count == 0 do
 local event = sim.schedule(infinite)
 self:pushevent(event)
 sim.getevent()
 end
 self.count = self.count - 1
end

function sem:unlock(n)
 self.count = self.count + n
 for event in self:popevents(n) do
 sim.reschedule(event, sim.time)
 end
end

Simulating Complex Systems September 3, 20069

Did it work?

 Colleagues unfamiliar with Lua programmed
scriptlets in a matter of hours (this is also a
statement about people at Océ…)

 Different disciplines (embedded, scanner,
controller) “explained” their fields of expertise by
developing scriptlet code together

 We were able to check theoretical discussions and
consequences for overall system timing using a
number of tiny but clever scriptlets

 And… we had a lot of fun doing it!

