SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 0(0), 1-27 (? 1995)

[UP/LED: A Portable User Interface Development Tool

C. H. LeEvy, L. H. pE Figueirepo, M. GaTTAass, C. J. P. LUCENA

Departamento de Informdtica, PUC-Rio
Rua Marqués de Sao Vicente 225, 22453-900 Rio de Janeiro, RJ, Brazil
levy,lhf,gattass,lucena@icad.puc-rio.br

AND
D. D. CowanN

Computer Science Department €& Computer Systems Group
Unsversity of Waterloo, Waterloo, Ontario, Canada N2L 8G1
dcowan@csg.uwaterloo.ca

SUMMARY

Minimizing the amount of code that must be written and maintained is particularly
critical in the development of the user interface for a highly interactive system, since
the code for the user interface represents a substantial part of the application. This is
especially important where the interactive system is available on a number of distinct
platforms. Providing a single user interface abstraction requiring only one set of source
code that can be mapped automatically into specific interface systems appears to be the
preferred approach; but the underlying model must be designed carefully in order to
keep the system relatively simple, easy to use and maintain, and allow ease of experi-
mentation as user interfaces are produced. We describe the design and implementation
of IUP/LED, a portable user interface toolkit that we believe has these properties. The
toolkit is designed for rapid prototyping and modification, to provide a look-and-feel
appropriate to a specific computing environment, is easily expanded to support new
interface developments, and supports an abstract layout model. We also present a sum-
mary of the experiences in using the toolkit to indicate that it does support the original
design objectives.

KEY WORDS Software User Interfaces User Interface Toolkits User Interface Management Systems

Retargetability User interface resources

INTRODUCTION

User Interface Toolkits (UITs) and User Interface Management Systems (UIMSs) are
two major classes of software for constructing graphical user interfaces.! A UIT is a
library of interface objects that implement different interaction techniques with the
user; tools in this class are available as functions that are called by the application
to create and control the dialog with the user. Some UITs are: XView,> OSF /Motif,?
OLIT,* SDK for MS-Windows,® and the Macintosh Toolbox.® UITs frequently provide
tools to simplify the description and the composition of interface objects. These tools
range from simple resource languages to graphic editors that build interfaces through

CCC 0038-0644/95/000001-27 Received ?
(©1995 by John Wiley & Sons, Ltd. Revised 25 July 1995

2 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWAN

direct manipulation of interface objects. However, management of the interaction with
the user must be programmed as part of the application, even when user interface
development is supported by a toolkit.

In contrast, a UIMS is a group of integrated high level interactive programs used to
design, create prototypes, execute, evaluate and maintain user interfaces.! Two such
UIMSs are the University of Alberta UIMS” and DMS.® In a sense, UIMSs encompass
UITs since they allow not only the description and composition of the interface ob-
jects, but also the specification of the control of the user interaction sequence.® UIMSs
assume that application development is a joint undertaking of two experts: one expert
in the application domain and another in user interfaces. The first expert solves the
computer application problem, while the second expert works with the related psy-
chological, cognitive, ergometric and linguistic human factors to design an appropriate
interaction between the user and the application.!

Many commercial interface systems, such as Visual Basic,'® only support the con-
struction of dialogs;* they do not allow any control over the interaction sequence,
which is then programmed as part of the application. Therefore, these systems cannot
be classified as UIMS, even though they are integrated systems. Figueiredo et al.!?
proposed a tool for the automatic generation of interfaces for data entry to programs
for engineering simulation and optimization. Although this tool is not an integrated
application, it can be considered as a UIMS because it contains all aspects of user
interface design.

Recently, a new generation of UIMSs has appeared: User Interface Development
Systems (UIDSs).!* UIDSs use knowledge bases on interface design techniques and
software design principles to help the interface specification process.'* In contrast
with UIMSs, which need interface experts, the integration provided by UIDSs allows
users themselves to be the interface experts.

Other approaches to user interface development are model-based UIMSs and Pro-
gramming-by-Demonstration (PBD, also know as Programming-by-Example, PBE).
One model-based UIMS is the User Interface Design Environment (UIDE).'® In this
system, user interfaces are specified at a high level of abstraction that includes an
abstract data model, with typed attributes and operations on them, and pre- and
post-conditions for these operations, specifying when the operations are valid and
how they change attributes. The high level specifications in UIDE are written in an
extended form of Pascal that are then compiled into running code. Programming-by-
Demonstration was pioneered in Peridot.'® In such systems, user interfaces are built
by drawing the layout and performing actions as the final user would; The overall
behavior of the interfaces created by demonstration is obtained by inference from such
examples.

According to Myers,!” “the challenges for future tool creators seem to be to pro-
vide tools which are easier to learn and which significantly increase the efficiency of
the user interface designers.” The three types of tools already described support the
construction of programs with user interfaces, but they do not attack many important
aspects of the problem which would contribute to ease of use and designer efficiency.
These two important characteristics can be affected by several factors including the
capability to:!®
* In this paper, dialog is mainly used in the following technical sense: a dialog is “any interactive exchange of

information that takes place in a limited spatial context.” 11 Th window systems, dialogs are top level windows
containing primitive interface elements, such as buttons or lists.

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 3

e develop applications on multiple platforms from the same specification;

e specify the user interfaces in a platform-independent fashion yet with the look-
and-feel of a specific platform (native look-and-feel);

e use the same development system on multiple computer platforms;

e rapidly prototype the user interface before the application code is written;

e rapidly prototype the user interface without impacting other parts of the appli-
cation;

e casily incorporate modifications including those discovered through demonstra-
tion and user testing;

e produce multiple user interfaces for the same application;

e minimize the amount the user of the tools must learn before becoming productive;

e minimize the number of different types of expertise required to design and pro-
totype an interface;

e and be expandable to take advantage of any new user interaction modes.

Certainly the construction of a portable UIT supporting an abstract layout model
and allowing some degree of run-time binding can form a solid base for the construction
of more complex user interface tools that encompass these factors. The CIRL/PIWI'®
toolkit provided a partial solution by supporting the development of applications for
more than one platform and using an abstract layout model for platform-independent
implementation. The goal of this paper is to describe the design and implementation
of a portable user interface toolkit developed by the Pontifical Catholic University in
Rio de Janeiro (PUC-Rio) and named IUP/LED which considers all these previously
mentioned factors in its design.

SOFTWARE PORTABILITY

In order to maximize use and return on investment, an interactive program should be
capable of executing under many different operating environments and graphical user
interfaces with appropriate look-and-feel. Such systems as MS-DOS, MS-Windows,
0S/2, Macintosh, Motif/X11, Open Look/X11, IBM VM/CMS, and VAX/VMS may
need to be supported. Since these environments are quite different from each other, this
goal is difficult to achieve without adequate tools for developing portable programs,
especially interactive graphic applications. The main factors affecting portability are:

e hardware differences, such as byte ordering and addressing;

e operating and file system differences, such as multiprocessing capabilities and
case sensitivity. Even systems that follow the same basic standards, such as the
various flavors of Unix, have subtle differences that can hamper portability if
developers are not careful;?°

e compiler differences, such as the default size of an integer which may be impor-
tant for programs that handle binary files. In addition, each compiler provides
proprietary function libraries that can introduce further incompatibilities;

e graphic devices that can support different resolutions and numbers of colors, and
may or may not use a graphic processor;

e and different application programmer interfaces (APIs) for each type of graphical
user interface system.

4 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWAN

A detailed discussion of how these factors impact portability is presented in?! 22, The
impact of changes on operating systems and programming languages can by minimized
by using de facto standards such as Posix?® and ANSI C.?* If any platform dependent
code still remains, the simple strategy of isolating the dependent code and documenting
its functionality can be used so that a future implementation in another environment
is easier. However, the diversity of user interface systems does present some interesting
problems, which are discussed next.

