
IUP
Portable User Interface

Version 3.32

IUP is a multi-platform toolkit for building graphical user interfaces. It offers a simple API in three basic languages: C, Lua and LED. IUP's
purpose is to allow a program source code to be compiled in different systems without any modification. Its main advantages are:

high performance, due to the fact that it uses native interface elements.
fast learning by the user, due to the simplicity of its API.

This work was developed at Tecgraf/PUC-Rio by means of the partnership with PETROBRAS/CENPES.

Project Management:
Antonio Escaño Scuri

Tecgraf - Computer Graphics Technology Group, PUC-Rio, Brazil
http://www.tecgraf.puc-rio.br/iup
Also available at http://iup.sourceforge.net/

Veja esta página em Português.

Product
Overview

IUP is a multi-platform toolkit for building graphical user interfaces. It offers APIs in three basic languages: C, Lua and LED.

Its library contains about 100 functions for creating and manipulating dialogs.

IUP's purpose is to allow a program to run in different systems without changes - the toolkit provides the application portability. Supported
systems include: GTK+, Motif and Windows.

IUP uses an abstract layout model based on the boxes-and-glue paradigm from the TEX text editor. This model, combined with the dialog-
specification language (LED) or with the Lua binding (IupLua) makes the dialog creation task more flexible and independent from the graphics
system's resolution.

Currently available interface elements can be categorized as follows:

Primitives (effective user interaction): dialog, label, button, text, multi-line, list, toggle, canvas, frame, image.
Composition (ways to show the elements): hbox, vbox, zbox, fill.
Grouping (definition of a common functionality for a group of elements): radio.
Menu (related both to menu bars and to pop-up menus): menu, submenu, item, separator.
Additional (elements built outside the main library): dial, gauge, matrix, tabs, valuator, OpenGL canvas, color chooser, color
browser.
Dialogs (useful predefined dialogs): file selection, message, alarm, data input, list selection.

Hence IUP has some advantages over other interface toolkits available:

Simplicity: due to the small number of functions and to its attribute mechanism, the learning curve for a new user is often faster.
Portability: the same functions are implemented in each one of the platforms, thus assuring the interface system's portability.
Customization: the dialog specification language (LED) and the Lua binding (IupLua) are two mechanisms in which it is possible to
customize an application for a specific user with a simple-syntax text file.
Flexibility: its abstract layout mechanism provides flexibility to dialog creation.
Extensibility: the programmer can create new interface elements as needed.

IUP is free software, can be used for public and commercial applications.

Availability

The library is available for several compilers:

GCC and CC, in the UNIX environment
Visual C++, Borland C++, Watcom C++ and GCC (Cygwin and MingW), in the Windows environment

The library is available for several operating systems:

UNIX (SunOS, IRIX, and AIX) using Motif 2.x

IUP - Portable User Interface 07-Jan-25

1/496

http://www.tecgraf.puc-rio.br/iup
http://iup.sourceforge.net/
http://sourceforge.net
https://sourceforge.net/projects/iup/?pk_campaign=badge&pk_source=vendor
https://sourceforge.net/projects/iup/?pk_campaign=badge&pk_source=vendor
https://sourceforge.net/projects/iup/?pk_campaign=badge&pk_source=vendor
https://sourceforge.net/projects/iup/?pk_campaign=badge&pk_source=vendor
https://sourceforge.net/projects/iup/?pk_campaign=badge&pk_source=vendor
http://www.google.com/translate?sl=en&tl=pt&u=http%3A%2F%2Fwww.tecgraf.puc-rio.br%2Fiup%2F
http://www.lua.org
sys_guide.html#led
sys_guide.html#iuplua
http://iup.sourceforge.net/en/ide_guide/codeblocks4.png

UNIX (FreeBSD and Linux) using GTK+ (since 3.0)
Microsoft Windows XP/2003/Vista/7 using the Win32 API

Support

The official support mechanism is by e-mail, using iup@tecgraf.puc-rio.br. Before sending your message:

Check if the reported behavior is not described in the user guide.
Check if the reported behavior is not described in the specific control or driver characteristics.
Check the History to see if your version is updated.
Check the To Do list to see if your problem has already been reported.

If all these points were checked, you can report your problem. Please specify in your message: function, attribute, callback, platform and
compiler.

We host the IUP support features at SourceForge: http://sourceforge.net/projects/iup/. It provides us Mailing List, SVN Repository and
Downloads.

The discussion list is available at: http://lists.sourceforge.net/lists/listinfo/iup-users.
Source code, pre-compiled binaries and documentation can be downloaded at: http://sourceforge.net/projects/iup/files/.
The SVN can be browsed at: https://sourceforge.net/p/iup/iup/.

If you want us to develop a specific feature for the toolkit, Tecgraf is available for partnerships and cooperation.

Lua documentation and resources can be found at http://www.lua.org/.

Credits

This work was developed at Tecgraf by means of the partnership with PETROBRAS/CENPES.

Library Authors:

Marcelo Gattass
Luiz Henrique de Figueiredo
Carlos Henrique Levy
Antonio Scuri

We must also mention engineer Enio Emanuel Russo, from PETROBRAS, who effectively contributed to the system's specification and project.

We would like to thank all the people from Tecgraf that directly worked or strategically contributed to the library:

AndrÃ© Carregal
AndrÃ© Clinio
AndrÃ© Costa
AndrÃ© Derraik
Camilo Freire
Carlos Augusto Mendes
Carlos JosÃ© Pereira de Lucena
Claudio Coutinho de Biasi
Diego Nehab
Diogo Martinez
Guilherme Fonseca Alvarenga
Henrique Dalcin Mendes Pinheiro
Leonardo Constantino Oliveira
Luiz CristÃ³vÃ£o Gomes Coelho
Luiz Martins
Mark Stroetzel Glasberg
Mauricio Oliveira Carneiro
Milton Jonathan
Neil Armstrong Rezende
Rafael Rieder
Renato Borges
Renato Cerqueira
Roberto Beauclair
Tomas Guisasola Gorham
Vinicius Almendra

Thanks for SourceForge for hosting the support features. Thanks for the LuaForge team for previously hosting the support features for many
years.

IUP is registered at the National Institute of Intellectual Property in Brazil (INPI) under the number 07569-0, and so it is protected against illegal
use. The registration is valid internationally. See the Tecgraf Library License for further usage information and Copyright.

Documentation

This documentation is available at http://www.tecgraf.puc-rio.br/iup and http://iup.sourceforge.net/

The full documentation can be downloaded from the Download Files. The documentation is also available in Adobe Acrobat and Windows HTML

IUP - Portable User Interface 07-Jan-25

2/496

mailto:iup@tecgraf.puc-rio.br?subject=[IUP]
http://sourceforge.net/projects/iup/
http://lists.sourceforge.net/lists/listinfo/iup-users
http://sourceforge.net/projects/iup/files/
https://sourceforge.net/p/iup/iup/
http://www.lua.org/
http://sourceforge.net/
http://luaforge.net/
copyright.html
http://www.tecgraf.puc-rio.br/iup
http://iup.sourceforge.net/
download.html

Help formats.

The HTML navigation uses the WebBook tool, available at http://www.tecgraf.puc-rio.br/webbook.

There are also a few presentations:

Lua Workshop 2009 - IUP, CD and IM in Lua (http://www.lua.org/wshop09.html#Scuri) [iupcdim_wlua2009.pdf]
PUCRS 2010 - IUP, CD and IM [iupcdim_facin2010.pdf]

Publications

This product stimulated the following scientific publications:

Scuri, A. "IUP - Portable User Interface". Software Developer's Journal. Dec/2005. [iup_sdj2005.pdf]
Levy, C. H.; Figueiredo, L. H.; Gattass, M.; Lucena, C.; and Cowan, D. "IUP/LED: A Portable User Interface Development Tool".
Software: Practice & Experience, 26 #7 (1996) 737-762. [spe95.pdf]
Oliveira Prates, R.; Figueiredo, L. H.; and Gattass, M. "EspecificaÃ§Ã£o de Layout Abstrato por ManipulÃ§Ã£o Direta". Proceedings of
VII SIBGRAPI (1994), 165-172. [sib94.pdf in Portuguese]
Oliveira Prates, R.; Gattass, M. ;and Figueiredo, L. H. "Visual LED: uma ferramenta interativa para geraÃ§Ã£o de interfaces grÃ¡ficas".
M.Sc. dissertation, Computer Science Department, PUC-Rio, 1994. [prates94.pdf in Portuguese]
Levy, C. H. "IUP/LED: Uma Ferramenta PortÃ¡til de Interface com UsuÃ¡rio". M.Sc. dissertation, Computer Science Department, PUC-Rio,
1993.[levy93.pdf in Portuguese]
Figueiredo, L. H.;Gattass, M.; and Levy, C.H. "Uma EstratÃ©gia de Portabilidade para AplicaÃ§Ãµes GrÃ¡ficas Interativas". Proceedings
of VI SIBGRAPI (1993), 203-211. [sib93.pdf in Portuguese]

Interview at the FLOSS weekly show about Free Libre Open Source Software, hosted by Randal Schwartz, in Nov 9th 2011:

http://twit.tv/show/floss-weekly/190 or
https://www.youtube.com/watch?v=k6KyyebX84I

Tecgraf Library License
The Tecgraf products under this license are: IUP, CD and IM.

All the products under this license are free software: they can be used for both academic and commercial purposes at absolutely no cost without
affecting the license of the application. There are no paperwork, no royalties, no GNU-like "copyleft" restrictions, either. Just download and use
it. They are licensed under the terms of the MIT license reproduced below, and so are compatible with GPL and also qualifies as Open Source
software. They are not in the public domain, PUC-Rio keeps their copyright. The legal details are below.

The spirit of this license is that you are free to use the libraries for any purpose at no cost without having to ask us. The only requirement is that
if you do use them, then you should give us credit by including the copyright notice below somewhere in your product or its documentation. A
nice, but optional, way to give us further credit is to include a Tecgraf logo and a link to our site in a web page for your product.

The libraries are designed, implemented and maintained by a team at Tecgraf/PUC-Rio in Brazil. The implementation is not derived from
licensed software. The library was developed by request of Petrobras. Petrobras permits Tecgraf to distribute the library under the conditions
here presented.

Some of the secondary libraries in IUP, CD and IM use third party libraries that have different license terms. Almost all third party libraries
although different their licenses are compatible with this license and can be used for both academic and commercial purposes without affecting
the license of the application. BUT some of these third party libraries are GPL based or not free for commercial applications. The respective IUP,
CD and IM secondary libraries that use these restricted libraries follow their license terms, so are also restricted. These libraries are:

cdpdf + PDFLib (not free for commercial applications)
im_fftw + FFTW (GPL)

Copyright © 1994-2025 Tecgraf/PUC-Rio.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Download
The download site for pre-compiled binaries, documentation and sources is at SourceForge:

http://sourceforge.net/projects/iup/files/

IUP - Portable User Interface 07-Jan-25

3/496

http://www.tecgraf.puc-rio.br/webbook
http://www.lua.org/wshop09.html#Scuri
../download/iupcdim_wlua2009.pdf
../download/iupcdim_facin2010.pdf
../download/iup_sdj2005.pdf
../download/spe95.pdf
../download/sib94.pdf
../download/prates94.pdf
../download/levy93.pdf
../download/sib93.pdf
http://twit.tv/show/floss-weekly
http://www.stonehenge.com/merlyn/
http://twit.tv/show/floss-weekly/190
https://www.youtube.com/watch?v=k6KyyebX84I
http://www.tecgraf.puc-rio.br/iup
http://www.tecgraf.puc-rio.br/cd
http://www.tecgraf.puc-rio.br/im
http://www.opensource.org/licenses/mit-license.html
http://www.gnu.org/licenses/gpl.html
http://www.opensource.org/docs/definition.html
http://www.puc-rio.br
http://www.tecgraf.puc-rio.br
http://www.puc-rio.br
http://sourceforge.net/projects/iup/files/

Use this link for the latest version: http://sourceforge.net/projects/iup/files/3.32/

Before downloading any precompiled binaries, you should read before the Tecgraf Library Download Tips.

Some other files are available directly at the IUP download folder:

http://www.tecgraf.puc-rio.br/iup/download/

Tecgraf/PUC-Rio Library Download Tips
All the libraries were build using Tecmake. Please use it if you intend to recompile the sources. Tecmake can be found at
http://www.tecgraf.puc-rio.br/tecmake.

The IM files can be downloaded at http://sourceforge.net/projects/imtoolkit/files/.
The CD files can be downloaded at http://sourceforge.net/projects/canvasdraw/files/.
The IUP files can be downloaded at http://sourceforge.net/projects/iup/files/.
The Lua files can be downloaded at http://sourceforge.net/projects/luabinaries/files/.

Build Configuration

Libraries and executables were built using speed optimization. In UNIX the dynamic libraries are built with the -fPIC parameter when in 64 bits.
In MacOS X the dynamic libraries are in bundle format, except for the Lua bindings.

The DLLs were built using the cdecl calling convention. This should be a problem for Visual Basic users.

In Visual C++ we use the static multithread C Run Time Library for static libraries (-MT) and the dynamic multi thread C RTL for DLLs (-MD).

Packaging

Some pre-compiled Binaries are available for download. They are named according to the platform where they were build.

In UNIX all strings are based in the result of the command "uname -a". The package name is a concatenation of the platform uname, the
system major version number and the system minor version number. Some times a suffix must be added to complement the name. The
compiler used is always gcc. Binaries for 64-bits receive the suffix: "_64". In Linux when there are different versions of gcc for the same uname,
the platform name is created adding the major version number of the compiler added as a suffix: "g3" for gcc 3 and "g4" for gcc 4.

In Windows the platform name is the compiler and its major version number.

All library packages (*_lib*) contains pre-compiled binaries for the specified platform and includes. Packages with "_bin" suffix contains
executables only.

The Lua bindings are in a separate folder identified by the Lua version (Lua51, Lua52, ...). The packages follows the same naming convention.
But notice that you will have to download the main package and the Lua package in order to use the Lua bindings.

The package name is a general reference for the platform. If you have the same platform it will work fine, but it may also work in similar
platforms.

Here are some examples of packages:

iup2_4_Linux26_lib.tar.gz = IUP 2.4 32-bits Libraries and Includes for Linux with Kernel version 2.6 built with gcc 3.
iup2_4_Linux26g4_64_bin.tar.gz = IUP 2.4 64-bits Executables for Linux with Kernel version 2.6 built with gcc 4.
iup2_4_Win32_vc8_lib.tar.gz = IUP 2.4 32-bits Static Libraries and Includes for Windows to use with Visual C++ 8 (2005).
iup2_4_Win32_dll9_lib.tar.gz = IUP 2.4 32-bits Dynamic Libraries (DLLs), import libraries and Includes for Windows to use with Visual
C++ 9 (2008).
iup2_4_Win32_bin.tar.gz = IUP 2.4 32-bits Executables for Windows.

The Documentation files are in HTML format. Its package contains all the documentation files available on the website. The same
documentation is also available in CHM and PDF formats. These two files are provided as a separate download, but they all have the same
documentation.

The Source files are available in zip and tar.gz formats, but they have the same contents.

Installation

For any platform we recommend you to create a folder to contain the third party libraries you download. Then just unpack the packages you
download in that folder. The packages already contains a directory structure that separates each library or toolkit. For example:

\mylibs\
 iup\
 bin\
 html\
 include\
 lib\Linux26
 lib\Linux26g4_64
 lib\vc8
 src
 cd\
 im\

IUP - Portable User Interface 07-Jan-25

4/496

http://sourceforge.net/projects/iup/files/3.32/
download_tips.html
../download
http://www.tecgraf.puc-rio.br/iup/download/
http://www.tecgraf.puc-rio.br/tecmake
http://sourceforge.net/projects/imtoolkit/files/
http://sourceforge.net/projects/canvasdraw/files/
http://sourceforge.net/projects/iup/files/
http://sourceforge.net/projects/luabinaries/files/

 lua5.1\
 lua52\
 lua53\

This structure will also made the process of building from sources more simple, since the projects and makefiles will assume this structure .

Usage

For makefiles use:

1) "-I/mylibs/iup/include" to find include files
2) "-L/mylibs/iup/lib/Linux26" to find library files
3) "-liup" to specify the library files

For IDEs the configuration involves the same 3 steps above, but each IDE has a different dialog. The IUP toolkit has a Guide for some IDEs:

Borland C++ BuilderX - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/cppbx.html
Code Blocks - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/codeblocks.html
CodeLite - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/codelite.html
Dev-C++ - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/dev-cpp.html
Eclipse for C++ - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/eclipse.html
Microsoft Visual C++ (Visual Studio 2003) - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/msvc.html
Microsoft Visual C++ (Visual Studio 2005) - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/msvc8.html
NetBeans - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/netbeans.html
Open Watcom - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/owc.html

Available Platforms

The following platforms can be available:

Package Name Description

AIX43 IBM AIX 4.3 (ppc) / gcc 2.95 (Motif 2.1)

IRIX65 SGI IRIX 6.5 (mips) / gcc 3.0 (Motif 2.1)

IRIX6465 SGI IRIX 6.5 (mips) / gcc 3.3 (Motif 1.2)

Linux26g4 Ubuntu 10.4 (x86) / Kernel 2.6 / gcc 4.4 (GTK 2.20)

Linux26g4_64 Ubuntu 10.4 (x64) / Kernel 2.6 / gcc 4.4 (GTK 2.20)

Linux30 Ubuntu 11.10 (x86) / Kernel 3.0 / gcc 4.6 (GTK 2.24)

Linux30_64 Ubuntu 11.10 (x64) / Kernel 3.0 / gcc 4.6 (GTK 2.24)

Linux32 Ubuntu 12.04 (x86) / Kernel 3.2 / gcc 4.6 (GTK 2.24)

Linux32_64 Ubuntu 12.04 (x64) / Kernel 3.2 / gcc 4.6 (GTK 2.24)

Linux35_64 Ubuntu 12.10 (x64) / Kernel 3.5 / gcc 4.7 (GTK 2.24)

Linux313_64 Ubuntu 14.04 LTS (x64) 2014 / Kernel 3.13 / gcc 4.8 (GTK 3.10)

Linux319_64 Ubuntu 15.04 (x64) 2015 / Kernel 3.19 / gcc 4.9 (GTK 3.14)

Linux44_64 Ubuntu 16.04 LTS (x64) 2016 / Kernel 4.4 / gcc 5.3 (GTK 3.18)

Linux415_64 Ubuntu 18.04 LTS (x64) 2018 / Kernel 4.15 / gcc 7.3 (GTK 3.22)

Linux50_64 Ubuntu 19.04 (x64) 2019 / Kernel 5.0 / gcc 8.3 (GTK 3.24)

Linux54_64 Ubuntu 20.04 LTS (x64) 2020 / Kernel 5.4 / gcc 9.3 (GTK 3.24)

Linux515_64 Ubuntu 22.04 LTS (x64) 2022 / Kernel 5.15 / gcc 11.4 (GTK 3.24)

SunOS510 Sun Solaris 10 (sparc) / gcc 3.4 (Motif 2.1)

SunOS510x86 Sun Solaris 10 (x86) / gcc 3.4 (Motif 2.1)

SunOS511x86 Sun Solaris 11 (x86) / gcc 4.5 (GTK 2.20)

FreeBSD54 Free BSD 5.4 (x86) / gcc 3.4

MacOS104 Mac OS X 10.4 (ppc) [Tiger] / Darwin Kernel 8 / gcc 4.0

MacOS104x86 Mac OS X 10.4 (x86) [Tiger] / Darwin Kernel 8 / gcc 4.0

MacOS105x86 Mac OS X 10.5 (x86) [Leopard] / Darwin Kernel 9 / gcc 4.0

MacOS106 Mac OS X 10.6 (x64) [Snow Leopard] / Darwin Kernel 10 / gcc 4.2

MacOS107 Mac OS X 10.7 (x64) [Lion] / Darwin Kernel 11 / clang 4.x

MacOS109 Mac OS X 10.9 (x64) [Mavericks] / Darwin Kernel 13 / clang 5.x

IUP - Portable User Interface 07-Jan-25

5/496

http://www.tecgraf.puc-rio.br/iup/en/ide_guide/cppbx.html
http://www.tecgraf.puc-rio.br/iup/en/ide_guide/codeblocks.html
http://www.tecgraf.puc-rio.br/iup/en/ide_guide/codelite.html
http://www.tecgraf.puc-rio.br/iup/en/ide_guide/dev-cpp.html
http://www.tecgraf.puc-rio.br/iup/en/ide_guide/eclipse.html
http://www.tecgraf.puc-rio.br/iup/en/ide_guide/msvc.html
http://www.tecgraf.puc-rio.br/iup/en/ide_guide/msvc8.html
http://www.tecgraf.puc-rio.br/iup/en/ide_guide/netbeans.html
http://www.tecgraf.puc-rio.br/iup/en/ide_guide/owc.html

MacOS1010 Mac OS X 10.10 (x64) [Yosemite] / Darwin Kernel 14 / clang 6.x

MacOS1011 Mac OS X 10.11 (x64) [El Capitan] / Darwin Kernel 15 / clang 7.0

Win32_vc8 Static library built with Microsoft Visual C++ 8.0 (2005) (static RTL/multithread)
 Also compatible with Microsoft Visual C++ 2005 Express Edition

Win32_vc9 Static library built with Microsoft Visual C++ 9.0 (2008) (static RTL/multithread)
 Also compatible with Microsoft Visual C++ 2008 Express Edition

Win32_vc10 Static library built with Microsoft Visual C++ 10.0 (2010) (static RTL/multithread)
 Also compatible with Microsoft Visual C++ 2010 Express Edition

Win32_vc11 Static library built with Microsoft Visual C++ 11.0 (2012) (static RTL/multithread)
 Also compatible with Microsoft Visual C++ 2012 Express Edition

Win32_vc12
 Static library built with Microsoft Visual C++ 12.0 (2013) (static RTL/multithread)
 Also compatible with Microsoft Visual C++ 2013 Express Edition -
https://www.visualstudio.com/vs/express/ Â¹

Win32_vc14
 Static library built with Microsoft Visual C++ 14.0 (2015) (static RTL/multithread)
 Also compatible with Microsoft Visual Studio Community 2015 -
https://www.visualstudio.com/vs/older-downloads/ Â¹

Win32_vc15
 Static library built with Microsoft Visual C++ 15.0 (2017) (static RTL/multithread)
 Also compatible with Microsoft Visual Studio Community 2017 -
https://www.visualstudio.com/downloads/ Â¹

Win32_vc16
 Static library built with Microsoft Visual C++ 16.0 (2019) (static RTL/multithread)
 Also compatible with Microsoft Visual Studio Community 2019 -
https://www.visualstudio.com/downloads/ Â¹

Win32_vc17
 Static library built with Microsoft Visual C++ 17.0 (2022) (static RTL/multithread)
 Also compatible with Microsoft Visual Studio Community 2022 -
https://www.visualstudio.com/downloads/ Â¹

Win32_dll8 DLL and import library built with vc8, creates dependency with MSVCR80.DLL

Win32_dll9 DLL and import library built with vc9, creates dependency with MSVCR90.DLL

Win32_dll10 DLL and import library built with vc10, creates dependency with MSVCR100.DLL

Win32_dll11 DLL and import library built with vc11, creates dependency with MSVCR110.DLL

Win32_dll12 DLL and import library built with vc12, creates dependency with MSVCR120.DLL

Win32_dll14 DLL and import library built with vc14, creates dependency with VCRUNTIME140.DLL

Win32_dll15 DLL and import library built with vc15, creates dependency with VCRUNTIME140.DLL
 (what changes is the version of the ucrtbase.dll installed on the system)

Win32_dll16 DLL and import library built with vc16, creates dependency with VCRUNTIME140.DLL
 (what changes is the version of the ucrtbase.dll installed on the system)

Win32_dll17 DLL and import library built with vc17, creates dependency with VCRUNTIME140.DLL
 (what changes is the version of the ucrtbase.dll installed on the system)

Win64_vc?? Same as Win32_vc?? but for 64-bits systems using the x64 standard.

Win64_dll?? Same as Win32_dll?? but for 64-bits systems using the x64 standard.

Win32_gcc4 Static library built with Cygwin gcc 4.3 (Depends on Cygwin DLL 1.7) - http://www.cygwin.com/ Â¹

Win32_cygw17 Same as Win32_gcc4, but using the Cygwin Posix system and also with a DLL and import library

Win32_dllg4 DLL and import library built with Cygwin gcc 4.3 (See Win32_gcc4)

Win32_mingw4
 Static library built with MingW gcc 4.6 - http://www.mingw.org/ Â¹
 Also compatible with Dev-C++ - http://www.bloodshed.net/devcpp.html
 and with Code Blocks - http://www.codeblocks.org/ Â¹

Win32_dllw4 DLL and import library built with MingW gcc 4.6 (See Win32_mingw4)

Win32_mingw6
 Static library built with MingW-w64 gcc 6.4 - http://mingw-w64.org/ Â¹
 Also compatible with Dev-C++ - http://www.bloodshed.net/devcpp.html
 and with Code Blocks - http://www.codeblocks.org/ Â¹

Win32_dllw6 DLL and import library built with MingW-w64 gcc 6.4 (See Win32_mingw6)

Win64_mingw4
 Static library built with MingW-w64 gcc 4.5 - http://mingw-w64.org/ Â¹
 Tool chains targeting Win64 / Personal Builds / "sezero"
 for 64-bits systems using the x64 standard.

Win64_dllw4
 DLL and import library built with MingW gcc 4.5,
 for 64-bits systems using the x64 standard.
 creates dependency with MSVCRT.DLL

Win64_dllw6
 DLL and import library built with MingW-w64 gcc 6.4 - http://mingw-w64.org/ Â¹
 for 64-bits systems using the x64 standard.
 creates dependency with MSVCRT.DLL

Win32_owc1 Static library built with Open Watcom 1.5 - http://www.openwatcom.org/

IUP - Portable User Interface 07-Jan-25

6/496

https://www.visualstudio.com/vs/express/
https://www.visualstudio.com/vs/older-downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
http://www.cygwin.com/
http://www.mingw.org/
http://www.bloodshed.net/devcpp.html
http://www.codeblocks.org/
http://mingw-w64.org/
http://www.bloodshed.net/devcpp.html
http://www.codeblocks.org/
http://mingw-w64.org/
http://mingw-w64.org/
http://www.openwatcom.org/

Win32_bc55 Static library built with Borland C++ 5.5 Compiler -
 https://downloads.embarcadero.com/free/c_builder Â¹

Win32_bc6 Static library built with Embarcadero C++ Builder 2010 / Embarcadero C++ 6 Compiler -
 https://downloads.embarcadero.com/free/c_builder (trial)

Win32_bin Executables only for Windows (can be generated by any of the above compilers)

Win64_bin Same as Win32_bin but for 64-bits systems using the x64 standard

Win32_cygw17_bin Executables only for Windows NT/2000/XP, but using the Cygwin Posix system (See Win32_cygw17)

Â¹ - Notice that all the Windows compilers with links here are free to download and use.
Â² - Recently Borland removed the C++ Builder X from download. But if you bought a book that has the CD of the compiler, then it is still free
to use.
3 - Open Motif 2.2 is classified as 'experimental' by the Open Group.

SVN
The SVN repository is at SourceForge. It can also be interactively browsed at:

https://sourceforge.net/p/iup/iup/

To checkout using the command line use:

svn checkout svn://svn.code.sf.net/p/iup/iup/trunk/iup iup

History of Changes

Version 3.x

See Version 3.x History.

Version 2.x

See Version 2.x History.

Version 1.x

See Version 1.x History.

History of Changes in Version 3.x
Check the Migration Guide for a summary of the important changes and how to proceed when migrating from version 2.x to version 3.x.

Version 3.32 (06/Jan/2025)

New: FINDCOL attribute for IupMatrixEx.
Fixed: CHECKIMAGE* attributes for the IupFlatToggle.
Fixed: IupToggle initialization when inside a IupRadio.
Fixed: Fixed memory handling when updating attributes.
Fixed: UTF8 sort that affects IupMatrixEx sorting.
Fixed: Fix title case formatting for CHANGECASE attribute in IupText.

Version 3.31 (13/Oct/2023)

New: EXTRABOXid attribute for the IupFlatTabs.
New: SELECTED attribute for IupFlatButton.
New: SCROLLVISIBLE attribute for IupList, IupTree, IupText and IupCanvas, in Windows.
New: TOUCHREADY global attribute
New: New GESTURE attribute for IupCanvas
Changed: iuplua_close will now destroy all dialogs and all elements that have names that where created with the same Lua context.
Changed: behavior of LDESTROY_CB callback to be called after the element was detached and unmapped.
Changed: Using the main Lua thread for the IupLua callbacks
Changed: Better highlight processing in drawn elements. Affects IupFlatButton, IupFlatToggle, IupDropButton, IupExpander
and IupFlatVal.
Changed: STEP default for real parameters is now (max-min)/100 in IupGetParam
Fixed: FORMATDATASTRING for IupClipboard
Fixed: avoid accent keys (^ ` ~) entering edition mode in IupMatrix
Fixed: key mapping for = virtual key in Windows when + is in the same key.
Fixed: VALUE attribute for IupFlatButton when TOGGLE=Yes and IupFlatToggle.
Fixed: VALUECHANGING_CB callback not called when value was changed using the keyboard in IupFlatVal.
Fixed: ACTIVE attribute in IupFlatVal.
Fixed: MOUSEBUTTON global attribute when 'W' is used in button with a state=-1 in Windows.

IUP - Portable User Interface 07-Jan-25

7/496

https://downloads.embarcadero.com/free/c_builder
https://downloads.embarcadero.com/free/c_builder
https://sourceforge.net/p/iup/iup/
history3.html
history2.html
history1.html
migration_guide.html
http://sourceforge.net/projects/iup/files/3.32/
http://sourceforge.net/projects/iup/files/3.31/

Fixed: support for IupDatePick, IupCalendar and IupThread in LEDC application.
Fixed: IupSetClassDefaultAttribute function. Thanks to D. Cravey.
Fixed: IupFlatToggle and IupToggle initialization when inside a IupRadio.
Fixed: Missing userdata in IupPostMessage on Motif (thanks to M. Nikolic)
Fixed: IupMainLoop on Windows aborting the application when some Windows internal error is returned by Win32 API GetMessage.

Version 3.30 (30/Jul/2020)

New: PSCOLOR and TEXTPSCOLOR attributes for IupFlatTree and IupFlatList.
New: WYSIWYG HTML editor support for IupWebBrowser. See EDITABLE attribute documentation.
New: SHOWNOFOCUS attribute for IupDialog.
New: SHOWCROSSHAIR attribute for IupPlot.
New: SCROLLWIDTHTRACKING attribute for IupScintilla.
New: EXTRATEXTid and EXTRATEXTWIDTH attributes for IupFlatTree. Thanks to M. Voznesenskiy.
Changed: updated TUIO reference implementation from GitHub.
Changed: pre-compiled binaries of the tools executables are now built with Visual C++ 15 (Visual Studio 2019) and they are NOT
compatible with Windows XP nor Windows Vista, only with Windows 7, 8 and 10. Although they can still be built from source to run on
Windows XP/Vista.
Fixed: crash when list is empty in IupFlatList.
Fixed: FLATSCROLLBAR in IupFlatList and IupFlatTree.
Fixed: extra functions for IupFlatTree.
Fixed: Fixed show stock images in IupVisualLED.
Fixed: highlight feedback in IupFlatButton.
Fixed: TOTALCHILDCOUNT in IupFlatTree. Thanks to Михаил В.
Fixed: drawing of vertical guide lines in IupFlatTree.
Fixed: scrollbar behavior when wheel is moved in an empty scrollbar. Affects all scrollbar and flat scrollbar clients.
Fixed: node title editing must terminate when scrollbars are moved in IupFlatTree. Fixed node title editing when
FLATSCROLLBAR=Yes.
Fixed: MARKEDNODES attributes when removing the selection of nodes in IupFlatTree.
Fixed: node size when IMAGE is set to an invalid handle in IupFlatTree.
Fixed: K_ANY processing in IupFlatList and IupDetachBox.
Fixed: crash when tree is empty in IupFlatTree.
Fixed: IupMessage and IupMessageDlg when PARENTDIALOG is NULL in Windows.
Fixed: missing NOCHANGEDIR, SHOWHIDDEN and DIRECTORY attributes for IupFileDlg when DIALOGTYPE = "DIR" and using the
IupNewFileDlgOpen library.
Fixed: TOUCH_CB callback id parameter in Windows. Thanks to R. Vilela.
Fixed: IupClassInfoDialog help url for a few controls. Thanks to C. Blüggel.
Fixed: FORMATDATASTRING attribute in IupClipboard.
Fixed: ITEMTIPid attribute in IupFlatList.
Fixed: POSTMESSAGE_CB callback registration.
Fixed: Esc key processing when ACTION callback is defined in IupText on Windows.

Version 3.29 (18/May/2020)

New: IUP_LEFTPARENT, IUP_RIGHTPARENT, IUP_TOPPARENT and IUP_BOTTOMPARENT position options for IupPopup and
IupShowXY.
New: IupFlatTree control that behaves as a IupTree, but with more control over its parameters.
New: FOCUSFGCOLOR attribute for IupMatrixList.
New: EXECUTEBRANCH_CB callback for IupTree.
New: CSPACING attribute where SPACING is available (IupFlatButton, IupDropButton, IupFlatLabel, IupFlatList,
IupFlatToggle, IupFlatTree, IupButton, IupList, IupTree, IupGLLabel).
New: CPADDING attribute where PADDING is available (IupFlatButton, IupDropButton, IupFlatLabel, IupFlatList,
IupFlatToggle, IupButton, IupGLLabel, IupGLText, IupGauge, IupText, IupGLFrame, IupGLProgressBar).
New: improved support for adding new controls in IupLayoutDialog. New toolbar for new controls, visible only from IupVisualLED.
New: Reset Value, Properties, Show Auto Names and Check Handles for global names in IupGlobalsDialog.
New: FOCUSSELECT attribute in IupColorbar.
New: image editor for IupVisualLED.
New: DSPROPERTIESVALIDATE_CB and PROPERTIESVALIDATE_CB callbacks for IupPlot.
New: DS_SELECTED attribute for IupPlot.
New: FORMATDATASTRING attribute for IupClipboard.
New: MENUITEMVALUES attribute for IupPlot.
Changed: TABSPADDING attribute default value changed to "6x4".
Changed: toolbar in IupScintillaDlg to include word wrap, show white spaces and show end of lines buttons.
Changed: the minimum resulted size when images are automatically resized is now 24 pixels height.
Changed: removed IupRefreshChildren limitation for a mapped element.
Changed: PADDING attribute to accept "DEFAULTBUTTONPADDING" as value, the global attribute with this name will be used instead.
Affects IupButton, IupToggle, IupFlatButton, IupFlatToggle, and IupDropButton.
Changed: maxsize parameter in IupGetText to accept 0 (maxisize will be the current lenght) or -1 (the dialog will be read-only).
Changed: all code exports were uniformed among IupView, IupLayoutDialog and IupVisualLED. Images are now exported in
separate functions in C and Lua. Names with reserved characters were replaced with '_'.
Fixed: IupSaveImageAsText to save C and Lua images inside a function.
Fixed: support for mouse wheel in IupFlatVal.
Fixed: highlight feedback when mouse is pressed and moved outside the control for IupFlatButton, IupFlatToggle and
IupDropButton.
Fixed: EXTFILTER, FILTERUSED, VALUE and MULTIVALUE in IupFileDlg in Windows when using IupNewFileDlgOpen.
Fixed: IupGLText editing in GTK.
Fixed: FITTOSIZE and FITTOTEXT affecting redraw when set inside RESIZEMATRIX_CB in IupMatrix.
Fixed: TITLE attribute in IupMatrixList.

IUP - Portable User Interface 07-Jan-25

8/496

http://sourceforge.net/projects/iup/files/3.30/
http://sourceforge.net/projects/iup/files/3.29/

Fixed: font getting lost in IupMatrix. when the element is unmapped and mapped again.
Fixed: export for C, Lua or LED for the IupNormalizer, IupAnimatedLabel and IupDropButton controls. Used in
IupLayoutDialog and IupVisualLED.
Fixed: VALUE attribute in IupFlatToggle.
Fixed: View/Toolbar and View/Statusbar menu items in IupScitillaDlg.
Fixed: STATE attribute return value for empty branches in IupTree on GTK.
Fixed: CLIENTSIZE attribute return value for IupCbox, IupParamBox and IupZbox when width and height are 0.
Fixed: bar position when element is bigger than the bar size in IupFlatSeparator.
Fixed: memory leak in FONT attribute in GTK. Thanks to T. Moore.
Fixed: NORMALIZERGROUP attribute that was adding elements twice to the normalizer.
Fixed: RASTERSIZE attribute for IupImage*.
Fixed: IDVALUE attribute registration for IupImage.
Fixed: selection when SELECT_CB is not defined in IupColorbar.
Fixed: TEXTAVAILABLE attribute for IupClipboard in Windows when text is Unicode.

Version 3.28 (13/Dec/2019)

New: IupVisualLED application is a IDE for editing and testing LED files, with capacity of visual editing a dialog layout.
New: IupFlatVal control that behaves as a IupVal, but with more control over its parameters.
New: support for LED lexer in IupScintilla.
New: BACKCOLOR attribute for IupGauge.
New: FRAMEVERTCOLORL:* and FRAMEHORIZCOLOR*:C attribute variations added to IupMatrix.
New: MAXIMIZEATPARENT attribute for IupDialog on Windows.
New: XTICKFORMATNUMBER_CB and YTICKFORMATNUMBER_CB callbacks for IupPlot.
New: LOADRTF and SAVERTF attributes for IupText in Windows.
New: TASKBARBUTTON attribute for IupDialog in Windows.
New: CUSTOMFRAMESIMULATE attribute for IupDialog.
New: PROCESSWINDOWSGHOSTING global attribute in Windows.
New: APP_SYSTEMPATH attribute for IupConfig to handle an native location for application configuration files.
New: Added the CMake, Android, Cocoa, CocoaTouch and Emscripten contributions from Eric Wing & Chris Matzenbach to the SVN
hoping more people can notice them and also contribute. They are still incomplete, help is needed.
New: support for IUP*_API macro for all exported functions in a library. IUP*_SDK_API is used to mark the Internal SDK exported
functions. This is experimental and only 4 libraries were changed: iup, iuplua, iupweb and iupluaweb.
New: LOADFILE_CB and SAVEFILE_CB callbacks for IupScintilaDlg.
New: IupImageGetHandle function that returns an IupImage handle from a name.
New: IupPostMessage function and POSTMESSAGE_CB callback for all elements.
New: ENTRY_POINT and EXIT_CB global callbacks.
New: CUSTOMQUITMESSAGE global attribute in Windows.
New: Debian packages by Matthew Kennedy in the Contributions page.
New: Common Lisp Bindings by Matthew Kennedy in the Contributions page.
New: IupThread resource element to handle simple threads.
New: support for IupList or IupFlatList in IupConfig recent file list.
New: CHANGECASE attribute for IupText that supports Latin-1 encoding and does not depends on current locale.
New: SELECTEDNOTIFY attribute for IupFlatToggle when inside a radio.
New: IupVersionShow function that shows an IUP version information dialog.
New: PROJECTEXT and OPENPROJECT attributes for IupScintillaDlg.
New: IupClassInfoDialog pre-defined dialog for developers.
New: SHOWDROPDOWN attribute for IupDatePick.
New: WHEELDROPFOCUS attribute for IupCanvas. Set to YES in IupScrollBox and IupFlatScrollBox.
New: ORIENTATION read-only attribute for IupVbox and IupHbox.
New: support for drag & drop controls in IupLayoutDialog. Improved Paste and New options. New Cut item in context menu.
New: ATTRIBCHANGED_CB and LAYOUTCHANGED_CB callbacks for IupLayoutDialog.
New: POPUPALIGN attribute for IupMenu when used in IupPopup.
Changed: containers can now be empty on LED.
Changed: default COLOR for IupSbox to match IupSplit.
Changed: default FRAMECOLOR attribute to "160 160 160" in IupFlatFrame.
Changed: default FGCOLOR for IupGauge to match IupFlatVal.
Changed: IupElementPropertiesDialog now has a parent parameter.
Changed: improved language localization support. Specific ISO8859-1 and UTF-8 encoded strings are now in separate files. New
localization files can now be based on these files. There are 3 groups of files in iup/src, iup/srccontrols/matrixex and iup/srcplot, they all
start with iup_lng*.h. Czech and Russian strings contributed by Jiří Klimeš and Alexey Bogdanov are now included in the source code,
but the main library need to be rebuild using a specific define to embed those localizations.
Changed: reset the numeric locale to "C" in IupOpen after calling gtk_init. This is the default configuration in IUP, but gtk_init changes
the locale to match the system language.
Changed: CLIENTSIZE can now be used before map for IupDialog, IupBackgroundBox, IupScrollBox and IupGLCanvasBox.
Changed: CLIENTOFFSET can now be used before map for IupDialog.
Changed: class type definition "other" for IupTimer, IupClipboard and IupUser.
Fixed: rectangle fill in OpenGL for IupGLControls that affected several IupGL* controls.
Fixed: IupImageToImImage when image is RGBA.
Fixed: IupGauge CANFOCUS default.
Fixed: MERGEVIEW attribute not updating viewports in IupPlot.
Fixed: some string allocation in IupWebBrowser in Windows.
Fixed: DRAGDROP_CB callback and SHOWDRAGDROP attribute in IupFlatList.
Fixed: title space when there are extra buttons but no tabs in IupFlatTabs.
Fixed: close button when TABTYPE=LEFT/RIGHT in IupFlatTabs.
Fixed: CLIENTSIZE when TABTYPE=LEFT/RIGHT in IupFlatTabs.
Fixed: scroll arrow size when TABTYPE=LEFT/RIGHT in IupFlatTabs.
Fixed: FORMATDATA attribute returned value in Lua for IupClipboard.
Fixed: IupFlatList behavior when FLAT_ACTION is not defined.

IUP - Portable User Interface 07-Jan-25

9/496

http://sourceforge.net/projects/iup/files/3.28/
iupvisualled.html
contrib.html
contrib.html

Fixed: VALUE attribute when selection is single in IupFlatList.
Fixed: id attribute when changing an existing value in IupFlatList.
Fixed: initial size of IupGetColorDlg.
Fixed: scroll while using arrow keys in IupFlatList. Scroll to item when pressing the letter that match the first character in title.
Fixed: setting VALUE=TODAY when ZEROPRECED=Yes in IupDatePick in GTK.
Fixed: selection color for IupDatePick in GTK.
Fixed: BGCOLOR for IupText in GTK 3.14. It was affecting the selection color. NOT fixed yet for GTK > 3.20.
Fixed: webkit2gtk support in Linux 5 for IupWebBrowser.
Fixed: FLAT_ACTION callback parameters in Lua for IupFlatButton, IupFlatList, IupFlatToggle and IupDropButton.
Fixed: current tab size CHILDSIZEALL=NO and EXPANDBUTTON=Yes.
Fixed: drawing of oriented text in IupDraw when layout is centered. This affected all the controls that have support for text orientation.
Fixed: child size calculation in IupFlatTabs when EXPANDBUTTON=Yes and CHILDSIZEALL=NO.
Fixed: attribute TITLEid size limitation when retrieved in IupTree on Windows.
Fixed: file paths of in a project are now saved relative to the project file path in IupScintillaDlg.
Fixed: a double click in a dialog that is closed at that moment may generate a spurious button release in the dialog underneath in
Windows. We added a workaround were we have control of the button down/up message processing. But not all controls will handle that
case.
Fixed: SPACING attribute in IupTree could not be set to 0.
Fixed: visible space when one scrollbar is disabled in IupScrollBox and IupFlatScrollBox.
Fixed: compatibility between TITLE and CUSTOMFRAME in IupDialog.

Version 3.27 (30/Apr/2019)

New: VALUELEN (used in APPEND and ADD) and ADD attributes for IupScintilla.
New: TABTYPE attribute for IupFlatTabs. Now tabs can be at top, bottom, left or right around its children.
New: BARSIZE, LAYOUTDRAG and SHOWGRIP attributes for IupSbox.
New: ORIENTATION attribute for IupGauge.
New: MERGEVIEW, PADDING, AXS_*POSITION and AXS_*REVERSETICKSLABEL attributes for IupPlot.
New: ARROWALIGN attribute for IupDropButton.
New: iup.CopyString2UserData and iup.CopyUserData2String functions for use in Lua drag&drop when userdata is a string.
New: INSERTCHECK_CB callback for IupScintilla.
New: FLOATING attribute support for IupTabs and IupFlatTabs.
New: CHILDSIZEALL attribute for IupZbox, IupTabs and IupFlatTabs.
New: IupFlatList control that behaves as a IupList with DROPDOWN=NO and EDITBOX=NO, but with more control over its
parameters.
New: EXTRATOGGLE, EXTRAVALUE, EXTRASHOWBORDER, EXTRABORDERCOLOR and EXTRABORDERWIDTH attributes for
IupFlatTabs.
New: IupGlobalsDialog pre-defined dialog to manage global attributes, functions and names. Can be shown from IupLayoutDialog
menu.
Changed: the IupDraw function are now using GDI again in Windows. Direct2D was very slow for drawing controls with integer
coordinates in dialogs with complex layout. It can still be used by setting the DRAWUSEDIRECT2D attribute to Yes. To compensate
the lost of antialiasing and alpha in GDI, we added a hack to use GDI+ for lines, polygons and arcs were antialiasing is more needed and
does not affect less ordinary rectangular based drawings.
Changed: default values for EXTRAPRESSCOLOR and EXTRAHIGHCOLOR in IupFlatTabs.
Fixed: SHAPEIMAGE attribute when image is not surrounded by transparent pixels in Windows for IupDialog.
Fixed: storage of id based attributes when id is omitted.
Fixed: size of "IUP_Media*" images of the IupImgLib in Windows to 32x32.
Fixed: drawing of vertical flat scrollbar when SHOWTRANSPARENT=Yes.
Fixed: MOUSEMOVE_CB callback in Lua for IupDial.
Fixed: clipping management in IupDraw for the Cairo driver.
Fixed: caret color when FGCOLOR is set for IupText in GTK 3.
Fixed: background color in IupSplit when SHOWGRIP=NO and COLOR is not defined.
Fixed: drag&drop support for IupCanvas in Windows.
Fixed: size of the drop dialog in IupDropButton.
Fixed: client size for IupTabs in Windows 10.
Fixed: handling of dynamically removed child in IupFlatTabs.
Fixed: COLORUPDATE_CB callback in IupColorDlg when the color is selected in the color wheel.
Fixed: properties dialog initialization when there are multiple plots in IupPlot.
Fixed: zoom using + and - keys when there are multiple plots in IupPlot.
Fixed: invalid double click message after drop dialog close in IupDropButton.
Fixed: active button state for extra buttons in IupFlatTabs.
Fixed: BUTTON_CB callback during press=0 for button1 when DRAGSOURCE=Yes in Windows.

Version 3.26 (07/Jan/2019)

New: CHECKALIGN attribute for IupFlatToggle.
New: SHOWTRANSPARENT attribute for flat scrollbars, affects IupFlatScrollBox and IupMatrix when FLATSCROLLBAR=Yes. This
makes the flat scrollbar semi transparent and only interactive trough its handler.
New: FOCUSFEEDBACK attribute for IupFlatButton, IupFlatToggle and IupDropButton.
New: IupMultiBox container that distributes elements in multiple lines or columns according to the available space.
New: NOPLACESBAR attribute for IupFileDlg in Windows.
New: alternative implementation for IupFileDlg in Windows using the new Explorer interface available since Windows Vista, but with
support for FILE_CB and HELP_CB. Preview and x,y is still not supported. It is available in a separate library that is implemented
internally in C++, and when statically linking is available only for Visual C++.
New: CONTROLID attribute for native elements in Windows.
New: CARETXPOLICY/CARETYPOLICY attributes to IupScintilla.
New: BACKIMAGE, BACKIMAGEZOOM and BACKCOLOR attributes for IupBackgroundBox.
New: SHAPEIMAGE attribute for IupDialog in Windows and GTK.

IUP - Portable User Interface 07-Jan-25

10/496

http://sourceforge.net/projects/iup/files/3.27/
http://sourceforge.net/projects/iup/files/3.26/

New: IupCopyAttributes to copy all hash table attributes from one control to another.
New: MINCOLWIDTHid and MINCOLWIDTHDEF attributes for IupMatrix.
New: TEXTHLCOLOR and TEXTPSCOLOR attributes for IupFlatButton, IupFlatToggle and IupDropButton.
New: THEME common attribute and DEFAULTTHEME global attribute that works for all controls to apply a set of attributes at once.
Changed: improved id based attributes in Properties dialog in IupLayoutDialog.
Changed: GLOBALLAYOUTRESIZEKEY to be able to change also when FONT is set at a control.
Changed: renamed some flat scrollbar attributes to include the prefix "SB_" to avoid conflicts with control attributes. All IMAGE* and *COLOR attributes.
Changed: if FILE_CB and HELP_CB are not defined, and x,y is IUP_CENTER or IUP_CURRENT in IupFileDlg on Windows then it will use a newer Explorer interface
Changed: added "=" prefix to chunk name in iuplua_dobuffer and iuplua_dostring calls to improve debugging of IupLua strings.
Changed: LEGENDPOSXY and TITLEPOSXY attributes coordinates are now relative to bottom-left corner of the plot in IupPlot.
Fixed: clipping rectangle in IupDraw in Windows.
Fixed: ACTION_CB and MOUSEMOVE_CB callbacks in Lua for IupMatrixEx and IupMatrixList.
Fixed: FONT attribute initialization in IupMatrix.
Fixed: text drawing in IupGauge.
Fixed: LINEVALUE attribute in IupScintilla, it must not include the end of line character.
Fixed: param interpretation in Lua when param type is an Ihandle* ("%h") in IupGetParam.
Fixed: RIGHTPARENTHESIS and PARENTHESES spelling in values of NUMBERINGSTYLE attribute for IupText formatting.
Fixed: FOCUS_CB callback for IupDialog when the focus is also changed from inside the callback.
Fixed: invalid IupMatrix drawing area calc when scrollbar is auto hidden before first show.
Fixed: filename in recent callback for IupConfig when file name text encoding is not the same as the interface.

Version 3.25 (28/May/2018)

New: FLAT attribute for IupMatrix.
New: 7GUIs Samples.
New: CROSSTITLE value for FRAME attribute in IupFlatFrame.
New: SHOWBORDER attribute in IupFlatButton.
New: global attribute SB_BGCOLOR. IUP by default changed the background color of the scrollbars in GTK and Motif. Now will change
only if this global attribute is enabled. This affects IupCanvas, IupList, IupText and IupTree.
New: IupFlatSeparator control, same as IupLabel when SEPARATOR is used with more options and drawn by IUP.
New: IupFlatLabel control, same as IupLabel with more options and drawn by IUP.
New: IupDropButton control to show a dropdown child.
New: IupFlatToggle control, same as IupToggle with more options and drawn by IUP.
New: IupSpace control, similar to IupFill but works as a regular element regarding to size and expand.
New: IMAGESTOCKAUTOSCALE global attribute.
New: CD_IUPDRAW CD driver that uses only the IupDraw API.
New: TEXTORIENTATION, TEXTWRAP and TEXTELLIPSIS attributes for IupFlatLabel, IupFlatButton, IupDropButton,
IupFlatFrame, IupFlatTabs and IupFlatToggle.
New: DRAWTEXTORIENTATION, DRAWTEXTLAYOUTCENTER, DRAWTEXTCLIP, DRAWTEXTWRAP and DRAWTEXTELLIPSIS attributes
for IupDrawText.
New: function IupDrawGetClipRect.
New: focus feedback and current tab changing with arrow keys in IupFlatTabs.
New: TABORIENTATION attribute for IupFlatTabs.
New: BACKIMAGEZOOM attribute to zoom the back image to occupy the background in IupFlatLabel, IupFlatButton,
IupDropButton and IupFlatToggle.
New: DASH_DOT and DASH_DOT_DOT line styles for IupDraw lines.
New: RESIZEDRAG attribute for IupMatrix.
Changed: highly reduced the X11 dependency for the GTK driver. Now X11 calls are only used when drawing using CD or OpenGL.
Changed: IupLuaScripterDlgOpen function API now includes the Lua state as a parameter.
Changed: removed make_inactive parameter form IupDrawImage, now the attribute DRAWMAKEINACTIVE can be used along with
DRAWBGCOLOR.
Changed: added support for zoom in IupDrawImage. Added w and h parameters that can be 0 or -1, so there will be no zoom.
Changed: added support for wrap and ellipsis in IupDrawText. Added w and h parameters that can be 0 or -1, so text size will be
used.
Changed: added len parameter in IupDrawGetTextSize. len can be 0 or -1 so strlen is used.
Changed: the default IupDraw driver changed to Direct 2D in Windows, and Cairo in Linux (even in GTK 2). Now with support for
alpha in color and anti-aliasing in primitives. Direct 2D support implemented using the WinDrawLib library by Martin Mitáš.
Changed: the logos and large icons in IupImageLib will not be automatically resize anymore. Now only the base images are
automatically resized.
Changed: IupGetAllDialogs, IupGetAllNames, IupGetAllAttributes, IupGetAllClasses, IupGetClassAttributes, IupGetClassCallbacks now
also accepts -1 for count (same as 0).
Changed: IupLuaScripterDlg implementation now supports using the Console Tab and the Debugger Tabs modules independent
from the dialog, so they can be used inside an application dialog. But some work at the application is necessary to be fully functional.
Changed: [ATTENTION] removed compatibility with the old CD API from IupMatrix. A ll CD calls inside DRAW_CB must use
the cdCanvas* API. Applications should check their code if using the DRAW_CB callback.
Changed: [ATTENTION] IupMatrix now uses the IupDraw API through the new CD_IUPDRAW driver. The DRAW_CB callback still
works but may have limited support for CD primitives because of the new driver limitations. Applications should check their code if using
the DRAW_CB callback.
Fixed: FRAMETIME initialization in IupLoadAnimation. Thanks to M. Ivanchev.
Fixed: VALUE=CLEAR in IupTree on Windows.
Fixed: minimum size for handler in flat scrollbars.
Fixed: drawing of current tab border in IupFlatTabs.
Fixed: background color set in GTK driver was affecting the selection color in GTK3.
Fixed: removed an invalid file close in IupConfigLoad.
Fixed: invalid memory access when destroying the dialog inside a key callback.
Fixed: merged cells position adjust when there is a non scrollable line or column in IupMatrix.