Programming portable user interfaces

Programming graphical user interfaces, such as Microsoft Windows, Presentation Man-
ager, Macintosh Toolbox, Motif, and Open Look, is conceptually the same task for
the various platforms, since most graphical user interface systems use the desktop
metaphor and corresponding applications usually have a similar look-and-feel. How-
ever, the APIs in these systems are quite complex, with hundred of functions. More-
over, application programmers often must be experts in several systems, because of
the many differences in the various toolkits.

The best solution to this problem would be to use a de facto standard interface
system. Since there are no such systems available, an alternative solution would be to
use an international standard, but efforts in this direction have not yet been successful.
The only other way to avoid dependencies on specific computer platforms is to use
proprietary tools for building portable interfaces such as CIRL/PIWI'*® or XVT.?®
Even though an application built with these tools does become device-independent, it
now depends on the manufacturer of the tools, because they are proprietary and do
not follow an international standard.

There are many strategies for building a portable interface tool. The simplest ap-
proach is to develop a tool that provides the functionality common to all supported
interface systems (this approach is called “the least common denominator solution”).
Even though this strategy is simple to follow, applications that use this strategy typ-
ically have inadequate support for color and character fonts. Another disadvantage is
that applications may have to implement interaction mechanisms that do not appear
in all interface systems such as list selection boxes or file selection dialogs.

A different strategy is to port a complete interface system to all environments, with-
out using native interface systems, but instead relying on native graphics functions.
A characteristic of this solution is that all applications have the same look-and-feel
in all computer environments. This may be an advantage for the users of the same
application in different environments, but when the application is used by one user in
only one machine, the look-and-feel of the application will probably not be consistent
with the look-and-feel of the other applications provided by other suppliers. This is
the strategy followed in SUIT?® and in IntGraf.?”

The creation of a virtual toolkit, implementing a portable user interface metaphor, is
a good strategy for the development of portable tools. A virtual toolkit maps abstract
interface elements to the native interface elements of the local environment of an ap-
plication. Thus, the application inherits the look-and-feel of the native system. This
solution can increase the productivity of the users of many different applications on
the same machine, since those users may use techniques already learned in that envi-
ronment. On the other hand, the user of only one application in different machines will
suffer, for this user will have to learn how the program works in many environments.

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 5

However, we believe this situation is not as common.

The major problem with this strategy is creating a portable metaphor for UITs.
Such a metaphor is defined by the IUP toolkit. This toolkit supports both fixed look-
and-feel and native look-and-feel, because, in addition to drivers for many common
interface systems, a complete, portable interface system was also written.

COMPARISON OF DE FACTO STANDARDS

In order to develop a virtual toolkit, existing interface systems must be considered
first. In this section, we examine the systems that have become de facto standards
including: Motif, Open Look/XView, MS-Windows and Macintosh Toolbox.

A comparison among these interface systems makes it clear that Motif is the most
complete environment for dialog specification. Through its User Interface Language
(UIL), it is possible to separate the programming of interface elements from the main
program code, allowing rapid prototyping. On the other hand, Motif has so many ele-
ments, its UIL is so powerful, and there are so many different forms to compose dialogs
that application programmers may have difficulty making reasonable choices. XView,
on the other hand, is a very compact toolkit that provides an easily learned relative
positioning model to compose dialogs. Nevertheless, since it does not provide a dialog
specification language, it is not easy to separate the user interface from the applica-
tion, thus increasing prototyping time. The Macintosh Toolbox and MS-Windows do
not support any abstract model for defining layouts, forcing programmers to know the
size and position of each interface element when drawing the dialogs to scale.

In order to avoid having to design dialogs to scale numerically, Macintosh systems
include a graphic editor for the construction of dialogs through direct manipulation
of interface elements. In MS-Windows, this type of editor is provided by program-
ming tools such as Borland C++ compiler, Microsoft C compiler, Visual Basic, and
Microsoft Access. These tools are useful in creating layouts, but they do not support
an abstract layout model. As a consequence, dialogs created visually cannot react
automatically to size changes.

There are interactive dialog editors for other interface systems, but almost all of
them specify dialog layout by using a concrete rather than an abstract model. In
addition, other tools, such as Guide for Open Look with XView, create descriptions
that need to be translated, compiled, and linked to the application before its execution,
thus limiting their utility for rapid prototyping. Exceptions are the ibuild dialog editor
in InterViews?® and FormsEdit for FormsVBT:?° both use the boxes-and-glue paradigm
of TEX?® to model abstract layout.

The FormsVBT dialog editor provides two views of the dialog specification: a text
description of the dialogs in a Lisp dialect and a graphical representation that can
be directly manipulated by an interactive editor. The user can interact with both
views; changes in one of the views are reflected in the other. This combination has the
advantages of both text description and direct manipulation of the WYSIWYG type,
without any of their limitations.

Like InterViews and FormsVBT, IUP/LED uses an abstract layout model based on
the boxes-and-glue paradigm of TEX. This model allows dialogs to be specified without
explicitly defining the position of interface elements, thus enabling automatic reposi-
tioning of interface elements when dialogs are resized. This is especially important
for interactive graphics applications, when resizing usually means the intention to see

6 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWAN

more working area; thus, dialog layout must be recomputed after resizing.

In interactive programs, the communication between the application and the user is
by nature bidirectional, through dialogs. The application builds dialogs, makes them
visible, and then waits for and reacts to user actions. There are two basic models for
integrating an application with user actions managed by dialogs: callbacks and events.
The callback model associates an application function with each possible action over
the interface elements. The toolkit captures events generated by the user, provides
feedback, and then executes the corresponding application routines. This model is
used by XView and by the toolkits based on the X Window Intrinsics Toolkit, such
as Motif and OLIT. Other systems, such as Xlib, MS-Windows and the Macintosh
Toolbox, use the event model. In this model, the system queues all events generated
by the user; the application takes the events from the queue, interprets them and calls
the appropriate routines.

The callback model and the event model are equivalent. The callback model may
be converted to an event model by associating all actions with a single application
routine that would handle all events. Conversely, the event model can be converted
to a callback model by building a software layer containing an event handler routine
and the routines responsible for associating the application with corresponding user
events.

The event model may be inefficient because all events are queued, even those that are
not handled by the application. For highly interactive applications that need to provide
fast response, this complete event queueing may be a limiting factor if the events with
no direct meaning for the interface happen too often. For instance, the events generated
as the user moves the mouse without pressing any button are not usually meaningful
to applications. In this context, when the user moves the mouse, there is no intention
of interacting with the dialog over which the mouse passes, but only to position the
mouse over an interface element to start an interaction. Nevertheless, when the mouse
passes over a dialog, many events are generated, such as: enter window; many mouse
movements; leave window. The X window system uses a client-server architecture;
the application may not be executing on the same machine as the one with which
the user is interacting. In this setup, the generation of useless events is even more
serious, because it not only overloads the application but also slows down network
traffic, affecting all running applications. The solution adopted in Xlib is to allow
applications to select which events are to be queued. MS-Windows, on the other hand,
does not provide a way to avoid the generation of useless events, probably because the
underlying operating system (MS-DOS) does not handle networks.

IUP/LED uses the callback model. This model was chosen because it allows a more
natural method of programming and avoids the problem just described. Moreover, the
callback model allows IUP to abstract the events that can occur and also handle any
necessary prolog and epilog that may be necessary around application responses to
events.