Version 3.24 (22/Jan/2018)

IUP - Portable User Interface 07-Jan-25

11/496

http://sourceforge.net/projects/iup/files/3.25/
https://github.com/mity/windrawlib
http://sourceforge.net/projects/iup/files/3.24/

New: Find All and Find Results tab for IupScintillaDlg. Option for searching in Project Files even if they are not open.
New: INNERTEXT and ATTRIBUTE attributes for IupWebBrowser in Windows.
New: NOSCROLLASTITLE attribute for IupMatrix. NOSCROLL columns and lines can now behave and look as title cells.
New: EOL, EOLMODE attributes and options for FIXEOL attribute in IupScintilla. Support for different end of lines in IupScintillaDlg.
New: DRAWLINEWIDTH attribute for IupDraw functions.
New: RESHAPE, RESIZE and CLEARCACHE attributes for IupImage.
New: FLAT and FLATCOLOR attributes for IupDial. FGCOLOR now affects the appearance of the circular dial.
New: DSPROPERTIESCHANGED_CB, PROPERTIESCHANGED_CB and EDITSAMPLE_CB callbacks in IupPlot.
New: LAYOUTUPDATE_CB callback for IupFlatScrollBox and IupScrollBox.
New: CLEAR option for the VALUE attribute in IupTree.
New: code submitted to Coverity Scan analysis. Issues are being solved as long as we process them. Thanks to R. Vilela.
Changed: IupColorBrowser, IupColorbar, IupGauge and IupDial migrated from the IupControls library to the main library using
IupDraw, they do not depend on the CD library anymore. The natives IupColorDlg were removed and now only the IupColorBrowser
based dialog remains.
Changed: SAVEUNDER in Windows is used only if the dialog has a parent dialog.
Changed: [IMPORTANT INCOMPATIBILITY] The separate library for IupMatrixEx was merged with the IupControls library. The
IupMatrixExOpen and IupMatrixExInit functions were removed.
Fixed: invalid layout update during map in IupFlatScrollBox and IupScrollBox.
Fixed: double click in expand button in IupExpander. Click on expand button while animating.
Fixed: BARPOSITION set when there are extra buttons in IupExpander.
Fixed: TIP not being displayed while debugging in IupLuaScripterDlg.
Fixed: current tabs when set before map in IupTabs.
Fixed: MARKL:C attribute when set from inside the MARKEDIT_CB callback in IupMatrix. Error introduced in last version.
Fixed: focus cell and scroll using keyboard in IupMatrix when NUMLIN_NOSCROLL or NUMCOL_NOSCROLL are used. Non-scroll cells
where not included in keyboard navigation.
Fixed: EXECUTELEAF_CB not being called when Enter is pressed, and branch close not being done when Enter is pressed in IupTree on
Windows.
Fixed: IupDrawText when len=0.
Fixed: view options persistence in IupScintillaDlg.
Fixed: SCROLLTOCHILD attribute in IupScrollBox and IupFlatScrollBox.
Fixed: BGCOLOR attribute in IupText and IupTree, possibly some other controls too when GTK version >= 3.16. Thanks to J. Klimeš.
Fixed: drawing of lines and arcs in IupDraw on GTK3. Drawing of arcs on Windows.
Fixed: dynamically insert a child in an empty IupExpander.
Fixed: IupDial shading initialization.
Fixed: CANVASBOX attribute in IupBackgroundBox when box is empty.
Fixed: Layout update when children are dynamically added to the dialog in IupLayoutDialog.
Fixed: flat scrollbars zorder when visibility is changed.
Fixed: IupLoadAnimation when loading GIF animations.
Fixed: saving of project files in IupScintillaDlg. Thanks to R. Vilela.

Version 3.23 (11/Oct/2017)

New: <iup_varg.h> header for functions that depends in variable arguments using va_list.
New: IupLog function to write a message to the system log.
New: GOBACK, GOFORWARD, CANGOBACK and CANGOFORWARD attributes in IupWebBrowser.
New: added support for UTF-8 in IupView.
New: support for projects (list of files) in IupScintillaDlg.
New: support for multiple files in IupScintillaDlg and IupLuaScripterDlg.
New: table inspection support in Locals for IupLuaScripterDlg.
New: support for load session and save session in IupScintillaDlg.
New: "Options" dialog for setting current directory and script arguments in IupLuaScripterDlg.
New: support for vararg and upvalues in Locals during debug in IupLuaScripterDlg.
New: support for folding in IupLuaScripterDlg.
New: dialog for changing syntax colors in IupLuaScripterDlg.
New: current value shown in TIP for the variables of the current stack level while debugging in IupLuaScripterDlg.
New: CONFIGSAVE_CB and CONFIGLOAD_CB callbacks for IupScintillaDlg.
New: replace all button in find dialog for IupScintillaDlg.
New: PROPAGATEFOCUS attribute for all elements that can receive focus. This will make the focus callback forward to the next native
parent with FOCUS_CB defined.
New: TARGETWHOLEDOCUMENT, WORDRANGE, ISWORD, WORDPOS, SHOWLINES, HIDELINES, FOLDPARENT, FOLDLINE,
FOLDCHILDREN, FOLDALL, ENSUREVISIBLE, FOLDLEVELWHITE and FOLDLEVELHEADER attributes for IupScintilla.
New: LINESCHANGED_CB, UPDATECONTENT_CB, UPDATESELECTION_CB, UPDATEHSCROLL_CB, UPDATEVSCROLL_CB callbacks for
IupScintilla.
New: print support in IupScintilla and IupScintillaDlg.
New: MOUSEDWELLTIME attribute and DWELL_CB callbacks in IupScintillaDlg.
New: support for highlight of all words equal to the selected word in IupScintillaDlg.
New: support for IupConvertXYToPos in IupFlatTabs.
New: watch for global variables or expressions in IupLuaScripterDlg.
New: tools to comment blocks and multiple lines in IupLuaScripterDlg.
New: INDICATORCURRENT, INDICATORVALUE, INDICATORCLEARRANGE, INDICATORFILLRANGE, INDICATORSTYLEid ,
INDICATORFGCOLORid , INDICATOROUTLINEALPHAid , INDICATORALPHAid attributes for IupScintilla.
New: iup._TRACEBACK for optional traceback processing in error handling in IupLua.
New: SELECTIONFGCOLOR, SELECTIONBGCOLOR and SELECTIONALPHA attributes for IupScintilla. (Thanks to O. Zetterqvist)
New: FRAME, FRAMECOLOR and FRAMEWIDTH attributes for IupExpander.
New: IupConfigCopy function for IupConfig.
New: CELLFRAMEVERTCOLORL:C, CELLFRAMEHORIZCOLORL:C, CELLFONTL:C and CELLTYPEL:C read-only attributes for
IupMatrix.
New: MERGEL:C, MERGESPLIT, MERGEDSTARTL:C and MERGEDENDL:C attributes for IupMatrix. This adds support for
merged cells in IupMatrix.

IUP - Portable User Interface 07-Jan-25

12/496

http://sourceforge.net/projects/iup/files/3.23/

New: EXITLOOP global attribute that allows to disable the IupExitLoop call.
New: CUSTOMFRAMEACTIVATE_CB callback for IupDialog. Fixed redraw in Windows when using a CUSTOMFRAME.
New: ROOTCOUNT, NEXTid, PREVIOUSid, FIRSTid and LASTid attributes for IupTree.
Changed: Stock images in GTK 3.x are now provided by the IupImageLib, because GTK 3.10 stock images are deprecated. Replaced
"IUP_ZoomActualSize" image in Windows. IUP_Webcam returned to the base list.
Changed: BGCOLOR, FGCOLOR and FONT attributes in IupScintilla will now affect all style ids.
Changed: re-organized Find/Replace dialog in IupScintillaDlg.
Changed: IupSbox replaced by IupSplit in IupLuaScripterDlg. Current position saved in configuration file.
Changed: attribute SAVEDSTATE split into MODIFIED and SAVEPOINT attributes in IupScintilla.
Changed: improved next tab selection when current tab is removed or hidden in IupFlatTabs.
Fixed: autocomplete option saved in config file in IupLuaScripterDlg.
Fixed: Font selection in IupLuaScripterDlg.
Fixed: "Print" and "Set Local" of Lua boolean values at "Locals" list in IupLuaScripterDlg.
Fixed: paste over selection in IupScintillaDlg.
Fixed: Find options, View options (word wrap, show white spaces, etc), "tab size" and "use spaces instead of tab" options not being
saved in configuration file in IupScintillaDlg.
Fixed: Find behavior in IupScintillaDlg.
Fixed: PADDING in IupButton, IupList and IupToggle on GTK3.
Fixed: mouse wheel processing in canvas based containers to forward to parent containers in Windows.
Fixed: position update of zero size elements in Windows.
Fixed: flat scrollbar auto-hide when mouse button is press and hold.
Fixed: TARGETEND and TARGETSTART attributes in IupScintilla.
Fixed: FOLDLEVEL attribute in IupScintilla.
Fixed: EDITNEXT attribute when value is NONE in IupMatrix.
Fixed: When the current tab is changed is also scrolled to be visible in IupFlatTabs.
Fixed: current tab when tabs is empty in IupFlatTabs.
Fixed: NUMLIN_NOSCROLL and NUMCOL_NOSCROLL maximum and minimum values in IupMatrix.
Fixed: highlight state of a IupFlatButton with TOGGLE=Yes when VALUE=ON.
Fixed: TOPITEM attribute for IupList and IupTree in GTK.
Fixed: TABCHANGE_CB called when current tab child was removed in IupTabs on GTK and Motif.
Fixed: col2 limits in SELECTION attribute for IupScintilla.

Version 3.22 (12/Jun/2017)

New: internal support for SPANISH language (thanks to Germán A.)
New: function IupImageToImImage in IUP-IM library.
New: EXTRABUTTONS, EXPANDBUTON, TABCHANGEONCHECK, CLOSEPRESSCOLOR, CLOSEIMAGEINACTIVE, TABTIPn,
TABIMAGEHIGHTLIGHTn and TABIMAGEINACTIVEn attributes for IupFlatTabs.
New: DATASETCLIPPING attribute for IupPlot.
New: support for Find in IupLayoutDialog.
New: "Handle Name" context menu item for editing the name of an element in IupLayoutDialog.
New: TABSTEXTALIGNMENT attribute for IupFlatTabs. TITLETEXTALIGNMENT attribute for IupFlatFrame. TEXTALIGNMENT
attribute for IupFlatButton and IupDrawText.
New: build guides for NetBeans and CodeLite IDEs in the documentation. (Thanks to A. Bogdanov)
New: IupFlatScrollBox container with drawn controlled and smaller scrollbars, along with flat scrollbars attributes.
New: FLATSCROLLBAR attribute for IupMatrix, to enable flat scrollbars.
New: EOLVISIBLE, FIXEOL, MARGINMASK, FOLDMARGINCOLOR and FOLDMARGINHICOLOR attributes for IupScintilla.
New: FRAMETITLEVERTCOLOR* and FRAMETITLEHORIZCOLOR* attributes for IupMatrix.
New: IupScintillaDlg pre-defined dialog.
New: IupLuaScripterDlg pre-defined dialog.
New: application IupLuaScripter based on the new IupLuaScripterDlg.
New: DRAWFONT attribute for IupDrawText.
New: IupMessageError and IupMessageAlarm utility functions.
Changed: internal scrollbar precision in IupCanvas and IupMatrix from float to double.
Changed: several attributes relative to CUSTOMFRAME in IupDialog to unify behaviors in GTK and Windows.
CUSTOMFRAMECAPTION renamed to CUSTOMFRAMECAPTIONHEIGHT. CUSTOMFRAME renamed to CUSTOMFRAMEDRAW.
CUSTOMFRAMEEX renamed to CUSTOMFRAME. CUSTOMFRAME_CB callback renamed to CUSTOMFRAMEDRAW_CB.
CUSTOMFRAMEDRAW and CUSTOMFRAMECAPTION works only in Windows. CUSTOMFRAME works also in GTK, it is used to replace
the native dialog frame by IUP controls.
Changed: added support for scrolling of tabs in IupFlatTabs.
Changed: added support for extra buttons in IupFlatTabs.
Changed: added disabled effect for IupFlatFrame. New optional attribute TITLEIMAGEINACTIVE.
Fixed: UnregisterClass called for all registered classes in Windows at IupClose.
Fixed: FONTSIZE and FONTSTYLE attributes in IupMatrix and TITLEFONTSIZE in IupTree.
Fixed: drawing of bars with zero values when DS_MODE is BAR, HOIZONTALBAR or MULTIBAR in IupPlot.
Fixed: last visible tab when made it invisible in IupFlatTabs.
Fixed: tab id based attributes when a tab is added or removed in IupFlatTabs.
Fixed: AXS_YMAX adjust when Y range is too small or zero, but AXS_AUTOMAX is No in IupPlot.
Fixed: invalid VALUECHANGED_CB call when INSERT or APPEND attributes are set in IupText on Windows and FORMATTING=Yes.
Fixed: MOUSEMOTION_CB callback coordinates in IupCells.
Fixed: IupReparent when child is re-parent to the same position.
Fixed: internal elements display in IupLayoutDialog. New option to force internal elements to be drawn.
Fixed: children area update in IupTabs on Windows when MULTILINE=Yes and tabs where added or removed affecting the number of
lines.
Fixed: display update when TITLE, VALUE and list items are set in IupMatrixList.
Fixed: INSERTid attribute in IupScintilla when id is not used.
Fixed: SPINVALUE in IupText when user press Enter after typing a new value in GTK.

IUP - Portable User Interface 07-Jan-25

13/496

http://sourceforge.net/projects/iup/files/3.22/
elem/iupflatscrollbox.html
attrib/iup_flatscrollbar.html
attrib/iup_flatscrollbar.html
dlg/iupscintilladlg.html
dlg/iupluascripterdlg.html

Version 3.21 (20/Jan/2017)

New: IupFlatTabs container similar to IupTabs but more controllable.
New: IGNORERADIO attributes for IupFlatButton with TOGGLE=YES, IupToggle, and IupGLToggle.
New: SUPPRESSWARNING attribute for IupMglPlot.
New: IupSetAttributeHandleId, IupSetAttributeHandleId2, IupGetAttributeHandleId and IupGetAttributeHandleId2
functions.
New: ZOOM attribute for IupPlot.
New: PIE option value for DS_MODE attribute in IupPlot. DS_PIERADIUS, DS_PIESTARTANGLE, DS_PIECONTOUR, DS_PIEHOLE,
DS_PIEHOLERADIUS, and DS_PIESLICELABEL attributes for IupPlot when DS_MODE=PIE.
New: DS_AREATRANSPARENCY attribute for IupPlot when DS_MODE=AREA.
New: HIGHLIGHTMODE and SCREENTOLERANCE attributes for IupPlot. CLICKSEGMENT_CB callback for IupPlot. New
IupPlotFindSegment function.
New: DS_BARMULTICOLOR attribute for IupPlot when DS_MODE=BAR or HORIZONTALBAR.
New: DS_STRXDATA, DS_EXTRA and DS_ORDEREDX attributes for IupPlot.
New: "DataSet Values" dialog in context menu for IupPlot. New attribute EDITABLEVALUES for IupPlot.
New: SIMULATEMODAL attribute for IupDialog to disable all other visible dialogs.
New: FOCUS_CB callback for the IupDialog.
New: HASFOCUS, HIGHLIGHTED and PRESSED attributes that return the internal state of the IupFlatButton.
New: RESTOREWHENCLOSED attribute and RESTORED_CB callback for IupDetachBox.
New: PROGRESSHEIGHT, MINCLOCK and MINPERCENT attributes for IupProgressDlg.
New: FONTSTYLEL:C and FONTSIZEL:C for IupMatrix.
New: IUP_GETPARAM_MAP param_index for the PARAM_CB callback in IupGetParam.
New: FLAT and FLATCOLOR attributes for IupGauge.
New: -1 value for SIZECOL and SIZELIN attributes in IupGridBox to use all columns and all lines when computing lines and columns
sizes.
New: UNDOACTION attribute for IupScintilla.
New: CARETLINEVISIBLE, CARETLINEBACKCOLOR and CARETLINEBACKALPHA attributes in IupScintilla. (Thanks to O. Zetterqvist)
New: Scintilla Notepad source code in the topic "3. Simple Notepad" of the Tutorial.
Changed: PARENTDIALOG can now be modified after the dialog is mapped in IupDialog, but must be already set during map.
Changed: layout resize computation optimization in IupMatrix.
Fixed: background drawing when VIEWPORTSQUARE=Yes is used in IupPlot. Fixed AXS_*LABELCENTERED default value.
Fixed: some GTK stock images for GTK >= 3.10 in IupImageLib.
Fixed: FRAMEBORDER to be drawn only if necessary, and only up to the matrix total size, in IupMatrix.
Fixed: vertical cursor coordinates in all mouse callbacks when there are more that one line of plots, or when VIEWPORTSQUARE=Yes, in
IupPlot.
Fixed: crash at IupList in GTK 3.20 when DROPDOWN=Yes and EDITBOX=NO. But in that case keyboard, focus and enter/leave
window callbacks stopped working.
Fixed: STYLEWEIGHT attribute in IupScintilla. (Thanks to O. Zetterqvist)
Fixed: DEFAULTENTER behavior in GTK when focus is at another button.
Fixed: alignment in IupGridBox.

Version 3.20 (30/Sep/2016)

New: AXS_XLABELSPACING and AXS_YLABELSPACING attributes for IupPlot.
New: MULTIVALUEPATH attribute in IupFileDlg.
New: LABELALIGN and MODIFIABLE attributes for IupParamBox.
New: CANVASBOX attribute for IupScrollBox.
New: IupExecuteWait function.
New: IupGLDrawText, IupGLDrawImage, IupGLDrawGetTextSize and IupGLDrawGetImageInfo functions for
IupGLSubCanvas.
New: MOTION_CB callback for IupLabel.
New: HIDETITLEBAR attribute for IupDialog in GTK (needs GTK version 3.10).
New: guide to create Shell Extension Handlers for thumbnails and previews in Windows.
New: BUTTON_CB, MOTION_CB and WHEEL_CB callback in IupFileDlg when the preview canvas is enabled.
New: SHOWEDITBOX attribute for IupFileDlg in Windows.
New: DECORATION, DECORSIZE and DECOROFFSET attributes for IupBackgroundBox and IupGLBackgroundBox.
New: IupFlatFrame custom container.
New: GLOBALCTRLFUNC_CB global callback.
New: FRAMEBORDER attribute for IupMatrix to draw a border around the matrix visible area.
Changed: CUEBANNER attribute support for IupText in GTK (needs GTK version 3.2+).
Fixed: "Axis Ticks Number" in "Properties" dialog of IupPlot.
Fixed: internal limitation on the number of curves in a plot of IupPlot.
Fixed: IupGetParam callback behavior when the close button of the dialog is pressed.
Fixed: single selection on IupTree when a node is programmatically unselected in Windows.
Fixed: VALUE attribute in IupDatePick on Windows XP.
Fixed: IupMglPlotEnd when IupMglPlotAdd1D uses NULL for names in IupMglPlot.

Version 3.19.1 (04/Jul/2016)

New: TITLEFONTSTYLEid attribute for IupTree.
Fixed: several internal attributes were incorrectly updated during map in IupGetParam, IupParam and IupParamBox.

Version 3.19 (20/Jun/2016)

New: CANVASBOX attribute for IupGLBackgroundBox and IupBackgroundBox.
New: LAYOUTDRAG attribute for IupScrollBox in Windows.

IUP - Portable User Interface 07-Jan-25

14/496

http://sourceforge.net/projects/iup/files/3.21/
tutorial/tutorial3.html
http://sourceforge.net/projects/iup/files/3.20/
shell_extensions.html
http://sourceforge.net/projects/iup/files/3.19.1/
http://sourceforge.net/projects/iup/files/3.19/

New: scrollbars for layout area in IupLayoutDialog.
New: TYPECOLORINACTIVE attribute for IupMatrix.
New: OVERLAYSCROLLBAR global attribute in GTK to control the scrollbar space when overlay scrollbars are enabled in the system.
New: BORDERPSCOLOR and BORDERHLCOLOR attributes for IupFlatButton.
New: IupDraw API for drawing custom controls in a IupCanvas or IupBackgroundBox.
New: IupGLText control for IupGLControls.
Changed: IupScrollBox will now expand to child natural size the first time the layout is computed.
Changed: Scintilla updated to version 3.6.6.
Changed: MathGL updated to version 2.3.5.1.
Changed: Freetype and FTGL used in IupGLControls now needs an external instalation. Their code are still inside CD svn but in a
separate folder. Freetype in Linux now uses the library installed on the system.
Changed: [IMPORTANT INCOMPATIBILITY] IupParamf renamed to IupParam and IupParamBox changed its signature. They
are now actual controls and cab be also used in LED and Lua as such. In Lua the constructors iup.param{} and iup.parambox{} must be
used instead of the previous functions. After creating the IupParamBox, IupAppend or IupInsert must be called to insert the box in the
parent child list. There are NO changes for IupGetParam, it is fully backward compatible.
Changed: [DEPRECATED REMOVED] removed the following headers iupcb.h, iupcells.h, iupdial.h, iupgc.h, iupmatrix.h, iupspin.h,
iuptree.h, iupcbox.h iupcolorbar.h, iupgauge.h, iupgetparam.h, iupsbox.h, iuptabs.h and iupval.h. These headers were already empty,
simply use iup.h or iupcontrols.h.
Changed: [DEPRECATED REMOVED] removed the following functions IupGetActionName, IupMapFont, IupUnMapFont and
IupControlsClose. Removed support for DEFAULT_ACTION and old font names. There are no substitutes.
Changed: [DEPRECATED REMOVED] removed the header iupmask.h and all its functions prefix by "iupmask". Use MASK* attributes
in IupText, IupList and IupMatrix.
Changed: [DEPRECATED REMOVED] removed the old attribute NAMEid from IupTree to avoid conflict with the common attribute
NAME. Use the TITLEid attribute.
Changed: [DEPRECATED REMOVED] removed the following functions IupTreeSetAttribute, IupTreeStoreAttribute,
IupTreeGetAttribute, IupTreeGetInt, IupTreeGetFloat and IupTreeSetfAttribute. Use IupSet/GetAttributeId functions.
Changed: [DEPRECATED REMOVED] removed the following functions IupMatSetAttribute, IupMatStoreAttribute,
IupMatGetAttribute, IupMatGetInt, IupMatGetFloat and IupMatSetfAttribute. Use IupSet/GetAttributeId2 functions.
Changed: [DEPRECATED REMOVED] removed the control IupPPlot. Use IupPlot.
Changed: removed the internal attribute STANDARDFONT that was necessary because of the old font names.
Changed: renamed PADDING attribute to TABPADDING in IupTabs to avoid conflict with inheritable PADDING attribute of other
controls.
Changed: removed dependency on iconv from IupGLControls.
Fixed: VALUECHANGED_CB callback for IupDatePick in Windows to allow IupGetParam to cancel the change.
Fixed: LEDC tool to consider IupGLBackgroundBox with correct case.
Fixed: DIRECTORY attribute returned value for IupFileDlg in Windows when MULTIPLEFILES=Yes.
Fixed: added missing support for DS_BAROUTLINE, DS_BAROUTLINECOLOR and DS_BARSPACING editing in properties dialog for
IupPlot.
Fixed: TOGGLEIMAGEON in IupMatrix.
Fixed: image support in IupMatrix, IupMatrixList, IupGLControls, IupPlot and IupScintilla to accept stock images.
Fixed: some of the deprecated function in GTK 3.14. Now the Makefile defines GTK_DISABLE_DEPRECATED again. Others documented
in "iupgtk_open.c".
Fixed: PADDING attribute, along with other internal margins in IupText, IupList, IupButton and IupToggle for GTK version 3.
BORDER in IupText for GTK version 3. TITLE and IMAGE in IupButton for GTK version 3. They all affected the layout computation in
IUP.
Fixed: image size limitation when setting IMAGELEAF, IMAGEBRANCHCOLLAPSED and IMAGEBRANCHEXPANDED in IupTree for
Windows. Before sizes where limited to 16x16, the alternative was to change the default images, this is not necessary anymore.
Fixed: keyboard focus interactivity in IupBackgroundBox and IupGLBackgroundBox.
Fixed: mnemonic activation for IupToggle inside an IupRadio in Windows.
Fixed: PLOTMOTION_CB for IupPlot in Lua.
Fixed: FONT attribute for IupMatrix.

Version 3.18 (21/Mar/2016)

New: STOPWHENHIDDEN attribute for IupAnimatedLabel.
New: FIRSTVISIBLELINE attribute for IupScintilla.
New: EXTDEFAULT attribute for IupFileDlg.
New: USE_LUA_VERSION variable for the Lua binding Makefiles to simplify the build for different Lua versions.
New: "STEM", "MARKSTEM", "HORIZONTALBAR", "MULTIBAR", "STEP", "ERRORBAR" plot modes for IupPlot. New attributes
DS_BAROUTLINE, DS_BAROUTLINECOLOR and DS_BARSPACING for BAR, MULTIBAR and HORIZONTALBAR modes.
New: IupPlotGetSampleExtra and IupPlotSetSampleExtra functions for IupPlot.
New: CUSTOMFRAME, CUSTOMFRAMEEX, CUSTOMFRAMECAPTION, CUSTOMFRAMECAPTIONLIMITS attributes and
CUSTOMFRAME_CB callback for IupDialog in Windows. To allow custom dialog frames by drawing the frame components or using
other controls as components.
New: IupGLBackgroundBox control.
Changed: Tecgraf logo updated in IupImageLib and in "tecgraf.ico" file.
Fixed: calling popup dialogs one after closing the other, without other visible dialogs.
Fixed: animation was being destroyed in IupAnimatedLabel destroy. As an IupImage it must be destroyed manually by the
application or automatically in IupClose, if it has a name.
Fixed: missing iupstub build for mingw4_64.
Fixed: IupFontDlg in Windows to avoid failing to created the dialog if VALUE is invalid. Now it will ignore the invalid value and use the
global default font.
Fixed: separators with no title in IupGetParam.
Fixed: dataset properties dialog in IupPlot context menu.
Fixed: IupSpinbox creation in Lua.
Fixed: invalid memory access in IupMatrixEx when using custom units.
Fixed: return values for AXS_XTICKFONTSTYLE and AXS_YTICKFONTSTYLE attributes in IupPlot.
Fixed: linking dependencies for IupLuaConsole application.
Fixed: invalid extra button in IupMessageDlg when BUTTONS=OKCANCEL in GTK.

IUP - Portable User Interface 07-Jan-25

15/496

http://sourceforge.net/projects/iup/files/3.18/

Fixed: MULTIVALUE and MULTIVALUECOUNT in IupFileDlg when only one file is selected. Fixed inconsistent DIRECTORY return value
when multiple files are selected.
Fixed: iup.GetAllAttributes on Lua.
Fixed: memory leak in TIP attribute on Windows when tip value is changed more than one time for the same control.

Version 3.17 (30/Nov/2015)

New: LASTSORTCOLUMN attribute for IupMatrixEx.
New: EXEFILENAME global attribute.
New: exported function IupExecute. Called by IupHelp.
New: SCROLLTO and SCROLLTOCHILD attributes for IupScrollBox.
New: MARKWHENTOGGLE attribute for IupTree.
New: DELCONTROL attribute for IupNormalizer.
New: IupStringCompare utility function to compare strings lexicographically. Used internally in IupMatrixEx.
New: MONITORSCOUNT global attribute.
New: GLOBALLAYOUTRESIZEKEY global attribute to enable the global keys Ctrl+'+' and Ctrl+'-' that change the FONTSIZE and refresh
the layout of the dialog. If element sizes are NOT set using RASTERSIZE their sizes will be automatically increased and decreased.
New: IupAnimatedLabel control.
New: "IUP_CircleProgressAnimation" pre-defined animation in IupImageLib to be used in IupAnimatedLabel to show indefinite
progress.
New: functions IupLoadAnimation and IupLoadAnimationFrames in IUP-IM utilities library.
New: PASTEFILEAT attributes for IupMatrixEx.
New: MASKNOEMPTY attribute of IupList and IupText.
New: IupCalendar and IupDatePick controls.
New: date parameter in IupGetParam.
New: CARETCOLOR, CARETSTYLE and CARETWIDTH attributes in IupScintilla.
Changed: IupGetText pre-defined dialog function API to include the maximum string size. This was a security fix.
Changed: the global keys Alt+Ctrl+Shft+L to display the IupLayoutDialog now needs the global attribute GLOBALLAYOUTDLGKEY to
be enabled. This was a security fix.
Changed: Scintilla updated to version 3.6.2. Removed KEYSUNICODE attribute from IupScintilla, not supported in Scintilla anymore.
Changed: line breaks in a param tip on IupGetParam dialog using the '\r' character.
Changed: removed SCROLLTO and SCROLLTOPOS attributes from IupScintilla. They were incorrect and not available in Scintilla.
New attribute SCROLLBY.
Changed: MASKL:* and MASK*:C options for MASK attribute in IupMatrix.
Fixed: defaultenter and defaultesc when dialog has an IupMatrix element.
Fixed: sorted line indices when line is added or removed in IupMatrixEx. Now when lines are added or removed the sorting is disabled
and must be set again manually.
Fixed: toggle cells being changed when READONLY=Yes in IupMatrix.
Fixed: progressbar update in IupProgressDlg for fast processing.
Fixed: iup.dofile and iup.dostring in Lua to process multiple return values and leave them on the stack.
Fixed: IupSetHandle and IupGetName usage of the internal cache for names. And name search optimized. Now when a name is set,
the control will have a HANDLENAME attribute with the last name set.
Fixed: LASTFILENAME in IupMatrixEx for the import dialog. It is now also used as the initial FILE attribute.
Fixed: image transparency in IupItem when using Visual Styles in Windows.
Fixed: case insensitive search in IupMatrixEx.
Fixed: old name VISIBLE_ITEMS in IupList on Windows.
Fixed: SELECTION attribute in IupScintilla.
Fixed: dropdown list VALUE can now be set to NULL inside DROP_CB in IupMatrix.
Fixed: AUTOHIDE behavior in IupSplit.
Fixed: dynamic tab close in IupTabs on GTK.
Fixed: missing iup.GLSizeBox in Lua.
Fixed: Lua registration of iup.submenu and iup.user as containers.
Fixed: iuplua_pushihandle when the control was created in C and it is a container.
Fixed: dialog must be mapped before IUP_GETPARAM_INIT in IupGetParam.
Fixed: export data when value contains the separator in IupMatrixEx. Import data when value contains double quotes (") at start and
end, and contents may contains the separator.
Fixed: IMAGEPOSITION in IupFlatButton.
Fixed: COUNT attribute in IupText on GTK.

Version 3.16 (15/Sep/2015)

New: header "iup_plus.h" with the first version of the C++ API.
New: NOHIDESEL attribute for IupText on Windows. The default is Yes so it changed the default behavior of the control that was
hiding the selection when loses focus, now by default the selection is always visible just like the IupList and the IupTree.
New: TXTHLCOLOR global attribute.
New: HLCOLOR attribute for IupTree on Windows and Motif (background of selected nodes). The selection color now will not change
when the control loses its focus on Windows.
New: LINEALIGMENTL and ALIGNL:C attributes for IupMatrix.
New: MARKATTITLE attribute for IupMatrix.
New: IMAGEAUTOSCALE and IMAGESDPI global attributes, AUTOSCALE attribute for IupImage.
New: global attributes GL_VERSION, GL_VENDOR and GL_RENDERER, available only after the first call to IupGLMakeCurrent.
New: iup.GetParamHandle utility function in Lua for IupGetParam parameters.
New: SHOWDIALOG and SORTLINEINDEXid attributes in IupMatrixEx.
New: RETRYCANCEL and YESNOCANCEL button configurations for IupMessageDlg.
New: Improved IupLuaConsole application with a new command line and console output without using standard output and standard
input.
New: DEFAULTBUTTONPADDING global attribute to control the default padding in pre-defined dialogs.
New: TOGGLEIMAGEON/TOGGLEIMAGEOFF, SORTIMAGEDOWN/SORTIMAGEUP and DROPIMAGE attributes for IupMatrix. Default

IUP - Portable User Interface 07-Jan-25

16/496

http://sourceforge.net/projects/iup/files/3.17/
http://sourceforge.net/projects/iup/files/3.16/

images improved with a clear design.
New: TOGGLECENTERED attribute for IupMatrix, to center the toggle and use the cell value in place of TOGGLEVALUEL:C. No text
will be drawn.
New: STATEREFRESH attribute for IupExpander.
Changed: HLCOLOR attribute that defines an overlay color for the selected cells in IupMatrix. The default is the TXTHLCOLOR global
attribute.
Changed: mouse wheel processing will now occur also when the canvas is not in focus while the cursor is over the canvas in Windows.
Changed: although callbacks implemented as simple strings to be executed are still valid in IupLua, returns in strings are not accepted
anymore.
Changed: IupFlatButton with TOGGLE=Yes, IupGLToggle, and IupToggle when a child of an IupRadio, and IupZbox immediate
children will now automatically receive a handle name.
Changed: IupImageLib now contains less images in its pre-compiled library, because we increased the image size to 32x32 with 32bpp
in Windows. Images will be automatically resized if necessary using the IMAGESTOCKSIZE global attribute, its default value depends on
the screen resolution.
Changed: OPACITY and OPACITYIMAGE IupDialog attributes behavior in Windows so they can be set before map as GTK.
Changed: Lua pre-compiled binaries are now separated by folders Lua51/Lua52/Lua53.
Changed: distribution packages are now split according to the Lua version.
Changed: renamed AXS_AUTOSCALEEQUAL to AXS_SCALEEQUAL in IupPlot. Old name still works. Now it does not depends on
automatic scaling anymore.
Changed: attribute SHOW_TEXT in IupGauge and IupGLProgressBar renamed to SHOWTEXT. EDIT_MODE, FOCUS_CELL renamed
to EDITMODE, FOCUSCELL in IupMatrix. VISIBLE_ITEMS renamed to VISIBLEITEMS in IupList. Old names still supported.
Changed: IupPopup now can turn an already visible dialog into a modal dialog and interrupt processing. A call to IupShowXY for a
modal dialog will now update its position.
Fixed: IupConfigDialogShow behavior when dialog is not resizable. It will also do no adjustments if the dialog is already visible.
Better control of the maximize of the first time.
Fixed: error report in Lua to always include the traceback.
Fixed: inactive button being activated by mnemonic.
Fixed: CURSORPOS global attribute set when Taskbar is at left or top in Windows.
Fixed: RESTORE attribute in IupDeatchBox when old brother is not a child of old parent anymore. Added the possibility of using a
different parent with value. Improved the initial new dialog size to use the current size of the child.
Fixed: BUTTON_CB callback in IupButton on Windows when the dialog is destroyed.
Fixed: removed luaL_register dependency from Lua >= 5.2 bindings.
Fixed: MULTILINE attribute in IupMatrix to include vertical scrollbars.
Fixed: IupToggle natural size when has a check box on Windows for DPI aware applications.
Fixed: support for Windows 10 in global attributes and in the Manifest file.
Fixed: support for DPI aware in the Manifest file on Windows. This also solves the problem of blur interfaces when using the system DPI
Scaling.
Fixed: VALUE attribute for IupRadio in Lua.
Fixed: OPACITYIMAGE attribute in IupDialog on GTK 2.x.
Fixed: behavior of AXS_AUTOSCALEEQUAL/AXS_SCALEEQUAL in IupPlot when in Zoom.
Fixed: sort item in context menu not visible when read-only in IupMatrixEx. Sort sign not being erased correctly when
SORTCOLUMNid was set.
Fixed: missing PARAM_CB callback in Lua for IupParamBox.
Fixed: IupColorDlg and IupFontDlg dialogs in 32 bits on Windows.
Fixed: SORTCOLUMNCOMPARE_CB callback in IupMatrixEx.
Fixed: global attribute LANGUAGE when set after the control classes being registered in Iup*Open functions.
Fixed: coordinates in WHEEL_CB callback in IupCanvas when using multiple monitors on Windows.
Fixed: interference of resize column and selection in IupMatrix.
Fixed: finding the letter "M" in IupMatrixEx find dialog.
Fixed: iup.isprint in Lua.
Fixed: ICON attribute to be able to use an image from IupImageLib in IupDialog.
Fixed: BARSIZE when set to 0 in IupSplit. Improved support for AUTOHIDE.
Fixed: ACTIVE attribute when the element is inside a dialog that is disabled by another dialog popup.

Version 3.15 (06/Jul/2015)

New: "iup_class_cbs.hpp" header with macros to help creation of callbacks as methods in C++.
New: SHOWNOACTIVATE and SHOWMINIMIZENEXT attributes to control the PLACEMENT behavior of the IupDialog in Windows.
New: global hot key (Alt+Ctrl+Shft+L) to show the current dialog layout in a IupLayoutDialog dialog.
New: ELAPSEDTIME attribute available inside the ACTION_CB callback of the IupTimer.
New: Tutorial section in the documentation. It is still under construction but already has several topics completed.
New: IupFlatButton control that mimics a IupButton but does not have native system decorations.
New: FGCOLOR display in rectangle when TITLE and IMAGE are both not defined in IupGLButton.
New: IupConfig support in Lua.
Changed: the DESTROY_CB callback to be called before the LDESTROY_CB callback, so it can be processed also in Language bindings.
Changed: the color selection in IupFontDlg on Windows is now hidden by default. To show it must define SHOWCOLOR=Yes
attribute. The Script selection since was not being used is now always hidden.
Changed: improved documentation in PDF, now with table of contents.
Changed: internal organization in IupLua for better nomenclature.
Changed: renamed iup.TreeSetDescentsAttributes to iup.TreeSetDescendantsAttributes.
Fixed: invalid lin,col at EDITION_CB when mode=1 in IupMatrix.
Fixed: layout update to IupMatrix internal children.
Fixed: drag&drop of tree nodes in IupTree on Windows. (Thanks to Nodir T.)
Fixed: IupPlot destroy (affected MingW). (Thanks to Ducan G.)
Fixed: IupPopup when used for the last visible dialog.
Fixed: size computation in IupToggle to not include the spacing between the check box and the text, if text is NULL or empty.
Fixed: TABIMAGE attribute when resetting to NULL in IupTabs.
Fixed: scrollbars when *AUTOHIDE=Yes in IupCanvas on Windows.
Fixed: IupExpander animation timing.

IUP - Portable User Interface 07-Jan-25

17/496

http://sourceforge.net/projects/iup/files/3.15/
elem/iupflatbutton.html

Fixed: FITTOSIZE attribute in IupMatrix to consider the BORDER attribute.

Version 3.14 (28/Apr/2015)

New: support for Lua 5.3.
New: INFOTIP attribute for IupTree on Windows.
New: OPENCOLOR and HIGHCOLOR attributes for IupExpander to change the title text color in different situations. New TITLEIMAGE*
attributes to use a title image instead of a text. New TITLEEXPAND attribute to enable expand/contract action in the title.
New: ANIMATION attribute for IupExpander to enable animation during open/close.
New: MULTIVALUECOUNT and MULTIVALUEid attributes for IupFileDlg when MULTIPLEFILES=Yes.
New: AXS_AUTOSCALEEQUAL and VIEWPORTSQUARE attributes for IupPlot.
New: CHILDOFFSET attribute for native containers (IupTabs, IupFrame, IupDialog, IupBackgroundBox, IupScrollBox).
New: CELL attribute in IupMatrix to return the displayed value.
New: EDITFITVALUE, EDITVALUE, EDITTEXT, EDITALIGN, EDITHIDEONFOCUS attributes for IupMatrix to control editing cell values
and focus.
New: EDITCLICK_CB, EDITRELEASE_CB and EDITMOUSEMOVE_CB callbacks for IupMatrix called when EDITHIDEONFOCUS=NO and
editing is on going right before CLICK_CB, RELEASE_CB and MOUSEMOVE_CB callbacks.
New: CELLNAMES attributes for IupMatrix when using formulas.
Changed: IupMap will now call IupRefresh when mapping the dialog after all other processing. This affects the MAP_CB callback of
the children, that it will be called before the layout is updated, so the children current size will still be 0x0 during MAP_CB.
Changed: IupExpander internally remodeled to use other IUP elements to compose its handler area. The controls can be accessed by
IupGetChild* and then reconfigured if necessary. There are no size limitations for images anymore. Extra buttons are now creation-only.
Changed: when editing a cell value the caret will now be positioned closest to where the user double clicked in IupMatrix.
Fixed: visual feedback when interactively moving the title or the legend box in IupPlot.
Fixed: transparency for images in IupTabs on Windows. (Thanks to Nodir T.)
Fixed: COPYDATA_CB callback for Unicode support in IupDialog on Windows. (Thanks to Nodir T.)
Fixed: setting TITLE attribute to NULL in IupPlot.
Fixed: automatic margin calculation in IupPlot when TITLE is not defined, top margin is automatic and bottom margin is manually set.
Fixed: Fixed FGCOLOR and FONT, when set before map in IupScintilla.
Fixed: update of CMARGIN and CGAP attributes when FONT is changed in IupGridBox, IupHbox, and IupVbox.
Fixed: resize of a IupButton with just a color on GTK.
Fixed: ACTION callback for IupBackgroundBox in Lua.
Fixed: ENTERWINDOW_CB/LEAVEWINDOW_CB call order in Windows.
Fixed: memory leaks in drag&drop processing in Windows. Memory leaks in internal IupImage cache.
Fixed: Enter and Esc keys behavior in IupList when DROPDOWN=Yes on Windows, while the dropdown list is shown they must simply
close the list and do not forward the action to the dialog.
Fixed: VALUE attribute during VALUECHANGED_CB in IupList when EDITBOX=Yes on Windows and an item is selected with the
keyboard.
Fixed: add new units of an existing quantity in IupMatrixEx.
Fixed: font parsing when using old invalid names.
Fixed: range and cell functions inside formulas when reference another cell that also uses formulas in IupMatrix. Recurrence in
range and cell functions.
Fixed: DIRECTORY attribute return value when MULTIPLEFILES=Yes in IupFileDlg on Windows and GTK.
Fixed: toggle visible state when moving or copying a node in IupTree in Windows.
Fixed: keys processing in IupMatrixEx that were disabling IupMatrix regular processing.
Fixed: column resize feedback for IupMatrix when in GTK3.
Fixed: CLEAR attribute in IupPlot.

Version 3.13 (04/Feb/2015)

New: global attribute DEFAULTFONTFACE.
New: EXPANDVERTICAL and EXPANDHORIZONTAL for IupGLCanvasBox children.
New: XHIDDEN and YHIDDEN attributes for scrollbar information in IupCanvas.
New: TIPFORMAT, AXS_*TIPFORMAT, TITLEPOS and DS_USERDATA attributes in IupPlot. New value "XY" for LEGENDPOS attribute.
New attribute MENUITEMPROPERTIES and new Properties Dialog. New attributes GRIDMINOR, GRIDMINORCOLOR, GRIDLINEWIDTH
and GRIDLINESTYLE. New attributes AXS_*TICKROTATENUMBERANGLE, AXS_*TICKFORMATAUTO and
AXS_*TICKFORMATPRECISION. New attributes BACKIMAGE, BACKIMAGE_XMIN, BACKIMAGE_XMAX, BACKIMAGE_YMIN,
BACKIMAGE_YMAX.
New: IupPlotFindSample, IupPlotAddSegment, IupPlotInsertSegment auxiliary functions for IupPlot.
New: IupPlotSetFormula auxiliary function for IupPlot.
New: NACTIVE attribute for the IupDialog.
New: CELL_EDITED attribute set during VALUE_EDIT_CB and VALUECHANGED_CB when the cell was interactively changed in
IupMatrix.
New: IupMatrixSetFormula and IupMatrixSetDynamic auxiliary functions for IupMatrix.
New: TRANSLATEVALUE_CB callback for IupMatrix.
New: EDITING state attribute for IupMatrix.
New: IupParamf and IupParamBox utility functions, exported from IupGetParam internals.
New: CELLBYTITLE attribute for IupMatrixEx. Affects Go To and Copy To dialogs.
Changed: IupLua console file selection to include filter "*.lua".
Changed: IupLayoutDialog context menu to include "Set Focus" and "Blink" items.
Changed: processing of MENUCONTEXT_CB callback return value to accept IUP_IGNORE in IupMatrixEx.
Changed: IupPlotInsertPoints, IupPlotInsertStrPoints, IupPlotAddPoints, IupPlotAddStrPoints, renamed to
IupPlotInsertSamples, IupPlotInsertStrSamples, IupPlotAddSamples, IupPlotAddStrSamples.
Changed: SUNKEN attribute in IupFrame is not creation only anymore.
Changed: MathGL updated to version 2.3.2.
Changed: Scintilla updated to version 3.5.3.
Fixed: IupScanf when maximum number of characters allowed is reached by the data in a given variable.
Fixed: IupGLCanvasBox mouse coordinates processing.

IUP - Portable User Interface 07-Jan-25

18/496

http://sourceforge.net/projects/iup/files/3.14/
http://sourceforge.net/projects/iup/files/3.13/

Fixed: IupGLSubCanvas font processing.
Fixed: scrollbar programmatic update crash in IupCanvas on Windows.
Fixed: remove of a hidden tab in IupTabs on Windows.
Fixed: separator in IupGetParam.
Fixed: WHEEL_CB in IupCanvas on GTK3.
Fixed: paste of empty cell in IupMatrixEx.
Fixed: AXS_XTICKFORMAT and AXS_YTICKFORMAT attributes when defined by the application in IupPlot.
Fixed: global attribute CURSORPOS when Start Menu is positioned at left or top of the screen in Windows.
Fixed: IupShow when redisplaying a dialog without changing its position when Start Menu is positioned at left or top of the screen in
Windows.
Fixed: sorting of numeric values in IupMatrixEx.
Fixed: VALUE attribute inside PARAM_CB callback when user click in auxiliary buttons for Font, Color or File Selection in IupGetParam.

Version 3.12 (19/Nov/2014)

New: IupConfig* functions to manage application configuration files.
New: IupPlot control, that will replace IupPPlot. It eliminates all the limitations and issues, improves interaction a lot and uses double
instead of float.
New: VALUESTRING attribute for IupList.
New: USERSIZE attribute for all elements.
New: SHOWCONTEXTMENUL:C attribute for IupMatrixEx.
New: NUMERICDECIMALSYMBOL attribute for IupMatrixEx.
New: Dialog to configure TEXTSEPARATOR, NUMERICFORMATPRECISION and NUMERICDECIMALSYMBOL in IupMatrixEx context
menu.
New: FILEDIRECTORY and LASTFILENAME attributes for Export and Import file dialogs in IupMatrixEx context menu.
New: MENUCONTEXTCLOSE_CB callback in IupMatrixEx.
New: SKIPLINES and SKIPCOLUMNS option attributes used in COPYFILE export action in IupMatrixEx.
New: OPACITYIMAGE attribute for IupDialog in Windows and GTK.
New: VALUECHANGED_CB callback for IupSplit.
Changed: TEXTSEPARATOR attribute is now used also for all COPY* attributes in IupMatrixEx. Removed TEXTNUMERICLOCALE
attribute. TEXTFORMAT renamed to FILEFORMAT.
Changed: FONTFACE is not read-only anymore.
Changed: default font typeface changed to Helvetica in IupGLSubCanvas.
Changed: IMPORTANT - GTK defaults to GTK version 3 starting at Linux 3.13. (Notice no XOR support in CD)
Fixed: number separator in COPY* and PASTE* attributes in IupMatrixEx.
Fixed: IupTabs VALUE/VALUEPOS attributes after tabs were dynamically inserted in Windows.
Fixed: VALUECHANGED_CB in IupScintilla. ZOOM_CB declaration in Lua.
Fixed: automatic inactive appearance for images with 24bpp in Windows.

Version 3.11.2 (06/Oct/2014)

New: TITLEBACKIMAGEINACTIVE attribute for IupGLFrame and IupGLExpander.
New: BACKIMAGEINACTIVE attribute for IupGLFrame.
New: BACKIMAGE* attributes for IupGLButton, IupGLVal and IupGLProgress.
New: FRONTIMAGE* attributes for IupGLButton.
New: FITTOBACKIMAGE attribute for IupGLButton, IupGLVal and IupGLProgress.
New: global attribute DEFAULTPRECISION that affects how real values are shown by default in IupGetParam and IupMatrixEx.
New: attribute EMPTYAS3STATE for IupTree on Windows.
New: value AREA for DS_MODE attribute in IupPPlot.
Changed: all images in IupGLControls are now drawn using OpenGL textures instead of glDrawPixels.
Fixed: image complementary attributes like IMAGEPRESS, IMAGEHIGHLIGHT, IMAGEINACTIVE, and others, in IupGLControls.
Fixed: BGCOLOR_CB and FGCOLOR_CB callbacks of IupMatrix in Lua when an invalid number of arguments is returned. (Thanks to
Alex M.)
Fixed: parsing of non-numeric values in IupMatrixEx when column has numeric values.
Fixed: pressed feedback in IupGLToggle when using IMAGEPRESS.
Fixed: image draw using OpenGL textures in IupGLControls was upside down, and now does not depends on the background color
anymore.
Fixed: IupGLExpander behavior when BARPOSITION is BOTTOM or RIGHT.
Fixed: IupGLVal interaction when IMAGE is defined.
Fixed: elements positioning when BORDER=Yes in IupGLControls.
Fixed: characters processing for the ACTION callback in IupText when they are generated using an AltGr key combination (Ctrl+Alt) on
Windows.
Fixed: Ctrl+A key combination in IupText when AltGr key is used on Windows.
Fixed: all IupSet*Id functions when the element actually does not support Id based attributes but the application use the function for
custom attributes.
Fixed: scrollbar programmatic update in IupCanvas on Windows.

Version 3.11.1 (01/Sep/2014)

New: COMCTL32VER6 global attribute that informs if the Windows common controls are using Visual Styles or not.
New: SHOWGRIP option to change grip in IupSplit for a double continuous line using LINES value. Also when SHOWGRIP=NO and
COLOR is defined the grip area is filled with the color.
New: IupMglLabel based on IupMglPlot so TeX symbold can be displayed without the need for a plot.
New: TITLEBACKIMAGE and BACKIMAGE attributes for IupGLFrame. TITLEBACKIMAGE attribute for IupGLExpander.
New: MOVETOTOP attribute for IupGLFrame and IupGLExpander.
New: IupGetDouble* and IupSetDouble* functions.
New: double parameters in IupGetParam. PRECISION attribute to control real values when interactively changed.

IUP - Portable User Interface 07-Jan-25

19/496

http://sourceforge.net/projects/iup/files/3.12/
http://sourceforge.net/projects/iup/files/3.11.2/
http://sourceforge.net/projects/iup/files/3.11.1/

Changed: IMPORTANT - repository migrated from CVS to SVN.
Fixed: missing iup.ImageFromImImage in Lua.
Fixed: IupImageFromImImage when flipping bottom-top to top-bottom. (Thanks to Jeremiah N.)
Fixed: support for global menu in recent Ubuntu systems.
Fixed: Font support in IupGLControls when UTF8MODE=Yes.
Fixed: DEFAULTFONT processing. It was affecting FONT inheritance.
Fixed: CARET attribute in IupScintilla.
Fixed: IupGLFrame natural size computation.
Fixed: MOVEABLE attribute in IupGLCanvasBox when moving native based elements like IupText and IupMatrix.
Fixed: iup.glprogressbar creation in Lua.
Fixed: improved support for liboverlay-scrollbar in Ubuntu, but SCROLL_CB is limited to IUP_SBPOSV and IUP_SBPOSH codes.
Fixed: IupDialog layout update when maximizing the window on GTK. Invalid IupFlush removed from IupCanvas layout update on
GTK.
Fixed: DRAWABLE attribute inside FILE_CB callback in IupFileDlg on GTK.
Fixed: Added compatibility code for GTK 3.10.
Fixed: IupFrame background color on GTK version 3.x
Fixed: default values that were dependent on the current locale. DENSITY in IupDial, DX and DY in IupCanvas, STEP and PAGESTEP
in IupVal, and several in IupMglPlot.
Fixed: Management of hidden tabs in IupTabs on Windows.
Fixed: LINEVALUE attribute return value in IupScintilla. CARET attribute in IupScintilla when "lin" is greater than the last line.
Fixed: ZORDER attribute for IupGLControls elements.
Fixed: IupButton and IupToggle mouse over feedback when not using Visual Styles and FLAT=Yes on Windows.

Version 3.11 (28/Jul/2014)

New: CD_IUPDBUFFER and CD_IUPDBUFFERRGB drivers in the iupcd library. IMPORTANT: This IUP version depends on CD version
5.8.
New: IMAGE, IMHIGHLIGHT, IMOPEN, and IMOPENHIGHLIGHT attributes for replacing the arrow, or the arrow and the title of a
IupExpander when BARPOSITION=TOP.
New: EXTRABUTTONS, IMAGEEXTRAid, IMAGEEXTRAPRESSid, IMAGEEXTRAHIGHLIGHTid attributes and EXTRABUTTON_CB callback
for IupExpander to handle extra buttons at right when BARPOSITION=TOP.
New: IupPPlotGetSample and IupPPlotGetSampleStr functions for IupPPlot.
New: LOADLEXERLIBRARY attribute in IupScintilla.
New: DRAGCURSOR attribute for the Drag & Drop support.
New: SWAPBUFFERS_CB callback for IupGLCanvas.
New: COLORUPDATE_CB callback for IupColorDlg.
New: HORIZONTALFREE and VERTICALFREE values for the EXPAND attribute. The element will simply expand to the available free
space at the container, and it will not affect the container expand.
New: DEFAULTFONTSTYLE global attribute.
New: OPENCLOSE_CB callback for IupExpander.
New: IupGLControls an OpenGL embeddable controls library.
New: IupScintillaSendMessage function.
Changed: SEPARATOR attribute behavior in IupLabel will now use the HORIZONTALFREE and VERTICALFREE values for the EXPAND
attribute.
Changed: updated Scintilla version to 3.4.4.
Changed: all the controls in the additional controls library (matrix, colorbrowser, gauge, dial, etc) and the IupPPlot control now uses
the new CD_IUPDBUFFER* drivers.
Changed: IupMglPlot API replaced "float" by "double". Removed support for TrueType (*.ttf) and OpenType (*.otf) font files.
PLANARVALUE and CLOUDCUBES attributea are not supported anymore. AXS_*MIN attributes default changed to -1, to match MathGL
default. MathGL updated to version 2.2. IupMglPlotTransformXYZ renamed to IupMglPlotTransformTo. Plor area configured using
boolean atributes MARGINLEFT, MARGINRIGHT, MARGINTOP, and MARGINBOTTOM.
Fixed: SORTSIGN attribute in IupMatrix when set to NO.
Fixed: first item in single selection IupTree was not showing that it is selected.
Fixed: IupScrollBox when there is no child.
Fixed: LISTACTION_CB callback when state=0 in IupMatrixList.
Fixed: ENTERWINDOW_CB callback for IupLabel on Windows.
Fixed: BGCOLOR support in IupBackgroundBox.
Fixed: IupExpander expansion when closed. Alignment of arrow and title when bar size is greater than default.
Fixed: support for icons with multiple sizes in IupDialog on Windows.
Fixed: delete all items in IupMatrixList when click the del button on title line.
Fixed: VALUE attribute of IupList when EDITBOX=YES and the text box is empty on Windows.
Fixed: MASK attribute processing in IupMatrixList when starting to edit a label.
Fixed: Ctrl+V key combination to Paste cells starting at the focus cell in IupMatrixList.
Fixed: IupVal behavior when inside an IupBackgroundBox or IupScrollBox on Windows.
Fixed: attribute return value in Lua when it was not a string.
Fixed: IupFill so it can be placed inside a IupGridBox, the behavior will be the same as inside an IupHbox.
Fixed: FITTOCHILDREN attribute in IupGridBox.
Fixed: IupPPlotTransformTo missing from DLLs and from Lua.
Fixed: Ctrl and Shift keys scrolling the IupMatrix when pressed.
Fixed: SPIN_CB callback in IupText when value was incremented/decremented out of range.
Fixed: CLIENTSIZE attribute in IupDetachBox, IupSbox, IupSpin and IupSplit. Changed CLIENTSIZE in IupHbox, IupVbox and
IupGridBox to use only the Current size.
Fixed: CLIENTOFFSET attribute in IupBackgroundBox.
Fixed: K_ANY being called twice for each key in IupScintilla.
Fixed: COUNT attribute return value in IupText on Windows.
Fixed: dynamic insert of the first Tab in IupTabs on Windows. Dynamic remove of the last Tab in IupTabs. Management of hidden
tabs in IupTabs on Windows.
Fixed: NAME cache attribute when element is removed.