THE IUP/LED SYSTEM

IUP/LED is a user interface system composed of a virtual toolkit (IUP) and a dialog
specification language (LED). The IUP/LED system is designed to have the following
main characteristics:

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 7

a dialog description language (LED) that can be learned quickly;

a simple user interface specification model using abstract layout descriptions;
both native and fixed look-and-feel provided by the IUP toolkit;

run-time interpretation for LED with minimal overhead, for rapid prototyping;
portable, in that interfaces can be built for a variety of platforms, ranging from
MS-DOS text mode to Unix/Motif;

e available on multiple platforms;

e and expandable.

Simplicity was an important factor in the design of IUP/LED. The interface elements
are created and manipulated consistently by the application through a small set of
functions; the two IUP functions that set and query attributes associated with interface
elements are of primary importance. The LED language, an expression language with
a very simple syntax, is used to create the static description of the dialogs.

LED supports the distinction between abstract and concrete layout. To describe
a concrete layout for a dialog is to describe the exact geometric position of each
interface object that composes the dialog. On the other hand, to describe an abstract
layout for a dialog is to describe the relative positions of these objects. Frequently,
programmers have a clear idea of the abstract layout, while the computation of the
concrete layout is complicated, tedious and error-prone. Moreover, if a dialog layout
is described abstractly, then it is simple to recompute the concrete layout when the
the dialog is resized by the user or when elements are added to or removed from the
dialog by creating prototypes or by executing the application. The abstract layout
description is based on the boxes-and-glue paradigm of the TEX text processor.?’

IUP/LED associates an attribute, named WID, with each interface element. The
value of this attribute is the information necessary to access the corresponding inter-
face element in the native system; it is typically a handle or pointer to opaque data
structures, an integer or a string. Thus, an application may query this value and use
it as an argument in calls to the native interface system. In this sense, IUP/LED is
also an open system.

The inclusion of a small LED interpreter with an application provides support for
rapid prototyping and ease of modification of user interfaces. Only the LED script
needs to be altered; it is not necessary to compile and link the application every time
the interface changes. In fact, using this approach, the prototype for a user interface
can be built in advance of the application. In addition, this type of facility easily
supports multiple interfaces for the same application code.

Both the IUP/LED development system and the supporting environment were de-
signed to be portable®! in the sense that the installation of both these components
of IUP/LED on a new computer platform requires much less effort than the effort
required to rewrite [UP/LED for that platform. This goal was achieved through the
combination of the portability strategies described previously. In this way, IUP/LED
can be (and has been) implemented in environments as different as MS-DOS in text
mode and MS-Windows. Thus, IUP/LED interface descriptions can be prepared and
run on a wide variety of computing platforms.

In IUP/LED, an application is exclusively formed by a group of potentially con-
current dialogs. A dialog is formed by interface elements that interact with the user,
capturing and exhibiting information manipulated by the program; they correspond
to top-level windows. Writing an application consists of specifying its dialogs (possibly

8 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWAN

by using LED) and implementing the associated application routines.

LED: a language for dialog specification

LED is an expression language for specifying dialogs; it supports three important
aspects of an interface system:

e independence of dialogs from the application code;
e rapid prototyping;
e and customization for different users and platforms.

Independence of the user interface code from the application code is achieved by
having LED specifications reside in external text files. This also allows rapid prototyp-
ing because LED files are interpreted at run time and no actual application functions
are needed; it is only necessary that the main program calls IUP to load and inter-
pret LED specification. This single program can be used to create and test prototypes
quickly for the interface of any application.

Customizing the application can be done by the user because dialog definitions are
available in text form. Since LED is a simple language that is easily understood, users
can themselves modify dialog specifications in order to create simplified versions of
the program, to translate the interface into another language, or even re-arrange the
dialogs completely.

Layout model

The LED language supports an abstract user interface model, where dialogs are defined
by their abstract layout and the elements that compose the dialogs are mostly specified
by their function and not by their final appearance. In LED, programmers need only to
provide some parameters associated with the functionality of each interface element;
appearance attributes may be specified, but they are not mandatory.

By using an abstract interface model, application programmers can create dialogs
without having to worry about the interface system in which the program will execute.
Moreover, porting the user interface to a new environment should be immediate for
it is enough to have a IUP driver for the new native interface system; this driver is
written once only, by expert programmers. In this way, programs can run without any
changes in systems that are as different from each other as Microsoft Windows, OS/2
Presentation Manager, Motif, OpenLook, and Macintosh. The IUP toolkit provides
an API that implements the abstract model supported by LED.

The layout model used in LED is based on the boxes-and-glue paradigm of the
TEX text processor.>’ This model is simple, easily understood, and is able to maintain
abstract layouts, independent of size and complexity. The relative position of the
interface elements that compose a dialog remain unchanged after the dialog has been
resized by the application user, or by the addition or removal of elements. Programmers
are freed from having to compute sizes and positions for the interface elements in each
dialog, a tedious, error-prone task that must be done several times during the software
cycle, and also at run time.

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 9

Syntaz

LED is an expression language designed so that dialogs can be defined mostly by spec-

ifying their abstract layout and the functionality of the interface objects that compose

the dialog. Appearance attributes, such as color and character fonts, are optionally

specified as environment variables, similar to the ones that already exist in Unix and

DOS. This distinction between mandatory information (related to functionality) and

optional information (mostly related to appearance) is explicit in the syntax of LED.
The syntax of expressions in LED is simply n = f[a](p), where:

e n is the name that should be used by the application in order to access the
interface element that is being defined by the expression f[a](p);

e f is the type of interface element that is being described (currently, button,
canvas, dialog, £fill, frame, hbox, image, item, label, list, matrix, menu,
radio, submenu, text, toggle, valuator, vbox, zbox);

e ¢ is a list of attribute-value pairs, in the form a; = vy, a; = v,, ..., where q; is
the name of an attribute and v; is its value (a string);

e p is the list of parameters that define the functionality of elements of type f.

Naming an expression is optional. Nevertheless, an application can only commu-
nicate directly with elements that have names. Thus, an application cannot change
or query the attributes of anonymous elements created with LED, even though these
elements may be fully active.

Ezample

As an example of the use of LED, consider the dialog in Figure 1. This dialog is
composed of a text string (“File already exists!”) and two buttons (labeled “Replace”
and “Cancel”). The abstract layout of this dialog can be described in the following
form: the buttons are centered at the lower part of the dialog area and the text is
centered in the remaining area above the buttons. A specification in LED for this
layout follows immediately from this verbal description:

confirm = dialog[TITLE="Attention"] (body)
body = vbox(£ill(), prompt, fill(), buttons)

prompt = hbox(£fill(), warning, £ill())

buttons = hbox(£fill(), replace, £ill(), cancel, £il1l())
warning = label("File already exists!")

replace = button("Replace", do_replace)

cancel = button("Cancel", do_cancel)

This example specification uses the interface elements dialog, vbox, hbox, £ill,
label and button. These and other interface elements are described below. In the
example, all elements have been named, but this is not necessary, specially for in-
termediate elements. An equivalent specification without intermediate names is given
below. Note that the dialog still needs a name (confirm) so that it the application
can show it to the user.

confirm = dialog[TITLE="Attention"](
vbox (

10 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWAN

Attention

File already exists!

| Replace | | Cancel |

Figure 1. Example dialog

£i11(),
hbox(
£i11(),
label("File already exists!"),
£i110)),
£i11(),
hbox(
£i11(),
button("Replace", do_replace),
£i11(),
button("Cancel", do_cancel),

£i11())))

Interface elements

The interface elements available in LED are divided in the following categories:

e grouping: define a common functionality for a group of elements;
e composition: define a form to exhibit the elements;

e filling: occupy empty spaces dynamically;

e and primitive: interact with the user.