IUP - Portable User Interface 07-Jan-25

20/496

http://sourceforge.net/projects/iup/files/3.11/
iupglcontrols.html

Version 3.10.1 (24/Jan/2014)

New: RESIZEMATRIX_CB callback in IupMatrix.
New: internal IupMatrix callbacks BUTTON_CB, MOTION_CB and KEYPRESS_CB are now exported to Lua as "MatButtonCb",
"MatMotionCb" and "MatKeyPressCb".
New: AUTOCSELECTION_CB, AUTOCCANCELLED_CB and AUTOCCHARDELETED_CB callbacks in IupScintilla.
Fixed: key names in IupLua when modifiers are used. (Thanks to kmx)
Fixed: text with computation in UTF-8 on Windows. (Thanks to kmx)
Fixed: 3 state check box size in IupTree on Windows when using Classic Style. (Thanks to kmx)
Fixed: IUP_MOUSEPOS on Windows when the taskbar is at the top, or left of the screen.
Fixed: TABTITLE return value after tabs are added or removed.
Fixed: IupBackgroundBox creation in Lua.
Fixed: map error in IupTabs on GTK.

Version 3.10 (17/Jan/2014)

New: DRAGDROPTREE attribute to enable automatic drag&drop between IupTrees in the same application.
New: DRAGDROPLIST attribute to enable automatic drag&drop between IupLists in the same application.
New: SHOWCLOSE attribute and TABCLOSE_CB callback for IupTabs to show a close button in each tab.
New: RIGHTCLICK_CB callback for IupTabs.
New: TASKBARPROGRESS, TASKBARPROGRESSSTATE and TASKBARPROGRESSVALUE attributes for IupDialog on Windows to show
a progress feedback on the taskbar running on Windows 7+.
New: COPY, SELECTALL, PRINT and ZOOM attributes in IupWebBrowser.
New: function IupImageFromImImage in the IUP-IM library.
New: FITTOCHILDREN attribute for IupGridBox.
New: IupDetachBox container element to allow interactively detach of an element and insert it in a new dialog.
New: TEXTNUMERICLOCALE attribute for IupMatrixEx to allow a different locale during paste of numeric values.
New: IupBackgroundBox native container to allow more control of children visibility.
Changed: "IUP_EditErase" image to use "gtk-delete" definition instead of "gtk-close" in IupImageLib.
Changed: TABIMAGEn and TABTITLEn attributes in IupTabs to update the respective child attribute.
Fixed: VALUE_HANDLE attribute in IupZbox was write-only.
Fixed: missing IupMatrixList Lua binding.
Fixed: SAVEUNDER attribute in IupDialog on Windows.
Fixed: IupWebBrowser on GTK.
Fixed: horizontal frame color in IupMatrix.
Fixed: IupLoadBuffer.
Fixed: TIP attribute on Windows when not using Visual Styles.
Fixed: EXPANDCHILDREN in IupHbox, IupVbox and IupGridBox when children contains an IupFill.
Fixed: Caps Lock processing on Windows.
Fixed: COUNT, APPENDITEM, INSERTITEMid and REMOVEITEM in IupMatrixList when EDITABLE=Yes. Drawing of the empty line
when there is no other items. Insertion of the empty line when there is less than 2 items in the list.
Fixed: ACTION callback in IupText when using UTF-8.
Fixed: SCROLLTO and SCROLLTOPOS attributes in IupText on Windows when FORMATTING=Yes.
Fixed: support for UTF-8 in IupClipboard on Windows that affected paste in IupText.

Version 3.9 (22/Nov/2013)

New: KEYSUNICODE attribute for IupScintilla on Windows.
New: support for command line processing in the IupView application to convert image files to source code that creates an IupImage.
New: IupProgressDlg pre-defined dialog.
New: utility functions IupSetInt*, IupSetFloat*, IupSetRGB* and IupGetRGB*.
New: support for UTF-8 strings in the Windows and GTK driver using the UTF8MODE global attribute.
New: ACTION callback for IupExpander.
New: COLRESIZE_CB callback in IupMatrix.
New: COPYCOL, COPYLIN, MOVECOL and MOVELIN attributes in IupMatrix.
New: FRAMETITLEHIGHLIGHT and ALIGNMENTLIN0 attributes in IupMatrix.
New: TYPEL:C attribute and TYPE_CB callback in IupMatrix that allow to display a color, a progress bar, and an image in a cell.
New: RESIZEMATRIXCOLOR attribute in IupMatrix to control the resize column feedback color.
New: TOGGLEVALUE attribute and TOGGLEVALUE_CB callback in IupMatrix to enable a toggle button inside a cell.
New: control IupMatrixList that shows a list using an IupMatrix.
New: IupMatrixEx library with an extension package for IupMatrix.
New: VALUECHANGED_CB callback for IupMatrix.
New: IupSetLanguagePack, IupGetLanguageString and IupSetLanguageString functions to help in application
Internationalization. Strings starting in "_@" will be automatically retrieved from the internal string database.
New: MASKFAIL_CB callback for IupText and IupList when MASK is used and an invalid text is typed.
New: Ihandle* parameter for IupGetParam.
New: attributes REMOVE and CURRENT in IupPPlot now also accepts the DS_NAME as value when setting.
New: PLOT_COUNT, PLOT_NUMCOL, PLOT_CURRENT, PLOT_INSERT and PLOT_REMOVE attributes for IupPPlot to support multiple
plots in the same display area.
New: PLOTBUTTON_CB and PLOTMOTION_CB calbacks for IupPPlot.
Changed: preserve of FRAMEVERTCOLOR*, FRAMEHORIZCOLOR*, SORTSIGN*, MASK*, WIDTH*, RASTERWIDTH*, HEIGHT* and
RASTERHEIGHT* attributes when lines or columns are added or removed in IupMatrix.
Changed: all color values in attributes now accepts also the notation "#RRGGBB" in hexadecimal.
Changed: removed Windows 2000 compatibility.
Changed: UTF8AUTOCONVERT global attribute renamed to UTF8MODE with inverted meaning. Old name still supported for
compatibility.
Changed: renamed IupStoreAttribute to IupSetStrAttribute, and IupSetStrfAttribute to IupSetStrf, old names kept for

IUP - Portable User Interface 07-Jan-25

21/496

http://sourceforge.net/projects/iup/files/3.10.1/
http://sourceforge.net/projects/iup/files/3.10/
http://sourceforge.net/projects/iup/files/3.9/
dlg/iupprogressdlg.html
ctrl/iupmatrixlist.html
ctrl/iupmatrixex.html

compatibility.
Changed: IupMglPlot attribute ZOOM to not use "," where floating point values are specified, changed to ":".
Changed: added support for more keys in iupkey.h. New key definitions: K_LSHIFT, K_RSHIFT, K_LCTRL, K_RCTRL, K_LALT, K_RALT,
K_NUM, K_SCROLL, K_CAPS and K_diaeresis. Now all GDK and X11 keys are supported, but non defined keys are supported using its
hexadecimal value. Modifiers are now a bit value separated from the base key code, which can be obtained using the macro
iup_XkeyBase. See the "iupkey.h" file for more definitions. IMPORTANT: any C/C++ source code that uses the "iupkey.h" definitions
MUST be recompiled.
Changed: added support for keyboard selection in IupMatrix.
Changed: When LIMITEXPAND=Yes in IupMatrix and the scrollbars have *AUTOHIDE=Yes, the maximum size will not include the
scrollbars.
Changed: updated Scintilla version to 3.3.5.
Changed: STEREO attribute processing in IupGLCanvas to avoid failure during canvas creation. If stereo is not available it will still
create a regular OpenGL context.
Changed: ENTERITEM_CB callback in IupMatrix is now also called when focus is changed because lines or columns were added or
removed.
Fixed: repaint of the IupOleControl that affected the IupWebBrowser on Windows.
Fixed: NODEREMOVED_CB callback for IupTree, was providing the wrong userdata in some cases.
Fixed: IupScintilla library build to internally use the Scintilla name space.
Fixed: K_ANY callback return code processing in IupScintilla on Windows.
Fixed: VALUE and CHARn attributes returned value in IupScintilla.
Fixed: IupToggle focus feedback behavior on Windows.
Fixed: missing IupGridBox register in Lua.
Fixed: fail to update IupTabs when a child is removed on Windows.
Fixed: documentation of internal callback parameters format list.
Fixed: unmap of IupTree, IupText and IupTabs on Windows.
Fixed: IupScrollBox expand behavior to not depends on children expansion, just like it is not dependent on children size.
Fixed: focus behavior in IupScrollBox, now CANFOCUS=NO.
Fixed: LEDC processing of IupSplit controls.
Fixed: IupGetAttributeHandle not checking at control implementation.
Fixed: IupExpander layout when closed but has a child that can be expanded.
Fixed: frame color transparency using BGCOLOR for title cells in IupMatrix.
Fixed: IupTextConvertPosToLinCol function for IupMatrix.
Fixed: position of dialog using IupShowXY when using IUP_LEFT and IUP_TOP, and the taskbar is at left or top on Windows.
Fixed: fixed internal test for known non string attributes that affected IupGetAttributes and iup.GetAttribute in Lua.
Fixed: clipboard and drag&drop data size on GTK.
Fixed: MASKFLOAT attribute parsing.
Fixed: CANFOCUS=NO in IupVal on Windows.
Fixed: IupWebBrowser when creating and destroying multiple controls on Windows.
Fixed: IupPPlotPaintTo to update plot sizes.
Fixed: returned value by SCREENPOSITION/X/Y attributes on Windows when the taskbar is at the top, or left of the screen.
Fixed: IupScrollBox mouse respond when there is no scrollbars.
Fixed: Spin was not being redraw when ACTIVE was changed in IupText on Windows.
Fixed: unmap of IupScintilla.

Version 3.8 (08/May/2013)

IMPORTANT: the pre-compiled binaries are compatible only with CD version 5.6.1 pre-compiled binaries.
New: attribute TOGGLEVISIBLEid for IupTree when SHOWTOGGLE=Yes.
New: attribute TABVISIBLEid for IupTabs.
New: IupLink control that shows a clickable URL.
New: IupGridBox container to arrange elements in a regular grid.
New: IupScintilla control that shows a source code text editor based on the Scintilla library.
New: support for IUP_CONTINUE return code and FILE attribute update inside the FILE_CB callback when status=OK in the IupFileDlg
dialog.
New: IupExpander container to interactively control the visibility of a child inside the dialog.
Changed: GTK stock images now uses the same size as the Windows and Motif images in IupImageLib
Fixed: line detection on strings using DOS line breaks (\r+\n).
Fixed: IupScrollBox child expansion when the container is greater than the child natural size.
Fixed: IupScrollBox binding for Lua.
Fixed: IupClipboard on Windows was clearing the clipboard contents every time data was copied.
Fixed: IupWebBrowser for GTK was using an old function call of the internal SDK.
Fixed: the DIRECTORY attribute was not being updated when a new file filename was selected in IupFileDlg.
Fixed: in a multi-selection IupTree the selection callbacks were being called with status=0 when a single item was selected. on GTK the
callback were also called when a branch were simply expanded or contracted.
Fixed: toggle processing on Windows when SHOWTOGGLE=Yes in IupTree. Fixed spacing from toggle to image on Windows. Removed
support for SHOWTOGGLE=Yes on Motif.
Fixed: dialog client size computation on Windows when the Win32 API returns an invalid value.
Fixed: IupScrollBox available space computation.
Fixed: FGCOLOR and PADDING for IupLabel when used before map on Windows.
Fixed: BUTTON_CB, ENTERWINDOW_CB and LEAVEWINDOW_CB callbacks for IupLabel on GTK.
Fixed: underline and strikeout support on GTK.
Fixed: IupMatrix redraw when selecting lines or columns in a matrix with non scrollable lines or columns.
Fixed: BGCOLOR return value in IupButton on Windows.
Fixed: "Load Image Lib" feature in IupView when using GTK.
Fixed: ZORDER attribute on Motif.

Version 3.7 (29/Nov/2012)

IUP - Portable User Interface 07-Jan-25

22/496

http://sourceforge.net/projects/iup/files/3.8/
elem/iuplink.html
elem/iupgridbox.html
ctrl/iup_scintilla.html
elem/iupexpander.html
http://sourceforge.net/projects/iup/files/3.7/

New: support for GTK 3. The pre-compiled binaries still use GTK 2. See the GTK driver documentation.
New: layout composition element IupScrollBox.
New: SHOWDRAGDROP attribute and DRAGDROP_CB callback to support internal drag and drop of items in IupList.
New: support for global callbacks in Lua.
New: ADDFORMAT, FORMAT, FORMATAVAILABLE, FORMATDATA and FORMATDATASIZE attributes for IupClipboard.
New: TOGGLE option for VALUE attribute in IupToggle.
Fixed: IMAGEid attribute update in IupList.
Fixed: IupGetParam callback return value parsing in Lua.
Fixed: IupCanvas size when scrollbars are hidden on Motif.
Fixed: IupLabel missing drag&drop support.
Fixed: IupMatrix on GTK when editing a cell and Esc was pressed.
Fixed: the return value for POSX and POSY in IupCanvas when the respective scrollbar is hidden or disabled.
Fixed: detection of the minimum size of a child inside IupSplit.
Fixed: IupCanvas RESIZE_CB was called recursively when DX or DY attributes were updated during the callback and XAUTOHIDE=Yes
or YAUTOHIDE=Yes.
Fixed: maintain LASTADDNODE id consistent when one or more nodes are removes in IupTree.
Fixed: key processing in IupText and IupList on Motif to avoid Alt, Ctrl and Sys keys to generate text input.
Fixed: IupLabel mnemonic parsing on GTK.
Fixed: Mnemonic processing on Windows.
Fixed: IupButton visual feedback when the user double click the button on Windows.
Fixed: IupToggle response when the user double click the button on Windows.
Fixed: natural size computation in IupMatrix when BORDER=Yes.

Version 3.6 (23/June/2012)

New: Drag&Drop attributes and callbacks for IupDialog, IupCanvas, IupText, IupList, and IupTree. Old DRAGDROP attribute
renamed to DROPFILESTARGET, old still works for compatibility.
New: CELLBGCOLORL:C and CELLFGCOLORL:C attributes for IupMatrix.
New: MAXSTR attribute for a string parameter in IupGetParam. Titles can now contain the '%' character by using two characters
"%%". New definitions for the callback parameters when index is negative.
New: SHOWTOGGLE attribute and TOGGLEVALUE_CB callback for IupTree.
New: DS_COUNT attribute in IupPPlot.
New: IupMglPlot element using almost the same interface (attributes and callbacks) as IupPPlot but with support for 3D coordinates
and many other plot options.
New: NATURALSIZE attribute for all elements.
New: support for images in IupList items using the SHOWIMAGE and IMAGEid attributes.
New: ARBCONTEXT, CONTEXTVERSION, CONTEXTFLAGS and CONTEXTPROFILE attributes for IupGLCanvas.
New: ScriptBasic Binding by John Spikowski at the SB Forum.
New: FILTER status in FILE_CB callback for IupFileDlg on Windows.
New: TOUCH attribute for IupDialog on Windows.
New: LASTERROR global attribute on Windows.
New: parameter in LEDC "-s" to declare image data as static.
New: TRAYTIPBALLOON, TRAYTIPBALLOONDELAY, TRAYTIPBALLOONTITLE and TRAYTIPBALLOONTITLEICON IupDialog
attributes on Windows. And TRAYTIPMARKUP on GTK.
New: global attribute IUPLUA_THREADED so IUP can be used inside coroutines in Lua.
New: callback MENUDROP_CB for IupMatrix to show a popup menu instead of a dropdown list.
New: support for AZERTY keyboards on Windows.
New: CLEARVALUE and CLEARATTRIB attributes for IupMatrix.
New: NONE option for the EDITNEXT attribute in IupMatrix.
Changed: optimized IupImage internal cache.
Changed: removed Lua bytecode usage in pre-compiled binaries. Now IUP pre-compiled binaries are compatible with LuaJIT.
Changed: the MINSIZE and MAXSIZE attributes for IupDialog now also behaves as the other elements.
Changed: added internal string limitations for IupGetParam, IupGetFile and IupGetText.
Changed: ADDLEAFid and ADDBRANCHid attributes in IupTree now accepts -1 to insert a node before the root node.
Changed: improved performance of APPENDITEM and INSERTITEM in IupList on Windows.
Changed: improved mouse edition interaction in IupMatrix. Now the edition is started only when left button is released after a double
click. Also if DROPCHECK_CB is defined and return IUP_DEFAULT for a cell, to show the dropdown list or the new popup menu the user
can simply do a single click in the drop feedback area of that cell.
Changed: REDRAW attribute interval in IupMatrix now uses "-" for separator as other attributes. Old separator is still accepted.
Changed: if TEXT or IMAGE attributes set to NULL in IupClipboard clears the clipboard data.
Changed: horizontal alignment for text with multiple lines in IupButton now will also align each line on Windows.
Undo: removed "P" from IupPPlot additional API functions, because they will be used also for other plot controls. Old names still exists
for compatibility. The new functions need more flexibility and they must co-exist.
Fixed: NUMCOL_NOSCROLL and NUMLIN_NOSCROLL attributes for the IupMatrix when scrolling with the scrollbar arrows up to the
top or to the left.
Fixed: IupMatrix MASKL:C attribute when set at some cells and not set at others, after editing the cell where it is set affected the other
cells.
Fixed: iup.tabs and iup.cbox were not allowing the creation of a control with no children in Lua.
Fixed: secondary dialog for overwrite confirmation in IupFileDlg on Motif.
Fixed: iup.normalizer when constructor receive children as parameters in Lua.
Fixed: DIALOGFRAME attribute in IupDialog was handled only at map, affecting RESIZE processing before mapping.
Fixed: SCROLLTO and SCROLLTOPOS in IupText on Windows.
Fixed: ORIENTATION attribute in IupSplit were case sensitive.
Fixed: DIRECTION attribute in IupSbox were case sensitive.
Fixed: Enter key processing in IupText on Windows when MULTILINE=NO.
Fixed: 'u' option processing (button names) of IupGetParam in Lua.
Fixed: TIP attribute in IupProgressBar on Motif.
Fixed: TIP attribute in IupVal on Windows.
Fixed: TABTYPE was setting MULTILINE=NO when TOP or BOTTOM where set on Windows.

IUP - Portable User Interface 07-Jan-25

23/496

drv/gtk.html
http://sourceforge.net/projects/iup/files/3.6/
attrib/iup_dragdrop.html
http://www.scriptbasic.org/forum/index.php/board,48.0.html

Fixed: implemented missing iup.GetChild in Lua.
Fixed: some images from IupImageLibOpen when using GTK.
Fixed: invalid memory access in CURSOR attribute when name is too large.
Fixed: BGCOLOR_CB and FGCOLOR_CB callbacks in Lua, where not properly cleaning the stack. (Thanks to zcs)
Fixed: missing ih:destroy() method in Lua for some elements.
Fixed: invalid memory access in X and Y attributes in IupDialog on the GTK driver when the dialog in hidden.
Fixed: CARET attribute in IupText on Windows when the caret is located outside the visible area.
Fixed: native destruction of IupMenu when inside a submenu on Windows.
Fixed: image data end value in LEDC.
Fixed: IupNormalizer parameter checking in LEDC.
Fixed: invalid ampersand ('&') processing in TIPS on Windows. Improved ampersand processing on GTK.
Fixed: VALUE=OFF display update in IupToggle on GTK when using an image in the toggle.
Fixed: dialog layout now considers the global menu usage on the new Ubuntu Unity desktop.
Fixed: SELECTION_CB in IupTree not being called for the last unselected node in a multi-selection tree, when that node is re-selected.
on Windows that node was also not being selected.
Fixed: on GTK changing focus was also changing the selection in a multiple selection IupTree.
Fixed: invalid initialization of IupList when GTK version is older than 2.12.
Fixed: redraw when FGCOLOR is set in IupText on Windows.
Fixed: improved memory usage in variable parameter attribute functions.
Fixed: MDI dialogs and menu behavior on Windows.

Version 3.5 (26/Apr/2011)

New: attributes COUNT, LINECOUNT and LINEVALUE for IupText.
New: dialog IupElementPropertiesDialog used internally at IupLayoutDialog now can be used by applications to inspect any
element.
New: common callback TIPS_CB called before a tooltip is displayed.
New: CELLOFFSETL:C and CELLSIZEL:C attributes for IupMatrix.
New: LIMITEXPAND attribute for IupMatrix.
New: IUP_Webcam image in the IupImageLib.
New: global attribute SHOWMENUIMAGES on GTK, with default value "Yes".
New: NUMCOL_NOSCROLL and NUMLIN_NOSCROLL attributes for the IupMatrix that add more non scrollable cells.
New: ORIGINOFFSET attribute for IupMatrix.
Changed: TIPVISIBLE will now return the current visible state of the tip window.
Changed: IupConvertXYToPos will now work for IupMatrix also.
Changed: optimized redrawing of IupCells when SCROLLING_CB is not defined.
Changed: removed "P" from IupPPlot additional API functions, because they will be used also for other plot controls. Old names still
exists for compatibility.
Changed: FRAMEVERTCOLOR*:C and FRAMEHORIZCOLORL:* are now also accepted in IupMatrix.
Fixed: function iuplua_pushihandle when the element was not created in Lua, that cause a crash when destroying the Lua element.
Fixed: destruction of the spin in a IupText element on Windows.
Fixed: SELECTION and SELECTIONPOS attributes in IupText on Motif.
Fixed: VALUE attribute returned in IupFontDlg on Motif.
Fixed: DRAWSIZE attribute in IupCanvas on GTK when the canvas is hidden.
Fixed: IupColorBrowser documentation was corrupted.
Fixed: ACTION_CB callback not being called in IupMatrix when editing the cell and a non character key was pressed.
Fixed: IUP_IGNORE is now processed in SPIN_CB in IupText on GTK.
Fixed: VALUECHANGED_CB callback being called too many times in IupText on Windows and GTK.
Fixed: the old BUTTON_RELEASE_CB callback in IupVal on GTK not being called.
Fixed: multiline text size computation on Windows and Motif when the last line is empty.
Fixed: VALUE* attributes in IupTabs on Motif when the new value is equal to the current value.
Fixed: Ctrl+V, Ctrl+C, Ctrl+X and Ctrl+A key strokes were being inserted in the text in IupText on Motif.
Fixed: CLIPBOARD attribute in IupText and IupList on Motif.
Fixed: LEDC tool for IupImageRGB and IupImageRGBA.
Fixed: TIP attribute in IupTree on Windows.
Fixed: balloon tip attributes names to TIPBALLOON, TIPBALLOONTITLE and TIPBALLOONTITLEICON on Windows.
Fixed: functions IupPPlotInsertStrPoints and IupPPlotInsertPoints.
Fixed: invalid editing when using clipboard in IupText on Motif when READONLY=Yes.
Fixed: invalid return value of READONLY attribute in IupText on Motif.

Version 3.4 (15/Feb/2011)

New: function IupClassMatch.
New: functions IupPPlotInsertStrPoints, IupPPlotInsertPoints, IupPPlotAddPoints and IupPPlotAddStrPoints for IupPPlot
to add an array of samples at once.
New: common attribute SCREENPOSITION that returs the X and Y attributes at once.
New: ACTIVEWINDOW attribute for IupDialog on Windows and GTK.
New: EDITNEXT attribute for IupMatrix to control the next cell after editing.
New: FITTOTEXT action attribute, FITMAXHEIGHT and FITMAXWIDTH attributes in IupMatrix.
New: INPUTCALLBACKS global attribute and GLOBALKEYPRESS_CB, GLOBALMOTION_CB, GLOBALBUTTON_CB and
GLOBALWHEEL_CB global callbacks.
New: IupRecordInput and IupPlayInput functions to record and play back mouse and keyboard interaction. (play partially working)
New: VALUEMASKED attribute for IupText.
New: SYSTEMLOCALE global attribute.
Changed: removed compatibility with old bc55, gcc3 and mingw3 compilers on Windows. Depending on the Cygwin installation gcc3
may still works.
Changed: improved internal class inheritance so iupClassNew can use iupRegisterFindClass to get its parent.
Changed: NAVIGATE_CB callback in IupWebBrowser to process the return value. If IUP_IGNORE is returned navigation is canceled.

IUP - Portable User Interface 07-Jan-25

24/496

http://sourceforge.net/projects/iup/files/3.5/
http://sourceforge.net/projects/iup/files/3.4/

Changed: improved compatibility with GTK 3.0.
Changed: improved memory management in IupLua using the new LDESTROY_CB callback.
Fixed: removed call to cdCanvasFlush when IupPPlotPaintTo is used.
Fixed: FILTER and EXTFILTER attributes of IupFileDlg on GTK when more than one pattern is specified for the same filter
("*.jpg;*.bmp").
Fixed: RESIZE=NO was incorrectly forcing MINBOX=NO for IupDialog on GTK.
Fixed: compatibility with GTK 2.22.
Fixed: padding warning on GTK when using IupButton with IMPRESS.
Fixed: X and Y attributes in the GTK driver for all controls. X and Y attributes in the Windows and Motif drivers for the IupDialog.
Fixed: IupInsert when adding the first element of a container.
Fixed: set attribute in the properties dialog of the IupLayoutDialog.
Fixed: behavior of BGCOLOR, GETFOCUS_CB, KILLFOCUS_CB, and K_ANY for IupList when DROPDOWN=Yes on GTK.
Fixed: parameters "o" and "n" in iup.GetParam when used in Lua.
Fixed: added support for IupSplit, IupNormalizer and IupWebBrowser in the ledc tool.
Fixed: support for WIDTH*, HEIGHT*, RASTERWIDTH* and RASTERHEIGHT* attributes of IupMatrix when the IupSetAttributeId
functions are used.
Fixed: FITTOSIZE attribute in IupMatrix when title column size is defined by WIDTH0 or RASTERWIDTH0 to be 0.
Fixed: WID get attribute in IupLua on Windows.
Fixed: added missing iup.GetNativeHandleImage and iup.GetImageNativeHandle binding in IupLua.
Fixed: line end converting when FORMATTING=Yes in IupText on Windows.
Fixed: feedback when opening/closing branches in IupTree on Windows when SHOWDRAGDROP=YES.
Fixed: DRAW_CB callback in IupCells when using the last parameter canvas.
Fixed: cell value when editing was stared with a character not valid by the current MASK in IupMatrix.

Version 3.3 (release2) (18/Nov/2010)

We identified some limitations and problems with the new IupWebBrowser control, so we re-released some 3.3 packages to include an
updated version of it.

New: HTML attribute in IupWebBrowser to load a string. New COMPLETED_CB and ERROR_CB callbacks. New STATUS attribute.
Changed: removed reason parameter from NAVIGATE_CB callback in IupWebBrowser. VALUE attribute will load always on the top
frame.
Fixed: VALUE attribute of IupWebBrowser was write only on Windows. Memory allocation that affected NAVIGATE_CB and
NEWWINDOW_CB on Windows. Added missing Lua binding pre-compiled libraries.

Version 3.3 (09/Nov/2010)

New: IupWebBrowser control using an embedded Internet Explorer on Windows, and Webkit in Linux.
New: Perl binding for IUP by Kmx at GitHub.
New: global attribute MOUSEBUTTON to send button press and button release messages.
New: control IupTuioClient that connects to a TUIO server and process multi-touch messages.
New: support for native multi-touch events in IupCanvas on Window 7. New TOUCH_CB and MULTITOUCH_CB callbacks. New TOUCH
attribute.
New: function IupRefreshChildren to update the layout locally at children only.
New: IGNORE value for the FLOATING attribute.
New: guide for building IUP, CD and IM in Linux on the documentation. Scripts for installation of the precompiled binaries or build
binaries in the system.
New: CLIENTOFFSET attribute for all containers.
New: IupLayoutDialog pre-defined dialog to visually edit the layout of another dialog in run time.
New: FLAT attribute for IupToggle when IMAGE is defined.
New: AUTOREDRAW attribute for IupTree and IupList so redraw can be disabled on Windows.
New: functions IupCopyClassAttributes, IupGetClassCallbacks and IupGetAllClasses.
New: TABCHANGEPOS_CB callback in IupTabs.
New: functions Iup*AttributeId to get and set attributes that need an ID. These functions are faster than the traditional functions
because they do not need to parse the attribute name string and the application does not need to concatenate the attribute name with the
id. The IupMat*Attribute functions also became faster than the traditional functions.
New: parameters for IupGetParam, "o" to display the list in an array of toggles inside a radio, and "n" to select a font, similar to the "c"
parameter that selects a color.
New: DROPEQUALDRAG attribute for IupTree.
New: IupFontDlg on Motif.
New: FITTOSIZE action attribute in IupMatrix.
New: callbacks BUTTON_CB, DROPFILES_CB, ENTERWINDOW_CB and LEAVEWINDOW_CB for IupLabel.
New: the IupLua Console application now shows Lua code with syntax highlighting.
Changed: MARQUEE attribute support in IupProgressBar on GTK and Motif now works just like on Windows.
Changed: SHOWRENAME in IupTree can now be changed after map.
Changed: Removed CLIENTSIZE1 and CLIENTSIZE2 from IupSplit and added CLIENTSIZE.
Changed: TYPE attribute renamed to ORIENTATION in IupVal and IupDial. Old name still works.
Changed: DIRECTION attribute renamed to ORIENTATION in IupSplit. Old name still works.
Changed: removed FOCUSONCLICK from IupButton. The old name will set CANFOCUS.
Changed: now when IMPRESS is defined along with IMAGE, and TITLE is not defined, then the borders will not be shown neither
computed. The buttons with this attribute are now smaller than in previous versions.
Changed: IupReparent to receive one more parameter to be used as a reference child.
Changed: IupSpinbox, IupSplit, IupSbox now can be dynamically constructed with IupAppend/IupInsert.
Changed: standard SIZE and RASTERSIZE format can also be used in IupHbox, IupVbox and IupFill.
Changed: now IupSaveClassAttributes and IupCopyClassAttributes will save also id dependent attributes.
Changed: Patch applied. Trying to improve the ADDFORMATTAG behavior in order to avoid scrolling physically and destroying the
selection. Adds the concept of BULK format tags. The SELECTION and SELECTIONPOS attributes of the format tag will NOT change the
IupText attributes anymore. Contribution of the Indentation library that adds syntax highlighting to a Lua code text. (Thanks to Nicolas

IUP - Portable User Interface 07-Jan-25

25/496

http://sourceforge.net/projects/iup/files/3.3/
http://sourceforge.net/projects/iup/files/3.3/
http://github.com/kmx/perl-iup
ctrl/iuptuio.html
http://www.tuio.org

N.)
Changed: removed FINDUSERDATA attribute from IupTree, use IupTreeGetId always.
Changed: removed images larger than 48x48 (inclusive) from the pre-compiled libraries of the IupImgLib, reducing its size and allowing
more applications to use the pre-compiled binaries. The images are still available in the source code.
Fixed: callback not called in IupGetParam when a file name or a color string are selected by the extra dialog button.
Fixed: LEDC to correctly include the necessary headers.
Fixed: FRAMEVERTCOLORL:C attribute of IupMatrix for cell with col=0 or lin=0.
Fixed: avoid double calls to ACTION in IupButton on Windows when pressing enter and a dialog is displayed.
Fixed: the cleaner syntax feature for separator creation in Lua.
Fixed: returned value in RASTERSIZE for the IupDialog on GTK and Motif.
Fixed: missing IupSetCallbacks export for "iup.dll".
Fixed: IupFileDlg on Motif when MULTIPLEFILES=Yes and FILE_CB is not defined.
Fixed: natural height computation for IupList on Windows when DROPDOWN=Yes.
Fixed: ACTION callback called an extra time when FOCUSONCLICK=NO and user double click in IupButton on Windows.
Fixed: TABTITLEn attribute return value of IupTabs when TABTITLE was set at a child.
Fixed: SCREENSIZE global attribute on GTK when using multiple monitors.
Fixed: MARKEDid attribute in IupTree on Windows when MARKMODE=SINGLE, was not changing the focus node.
Fixed: line end converting when FORMATTING=Yes in IupText on Windows. (Thanks to Nicolas N.)
Fixed: IupMessageDlg modality on Windows, when PARENTDLG is not specified then it will be modal relative to all application dialogs.
Fixed: mnemonic support for TABTITLE on GTK and Motif.
Fixed: drag&drop, move and copy of nodes in IupTree on GTK.
Fixed: mapping of standard font names to Pango names on GTK.
Fixed: invalid current cell in IupMatrix after adding lines or column to a matrix that had 0 lines or 0 columns.
Fixed: IupSetFocus was not working on GTK if the dialog does not has the focus.
Fixed: RESIZE_CB callback in IupCanvas not being called after the canvas is mapped on GTK.
Fixed: removed Scrollbar warning when creating a multiline IupText on Motif.
Fixed: FONT handling in IupText on Windows when FORMATTING=Yes.
Fixed: Enter key processing when editing a IupMatrix cell and IUP_IGNORE is returned in EDITION_CB, to avoid propagating that key
press to the dialog.
Fixed: IupZbox VALUE management when the zbox itself is not visible.
Fixed: IupSplit when AUTOHIDE=Yes.
Fixed: an invalid focus cell in IupMatrix could occur after NUMLIN or NUMCOL was changed to smaller values.
Fixed: invalid call to ACTION callback of a IupToggle when inside a radio and VALUE is set.

Version 3.2 (26/June/2010)

New: function IupResetAttribute.
New: MINMAX attribute for IupSplit.
New: global attribute SINGLEINSTANCE so the application can restrict the number of its instances on Windows. COPYDATA_CB callback
for IupDialog on Windows to receive the command line of the secondary instances when SINGLEINSTANCE is used.
New: attributes WMFAVAILABLE, EMFAVAILABLE, SAVEWMF and SAVEEMF for IupClipboard on Windows.
Changed: some Lua parameters that use "number" to "integer".
Changed: replaced old "arg" usage for "..." to improve better compatibility with LuaJIT. (Thanks to J.-F. Cap.)
Changed: IupSaveClassAttributes to not save values that are equal to the default values.
Changed: IupFileDlg behavior on Motif to avoid auto resize when a directory is changed.
Changed: C function iuplua_dofile will now check for the IUPLUA_DIR environment variable when file could not be opened.
Changed: control of LOHs inclusion moved from the source code to the makefile.
Changed: removed compatibility with require"iuplua51", now LuaBinaries must be used or LUA_CPATH must be set.
Changed: added compatibility with Lua 5.2.
Changed: global variable SYSTEM in Mac OS X, renamed from Darwin to MacOS.
Fixed: the cleaner syntax feature for menu creation in Lua.
Fixed: stack overflow when "MARKL:C" is set inside MARKEDIT_CB because MARK_CB is not defined in IupMatrix.
Fixed: iup.TreeSetUserId error in Lua.
Fixed: IupView executable in Win64.
Fixed: RIGHTCLICK_CB called twice when IupTree is inside two IupTabs on Windows.
Fixed: IupLoopStep on Windows to process the IDLE callback.
Fixed: natural size of IupText and IupMatrix when SCROLLBAR is VERTICAL or HORIZONTAL only.
Fixed: IupSplit were not considering MINSIZE and MAXSIZE.
Fixed: EXPANDWEIGHT implementation.
Fixed: MARK=CLEARALL in IupTree on Windows. DELNODE=MARKED in IupTree on all drivers, so the node 0 can also be removed.
Fixed: return value of SIZE and RASTERSIZE of the IupDialog when reset to NULL after the dialog was mapped.
Fixed: a right click in a node in IupTree on Windows was causing an invalid redraw of the selected node.
Fixed: parameter indexing when using the new button names parameter in IupGetParam.

Version 3.1 (22/Apr/2010)

New: MULTIUNSELECTION_CB callback in IupTree. MARKEDNODES attribute in IupTree.
New: EXPANDWEIGHT attribute for children of IupVbox and IupHbox.
New: HIDDENTEXTMARKS attribute in IupMatrix. ALIGNMENT attribute for all cells in IupMatrix, used when ALIGNMENTc is not
defined.
New: IupSplit control, similar to IupSbox but with two children.
New: option "u" in IupGetParam to redefine the OK and Cancel buttons names and add a Help button.
New: ADDROOT attribute in IupTree, its default is Yes. The first node now can be deleted and can have other nodes at depth=0. New
DELNODE=ALL value that remove all nodes.
New: native driver for MacOSX under construction. Help needed! (Thanks to Heesob P.)
Changed: INSERTITEMn attribute in IupList now allows to add an item after the last item using n=count+1.
Changed: removed IupMessage from error handling in IUP-IM utilities. Now a global attribute "IUPIM_LASTERROR" is set instead.
Changed: NUMCOL_VISIBLE and NUMLIN_VISIBLE attributes can now be greater than the actual number of columns/lines, so room will

IUP - Portable User Interface 07-Jan-25

26/496

http://sourceforge.net/projects/iup/files/3.2/
http://sourceforge.net/projects/iup/files/3.1/

be reserved for adding new columns/lines without the need to resize the matrix.
Changed: IupTree internal optimization for IupTreeSetUserId, IupTreeGetId and IupTreeGetUserId.
Changed: removed AUTODRAGDROP attribute from IupTree on GTK.
Changed: added support for multiple file selection in IupFileDlg on Motif.
Changed: Simplify IupLua implementation. More similar to a regular binding implementation like CDLua and IMLua.
Changed: removed old controls IupTabs and IupVal kept for compatibility in the IupControls libraries. The new IupTabs and IupVal
in the main library must be used from now on.
Fixed: optional creation parameter of IupSubmenu, IupSbox, IupFrame, IupRadio, IupVal and IupDial in Lua.
Fixed: IupSbox handler feedback when MAXSIZE or MINSIZE is used.
Fixed: color value in IupGetParam after the color browser dialog canceled editing.
Fixed: improved compatibility in IupOleControl so it can be compiled with gcc from Cygwin.
Fixed: display update when changing IMAGE attribute in IupLabel on Windows. Display update when changing FGCOLOR and
ALIGNMENT attributes in IupToggle on Windows.
Fixed: default image update in IupTree on Motif.
Fixed: scrollbar position in IupCanvas on Windows after dragging the thumb when it is released.
Fixed: NUMCOL_VISIBLE and NUMLIN_VISIBLE default value in IupMatrix.
Fixed: IupMatrix scrolling can now position cells in intermediate positions. When using the scrollbar button still scrolls in cell steps,
when dragging the scrollbar can freely position the cells. This fixes the problem of the last column or line being incomplete visible.
Fixed: vertical frame drawing of a cell when using FRAMEVERTCOLORL:C equals to the background color. FRAMEVERTCOLORL:C and
FRAMEHORIZCOLORL:C can now use "BGCOLOR" as value to not draw the frame line.
Fixed: added missing exports in the main DLL for IupGetInt2 and IupGetIntInt.
Fixed: object position in IupOleControl. New sample using LuaCOM for callbacks. (Thanks to Kommit)
Fixed: background color for images in IupTabs and IupTree when not using visual styles on Windows.
Fixed: integer input mask when limited to min-max in IupGetParam.
Fixed: invalid memory access on multiple selection callback management in IupList.
Fixed: compatibility code for deprecated functions on GTK 2.20.
Fixed: FILE_CB callback file parameter in IupFileDlg when multiple files are selected on Windows.
Fixed: RENAME_CB callback being called when user cancel renaming in IupTree on Windows. BRANCHOPEN_CB or BRANCHCLOSE_CB
being called when STATEid is set in IupTree on GTK and on Motif.
Fixed: invalid memory access when saving DIRECTORY in a multiple selection IupFileDlg on GTK.
Fixed: dropdown cell editing in IupMatrix on Motif.
Fixed: invalid memory access in hash table module when removing an attribute.

Version 3.0.1 (14/Mar/2010) (Internal)

New: TOTALCHILDCOUNTid and LASTADDNODE attributes in IupTree, so you can compute or retrieve the id of the node created by
an INSERT operation.
New: common callback DESTROY_CB.
Changed: propagation of attributes will be ignored at a child where the attribute is marked as non inheritable.
Changed: double click sequence of events on GTK to match the sequences on Windows and Motif.
Changed: when IMAGE is defined for a IupButton, TITLE will be also considered during map if not NULL and not empty. This will allow
buttons with images created in LED to continue to use "" to define their titles.
Changed: When the DIRECTORY attribute of IupFileDlg is consulted after the dialog is closed and the user pressed the OK button, it
will contain the directory of the selected file.
Changed: IupTree internal optimization to match ids to/from native nodes. SHOWRENAME_CB callback return code to accept
IUP_IGNORE. The NODEREMOVED_CB callback now only receive the node userdata.
Fixed: IupGetParam param parsing of %f and %c in Lua.
Fixed: IupTreeUtil contributed functions.
Fixed: AXS_YREVERSE attribute in IupPPlot.
Fixed: size of a node in IupTree on Windows when TITLEFONT is set.
Fixed: LEGENDPOS attribute in IupPPlot.
Fixed: invalid call to SELECTION_CB callback in IupTree on Windows when MARKMODE=MULTIPLE and the user pressed the Ctrl key
to select an item. Missing call to SELECTION_CB on GTK and Motif when user unselect multiple nodes at once. Invalid change of the
selection when focus is changed in IupTree on Windows Vista/7 when not using visual styles. on GTK and Motif children of not
expanded nodes were not being selected when multiple nodes were selected in one operation.
Fixed: interpretation of comments inside elements declaration in LED.
Fixed: invalid memory access in IupClose when using LED.
Fixed: selection was not hiding in IupText when the control loses its focus on Windows when MULTILINE=NO.
Fixed: MARKMODE in IupTree, NC in IupText and IupList, PADDING in IupLabel, IupButton, IupToggle, IupText and
IupTabs, if they were set only before map.

Version 3.0 (26/Jan/2010)

New: added support for MacOSX using GTK.
New: function IupLoopStepWait.
New: functions iup.TreeSetNodeAttributes, iup.TreeSetAncestorsAttributes and iup.TreeSetDescentsAttributes for IupTree
in Lua. (Thanks to Tomas G.)
Changed: iup.TreeSetValue renamed to iup.TreeAddNodes. Old name also works.
Fixed: IupList with DROPDOWN=Yes and the last item is removed.
Fixed: dynamic BGCOLOR change on Windows for IupText, IupList, IupVal and IupTabs.
Fixed: duplicate call to TABCHANGE_CB in IupTabs on Windows when a Tab is inside another Tab.
Fixed: IUP_IGNORE support in IupText on Windows for the K_ANY callback.
Fixed: focus management when dialog gets back the focus and must redirect it to the last child with focus, on Windows.
Fixed: button press feedback when FOCUSONCLICK=NO in IupButton on Windows XP.
Fixed: title bar display in IupDialog on GTK when only TITLE=NULL, but MENUBOX is still YES.
Fixed: default value for VALUE in IupFontDlg.
Fixed: background color of edit box in IupTree on Windows when not using Visual Styles.
Fixed: CARET attribute in IupText on Windows when line is greater than the last line.

IUP - Portable User Interface 07-Jan-25

27/496

http://sourceforge.net/projects/iup/files/3.0.1/
http://sourceforge.net/projects/iup/files/3.0/

Fixed: excess of motion_cb events in IupCanvas on GTK when in UNIX.
Fixed: CMARGIN attribute in IupVbox and IupHbox.
Fixed: invalid memory access in NODEREMOVED_CB callback processing of IupTree on Windows.
Fixed: VALUE attribute in IupTree when MARKMODE=SINGLE, on Windows was not unselecting the previous node, on GTK if set
during the SELECTION_CB was aborting the next call to the callback. on GTK and Motif was also not showing the node if inside a
collapsed branch.

Version 3.0 RC 4a (18/Dec/2009)

Fixed: VISIBLE attribute management. IupZbox now will respect if a child has a VISIBLE attribute set, and it will not change it. IupTabs
now does not depends on the VISIBLE attribute anymore.
Fixed: VALUE attribute return in IupItem on GTK.

Version 3.0 RC 4 (14/Dec/2009)

New: NMARGIN and NGAP non-inheritable attributes for IupHbox and IupVbox.
New: "OTHER" status code for FILE_CB when selecting an invalid file name or a directory in IupFileDlg.
New: DLL_HINSTANCE global attribute on Windows.
Changed: Added a workaround for TITLEFONTid for IupTree when changing only the Bold style on Windows.
Changed: the RENAMENODE_CB callback in IupTree is not supported anymore.
Changed: improved compatibility of IupFileDlg when DIALOGTYPE=DIR and CoInitializeEx was initialized with
COINIT_MULTITHREADED prior to IupOpen on Windows.
Changed: IupFrame can now has a color background when not using TITLE, and BGCOLOR is set before map.
Fixed: memory leak in IupPPlot.
Fixed: invalid memory access in set ALIGNMENT attribute for IupLabel, IupButton and IupToggle, and in set MARK for IupTree.
Fixed: invalid layout computation when using the old IupSpin element.
Fixed: STATE attribute for IupTree on Windows when branch has no child.
Fixed: invalid redraw of some controls when dialog is resized on Windows.
Fixed: invalid memory access for SYSTEMVERSION global attribute in Linux. (Thanks to David G.)
Fixed: missing convertion to UTF-8 in IupButton when handling TITLE at map in the GTK driver.
Fixed: image branch update when branch STATE is changed in IupTree on Windows.
Fixed: SHOWRENAME_CB callback when renaming is started clicking twice in IupTree.
Fixed: invalid limit check in VALUE attribute of IupList in the GTK driver. (Thanks to Paul G.)
Fixed: invalid memory access when setting VALUE to NULL in IupTree.
Fixed: ACTION callback called when an item is set on a IupList when DROPDOWN=Yes.
Fixed: dialog decoration size when menu is associated during the map process.
Fixed: K_ANY callback called twice for IupTabs in the GTK driver.
Fixed: invalid memory access when destroying some of the additional controls that use CD.
Fixed: incomplete redraw of the IupCanvas on Windows XP when a window moves over the canvas.
Fixed: missing call to ACTION when an item that was replaced is clicked in IupList.
Fixed: switch of a complete menu in IupDialog was not working.
Fixed: button press feedback when FOCUSONCLICK=NO in IupButton on Windows.
Fixed: VISIBLE attribute for non native containers. It affected IupZbox.
Fixed: IupMatrix with EXPAND=NO was behaving as EXPAND=YES.

Version 3.0 RC 3 (02/Oct/2009)

New: MOVE_CB callback for IupDialog on Windows and GTK.
New: SPINNING attribute for IupGetParam when the callback is activated by a spin.
New: KEYPRESS, KEYRELEASE and KEY global attributes.
New: MAXSIZE and MINSIZE attributes for all controls.
New: NODEREMOVED_CB callback for IupTree.
New: SORT attribute for IupList.
New: function IupSaveImageAsText.
New: function IupLoadBuffer.
New: parameter in the EDITION_CB callback of IupMatrix to indicate if the value will be updated.
New: auxiliary functions IupGLUseFont and IupGLWait for the IupGLCanvas. attribute REFRESHCONTEXT on Windows.
New: VALUECHANGED_CB callback for IupVal, IupDial, IupColorBrowser, IupToggle, IupText and IupList.
New: element IupClipboard.
New: functions IupGetNativeHandleImage and IupGetImageNativeHandle for the Iup-IM library.
Changed: now the iup.image constructor also accepts parameters in the same format as iup.imagergb and iup.imagergba.
Changed: return value to boolean of iup.GLIsCurrent, iup.GetParam, iup.SaveImage, iup.isshift, iup.iscontrol, iup.isbutton1,
iup.isbutton2, iup.isbutton3, iup.isbutton4, iup.isbutton5, iup.isdouble, iup.issys, iup.isalt, iup.isSysXkey, iup.isAltXkey,
iup.isCtrlXkey, iup.isShiftXkey and iup.isXkey in Lua.
Changed: the function iup.key_open is now obsolete and not necessary anymore.
Changed: improved transparency for 8bpp images on Windows.
Changed: in IupMatrix since the selection is made only using the mouse, by pressing a key will NOT clear the selection anymore. You
can still do that setting MARKED=NULL in the K_ANY callback. Improved MARKL:C to be more flexible for other MARKMODE options.
Changed: updated the IupTreeUtil contributed utility.
Changed: CHANGEVALUE_CB callback renamed to VALUECHANGED_CB in IupVal.
Changed: internal reorganization of the abstract layout methods of the Ihandle class to allow more flexibility and control of the layout
process.
Changed: LAYERED and LAYERALPHA attributes are now condensed in the OPACITY attribute. The OPACITY is available on Windows
and GTK.
Fixed: the functions IupPreviousField and IupNextField to respect the dialog hierarchy order.
Fixed: NUMCOL and NUMLIN when set to 0 in IupMatrix. Double click in a title cell was entering in edit mode at the focus cell. Marks
were processed after ENTERCELL_CB when the user single click a cell. Enter key processed also for the next cell when MULTIPLE=YES

IUP - Portable User Interface 07-Jan-25

28/496

http://sourceforge.net/projects/iup/files/3.0RC4a/
http://sourceforge.net/projects/iup/files/3.0RC4/
http://sourceforge.net/projects/iup/files/3.0RC3/

after editing ended.
Fixed: STARTFOCUS on Motif and Win32 for IupDialog where not working. Now STARTFOCUS is set only if SHOW_CB did not
changed the current focus.
Fixed: DLGBGCOLOR on Motif where incorrectly set.
Fixed: IupToggle redraw inside an IupFrame on Windows XP where disapearing.
Fixed: background color of the edit box of IupTree on Windows XP where black.
Fixed: release of stock images in IupClose caused the application to crash.
Fixed: auxiliar function iup.TreeSetUserId in Lua when releasing the previous reference.
Fixed: ACTION callback of IupButton on Windows when FOCUSONCLICK=NO was not being called.
Fixed: return value of IupSaveImage was inverted.
Fixed: export of image in Lua at the IupView application.
Fixed: IupGetParam when specifying full intervals without the step parameter.
Fixed: DEFAULTENTER and DEFAULTESC on Windows when focus is inside an IupTabs. A lso on Windows they were processed before
K_ANY, so K_ANY could not abort them by returning IUP_IGNORE.
Fixed: K_ANY called twice for K_CR when IupText has multiple lines on Windows.
Fixed: on Windows when a pre-defined system dialog was closed with Enter or Esc, the key was propagated to the dialog that open it.
Fixed: keyboard navigation in the dialog now respects the order of IupNextField and IupPreviousField for all drivers. Those
functions were also improved.
Fixed: on GTK the VISIBLE attribute returned invalid result when child is hidden by its parent.
Fixed: on Windows the text color of a selected item of an IupTree was not inverted.
Fixed: on Windows the VALUE attribute of a inactive IupItem was always OFF.
Fixed: ENTERWINDOW_CB and LEAVEWINDOW_CB for IupCanvas on Windows were not being called.
Fixed: HELP_CB was not working for IupVal, IupTabs and IupTree on Motif.
Fixed: USETITLESIZE attribute logic in IupMatrix.
Fixed: DELNODE attribute when value is CHILDREN in IupTree. It was not working for the root node.

Version 3.0 RC 2 (18/Jul/2009)

New: MONITORSINFO and VIRTUALSCREEN global attributes now also available on GTK.
New: USETITLESIZE attribute for IupMatrix.
New: DEFAULTFONTSIZE global attribute.
New: IupSetAtt auxiliar function.
Changed: the default alignment for IupButton (Text and Image) and IupToggle (Image) to "ACENTER:ACENTER".
Changed: improved decoration size computation for IupDialog on GTK.
Fixed: IupItem on GTK when compiled in versions older than 2.14, but run in newer versions.
Fixed: alignment of buttons in IupAlarm.
Fixed: IupZbox visible child management and VISILBE attribute update after mapping an element.
Fixed: X and Y attributes for GTK.
Fixed: IupTree TITLE with non UTF-8 characters.
Fixed: IupClose in loop when removing names.
Fixed: CONTEXT and VISUAL in IupGLCanvas.
Fixed: SHOWTICKS in IupVal.
Fixed: in IupMatrix. default cell alignment. BGCOLOR and FGCOLOR to use the global default colors instead of "255 255 255" and "0
0 0". drawing details. misbehavior of the scrollbar on GTK. improved IUP 2 compatibility when calling VALUE_CB and when consulting
titles to compute cell size.
Fixed: VALUE management in IupZbox.
Fixed: removed "cannot add non scrollable widget" warning message when creating a IupCanvas on GTK.
Fixed: ADDEXPANDED in IupTree.
Fixed: SIZE consideration in layout computation for IupDialog.
Fixed: DIALOGTYPE=MESSAGE for IupMessageDlg on GTK.
Fixed: IupButton with no text and no image, but with BGCOLOR defined will properly show the color.

Version 3.0 RC 1 (26/Jun/2009)

General

New: checked for memory leaks using VLD on Windows and Valgrind in Linux.
New: PREVIEWGLCANVAS attribute for IupFileDlg.
New: auxiliary functions IupTextConvertLinColToPos and IupTextConvertPosToLinCol for IupText.
New: basic tutorial for IupLua. (Thanks to Steve D.)
New: IupTree now uses native controls and was moved to the standard controls. The old implementation is not available. Images for
nodes are not limited to 16x16 anymore. BGCOLOR now follows the same default as IupText and IupList, and can be changed. New
TITLEFONT, FGCOLOR, USERDATA, FINDUSERID, COUNT, CHILDCOUNT, EXPANDALL, INDENTATION, HIDEBUTTONS, HIDELINES,
COPYNODE, MOVENODE, SPACING, TOPITEM, INSERTLEAF and INSERTBRANCH attributes. New BUTTON_CB, MOTION_CB and
DROPFILES_CB callbacks. Attributes SCROLLBAR and REDRAW are not supported anymore. VALUE attribute split in VALUE and MARK
attributes, set MARK using VALUE is still possible fro backward compatibility. STARTING renamed to MARKSTART, and CTRL/SHIFT
attributes replaced by MARKMODE (old names kept working for compatibility). Now if DRAGDROP_CB returns IUP_CONTINUE or if it is
not defined but SHOWDRAGDROP=Yes then the node will be automatically moved to the new position. ATTENTION - DEPTH is now a
read-only attribute, use the INSERT* attributes to properly add nodes. NAMEid attribute renamed to TITLE, old attribute still works but
will be removed in future versions since it conflicts with the common NAME attribute. The SELECTION_CB and MULTISELECTION_CB
callbacks now ignore their return value. The rename action is now activated by two clicks instead of a double click.
Changed: removed "lua5.1.so" dependency in UNIX.
Changed: In IupLua the Lua function iup.TreeSetValue now also accepts node decoration in the initialization table and can add a
subtree to any node. (Thanks to Tomas G.)
Changed: In IupLua attributes that are pointers to Ihandle are now returned as ihandle instead of userdata.
Changed: replaced "[]" in function declarations by a simple "*". None of those functions needed it.
Changed: the default value of the Windows attribute COMPOSITED is back to NO to improve backward compatibility and to avoid side

IUP - Portable User Interface 07-Jan-25

29/496

http://sourceforge.net/projects/iup/files/3.0RC2/
http://dmoulding.googlepages.com/vld
http://valgrind.org/

effects of the attribute.
Changed: the auxiliary functions IupTextConvertXYToChar and IupListConvertXYToItem where replaced by
IupConvertXYToPos, that also works for IupTree.
Changed: added support for WHEEL_CB on GTK for IupCanvas.
Fixed: IupLua initialization when retrieving the argc/argv arguments for IupOpen. (Thanks to Ross B.)
Fixed: Arg initialization for all controls on Motif driver.
Fixed: update of the POSX and POSY attributes for the IupCanvas.
Fixed: FONT size round when converting from pixels to points on Windows. (Thanks to Devin S.)
Fixed: button disappearing after mouse over on Windows XP.
Fixed: IupMatrix when NUMCOL/NUMLIN were less than NUMCOL_VISIBLE/NUMLIN_VISIBLE. Also fixed when NUMCOL/NUMLIN
were 0 and changed to 1, and when removed 1. CURSOR attribute when RESIZEMATRIX=Yes. (Thanks to Jeremy C.)
Fixed: action callback return value in Lua for the IupGetParam dialog. (Thanks to Zhiwei)
Fixed: EXPAND attribute for IupCanvas.