Since the list of parameters that define the functionality of elements may contain
other expressions, the elements that compose a dialog are organized in a hierarchi-
cal tree structure. The structure corresponding to the example dialog in Figure 1 is
shown in Figure 2. This hierarchical structure allows dialogs to be gradually specified,
combining simple, previously tested dialogs into more complex ones.

Grouping elements. Grouping elements define a common functionality for a collec-
tion of elements. The types of grouping elements available in LED are:

e dialog: compose an interaction dialog with the user;
e radio: restrict the on state to exactly one of a set of toggles;
e and menu: group items and submenus.

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 11

Figure 2. Dialog structure for the example specification

Composition elements. Composition elements determine whether a collection of in-
terface elements are presented vertically or horizontally. Following the TEX paradigm,
we have two composition elements:

e hbox: present group of elements horizontally;
e and vbox: present group of elements vertically.

With these two composition elements, it is possible to build many dialogs with-
out defining explicitly the coordinates of each element that composes the dialog. The
example LED code for the confirm dialog illustrates the use of vbox for vertically
arranging the two main items (prompt and buttons), and the use of hbox for a hori-
zontal arrangement of the two buttons.

There is a third composition element, not present in TEX, called zbox. This element
models a stack of interface objects; only the “top” object is visible at any time.

Fill elements. There is only one filling element: £i11; it occupies the empty spaces in
a dialog proportionally and dynamically. £i11 is responsible both for maintaining the
abstract layout when the dialog is resized and for relative positioning of the interface
elements in the composition elements (hbox and vbox). In the example, £ills are
used to center the label (prompt) horizontally and vertically in the dialog area. If the
specification of body were:

body = vbox(prompt, £fill(), buttons)
then the text would appear at the top of the dialog area, not in the center.

Primitive elements. The primitive elements currently available in LED are:

button;

canvas: working area;

frame: creates a border around an interface element;
image: static image;

item: menu item;

label: static text;

12 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWAN

list: string list with scrollbar;

matrix: a matrix of text cells, like a spreadsheet;
submenu: menu within a menu;

text: captures a text fragment of two or more lines;
toggle: two-state button (on/off);

and valuator: captures a numeric value.

With the exception of canvas, all other primitive elements are well understood and
have the same behavior in all interface systems. The interface element canvas is a dif-
ferent element because it is the main link between the graphical part of an application
and the interface system. It is through canvases that application objects are exhibited
and manipulated by the user. This intimate connection with the application makes it
hard to give an abstract definition for the behavior of canvas. InterViews gives a for-
mal definition for this behavior, removing from the application the treatment of some
events such as repaint and resize. An alternative abstraction was given by Neelamkavil
and Mullamey.??

In ITUP/LED, the behavior of canvas is simple: all events that happen on a canvas
are passed on to the application, which is responsible for handling them. However,
before passing events to the application, the IUP driver does handle any necessary
prolog and epilog; this typically happens for optimizing canvas redraw by setting the
clipping area to the exposed area.

It is important to note that, among primitive elements, canvas is the only one that
competes with £i11 for empty spaces. Thus, when a dialog is resized, its working area
is also resized accordingly.

Attributes

Attributes for interface elements are implemented as environment variables represented
by the expression [a = v], where a is the name of a variable and v is its value (a
string). IUP/LED implements an inheritance mechanism for attributes: the variables
defined for an element are automatically exported down to its children. For example,
a variable defined for an hbox is also defined, with the same value, for all elements
that are in this hbox. If one of these elements defines a variable with the same name,
the value defined for the element has priority over the value defined for the hbox. This
mechanism allows global attribute assignment, with the possibility of local changes.
For example, to change the character font globally for the confirm dialog, but locally
in the replace button, one could write:

confirm = dialog[FONT="Helvetica"](...)
replace = button[FONT="HelveticaBold"](...)

Some variable names are recognized by IUP/LED and represent attributes of native
interface elements. The majority of these attributes control appearance such as color,
character fonts, and cursor style. Some attributes define functionality; for instance,
the HOTKEYS attribute associates function keys with dialogs.

Names not recognized by the system can be used by the application for any pur-
pose; IUP/LED stores these attributes but does not try to interpret them. This feature
provides a general-purpose, extensible attribute table, which may be used by the appli-
cation; in particular, interface objects can maintain their own “state.” This mechanism

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 13

also allows platform dependent attributes to be specified and interpreted only by the
corresponding driver, with no consequences for other platforms. Thus, it is possible to
fine-tune the interface for each platform and still maintain a single LED specification.

IUP: a virtual toolkit for supporting LED

IUP is a virtual toolkit with approximately 40 functions for building and manipulating
dialogs for applications. This toolkit is essentially an API for implementing LED and
contains functions for:

converting LED specifications to native interface system objects;

creating interface elements directly, without using LED;

registering the application functions corresponding to the actions used in LED;
associating names with interface elements;

exhibiting and hiding dialogs;

and querying and setting attributes for interface elements.

IUP has two main modules: a driver that maps virtual interface objects to native
interface objects, and a geometry manager that converts abstract layouts to concrete
layouts, by computing sizes and locations for native interface objects. The geometry
manager acquires size information from the driver. Of course, the driver depends on
the native system, but not the geometry manager. Thus, although there is a different
library implementing IUP/LED for each platform, this is transparent to interface
programmers.

IUP is written in ANSI C and has been ported to many different environments,
such as Microsoft Windows, OpenLook via XView, Motif, and DOS. For DOS, which
does not contain a native interface system, we have written a complete and portable
interface system having an appearance similar to Motif.

The control flow in an application that uses IUP is analogous to the ones that use
other toolkits and can be summarized as follows:

1. initialize IUP, by calling TupOpen;

2. create dialogs by loading and interpreting LED specifications with TupLoad, or
by calling IUP functions to create each interface element;

3. register the functions corresponding to actions with IupSetFunction (in the
example, do_replace and do_cancel are actions and not application functions);

4. yield control to IUP by calling TupMainLoop, which waits for user actions and
calls the corresponding application functions.

Integrating IUP with LED

In LED, we can associate names with interface elements, but these names cannot be
directly used in the IUP functions that create and manipulate the interface elements
because IUP functions expect a handle. Therefore, to refer to an interface element
created in LED, an application has to call TupGetHandle. The following code uses
IUP to specify the dialog in Figure 1.

TupLoad("attention.led");
TupSetFunction("do_replace", (Icallback) f_replace);

14 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWAN

TupSetFunction("do_cancel", (Icallback) f_cancel);
TupShow (TupGetHandle("confirm")) ;

Even though this code does not check for errors, all IUP functions return a code
that indicates success or failure in the execution of the function.

Creating interface elements in IUP

Interface elements can be created dynamically by calling [IUP. However, the creation
of interface elements with I[UP and with LED differs in two specific ways. The first
difference is that in IUP names are not associated with interface elements at creation
time, as they are in LED. When an element is created with IUP, the corresponding
function returns a handle, not a string name. The function TupSetHandle may be used
to associate names with interface elements, after they have been created, but this is
not necessary. The second difference is that, in LED, the definition of the attributes
happens at creation time, whereas in IUP the element has to be created before its
attributes can be defined. The following code creates the example dialog using IUP.