Version 3.0 BETA 3 (04/Apr/2009)

New: MARKL:C, READONLY, NUMLIN_VISIBLE_LAST, NUMCOL_VISIBLE_LAST, and SHOW attributes for IupMatrix. When scrolling
the matrix using the scrollbar the focus is not changed anymore. The last cells at right and bottom are now drawn as incomplete cells if
they do not fit in the visible area. New FONT_CB callback. CHECKFRAMECOLOR is not necessary anymore, just set FRAMEVERTCOLOR
or FRAMEHORIZCOLOR. Internal code reorganization. AREA and MULTIPLE renamed to MARKAREA and MARKMULTIPLE, old names as
still supported. New MULTILINE attribute to edit text in multiple lines, valid only before mapped.
New: IupRedraw and IupSetClassDefaultAttribute functions.
Changed: Added package registration code to IupLua that allows it to be statically linked and require"iuplua" does not abort if the
iuplua_open function was called.
Changed: the IupOleControl in Lua will not automatically initialize LuaCOM anymore. The application must manually call
"elem:CreateLuaCOM()". The previous initialization was incorrect (thanks to Ross B.).
Changed: the declaration of function IupGetClassAttributes to use the class name instead of a control handle.
Fixed: Fixed button, toggle and list sizes for GTK driver when using the Hildon Framework. (Thanks to Otfried C.)
Fixed: some IupLua dynamic libraries in Linux where incorrectly linking with Motif (libiuplua + pplot, cd, controls, gl, im and imglib +
51.so)
Fixed: HOMOGENEOUS attribute for IupVbox and IupHbox.
Fixed: CARET attribute on GTK driver was not correctly scrolling the multiline text when not visible.
Fixed: parameter checking and the return value in Lua for IupListDialog when type=2.
Fixed: the return value for IupGetText when the user canceled. (Thanks to Xu W.)
Fixed: IupGetClassAttributes and IupGetAllAttributes were not implemented in IupLua.
Fixed: The 32 bits version of the IupLua console on Windows XP64 was not working.
Fixed: CARET_CB and IupTextConvertXYToChar in IupText when MULTILINE=YES and FORMATTING=NO.

Version 3.0 BETA 2 (26/Dec/2008)

Changed: ATTENTION - the following headers were deprecated iupcb.h, iupcells.h, iupcolorbar.h, iupdial.h, iupgauge.h, iupmatrix.h,
iuptree.h - use iupcontrols.h only
Changed: ATTENTION - the following headers were deprecated iupgetparam.h, iupspin.h, iuptabs.h, iupval.h - use iup.h only
Fixed: set VALUE attribute for IupText on Windows when formatting is used.
Fixed: IupHide when dialog was maximized on Windows.
Fixed: get VALUE attribute for IupText in all drivers, after the element is mapped it must return the empty string "" when there is no
text.
Fixed: IupGetParam when specifying partial intervals.
Fixed: K_Esc key callback processing on Windows.
Fixed: PLACEMENT and FULLSCREEN for IupPopup.

Version 3.0 BETA 1 (15/Dec/2008)

General

New: GTK driver, available in UNIX and Windows.
New: internal code reorganization. More clear and simple to create controls and drivers. All comments are now in English.
New: internal documentation and Guide to create new controls. Now all the controls use the same architecture using the same base class.
New: IUP_ASSERT compile flag.
New: IupMainLoopLevel function.
New: support for the HILDON framework that runs on top of GTK on the Maemo platform used by the Nokia Internet Tablets. (Thanks to
Otfried C.)
Changed: all dialogs, and all elements that have names, are now automatically destroyed in IupClose.
Changed: ATTENTION - the following headers were deprecated iupcbox.h, iupsbox.h - use iup.h only
Changed: ATTENTION - the headers iupcompat.h and iupcpi.h were removed. They are not supported anymore.

Common Attributes

New: CHARSIZE convertion factor used by the SIZE attribute.
New: NAME used by IupGetDialogChild.
New: font face name mappings for Courier, Times and Helvetica.
New: functions IupGetClassAttributes, IupGetIntInt.
New: CLIENTSIZE returns the size of containers excluding their decoration.
New: TIP additional attributes (Motif and Windows): TIPFONT, TIPDELAY, TIPBGCOLOR, TIPFGCOLOR, TIPBALLON (Windows Only),
TIPBALLONTITLE (Windows Only), TIPBALLONTITLEICON (Windows Only), TIPVISIBLE. Not available on GTK.
New: TIPRECT auxiliary attribute for the TIP common attribute.

IUP - Portable User Interface 07-Jan-25

30/496

http://www.maemo.org

Changed: attribute FONT now uses a common a more flexible definition for all drivers, old format is still supported. The default FONT
on Motif is now "Fixed, 10".
Changed: ATTENTION - Now attributes are stored in the internal hash table only if not processed or allowed by the element class
implementation.
Changed: IupGetAttribute, IupSetAttribute and IupStoreAttribute can also be used to access global attributes using NULL as
element.
Changed: TIP and ZORDER attributes are now non inheritable.
Changed: ATTENTION - the BGCOLOR is now ignored in IupLabel, IupFrame, IupToggle (for the text) and IupVal. They will use
the background color of the native parent.

Global Attributes

New: APPSHELL, XDISPLAY, XSCREEN, XSERVERVENDOR, XVENDORRELEASE on Motif.
New: VIRTUALSCREEN and MONITORSINFO on Windows.
Changed: LANGUAGE default from PORTUGUESE to ENGLISH.
Changed: TRUECOLORCANVAS and SYSTEMLANGUAGE are now available in all drivers.

Common Callbacks

New: IUP_IGNORE return code accepted for IDLE_ACTION callback to automatically remove the callback.
New: UNMAP_CB for all controls
Changed: MAP_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB for all controls.

Layout

New: functions IupGetDialogChild, IupUnmap, IupReparent, IupInsert, IupUpdateChildren, IupGetClassType,
IupGetChildPos and IupGetChildCount..
New: FLOATING attribute to control the inclusion of the element in layout processing for IupHbox, IupVbox and IupZbox.
New: HOMOGENEOUS attribute to control the spacing in layout processing for IupHbox and IupVbox.
New: EXPANDCHILDREN attribute to control the expansion in layout processing for IupHbox and IupVbox.
New: NORMALIZESIZE attribute to control the natural size in layout processing for IupHbox and IupVbox.
New: element IupNormalizer.
New: CGAP and CMARGIN for IupVbox and IupHbox that use SIZE units.
New: VALUEPOS and VALUE_HANDLE attributes for IupZbox.
Changed: default value for ALIGNMENT in IupZbox is now "NW".
Changed: IupAppend and IupDetach can now be used for dynamic creation of menus or containers, even after the element is
mapped.
Changed: IupDetach will now automatically unmap the element.
Changed: IupAppend will now return the actual parent.
Changed: IupUpdate now only mark the control to be redraw instead of redrawing at the function call.

Dialogs

New: MINSIZE and MAXSIZE attributes. on Windows MINSIZE is ignored for systems with multiple monitors. The Windowing system
may impose a minimum default limit for the dialog that includes the title bar with all it buttons.
New: DROPFILES_CB and RESIZE_CB callbacks.
New: IUP_CURRENT and IUP_CENTERPARENT positions for IupShowXY and IupPopup.
New: IUP_HIDE and IUP_MAXIMIZE flags for SHOW_CB callback.
New: MODAL attribute to check if the dialog was shown with IupShow or IupPopup.
New: IupColorDlg, IupFontDlg and IupMessageDlg native pre-defined dialog as elements.
New: SHOWHIDDEN attribute for IupFileDLg. Preview canvas support for the Motif driver.
New: tip string for each param in IupGetParam. And a new "c" param to show a RGB color string with extra controls to show the color
and open the color selection dialog.
Changed: SAVEUNDER dialog attribute now is also available on Motif.
Changed: DROPFILES_CB callback is now available for all controls. It is only activated using DRAGDROP attribute. It is active by default
only for IupCanvas and IupDialog.
Changed: the default value of the Windows attribute COMPOSITED is now YES, except on Windows Vista.
Changed: IupDestroy is now automatically called for child dialogs when the parent is destroyed.

Canvas

New: LINEX, LINEY, XAUTOHIDE and YAUTOHIDE attributes for the scrollbar.
New: CLIPRECT attribute, a rectangle that has its region invalidated for paiting.
Changed: if ACTION is defined nothing is painted in the canvas, now also on Motif.
Changed: BORDER is now also supported on Motif.
Changed: ATTENTION - now scrollbar parameters min, max, page size and line size are updated when DX/DY are updated. POSX and
POSY will only update the position of the scrollbar. Automatic hide of the scrollbar now works also on Motif.

Label, Button and Toggle

New: attributes PADDING, ELLIPSIS, WORDWRAP and MARKUP for IupLabel.
New: IMPRESSBORDER, PADDING, MARKUP, FOCUSONCLICK and ALIGNMENT attributes for IupButton.
New: support for image and text simultaneous in IupButton.
New: support for mnemonics in IupLabel, IupButton and IupToggle.
New: RADIO attribute for IupToggle.
Changed: ALIGNMENT attribute now includes vertical alignment values.

IUP - Portable User Interface 07-Jan-25

31/496

Changed: IupButton now supports text with more than one line.

Text and Multiline

New: APPENDNEWLINE and PADDING attributes. CUEBANNER and FILTER attributes on Windows.
New: MASK attribute for IupText, IupMultiline, IupList and IupMatrix. The iupmask functions are now obsolete, autofill option and
MATCH_CB callback are not supported anymore.
New: text formatting using FORMATTING and ADDFORMATTAG attributes on Windows and GTK. New attribute OVERWRITE when
using text formatting.
New: ALL and NONE values for SELECTION attribute.
New: SCROLLTO attribute. New attributes SCROLLTOPOS, CARETPOS and SELECTIONPOS using 0 based character position. New
function IupTextConvertXYToChar to convert (x,y) coordinates in (lin, col, pos) character positioning.
New: SPIN, SPINVALUE, SPINMIN, SPINMAX, SPININC, SPINALIGN and SPINWRAP attributes. New SPIN_CB callback. The IupSpin
control is now obsolete.
New: VISIBLECOLUMNS, VISIBLELINES attributes gives much better control over size than the SIZE attribute.
Changed: IupMultiline is now implemented as IupText with MULTILINE=YES.
Changed: ATTENTION - VERY IMPORTANT - the ACTION callback in IupText now does NOT process extended keys anymore. It is
called only if the text is edited, and key=0 if it is not a valid character. The callback now is called before the text is updated on screen.
Changed: the SELECTION and CARET attribute on Windows do NOT change the focus anymore. The NC attribute now only restricts
keyboard input.
Changed: added support for BUTTON_CB and MOTION_CB callbacks. BUTON_CB can return IUP_IGNORE so the default processing will
be ignored.
Changed: CARET_CB now includes 0 based character position.
Changed: ATTENTION - the Natural Size does not uses the text contents anymore. To control the Natural Size use the
SIZE/RASTERSIZE attributes, or VISIBLECOLUMNS/VISIBLELINES attributes, or EXPAND.

List

New: APPENDVALUE, CANFOCUS, COUNT, DRAGDROP, INSERTITEMn, REMOVEITEM, TOPITEM, SPACING, VISIBLECOLUMNS,
VISIBLELINES attributes.
New: BUTTON_CB, DBLCLICK_CB, DROPDOWN_CB, DROPFILES_CB, MOTION_CB callbacks.
New: IupListConvertXYToItem function.

Other Standard Controls

New: INVERTED and TICKSPOS attributes for IupVal.
New: PADDING, VALUE_HANDLE, VALUEPOS, MULTILINE and TABIMAGE attributes for IupTabs.
New: control IupProgressBar, similar to IupGauge but with the text.
Changed: IupFrames now are native parents of their children.
Changed: IupVal implemented as a native control. Attributes HANDLER_IMAGE and HANDLER_IMAGE_INACTIVE are not supported
anymore.
Changed: IupCbox is not based on IupCanvas anymore.
Changed: IupTabs implemented as a native control. Attributes ALIGNMENT, FONT_ACTIVE, FONT_INACTIVE, TABSIZE and REPAINT
are not supported anymore.

Additional Controls

New: focus feedback and keyboard control for IupColorbar.
Changed: IupControlsClose is now deprecated. Declaration still remains for compatibility, actual function does nothing.
Changed: the NO_COLOR attribute is deprecated, now it simply sets the BGCOLOR attribute in IupCells.
Changed: in IupColorBrowser moved from HLS to HSI, added support for resize, anti-aliasing, support for BGCOLOR attribute,
feedback for ACTIVE attribute, and feedback for focus. New HSI attribute. New support for mouse wheel to change Hue. New support
for PgDn and PgUp keys to change Hue.
Changed: IupTabs and IupVal are NOT part of the additional controls anymore. They are now standard controls using native elements.
Changed: renamed MARGIN attribute to PADDING in IupGauge. IupGauge is deprecated in favor of IupProgressBar.
Changed: An IupGLCanvas when inside an IupFrame in Win32 will now work normally. But the dialog COMPOSITE attribute must be
NO for hardware acceleration on Windows.

Menus

New: HIDEMARK, AUTOTOGGLE and TITLEIMAGE attributes for IupItem.
New: BGCOLOR support for IupMenu.
New: Submenu now supports the IMAGE attribute.
New: RADIO attribute for IupMenu.
Changed: on GTK to have a menu item that can be marked you must set the VALUE attribute to ON or OFF, or set HIDEMARK=NO,
before mapping the control.
Changed: The HIGHLIGHT_CB, OPEN_CB and MENUCLOSE_CB callbacks now work normally for popup menus. HIGHLIGHT_CB is called
for items and submenus.
Changed: OPEN_CB and MENUCLOSE_CB are defined for menus, but it is checked at the parent submenu for backward compatibility
with IUP 2.x.
Changed: TITLE for submenus can now be changed after the element is mapped.
Changed: Children can be added or removed from menus even after the menu is mapped.
Changed: menus can now be dynamically changed even after mapped.

Images

IUP - Portable User Interface 07-Jan-25

32/496

New: support for 24 and 32 bpp images using IupImageRGB and IupImageRGBA constructors.
New: "UPARROW" cursor on Motif. New cursors "RESIZE_NS" and "RESIZE_WE". Updated cursor documentation with pictures of all pre-
defined cursors.
Changed: the automatic generation of inactive images for a more smooth one, still using a modified version of the background color to
create the disabled effect.
Changed: IupImageLibOpen will now only register names, but will not load the images. New 32bpp images for Windows. GTK aliases
are also available. Many new images. IupImageLibClose removed, loaded images will now be automatically unloaded.

Keyboard

New: MODKEYSTATE global attribute in all drivers.
New: key definitions: K_acute, K_ccedilla, K_Print, K_Menu.
New: key definitions for the system key modifier K_y*. on Windows this is the Windows key and in Mac this is the Apple key.
New: CANFOCUS attribute for IupButton, IupTogle, IupText, IupCanvas and IupVal.
Changed: SHIFTKEY and CONTROLKEY are now available in all drivers.
Changed: Removed the conflicts: K_BS=K_cH, K_TAB=K_cI and K_CR=K_cM. New key code macros iup_isShiftXkey,
iup_isCtrlXkey, iup_isAltXkey and iup_isSysXkey.

History of Version 2.x

Migration Guide
IUP 2.x to IUP 3.x

Critical Changes (from 2.x to 2.7/3.0)

All critical changes were packed in version 2.7 so you can prepare your code to work with both 2.7 and 3.0 versions. And you will be able to
alternate between both versions without having to add "ifdef"s to your code. The differences in the "iup.h" header file from 2.7 to 3.0
should contains only the new features introduced in 3.0.

IupOpen function declaration now include command line arguments used by X-Windows and GTK - The most important change is the signature
of the IupOpen function. It was changed to include the main function arguments. The GTK and Motif toolkits use them. In IUP prior to version
2.7 they were ignored for Motif. In Windows they are always ignored. If for some reason you do not have access to the main function arguments
you can use NULL in IupOpen. As a general rule the change is:

IupOpen() >> IupOpen(&argc,&argv)

You will also have to search&replace a few things in your source code:

the attribute "WIN_SAVEBITS" >> "SAVEUNDER"
the function IupGetType >> IupGetClassName

 A lthough the following were considered obsolete in IUP 2.6, their backward compatibility code were removed in 2.7. So you may have
to search&replace for:

the attributes "MOTIF_FONT" and "WINFONT" >> "FONT"
the value of the attribute "CURSOR" = "IUP" >> "HELP"
the definition IUP_ANYWHERE >> IUP_CURRENT
the constructor IupColor (removed) >> use the color value

The "cdiup" and "cdluaiup" libraries moved from CD to IUP under the name "iupcd" and "iupluacd" - Also you will have to change your makefile
or IDE project because we changed some library names to solve the cross dependencies between IUP, CD and IM libraries.

Strategic Changes (from 2.7 to 3.x)

All the changes described here are backward compatible with 2.7. So after doing them you will still be able to go back to 2.7.

Some global attributes like DEFAULTFONT, *BGCOLOR and *FGCOOR are now obtained from the system instead of hardcoded, this affects
mainly applications in Windows were the hardcoded DEFAULTFONT was "Tahoma, 8" and the user changed the default font or used the Large
Fonts option. If your dialog is too big in the new font then you can simply set DEFAULTFONTSIZE to force a smaller value.

The following headers were deprecated iupcb.h, iupcells.h, iupcolorbar.h, iupdial.h, iupgauge.h, iupmatrix.h, iuptree.h - they now simply include
iupcontrols.h. You can replace them by iupcontrols.h in your code.

The following headers were deprecated iupcbox.h, iupsbox.h, iupgetparam.h, iupspin.h, iuptabs.h, iupval.h - they now simply include iup.h. You
can remove them from your code.

The ACTION callback in IupText/IupMultiline now does NOT process extended keys anymore - the callback is called only if the text is edited,
and key=0 if it is not a valid character. In 2.x the key parameter were used for some navigation keys, but now is used only for keys associated
with characters. This is the most impacting change from 2.7 to 3.0, because some functionality in your application could stop working. Use the
K_ANY or K_* callbacks instead to process navigation keys.

The Natural Size of IupText/IupMultiline does not uses the text contents anymore - to control the Natural Size use the SIZE/RASTERSIZE
attributes, or the VISIBLECOLUMNS/VISIBLELINES attributes, or the EXPAND attribute. This will avoid the automatic resize of the

IUP - Portable User Interface 07-Jan-25

33/496

history2.html

IupText/IupMultiline if its content is changed by the user and the size of the dialog is changed so the layout is recalculated.

Now in IupCanvas the scrollbar parameters X/YMIN, X/YMAX and X/YLINE are updated only when DX/Y are updated. POSX/Y will only update
the position of the scrollbar. In version 2.x was necessary to set POSX/Y to update those parameters.

The BGCOLOR attribute is now ignored in IupLabel, IupFrame, IupToggle (for the text background) and IupVal. They will use the
background color of the native parent. IupFrame can has a color background when not using TITLE, and BGCOLOR is set before map.

The IupItem in GTK must have its VALUE attribute defined (ON or OFF) before mapping - so it can have the check mark, or define
HIDEMARK=NO. If not done the item will not be checkable.

The new IupTabs does not supports the inactive tab feedback. So the tabs will be always active, although its children will be sucessfully
disabled. The return value of the TABCHANGE_CB callback is not processed anymore. The most impacting feature is the TABORIENTATION
attribute that has limited support in the native controls.

In IupMatrix the selection is made only using the mouse, pressing a key will NOT clear the selection anymore. You can still do that setting
MARKED=NULL in the K_ANY callback.

In IupTree DEPTH is now a read-only attribute, use the INSERT* attributes to properly add nodes. The SELECTION_CB and
MULTISELECTION_CB callbacks now ignore their return value. Now you can only add nodes to the tree after it has been mapped to hte native
system. NAMEid attribute renamed to TITLE, old attribute still works but will be removed in future versions.

History of Changes in Version 2.x

CVS (17/Jun/2009)

General

Changed: the IupOleControl in Lua will not automatically initialize LuaCOM anymore. The application must manually call
"elem:CreateLuaCOM()". The previous initialization was incorrect (thanks to Ross Berteig).
Fixed: parameter checking and the return value in Lua for IupListDialog when type=2.
Fixed: the return value for IupGetText when the user canceled.
Fixed: The 32 bits version of the IupLua console in Windows XP64 was not working.
Fixed: IupLua initialization when retrieving the argc/argv arguments for IupOpen. (Thanks to Ross Berteig)
Fixed: action callback return value in Lua for the IupGetParam dialog. (Thanks to Zhiwei)

Version 2.7.1 (15/Dec/2008)

General

Fixed: the iuplua51 makefile where not using the g++ linker, so require"imlua" failed.
Changed: removed csh dependency from make_uname scripts.
Changed: removed IupSpeech from source and documentation.

Motif

Fixed: IupOpen was crashing if used with NULL parameters.
Fixed: DIRECTORY attribute in IupFileDlg when set to NULL did an invalid memory access.
Fixed: invalid default value for SCROLLBAR attribute in IupMultiline and IupList.
Fixed: size of tips window when displaying a multiline string.

IupControls

Fixed: some frame lines where not drawn in IupMatrix.

Version 2.7 (14/Oct/2008)

General

Changed: INCOMPATIBILITY - IupOpen function declaration now include command line arguments used by X-Windows and GTK.
Changed: INCOMPATIBILITY - "IUP" cursor in Windows renamed to "HELP" cursor.
Changed: INCOMPATIBILITY - WIN_SAVEBITS renamed to SAVEUNDER.
Changed: INCOMPATIBILITY - removed old "MOTIF_FONT" and "WINFONT" attributes. Use only the "FONT" attribute.
Changed: INCOMPATIBILITY - removed old IUP_ANYWHERE and IupColor definitions.
Changed: INCOMPATIBILITY - IupGetType renamed to IupGetClassName.
Changed: IMPORTANT - all functions that receive a constant string now has the "const" modifier for the string parameter declaration.
Changed: IMPORTANT - Copyright notice modified to reflect the registration at INPI (National Institute of Intellectual Property in
Brazil). License continues under the same terms.
Changed: IMPORTANT - the support services (Downloads, Mailing List and CVS) moved from LuaForge to SourceForge.
Changed: All dll8 and dll9 DLLs now have a Manifest file that specifies the correct MSVCR*.DLL.
Changed: Makefiles for UNIX now uses a compact version of Tecmake that does not need any installation, just type "make".
Changed: removed "INCLUDE" parameter for FILE_CB callback in IupFileDlg.
Changed: improved automatic inactive image generation.
Changed: premake files are used now only internally and were removed from the distribution.

IUP - Portable User Interface 07-Jan-25

34/496

http://sourceforge.net/projects/iup/files/2.7.1/
http://sourceforge.net/projects/iup/files/2.7/

Changed: IupLua3 libraries are not included in the distribution anymore. They are only available in source code or internally at Tecgraf.
Changed: All Lua samples now have the extension .wlua, and contains require"iuplua" and iup.MainLoop() in the code. Thanks to Ryan
Pusztai.
Changed: added traceback information to error message dialog in IupLua. Thanks to Fred Abraham.
Changed: The IupLua Console now must include require commands for any additional library.
Fixed: IupView image export in C format.
Fixed: removed MARGIN from IupFrame documentation. IupFrame does not have a MARGIN attribute.
Fixed: removed MARGIN from IupZbox documentation. IupZbox does not have a MARGIN attribute.
Fixed: SYSTEM global attribute in Windows, when running Windows Vista.
Fixed: Improved visual appearance and ticks of bar mode in IupPPlot.
Fixed: missing IupMessagef export in the DLL.
Fixed: LEDC generated code for 64-bits.
New: IMPORTANT - the "cdiup" and "cdluaiup" libraries moved from CD to IUP under the name "iupcd" and "iupluacd". But headers
and documentation remains on the CD package. Function names were NOT changed. This change eliminates a cross-dependency of IUP
and CD, now only IUP depends on CD.
New: "iupluaimglib" library so require"iupluaimglib" can be used to dinamically load the image library.

Windows

Fixed: invalid memory access when set FONT to NULL.
Fixed: CARET position when a selection is interactively changed or when the caret is at the begining of the selection in IupText,
IupMultiline and IupList.
Fixed: TABSIZE IupMultiline attribute scale convertion.
Fixed: invalid character inserted in IupMultiline when opening a dialog from a Ctrl+key combination.

Motif

Fixed: Removed X run time warning when creating a list.

IupControls

New: FRAMEVERTCOLORL:C, FRAMEHORIZCOLORL:C and CHECKFRAMECOLOR attributes for IupMatrix.
Fixed: EXTENDED_CB callback was never called in IupColorbar.
Fixed: invalid memory access in IupTree when using images with a color index greater than 128.]
Fixed: invalid memory access in IupTabs when all tabs are disabled and a next or previous tab button is pushed.
Fixed: invalid memory access in IupColorbar.
Fixed: invalid call to CLICK_CB when resizing column in IupMatrix.

Version 2.6 (26/Nov/2007)

General

Changed: SELECTION attribute in IupText now accept values in reverse order.
Changed: IupView improvements. New functions: "Save All Images"; "Save All Images in One File". Changes: "Import Image" can load
multiple images in Windows; "Save Image" allow to save in GIF format.
New: SCROLLBAR attribute for IupMultiline and IupList.
New: WORDWRAP attribute for IupMultiline.

Windows

New: "INCLUDE" parameter for FILE_CB callback in IupFileDlg.
Fixed: FONT creation when system uses a non ANSI charset.

Motif

Fixed: FONT attribute internal storage.
Fixed: IupMapFont interpretation of the size value to use points in X-Windows Logical Font Description format (XLFD).

IupControls

New: new parameter for IupGetParam to specifiy a file name string that can be changed using a file selection dialog. Thanks to Flavia
Anjos. New interval step for real and integer interval.
Fixed: for all additional controls the used font follows strict the FONT attribute. Previously for some of the controls the CD default font
were used causing an inconsistency with the control size calculation.
Fixed: ACTIVE update in IupVal.
Changed: in IupPPlot ACTIVE attribute renamed to CURRENT to avoid conflict with the IupCanvas ACTIVE attribute. Fixed DS_MODE
and DS_EDIT return values. Fixed DS_EDIT when set to "NO" from a previously set to "YES".
Changed: moved IupSbox, IupCbox and IupSpin to the core library. They do not depend on the CD library.

IupMatrix

Changed: BGCOLORL:C, FGCOLORL:C and FONTL:C are now handled different for title columns and title lines. When you set the color
or font of a full line/column it will not affect the title line/column except when that line/column is the title line/column (lin=0 or col=0).
Individual cell colors are still handled independently.

IUP - Portable User Interface 07-Jan-25

35/496

New: RASTERWIDTHn and RASTERHEIGHTn attributes.
Fixed: EDITION_CB called with invalid self parameter.
Fixed: DROPSELECT_CB called after dropdown list is hidden.

IupLua

Fixed: missing IupCells and IupColorbar initialization in iupcontrolslua_open.
New: added LuaGL binding to the IupLua console executable. So OpenGL commands can be used in Lua.

Version 2.6 RC2 (10/May/2007)

General

New: function IupUpdate to force a redraw of the element and its children.
New: function IupExitLoop to exit the current message loop. It is equivalent of returning IUP_CLOSE in a callback.
Changed: now for the IupList when DROPDOWN=Yes the size of the dropped list will expand to include the largest text.