Thandle *cancel,*replace,*warning,*buttons,*prompt,*body,*confirm;
cancel = TupButton("Cancel", "do_cancel");

replace = IupButton("Replace", "do_replace");

warning = IupLabel("File already exists!");

buttons TupHbox (TupFill() ,replace,IupFill(),cancel,IupFill() ,NULL);
prompt = IupHbox(IupFill(),warning,IupFill() ,NULL);

body = TupVbox(TupFill() ,prompt,IupFill() ,buttons,NULL);
confirm = IupDialog(body) ;

TupSetAttribute(confirm, "TITLE", "Attention");
TupSetFunction("do_replace",(Icallback) f_replace);
TupSetFunction("do_cancel", (Icallback) f_cancel);
TupShow(confirm) ;

As in LED, it is not necessary to keep handles to intermediate elements; however,
no operation is possible on elements for which no handle is stored. The same dialog
can be created with the following code:

confirm = TupDialog(
TupVbox (

IupFill(),

TupHbox (
IupFill(),
TupLabel("File already exists!"),
TupFill(), NULL),

IupFill(),

TupHbox (
IupFill(),
TupButton("Replace", "do_replace"),
IupFill(),
TupButton("Cancel","do_cancel"),
IupFill(), NULL), NULL));

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 15

Implementation

The main module in the implementation of IUP/LED is the geometry manager, which
converts the abstract layout model to a concrete model. The creation of a driver for
a specific system is simply an arduous exercise in translating abstract IUP calls into
calls to the native API.

The conversion algorithm implemented in the geometry manager has three phases
(see Appendix). The first phase computes the smallest size that holds the interface
element. This size is called the natural size of each element and is defined in Table I.
The second phase computes current sizes, that is, the size with which elements will
actually be exhibited to the user. The third and last phase computes the final position
of each interface element. Before implementing this algorithm, the following questions
related to the appearance of the user interface must be answered:

1. What is the policy for distribution of empty space among £ills and canvases?

2. Does a £fill or canvas that is deep in the hierarchy receive less space than a
shallow £ill or canvas? If so, how much less?

3. When a user explicitly defines the size of an element (by specifying the SIZE
attribute), what size is meant, the natural or the concrete one?

4. In what units does the user define the size of the interface element?

Prototypes were extensively studied to obtain answers to these policy questions and
their combinations. For the first question, the best answer is to give priority to canvas
over £ill in empty space distribution. This decision was based on the functionality
of the two elements: £i11 is for justifying elements, while canvas is the space used by
the application and the user for communication using application objects. Therefore,
it seems reasonable that increasing the size of a dialog should increase the size of the
canvas. In other words, resizing is interpreted as meaning intention to see more work
area, not to spread interface elements further apart.

The distribution of empty space for elements in the same hierarchical level is pro-
portional: they all receive the same amount of empty space. The key problem is the
distribution of empty space for elements at different levels. If all elements received the
same amount of space, irrespective of their level, then it would be impossible to divide
a dialog in regions as shown in Figure 3, because all elements would receive the same
amount of space; the dialog shown in Figure 3 would appear as illustrated in Fig-
ure 4 (a or b, depending on how the layout was defined: a vertical box containing two
horizontal boxes; or a horizontal box containing two vertical boxes). The algorithm
implemented in IUP/LED divides a dialog into regions, distributing the empty space
of a box equally among its extensible elements, which then divide their empty space
equally among their own elements, and so on. Thus, the outer elements get more space
then the inner ones, in exponential proportion.

Our answer to the third question is that when a user chooses a size, the user wants
the interface element to be shown in that specified size and not in one computed by
the IUP. Therefore, it becomes clear that the size specified by the user refers to the
current size. Thus, the size of such an interface element must not be recomputed after
the dialog is resized. The only exception is resizable dialogs, whose sizes are always
recomputed.

Regarding the last question, it is clear that raster units or pixels should not be
used as a unit of size because of the obvious dependency on device resolution. In

canvas 2
canvas 4 canvas 5
canvas 6 canvas 7

16 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWAN
canvas 1 canvas 2
canvas 4 canvas 5
canvas 3
canvas 6 canvas 7
Figure 8. Seven canvases dividing a dealog in symmetrical areas
canvas 1 canvas 2 canvas 1
canvas 4 canvas 5
canvas 3 canvas 3
canvas 6 canvas 7
a)

b)

Figure 4. Seven canvases dividing a dialog in asymmetrical areas

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 17

IUP/LED, the values related to sizes are proportional to a fraction of the average size
of a character from the character fonts used by the element in question. The width
unit represents 1/4 of the medium width of a character and the height represents 1/8
of the height of a character (these values are not magical or sacred; they are also used
by MS-Windows). The use of this kind of unit guarantees that the interface elements
will show the users the same information, irrespective of the output device.

Algorithm for computing concrete layout

The Appendix contains pseudo-code for three recursive algorithms that have been
implemented to convert abstract layout to concrete layout. Algorithm A computes
natural sizes; Algorithm B computes current sizes and distributes empty space; and
Algorithm C computes final sizes and positions.

Algorithm A only computes the sizes of the composition elements (hbox and vbox)
and group elements (dialog); the sizes of the primitive elements, such as label,
button and text, are obtained by querying the driver for the native interface system.

Algorithm A receives as input a node of the hierarchical structure of a dialog,
representing an interface element and computes its natural size. The return value

Table I. Natural size of elements

Element Natural Size

button somewhat larger than its text or image

canvas the size of a character

dialog the size of the element it contains

fill Zero

frame somewhat larger than the size of the element it contains

hbox height equal to the height of its highest element;
width equal to the sum its elements width

image the size of its image

item somewhat larger than its text or image

label the size of its text or image

list dependent on the native system

matrix dependent on the native system

menu minimum to hold all its elements

radio it has no size for it only defines functionality

submenu somewhat larger than its text

text somewhat larger than its initial text

toggle minimum to hold its text or image and a feedback box

valuator dependent on the native system

vbox height equal to the sum its elements height;
width equal to the width of its widest element

zbox height equal to the height of its highest element;

width equal to the width of its widest element

18 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWAN

indicates the directions (vertical or horizontal) in which the element can grow and
with which priorities (high or low). For example, an hbox that contains a £ill can
grow horizontally with a low priority, but an hbox that contains a canvas can grow in
both directions with high priority. This information is useful to compute the current
size and to determine the distribution of empty space.

All three algorithms start at the top of the hierarchical structure of a dialog, and
recursively explore the hierarchy. Algorithm A prepares interface elements for the com-
putation of their current size. Algorithm B computes the current sizes of the interface
elements and distributes empty space. To complete the conversion from abstract layout
to concrete layout, Algorithm C positions interface elements.

Since the three algorithms traverse the tree structure of a dialog exactly once, the
conversion from abstract to concrete layout is linear in the number of interface ele-
ments contained in a dialog. This complexity is adequate for real time recalculation of
concrete layout. Nevertheless, the recalculation only occurs when the user has finished
resizing the dialog, in order to avoid the “blinking” effect that could occur if all ele-
ments had to be erased and redrawn for each mouse movement. Some native toolkits
are specially slow at erasing and redrawing interface elements.

EXPERIENCE WITH IUP/LED

TeCGraf is a research and development laboratory at the Pontifical Catholic University
in Rio de Janeiro (PUC-Rio) with many industrial partners. Some forty programmers
at TeCGraf have used IUP/LED over the past three years to develop several substantial
products. The layout model and the toolkit were found to be simple to learn and use
by programmers with all levels of expertise. Moreover, IUP /LED is being successfully
used in courses on Computer Graphics and User Interfaces at PUC-Rio.

In this section, we report on two early experiences in the use of IUP/LED soon
after its implementation was completed. that served to validate the design. We first
examine the use of IUP/LED in TeCGraf’s PETROX project. Because this project
required the definition of almost fifty dialogs, we believe it provides a good evaluation
of the abstract layout model. We then examine the use of IUP/LED in a Computer
Graphics course for Engineering students, where they had to create an interactive
graphics editor, a program that requires a substantial amount of interaction between
IUP/LED and the graphics system.

PETROX project

The PETROX project required the creation of a multi-platform interactive program
for editing chemical process diagrams that provide input data for a simulator. The
fifty dialogs that capture the numeric information associated with the elements of the
diagram were specified using LED by a chemical engineer who had no knowledge of
user interface concepts at the beginning of the project. After one month of training,
she was able to understand user interface concepts and learn both the IUP toolkit
and the LED language. Since the dialogs had many interface elements in common, the
engineer created a library of common LED specifications; every time a dialog needed a
common element, it was copied from the library and reused in the dialog specification.

As the dialogs were built, a need was found for two new interface elements that were
not originally in IUP/LED:

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 19

e the drop down list, which provides a different presentation for the primitive ele-
ment list. Instead of exhibiting a complete list, only one element in the list is
shown beside a button with an arrow pointing downwards. When selected, this
button gives the option list, allowing a new option to be selected. IUP/LED now
implements drop down lists as an attribute for list;

e the vector, that allows values to be attributed to a vector without having to
define a text element for each vector position. The number of £ills used by
the interface element alignment in dialogs of the PETROX project is quite large.
Reducing this number involved creating the ALIGNMENT attribute for the hbox and
vbox composition elements. The possible values of ALIGNMENT are TOP, CENTER
and BOTTOM, for hbox, and LEFT, CENTER and RIGHT, for vbox. IUP/LED now
contains the more powerful matrix primitive.

Graphic editor

In the Computer Graphics course, Engineering students had to create an interactive
graphics editor using IUP/LED as the interface system and a local implementation
of GKS as the graphics system. They started using IUP/LED after a single lecture
describing the abstract layout model LED and the IUP toolkit. A brief reference
manual describing the functions and the attributes for each interface element was
provided to support this activity. Although they were not sophisticated programmers,
the students were easily able to specify dialogs and use the toolkit to build good user
interfaces for the graphic editor. Nevertheless, some students found difficulties in using
an asynchronous rather than a sequential programming model. This problem is not
attributable to IUP/LED but instead to a lack of experience in programming user
interactions using callbacks.

The graphics system was used passively and all input was handled by IUP. A minor
problem was detected: IUP coordinates are in raster units with origin at the upper
right corner of the canvas, whereas GKS needs world coordinates defined by the pro-
grammer with origin at the lower left corner. To solve this problem, a transformation
routine between both systems was added to the IUP interface for GKS.

COMPARATIVE ANALYSIS

There are other interface systems, such as IntGraf,>” CIRL/PIWI,*® XVT,* OIT,*
and SUIT,*® that provide solutions to user interface portability problems. In this
section, we make a comparison of IUP/LED with CIRL/PIWI and SUIT, since in
an earlier paper!® CIRL/PIWI was compared with the other toolkits.

CIRL/PIWI

CIRL/PIWI® is a portable user interface toolkit developed by the University of Wa-
terloo. This toolkit uses a user interface abstraction to support a portability strategy.
This abstraction has two components: CIRL, a language that uses tags to specify
interface elements; and PIWI, a virtual toolkit similar to IUP. The structure and ap-
pearance of interface elements are specified separately, and a knowledge base contains
information about the look-and-feel of a specific native system. The two descriptions
and the knowledge base are provided as input to a compiler that produces a description

20

C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWAN

of interface elements in the tagging language for the native system. PIWI is a virtual
toolkit similar to IUP. PIWI is available for the Macintosh, X11/Motif, Microsoft
Windows, and Presentation Manager in OS/2. Besides the user interface functions,
graphics functions for drawings are also available. The interface elements communi-
cate with the application through events, where each dialog has an accompanying
event handling routine.

CIRL/PIWI and IUP/LED share the following common features:

the implementation of an interface layout language;

layouts are defined without having to define element coordinates;
the implementation of a virtual toolkit;

and dialogs inherit the native look-and-feel.

Although the goals are similar, CIRL/PIWI and IUP/LED were developed inde-

pendently. There are several differences that separate the two solutions, including;:

the CIRL compiler uses a knowledge base containing information about the look-
and-feel of different interface systems. This knowledge base allows the compiler
to make decisions related to the layout that were not defined by the tagging or
appearance model. On the other hand, LED defines a very simple model of layout
definitions based on the boxes-and-glue paradigm of the TEX processor;

the CIRL compiler produces a specification in the tagging language of the native
interface system that then needs to be compiled and linked to the application.
LED specifications are interpreted at run time, potentially decreasing the time
required to produce a prototype;

interface elements can only be created through CIRL, while in IUP/LED the
interface elements can be defined by using either LED or TUP;

IUP/LED provides a general-purpose attribute mechanism that allows the ap-
pearance of interface elements to be defined and fine-tuned for specific interface
systems. In CIRL, the appearance of interface elements are defined in an optional
file; fine-tuning is done based on the tagging created by the CIRL compiler, and
it is not possible to attach application specific information to interface elements;
in CIRL/PIWI, the communication between interface elements and the applica-
tion is based on the event model; in IUP/LED, this communication is based on
the callback model;

IUP/LED supports a fixed look-and-feel in addition to a native look-and-feel,
CIRL/PIWI supports better fine-tuning of the user interface than IUP/LED.
Since CIRL/PIWI creates a description of interface elements in the tagging lan-
guage of the native interface system, a final adjustment can be made at that
level. IUP/LED only allows fine-tuning with the characteristics known to the
IUP driver for the native interface system. Nevertheless, [IUP allows native in-
terface elements to be accessed through the WID attribute of the corresponding
virtual elements, allowing dynamic fine-tuning through the functions of the native
interface system.

SUIT

SUIT?® (Simple User Interface Toolkit) is a portable user interface toolkit developed
by the University of Virginia. The library implementing SUIT contains all standard

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 21

interface objects, and also an interactive layout editor that can be invoked at run-
time, qualifying SUIT as a UIMS. The portability of SUIT is achieved by using a fixed
look-and-feel implemented with SRGP, a portable graphics library.>* Although SUIT
was designed primarily as an educational tool, it has been successfully used in many
professional research laboratories®®.

The main similarities and differences between SUIT and IUP/LED can be summa-
rized as follows:

e SUIT implements a “true” toolkit on top of a portable graphics library, thus
providing only fixed look-and-feel. [UP/LED uses a virtual toolkit that provides
both fixed and native look-and-feel.

e the API in both systems is small and easy to learn.

e both SUIT and IUP/LED support attributes for interface objects and attribute
inheritance. Attributes are called “properties” in SUIT and can be edited at run-
time using a built-in graphical properties editor. Like IUP/LED, SUIT allows
user defined properties. Unlike IUP/LED, however, SUIT properties are typed.

e some interface objects in SUIT can be presented in more than one way, which
may be selected at run-time by the user or via properties. In IUP/LED, the
presentation of an interface object depends on the native interface systems, and
would be selected via attributes as in SUIT, but the standard systems do not
support multiple presentation styles. However, multiple presentation styles can
be implemented in IUP/LED with zboxes, a more powerful construct.

e although the SUIT toolkit describes layouts concretely, by giving explicit geomet-
rical coordinates for interface objects, layouts can also be defined interactively,
using the built-in layout editor. This editor can be used by the programmer
and also invoked by the user at run-time. Layouts in IUP/LED are described
abstractly and created either as a set of procedure calls using IUP or a set of
declarations using LED. SUIT has composition objects that can implement hor-
izontal and vertical arrangements, but not fill objects, and thus cannot support
abstract layouts.

e the current layout of a SUIT interface can be saved at run time in an external
text file that can be later interpreted to recover the layout in a subsequent run of
the program. However, SUIT actually writes a C source file that must be carefully
edited to avoid parsing mistakes. Moreover, this file does not contain information
about the actions associated with the interface objects, because it does not know
the names of the corresponding C functions. IUP/LED has “actions” that are
dynamically bound to C functions. This allows LED files to contain information
about interface actions without knowing names of C functions.

e both SUIT and IUP/LED were designed to support rapid prototyping. SUIT
supplies built-in layout and attribute editors. IUP interprets LED specifications.

e because SUIT is written on top of a portable graphics library, it provides a
portable way of drawing application data in canvases. IUP provides a slightly
more complex, but orthogonal solution: the WID attribute provides access to na-
tive canvases. Used with a platform-independent graphics package, this mecha-
nism allows portable graphics on canvases.

22 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWAN

CONTRIBUTIONS

IUP/LED has made a number of contributions to the technology supporting the de-
velopment of portable user interface toolkits:

e IUP/LED defines an abstract layout model that allows dialogs to be created in a
natural form, without having to compute the position of the interface elements;

e the model used by IUP/LED can be implemented in many different interface
systems;

e LED is an expression language with a simple syntax that can be learned quickly;

e LED describes a dialog using its functions; appearance attributes are optional;

e LED allows applications to be customized at run time, for different users and
platforms, by the users themselves. There is no need to recompile or relink an
application to customize it;

e LED provides an attribute mechanism that allows specific adaptations to an
interface system, and makes it possible to attach application information directly
to the interface elements;

e IUP is a virtual toolkit that allows portable interactive programs to be built
without forcing programmers to be knowledgeable about the native interface
system,;

e [UP allows programs to have both the system’s native look-and-feel, which helps
the user of only one environment, and a fixed look-and-feel, which helps the user
of only one application who needs to run it on different machines;

e IUP has only forty functions, a very small group when compared to the hundreds
of functions of MS-Windows, the Macintosh Toolbox, and Motif. This feature
makes it easy to learn the IUP functions quickly.

Although TUP does not contain primitives for drawing on canvases, complete porta-
bility of graphics applications that use IUP can be achieved by using a platform-
independent graphics package, such as GKS or the one defined by PIWI. Such graphics
packages only need to query the value of the WID attribute of canvases to gain access to
the necessary information for using native graphics primitives. In other words, porta-
bility of interfaces to application data can be ensured by combining a passive portable
graphics package with an interface element that receives events. IUP provides an ab-
straction for an event recipient (canvas) and a simple mechanism for linking these
two components in a portable, orthogonal way.

CONCLUSIONS

In this paper, we have described a portable user interface development tool called
IUP/LED. LED is an expression language for specifying dialogs, and IUP is a virtual
toolkit for creating dialogs and for connecting dialogs specified in LED to the na-
tive system. IUP/LED allows interactive applications to be moved easily to different
computer environments with minimal effort.

We have described the layout problem for interface dialogs and have indicated that
it is difficult to define layouts by using explicit geometric positions in a concrete layout
model. As a solution to this problem, IUP/LED defines an abstract layout model based
on the boxes-and-glue paradigm of the TEX text processor. The main advantages of
this model are:

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 23

e it frees programmers from computing interface element sizes and positions;
e and it maintains abstract dialog layouts after the size is changed by the applica-
tion user or by the addition or removal of elements.

This model does not work with dialogs with geometrically irregular layouts; however,
this type of dialog is rarely used. In addition, interface designers can always find a
geometrically regular layout that is able to expose the required information adequately.

The dialog specification language, LED, implements an abstract layout model by an
expression language with a simple syntax that allows it to be learned quickly even by
domain experts with limited computer experience. LED is a powerful language that
allows:

o defining interface elements without necessarily defining appearance attributes;
e dialog definition to be separated from the application;

e rapid prototyping;

e and customization for different users and platforms.

The LED language served as the basis for developing the IUP virtual toolkit, which
allows the application to inherit or ignore the look-and-feel of the native interface
system. It is through IUP that the application controls the dynamics of the interface
elements defined in LED. The basic services provided by IUP are:

convert the declarations in LED to native interface system objects;
create interface elements dynamically without using LED;

bind application functions to the actions used in LED;

associate names with elements;

exhibit and hide the dialogs;

and set and query attributes for the interface elements.

IUP is a very small toolkit with only forty functions that are easily learned, specially
when compared to the hundreds of functions defined in MS-Windows, Macintosh Tool-
box, and Motif. This small number of functions was motivated by the model used by
XView. Optional information for interface elements are not provided by calling func-
tions but instead as element attributes. In this approach, all element manipulation is
through two functions: one to query and the other to set a value for each attribute.
The advantage of this approach is that it is easy to extend IUP. On the other hand,
programmers must learn not only the API but also which attributes are valid for each
element. However, programmers do not need to learn about attributes until they know
how to implement the desired functionality; this important first step is made easier
by the small size of the IUP toolkit.

The main difficulty in developing IUP/LED was in building the algorithm to trans-
form the abstract layout into a concrete one, because many natural alternatives exist
for maintaining abstract layout.

The following improvements to IUP/LED are currently under development:

e developing an interactive dialog editor for IUP/LED,3¢

e allowing reference to interface elements by name rather than through their handle
to allow reuse of parts of dialogs without copying;

e adding a platform-independent graphics package;

e implementing help and clipboard mechanisms;

24 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWAN

e and creating APIs to other languages, such as Fortran, C++, and Lua.?” Lua
is an extension language developed by TeCGraf that is both interpreted and
procedural and could be a more powerful replacement for LED.

An important and interesting theme refers to the Multiple Document Interface
(MDI) concept introduced in MS-Windows. This concept standardizes the use and pro-
gramming of the applications that allow users to work with many documents (files)
simultaneously. There are similar concepts in OS/2 Presentation Manager and the
Macintosh. An analysis of the real benefit of the MDI and of how this concept may be
implemented in other interface systems is a question that should be considered.

Another concept largely used in interface systems is the dynamic exchange of data
between applications using approaches such as Dynamic Data Exchange (DDE) in
MS-Windows. Even though this concept does not directly deal with the user interface,
it enables the integration of data between applications.

ACKNOWLEDGEMENTS

We would like to thank the staff at TeCGraf for using and testing ITUP/LED in its
industrial products. IUP/LED is being developed in partnership with the research

center at PETROBRAS (The Brazilian Oil Company). The authors are partially sup-
ported by research and development grants from the Brazilian Council for Scientific

and Technological Development (CNPq), the Natural Sciences and Engineering Re-
search Council of Canada, and WATCOM.

APPENDIX: ALGORITHMS FOR COMPUTING CONCRETE LAYOUT

Algorithm A. Compute natural sizes; return expansion information

function Nsize(n): integer
if nis a dialog
compute Nsize(child(n))
expansion(n) < both directions
Nwidth(n) < Nwidth(child(c))
Nheight(n) < Nheight(child(c))
else if » is an hbox
expansion(n) < no direction
Nwidth(n) < 0
Nheight(n) < 0
for each child ¢ of n do
expansion(n) < expansion(n) combined with Nsize(c)
Nwidth(n) < Nwidth(n) + Nwidth(c)
Nheight(n) < max(Nheight(n),Nheight(c))
else if n is a vbox
expansion(n) < no direction
Nwidth(n) < 0
Nheight(n) < 0

for each child ¢ of n

N—

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL

do expansion(n) < expansion(n) combined with Nsize(c)
Nwidth(n) < max(Nwidth(n),Nwidth(c))
Nheight(n) < Nheight(n) + Nheight(c);
else if n is a canvas
get natural size from native system
expansion(n) < both directions with high priority
else if nis a £ill
Nwidth(n) < 0
Nheight(n) < 0
if n is inside an hbox then
expansion(n) < horizontal with low priority
else if n is inside a vbox then
expansion(n) <« vertical with low priority
else
get natural size from native system
expansion(n) < no direction
return expansion(n)

Algorithm B. Compute current sizes and distribute empty space

function Csize(n,w,h)
if n can expand horizontally then
Cwidth(n) < max(Nwidth(n),w)
else
Cwidth(n) < Nwidth(n)
if n can expand vertically then
Cheight(n) <— max(Nheight(n),h)
else
Cheight(n) < Nheight(n)
if nis a dialog
Csize(child(n),Cwidth(n),Cheight(n))
else if n is an hbox
if n expands horizontally with high priority then
m ¢ number of children on n that expand horizontally with high priority
spaces < Cwidth(n) — Nwidth(n)/m
priority < high
else
m < number of children on n that expand horizontally
spaces < Cwidth(n) — Nwidth(n)/m
priority < low
for each child ¢ of n do
if ¢ expands horizontally with high priority and priority is high then
w ¢ spaces
else
if ¢ expands horizontally with low priority and priority is low then
w ¢ spaces
else

25

26 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWAN

w0
Csize(c,Cwidth(c)+w,Cheight(n))
else if n is a vbox
if n expands vertically with high priority then
m ¢ number of children on n that expand vertically with high priority
spaces < Cheight(n) — Nheight(n)/m
priority < high
else
m < number of children on n that expand vertically
spaces < Cheight(n) — Nheight(n)/m
priority < low
for each child ¢ of n do
if ¢ expands vertically with high priority and priority is high then
h + spaces
else
if ¢ expands vertically with low priority and priority is low then
h + spaces
else
h+<0
Csize(c,Cwidth(c),Cheight(n)+h)

Algorithm C. Compute final sizes and positions

function position(n,z,y)
z(n) « z
y(n) <y
if nis a dialog
position(child(n),z,y)
else if n is an hbox
foreach child ¢ of n do
position(c,z,y)
z < z + Cwidth(c)
else if n is a vbox
for each child ¢ of n do
position(c,z,y)
y < y + Cheight(c)

REFERENCES

1. H. R. Hartson and D. Hix, ‘Human-computer interface development: concepts and systems for

its management’, ACM Computing Surveys, 21(1), 5-92 (1989).
D. Heller, X View Programming Manual, O’Reilly & Associates, Inc., second edition, 1990.
Open Software Foundation, OSF/Motif Programmer’s Guide, Prentice Hall, 1991.

T W N

Microsoft Press, 1990.
6. Apple Computer, Inc., Inside Macintosh, Addison-Wesley, 1985.

Sun Microsystems Inc., Open Look Intrinsics Toolkit Widget Set Programmers’s Guide, 1990.
C. Petzold, Programming Windows: the Microsoft Guide to Writing Applications for Windows 3,

10.

11.
12.

13.
14.

15.

16.
17.

18.
19.
20.
21.
22.

23.
24.

25.

26.

27.

28.

29.

30.
31.

32.

33.
34.

35.

36.

37.

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 27

M. Green, ‘The University of Alberta User Interface Management System’, Proceedings of SIG-
GRAPH’85, pp. 205-213.

H. R. Hartson, D. Hix, and R. W. Ehrich, ‘A human-computer dialogue management system’,
Proceedings of INTERACT 84, London, September 1984, pp. 57-61.

A. Marcus and A. van Dam, ‘User interface developments for the nineties’, IEEE Computer,
24(9), 49-57 (1991).

Microsoft, Visual Basic Programming System for Windows version 2.0, Programmer’s Guide,
Microsoft Corporation, 1992.

A. Marcus, Graphic Design for Electronic Documents and User Interfaces, Addison-Wesley, 1992.
L. H. Figueiredo, C. S. Souza, M. Gattass, and L. C. G. Coelho, ‘Geracao de interfaces para
captura de dados sobre desenhos’, Anais do V SIBGRAPI, 169-175 (1992).

D. Hix, ‘Generation of User Interface Management Systems’, IEEE Software, 77-87 (1990).

C. J. P. Lucena, D. D. Cowan, I. M. Campos, and R. H. B. Cabral, ‘Interface as specifications in
the MIDAS user interface development system’, ACM SIGSOFT, 15(2), 55-72 (1990).

J. Foley, W. C. Kim, S. Kovacevic, and K. Murray, ‘Defining interfaces at a high level of abstrac-
tion’, Software, 25-32 (1989).

B. A. Myers, Creating User Interfaces by Demonstration, Academic Press, 1988.

B. A. Myers and M. B. Rosson, ‘Survey on user interface programming’, Proceedings of CHI’92,
1992, pp. 195-202.

B. A. Myers, ‘State of the art in user interface software tools’, in H. R. Hartson and D. Hix (eds.),
Advances in Human-Computer Interaction 4, Ablex Publishing, 1993, pp. 110-150.

D. D. Cowan, C. M. Durance, E. Giguére, and G. M. Pianosi, ‘CIRL/PIWI: A GUI toolkit
supporting retargetability’, Software: Practice & Experience, 23(5), 511-527 (1992).

D. Frey, ‘Unix vs. Unix’, Dr. Dobb’s Journal, 146, 28-35 (1988).

G Blackham, ‘Building software for portability’, Dr. Dobb’s Journal, 146, 18-27 (1988).

C. M. Durance, ‘An approach to application software mobility across user interface toolkits’,
Master’s Thesis, Faculty of Mathematics, University of Waterloo, 1990.

IEEE, Standard 1008.1-1988 (Posiz), IEEE, 1988.

B. Kernighan and D. Ritchie, The C Programming Language, Addison-Wesley, second edition,
1988.

M. J. Rochkind, ‘XVT: A virtual toolkit for portability between window systems’, USENIX,
151-163 (1989).

R. Pausch, N. Young, and R. DeLine, ‘SUIT: The Pascal of user interface toolkits’, Proceedings
of UIST’91, 1991, pp. 117-126.

TeCGraf, Manual de Referéncia do IntGraf: Sistema de Interface Grafica com Usudrio, PUC-Rio,
1991.

M. A. Linton, J. M. Vlissides, and P. R. Calder, ‘Composing user interfaces with InterViews’,
IEEE Computer, 8-22 (1989).

G. Avrahami, K. P. Brooks, and M. H. Brown, ‘A two-view approach to constructing user inter-
faces’, Computer Graphics, 23, 137-146 (1989).

D. E. Knuth, The TpXbook, Addison-Wesley, 1984.

D. D. Cowan and T. A. Wilkinson, ‘Portable software: an overview’, Proceedings of the 198/
Canadian Conference on Industrial Computer Systems, Ottawa, May 1984, pp. 68-1-68-7.

F. Neelamkavil and O. Mullarney, ‘Separating graphics from applications in the design of user
interfaces’, The Computer Journal, 437-443 (1990).

Neuron Data, ‘Open Interface Toolbox’. 156 University Avenue, Palo Alto, CA 94301, 1991.

J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and
Practice, Addison-Wesley, second edition, 1990.

R. Pausch, M. Conway, and R. DelLine, ‘Lessons learned from SUIT, the Simple User Interface
Toolkit’, ACM Transactions on Office Information Systems, 10(4), 320-344 (1992).

R. O. Prates, ‘Visual LED: uma ferramenta interativa para geracdo de interfaces gréficas’, Mas-
ter’s Thesis, Departamento de Informética, PUC-Rio, 1994.

R. lerusalimschy, L. H. de Figueiredo, and W. Celes Filho, ‘Lua—an extensible extension lan-
guage’. submitted to Software: Practice € Experience.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts false
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /RunLengthEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