Version 2.6 RC1 (15/Apr/2007)

General

New: functions IupGetChild, IupGetAllAttributes.
New: CLIPBOARD attribute with COPY, PASTE and CUT values for IupText and IupMultiline.
New: control IupPPlot that uses the PPlot library to draw 2D plots. Thanks to Marian Trifon.
Changed: LEDC now supports IupCells, IupCbox, IupOleControl and IupSpin.
Changed: IupMultiline and IupText size calculation. When EXPAND is different than NO or NULL, the control will ignore its contents when
calculating the control size if SIZE or RASTERSIZE is not set. So now if text is larger than the multiline and EXPAND is set, the multiline
will not expand to include its contents when the dialog is expanded. In this case the multiline will be expanded only what the dialog
allows it to expand.
Changed: size update when FONT is set. Now to update the control size IupRefresh must be called.
Fixed: Added missing documentation of IupGetParent.
Fixed: caps lock key codes.
Fixed: Added missing IupSetAttributeHandle and IupGetAttributeHandle exports in the DLL.

Windows

Changed: Resource files moved from "iup/lib" to "iup/etc".
Changed: IupFileDlg attributes FILE and DIRECTORY in Windows to accept paths containing also "/".
Fixed: dialog activation after IupPopup.
Fixed: IUP_CLOSE return in K_ANY and K_* callbacks.
Fixed: WHEEL_CB parameters x and y.
Fixed: IupPopup for menus when used in the Tray if there is no visible dialogs.
Fixed: FONT attribute initialization when control is not mapped yet. Affected mainly controls inside other controls.
Fixed: FONT attribute parse when value is invalid.

Motif

New: TOPLEVEL global attribute.
Changed: default IupHelp application in Linux to "firefox".
Changed: some attributes were updating the size of the control in the dialog. Now to update the control size IupRefresh must be called.
Fixed: Idle processing.
Fixed: return value of IupLoopStep.
Fixed: invalid resize of IupList when COMBOBOX=YES and an element is added dynamically.

IupLua

New: convertion to string for an Ihandle. Now returns "IUP(type): address", for example "IUP(dialog): 08C55240".
Changed: IupLua5 executable in Windows to enable GDI+ in CD library.
Changed: IupLua3 libraries names changed to include "3" as a suffix.
Fixed: Added missing IupGLIsCurrent binding.
Fixed: error message management when inside a callback in Lua 5.
Fixed: error handling in iuplua_dofile and iuplua_dostring.
Fixed: the second ihandle parameter inside the callabacks in Lua 3: DROP_CB, DROPSELECT_CB and TABCHANGE_CB.
Fixed: conflict in dialog resize attribute with resize callback from canvas in Lua 3.
Fixed: getattribute metamethod when value is not a number or string before calling GetHandle to check if it is a handle.
Fixed: setattribute metamethod when value is stored in C now is also set to nil in Lua to avoid old invalid values in Lua.
Fixed: IupAlarm optional parameters in Lua 3.
Fixed: missing edit_cb callback definition for IupList in Lua 5.
Fixed: Lua object memory management when destroy is called.

IupMatrix

New: RELEASE_CB mouse callback.
Changed: DRAW_CB callback to add the CD canvas as the last parameter. Now the canvas is also available for CDLua.

IUP - Portable User Interface 07-Jan-25

36/496

Fixed: BGCOLOR and FGCOLOR for full lines or full columns in titles (L:* or *:C).
Fixed: BGCOLOR for titles and empty area to use the parent's BGCOLOR instead of the dialog BGCOLOR.
Fixed: BGCOLOR_CB and FGCOLOR_CB in Lua when IUP_IGNORE is returned.
Fixed: setting VALUE attribute when the cell is being edited.
Fixed: redraw when resizing collum and the scroolbar is added to the canvas in Windows.
Fixed: redraw in SunOS after editing the cell.

Other IupControls

Changed: in IupTabs, when next or previous tab is selected using the arrow buttons or arrow keys, inactive tabs are skipped.
Changed: CD calls to use the new CD API available only in CD version 5.0. So IUP will not be compatible with old CD versions.
Changed: Because of the new parameter of DRAW_CB callback in IupMatrix, the IupControls Lua binding now depends on the CD Lua
binding.
Fixed: F2 key processing to rename a node in IupTree.
Fixed: focus change when changing the active tab in IupTabs.
Fixed: BUTTON_PRESS_CB and BUTTON_RELEASE_CB binding in Lua 3 for IupDial and IupVal.
Fixed: IupTree rename box position when using scrollbars.

IupGLCanvas

New: SHAREDCONTEXT attribute.
Fixed: Added missing DLL export IupGLIsCurrent.

Version 2.5 (31/Mar/2006)

General

IMPORTANT: New functions IupSetCallback and IupGetCallback to register callbacks without using a global name. IupGetFunction and
IupSetFunction are still working, but are not used internally anymore. The new functions speed up the performance of callbacks, and
reduce to zero name conflicts for callbacks in the global name table. It is recommended that the applications should replace
IupSetFunction and IupGetFunction by IupSetCallback and IupGetCallback. IupLua applications are automatically benefited.
IMPORTANT: Applications that overload internal callbacks of the additional controls (like IupMatrix and IupTree) must now use
IupSetCallback and IupGetCallback to do the overloading. And as before these callback can not be overloaded in Lua.
IMPORTANT: removed the support for callback inheritance. Now callbacks can only be set in the own element. The only execption is the
K_ANY and the K_* callbacks that continues to be propagated to the parent of the element with the keyboard focus. (This was a not very
usefull feature, with very few uses. But slows a lot calback management in C and in Lua. With the new IupGetCallback we were able to
remove the inheritance mecanism for callbacks.)
Changed some function declarations of the main API, some now use "const char*" in their declaration.
Changed global attributes now are stored only if not processed by the driver.
IMPORTANT: Changed the definition of Icallback to a simple one without the variable arguments. Fixed canvas callback parameters, in
the documentation is float, but with the old Icallback definition the compiler used double. Now must be float.
Changed all the internal attributes now start with the preffix "_IUP".
Changed the default limit for text in IupText and IupMultiline to be 231.
New canvas callback FOCUS_CB.
New helper function IupSetAttributeHandle to associate Ihandle* to attributes using automatic names. Instead of using IupSetHandle and
IupSetAttribute with a new creative name, this function automatically creates a non conflict name and associates the name with the
attribute. Also new function IupGetAttributeHandle.
New "Pause" button in the IUP Image Library.
Fixed the MULTISELECT_CB callback of the IupList so it does not need that the ACTION callback is also defined.
Reviewed the popup dialog management. So we improve the behavior of the IupShow of other dialogs after a IupPopup, and a new
possibility to safely cascade popups.

Windows

IMPORTANT: Global attribute WIN_DEFAULTFONT renamed to DEFAULTFONT.
Fixed attribute PLACEMENT=NORMAL when the dialog in minimized or maximized.
Fixed IupPopup for menus, when the menu item callback returned IUP_CLOSE, the return value is now processed and the application is
closed.
Change WOM_CB and be set also for the dialog.
Changed CoInitialize to CoInitializeEx[COINIT_APARTMENTTHREADED] and InitCommonControls to
InitCommonControlsEx[ICC_WIN95_CLASSES] in IupOpen.

IupControls

Changed the GETFOCUS_CB and KILLFOCUS_CB callbacks for the additional controls IupMatrix, IupVal and IupDial, now can be set
without affecting their implementation.
Changed the K_ANY for the additional controls IupTree, IupSpin and IupColorBrowser, now can be set without affecting their
implementation.
New DOUBLEBUFFER attribute for IupTabs. Default is YES. If NO will disable the double buffer. This may solve a slow Tabs redraw in
UNIX when the a Tab contains many controls.
New IupVal attributes HANDLER_IMAGE and HANDLER_IMAGE_INACTIVE that allow the use of images to replace the handler. Thanks
to Rodrigo Espinha.
Reviewed and optimized iupMask code. Added new callback MATCH_CB.

IupMatrix

IUP - Portable User Interface 07-Jan-25

37/496

IMPORTANT: Callbacks ACTION and SCROLL_CB were renamed to ACTION_CB and SCROLLTOP_CB to avoid conflict with the
IupCanvas callbacks also inherited by the IupMatrix.
IMPORTANT: You can not automatically override the KEYPRESS_CB callback anymore. You must save the original callback and call it
from inside your own.
IMPORTANT: Now when in callback mode much less memory will be allocated. Also the new callbacks MARK_CB and MARKEDIT_CB
can be used to control the selected cells in callback mode.
Fixed some string buffer sizes to handle very large matrices.
Fixed IupGetAttribute for the VALUE attribute when using callback mode and retrieving colum or line title values ("0:C" or "L:0").
Changed "matrx_img_cur_excel" to "IupMatrixCrossCursor". Old name is still available.

IupTree

IMPORTANT: The IupTree implementation now uses the KEYPRESS_CB callback. The K_ANY override support was removed. The
K_ANY callback can be used normally. If the application was using the KEYPRESS_CB, now it must override it manually, you must save
the original callback and call it from inside your own.
Change the appearance in Windows and Motif are now the same. Both systems look like the previous Windows implementation with a
white background and some small enhancements.

IupLua

IMPORTANT: IupLua3 now supports IupLua5 names. Old IupLua3 names still work, but now all the samples for IupLua5 also work in
IupLua3. The documentation and the examples for the old names were removed from the manual pages. Old applications using IupLua3
can use the old names or the new names. This will make easier to old applications migrate their code to Lua 5. All Lua examples were
re-tested and fixed.
IMPORTANT: In IupLua3 the callbacks in C are registered only when the application register the callback in Lua, just like in IupLua5.
IMPORTANT: IupColorBrowser name changed in IupLua3 from "iupcb" to "iupcolorbrowser".
Fixed documentation of IupGetAllDialogs and IupGetAllNames. Fixed implementation to match the documentation.
Fixed IupTimer old callback name in IupLua3.
Fixed DROPFILES_CB canvas callback can be now used in Lua for the controls based in IupCanvas, like IupMatrix and IupTree.
Fixed parameters of the canvas action and scroll_cb callbacks in Lua 5.
Fixed missing FILE_CB callback in Lua.
Changed all the additional controls now can have the K_ANY, GETFOCUS_CB and KILLFOCUS_CB callbacks without affecting their
internal implementation.
Changed Lua 5.1 "require" can now be used for all the IupLua 5.1 libraries, but the full library name must be used. For example:
require"iuplua51", require"iupluacontrols51".
Documented the IupLua 5 architecture.
Reviewed and reorganized IupLua3 and IupLua5 code, also cleaned and simplified. In IupLua3 callbacks are now set only if they are set
by the application.
Changed IupClose can now be called from Lua in Lua 5.
Reviewed and improved the interchange of Ihandle between C and Lua. The documentation was updated with all the possibilities.

Version 2.4 (12/Dec/2005)

General

New attribute ZORDER to change the zorder of any control or dialog.
New 3STATE attribute for IupToggle to enable a three state text toggle.
Reviewed and improved the creation of controls, so they can be added to an already created dialog.
Reviewed and improved the natural size estimation for each standard controls. The estimation now is the same for Windows and Motif
with some minor differences for border and scrollbar sizes. All the controls can have sizes bigger or smaller than the natural size using
SIZE or RASTERSIZE attributes (natural size is the size of the control that fits all of its contents).
Improved FULLSCREEN IupDialog attribute in Windows and Motif, so the application can set fullscreen and then restore to normal state
any time.
New attribute FLAT for IupButton to create a button with mouse over activation (Windows and Motif).
New MULTISELECT_CB callback for IupList. It can replace the action callback for multiple selection lists.
Fixed names of headers, initialization functions and libraries that did not have the "iup" prefix. Headers "iupolecontrol.h", "luacontrols.h"
and "luagl.h" changed to "iupole.h", "iupluacontrols.h" and "iupluagl.h". Private headers and declarations removed from "iup/include"
folder. Functions controlslua_open, gllua_open and iupluaim_open changed to iupcontrolslua_open, iupgllua_open and iupimlua_open.
New documentation of the IupOleControl control, including a sample and Lua bindings. Thanks to Vinicius Almendra.
New function IupRefresh to update the size and layout of controls after changing size attributes.
Exported the internal functions: IupZboxv, IupHboxv, IupVboxv and IupMenuv.
Fixed several memory leaks. Thanks to Visual Leak Detector.
IupView application can now save imagens in C source code format.
New additional library with several pre-defined images for buttons and labels. See IupImageLib.
Optimization flags now are ON when building the library in all platforms.
Now all the predefined dialogs consult the global attribute IUP_ICON.
Missing key definitions: K_sDEL and K_sINS. This prevented the Del key to work when CAPSLOCK was active in some controls.
Changed IUP_QUIET environment variable now default is YES.

Windows

Support for MDI (Multiple Document Interface). See IupDialog documentation.
Fixed IupLabel with IMAGE with invalid focus.
New SUNKEN attribute for IupFrame.
Fixed appearance of IupLabel with IMAGE when ACTIVE=NO.
Fixed initial value in the IupList when EDITBOX=YES.

IUP - Portable User Interface 07-Jan-25

38/496

http://www.codeproject.com/tools/visualleakdetector.asp

Now it is not necessary anymore to use the "iup.rc" file for the HAND cursor. It is now build in.
New value for PLACEMENT attribute, FULL to position the client area of the dialog in fullscreen.
IupButton and IupToggle with images using Windows XP Visual Styles now uses a styled border. See IupButton documentation for
samples.
Missing documentation of ENTERWINDOW_CB and LEAVEWINDOW_CB for IupButton.
Fixed button draw with BGCOLOR and empty text.
New COMPOSITED attribute to create a window with an automatic double buffer for all controls.
New LAYERED and LAYERALPHA attributes to set and configure layered windows using transparency.
Fixed image offset in IupButton.
Fixed invalid redraw for IupLabel using an IupImage when inside a IupTabs or IupSbox.
Added an "ifndef IUP_NO_ABNT" enclosing the ABNT keyboard management so it will be easier to ignore this code from the makefile.
Default FONT in Windows XP is now the Tahoma font.
BGCOLOR for canvas was not being updated correctly when changed after canvas creation.

Motif

SHOWDROPDOWN now works also in Motif.
Removed horizontal scrollbar parameter from simple IupList (DROPDOWN=NO and EDITBOX=NO) to made it compatible with the other
lists (including the simple IupList in Windows).
Fixed KILLFOCUS_CB and GETFOCUS_CB for IupList with DROPDOWN=YES or EDITBOX=YES.
Fixed invalid IupList resize when DROPDOW=Yes after inserting elements in the list.
New BACKINGSTORE IupCanvas attribute so the backing store can be disabled.
Changed IupToggle with IMAGE and IMPRESS to behave like in Windows, where the button border is always shown.
Fixed error in menu item initialization.

IupControls

IMPORTANT: for best results CD version 4.4 should be used.
Fixed IupSpin keyboard response and mouse press & hold response.
New MULTISELECTION_CB callback for IupTree.
New IupCells control. It is an application controlled matrix. More simple and faster than IupMatrix. Can also span cells. Thanks to Andr
Clinio.
New IupCbox control for concrete layout positioning.
Fixed IupTabs tab activation using mouse. It could activate a different tab using button press in one tab and button release in another
tab.
Fixed spin buttons were not calling the user callback in IupGetParam.
Fixed IupVal non effective increment using keyboard when at minimum value.
Fixed invalid IupSetAttribute for scrollbar parameters in IupTree that affects navigation of two or more trees in the same application.
Fixed keyboard usage when CAPSLOCK is active for IupVal, IupTabs and IupDial.
New functions iupMaskRemove and iupmaskMatRemove to remove the iupMask from a control.
New RENAME action attribute for the IupTree.
New attribute TABORIENTATION to change the tab text orientation. The active tab text is now bold.
Changed CARET and SELECTION attributes of the IupTree when using an in-place rename text box, to RENAMECARET and
RENAMESELECTION. This will avoid conflict with the SELECTION_CB callback in IupLua3.

IupMatrix

Redefined REDRAW policy to a more precise and effective one. No redraw is done when the application sets cell, line or column graphics
attributes attributes: 0:0, 0:C, L:0, L:C, ALIGNMENTn, BGCOLORL:*, BGCOLOR*:C, BGCOLORL:C, FGCOLORL:*, FGCOLOR*:C,
FGCOLORL:C, FONTL:*, FONT*:C, FONTL:C. Global and size attributes always automatically redraw the matrix.
Improved double click editing in Motif. Since OpenMotif 2.2.3 the double click to edit the cell works fine. For previous version there is
still a workaround to show the controls and the need to click again in the control so it get the focus.
All the edition mode code were rewritten and reorganized in a separated module. Any old code was removed and cleaned.
Small change in focus feedback, its area was reduced to two pixels in each cell border.
Cell focus management code reorganized to a more simple and efficient version.
New SORTSIGNC attribute to show a sort sign (up or down arrow) in the column C title.
New drawing in double buffer mode to minimize flicker.
Fixed dropdown feedback drawing.
Fixed focus feedback after double click editing.
The alignment of the text in a cell with a dropdown feedback now considers the horizontal space occupied by the feedback.
The DRAW_CB callback drawing area now does not includes the focus feedback area if HIDEFOCUS=NO (the default).
NUMCOL_VISIBLE and NUMLIN_VISIBLE now when retrieved returns the current number of visible lines.
Fixed problem after trying to edit a non editable cell the focus gets lost.
Reviewed documentation and behavior of marks.

IupLua

IupLua5 source code is now 100% compatible with Lua 5.1.
The iuplua binding and all its libraries can now be dinamically loaded in Lua 5. IupOpen will be automatically called.
iupkey_open can now be called from Lua 5, using iup.key_open.
New IupGetParam binding.
Changed the keys definitions (K_*) in Lua so now they are exactly the same as the definitions in C.
Fixed invalid IupGetAllNames in IupLua5. Fixed missing IupGetAllNames binding in IupLua5.
Fixed IupTree EXECUTELEAF_CB callback in IupLua5. It was expecting an invalid extra parameter.
Fixed error in IupTabs memory initialization in IupLua5.
Fixed missing IupGetText binding.
Fixed missing pre-defined masks for iupMask.

IUP - Portable User Interface 07-Jan-25

39/496

Fixed missing isxkey macro binding.
Fixed missing callback scroll_cb in IupLua3.
Fixed missing IupVersion documentation and binding.
Fixed IupSetGlobal and IupStoreGlobal in IupLua5.

Version 2.3.1 (18/Apr/2005)

General

New support for 64-bits Linux.
New global attribute DLGBGCOLOR.
Changed the KEYPRESS_CB and K_ANY callback are now compatible with Portuguese Brazilian ABNT keyboard layout in Windows and
Linux.
Changed key names K_quoteright and K_quoteleft renamed to K_apostrophe and K_grave, but there are backward compatible
defines.
Fixed IupOpen/IupClose for correct initialization/de-initialization.
Fixed IupGetGlobal to retreive first from the driver.
Fixed IupDestroy for correct memory deallocation.
Fixed IupLoadImage to include BGCOLOR information. New function IupSaveImage.
New Guide / C++ Usage section in the documentation, with additional C++ wrappers contributed by some users. Thanks to Danny
Reinholds, Sergio Maffra and Frederico Abraham.

Windows

Fixed K_ANY duplicate calls for some keys.
Fixed popup menu bug. Sometimes when selecting an item the callback was not called.
Changed IupText and IupMultiline now can have the ALIGNMENT attribute.

Motif

Fixed use of variable parameter arguments in Motif calls to correct 64-bits compatibility.
Fixed some small bugs in IupDestroy. GETFOCUS_CB callbacks were called during dialog destroy. Menu bars were incorrectly destroyed.

IupControls

Changed IupGetParam now uses only the number of lines to determine the number of parameters. The last 0 is not necessary anymore.
Fixed bug in IupColorBrowser destroy.
Fixed IupTree initialization for LED usage.
New IupTree feature to rename a node in place.
New IupColorbar control. It is a palette of colors to allow the selection of primary and secondary colors. Thanks to Andr Clinio.

IupGLCanvas

New function IupGLIsCurrent.

IupLua

Fixed callbacks for IupDial in IupLua5.

IupView

Fixed data initialization in Motif.
New menu items to save images in individual LED and Lua text files, and in Windows ICON files.
New menu item to load an image using IM.

Version 2.3 (16/Mar/2005)

General

Download, Discussion List, Submission of Bugs, Support Requests and Feature Requests, are now available thanks to LuaForge site.
New organization of the documentation.
New MacOS X libraries using OpenMotif and gcc.
New CARET_CB callback for the IupText, IupMultiline and IupList controls. It is called every time the caret changes its position.

Windows

IMPORTANT: Now the canvas background color is only redrawn if the ACTION callback is not defined. When defined the application
must draw all the canvas contents. This will optimize the redraw of canvas based controls and application canvases. The TRANSPARENT
value for the BGCOLOR is not supported anymore.
New attribute IMMARGIN to control the spacing between the border and the image in IupButton.
Optimized the IupButton and IupLabel drawing when IMAGE is specified.
Fixed incorrect stop for the IupTimer. Improved start and stop control.
Flicker now is significantly reduced. CLIPCHILDREN=YES is now default. IupFrame background drawing optimized.

IUP - Portable User Interface 07-Jan-25

40/496

New dialog attribute "CONTROL" that enable the embedding of the dialog inside another window. Used by LuaCOM to create OLE
(ActiveX) controls implemented in Lua.
New IupText attribute "PASSWORD" to hide the typed character.
IUP is now compatible with Windows XP Visual Styles. See the Win32 driver documentation.

Motif

Fixed invalid return value when retreiving the FONT attribute.
Added backward compatibility code for Motif 1.2. Must edit makefile to add the file "src/mot/ComboBox1.c".

IupControls

Missing support for IupList with EDITBOX=YES in iupMask.
BGCOLOR for images were ignored in the IupTree.
Now some matrix cell attributes are not inherited from parent. Like "L:C", "ALIGNMENT*", "FGCOLOR*", "BGCOLOR*", "FONT*",
"WIDTH*" and "HEIGHT*", for optimization reasons.
IupTree now uses double buffer for optimal drawing.
To avoid flicker during resize in Windows, do not use it inside a IupFrame, and use CLIPCHILDREN=YES.
New utility functions: IupTreeSetAttribute, IupTreeStoreAttribute IupTreeGetFloat, IupTreeSetfAttribute, IupTreeGetAttribute,
IupTreeGetInt.
New IupMatrix callback DRAW_CB to allow a custom drawing of the cell contents.
New IupTree DRAGDROP_CB callback.
New IupSpin and IupSpinbox utility functions.

IupLua

Fixed ihandle_gettable in iuplua.lua when iupGetTable is nil when object is created in C.
This affected the object returned by iup.LoadImage.
Fixed Zbox children names initialization.
Missing DROPFILES_CB callback management.
Missing FGCOLOR_CB and BGCOLOR_CB callback management for the IupMatrix. The returned values order was inverted.
Missing MAP_CB callback management for IupCanvas in IupLua3.

Version 2.2.2 (07/Oct/2004)

General

Fixed bug in IupGetFile FILTER initialization.
Improved IMINACTIVE automatic generation algorithm.
New zip package for download with iup images in LED format.
New application IupView to load and display LED files.
Fixed some attribute storage in iupMask and IupGetParam. Fixed bug when several masks are used in the same dialog.
Replaced the internal Lua4 code for a smaller hash table module. Thanks to Danny Reinhold.
Fixed IupGetParam invalid memory access.
IupNextField and IupPreviousField now only changes the focus for the checked toggle inside a radio.
IupGetAttributes now returns the pointer address if attribute is a known internal pointer data.
Now pressing Enter over a button activates it, even if it is not the DEFAULTENTER button.
Esc and Backspace keys now will be translated even if CapsLock is active.

Windows

New ENTERWINDOW_CB and LEAVEWINDOW_CB for buttons.
Fixed double click for button, toggle and list were not being considered as two clicks.
removed FLAT style from toggles with IMPRESS image. Fixed size of toggle with image.
New attribute SHOWDROPDOWN to open the dropdown list programmatically.
Removed a black border around IupMultiline and IupText.
Removed the TABSTOP for non marked Toggles inside a Radio.
Fixed invalid memory access when menu item is activated and all dialog controls are disabled.
Fixed IupFileDlg ignored the x,y parameters of IupPopup.

Motif

Enter in IupMultiline activated the DEFAULTENTER button instead of adding a new line.
Fixed invalid memory access when set FONT to NULL.
Fixed ACTION callback called for IupList when list contents were cleared.

IupControls

IupTree and IupTabs did not propagate to the parent the K_ANY callback for non used keys.

IupMatrix

The TITLEs, BGCOLORs, FGCOLORs and FONTs attributes were incorrectly set after a DELLIN, ADDLIN, DELCOL or ADDCOL.
In Windows when the user double click a dropdown list now will start opened.

IUP - Portable User Interface 07-Jan-25

41/496

The user callback scroll_cb was incorrectly registered.
New "HIDEFOCUS" attribute to hide the focus mark when drawing.
Now in MARK_MODE=CELL and MULTIPLE=YES you can click on the title area to mark a full line or collumn at once.
New BGCOLOR_CB and FGCOLOR_CB callbacks.
Fixed when MARKMODE=LIN/COL/LINCOL if the first cell in the line/column is selected the click in the title area was ignored.

IupLua

Removed "print" debug calls in internal code.
IupGetAttribute/iup.GetAttribute now returns an user data if attribute is a known internal pointer data.
New IupGetAttributeData/iup.GetAttributeData that returns the data always as an used data.
Fixed incomplete initialization of image object returned by IupLoadImage.

Version 2.2.1 (25/Aug/2004)

General

Fixed some minor bugs introduced in version 2.2.
Fixed HTML help navigation.
For disabled buttons and toggles when the IMINACTIVE is not defined by IMAGE is defined, we replace the non transparent colors by a
darker version of the background color creating the disabled effect.
New key K_PAUSE.

Windows

Fixed dynamic cursor creation.
Toggle with inactive image could be enabled/disabled only once.
Fixed toggle in Radio behavior.
Some keys were not being treated correctly.
Improved key codes management.

Motif

Fixed IupList setattribute VALUE and list items activated the ACTION callback.

Controls

Circular IupDial now uses abssolute angle.
CARET did not work when set inside EDITION_CB in IupMatrix.
Check for double initialization of IupControls.
Better resize management for IupVal and IupDial.
IupControls now depends on the CD library version 4.3.3 in Motif.

IupLua

Wrong implementation of DROPCHECK_CB.

Version 2.2 (11/Aug/2004)

INCOMPATIBILITIES

Definition of K_parenleft changed to K_parentleft in C and all Lua bindings.
Major IupLua5 change (see IupLua section below).
IupLua4 is not supported.
Motif 1.x is not supported.

General

Documentation in Portuguese removed from the manual.
Changed and documented the default palette used in IupImage.
IupImage can now have up to 256 colors.
New mouse wheel callback "WHEEL_CB" for Windows and Motif. If not defined the wheel will automatically scroll the canvas vertically.
Changes on global attributes:
"COMPUTERNAME", "USERNAME" - now implemented also in Motif.
"COPYRIGHT" - not documented
"SCREENDEPTH", "SYSTEMVERSION" - new for Windows and Motif
"SYSTEM" - Implementation were different from the documentation
"CURSORPOS" was documented as if it was only for Windows.
"LOCKLOOP" now implemented also in Motif..
The definitions IUP_SBDRAGV and IUP_SBDRAGH were not documented.
Callback MENUSELECT_CB changed to HIGHLIGHT_CB. Now implemented also in Motif.
New menu callback MENUCLOSE_CB.
New utility functions IupMessagef and IupGetInt2.
Improved visual appearance of IupScanf, IupAlarm and IupListDialog.

IUP - Portable User Interface 07-Jan-25

42/496

New creation attribute "SEPARATOR" for IupLabel so you can create vertical or horizontal line separators.
New IupGetText predefined dialog.
Now all the predefined dialogs consult the global attribute IUP_PARENTDIALOG.
New "HELP_CB" callback for all interactive controls.
The "KEYPRESS_CB" callback now will be called repeatedly if the key is pressed and held.
IupList can now have an edit box associated.
The OLD newfocus parameter of the KILLFOCUS_CB is now NULL always, in Windows and Motif.
The BGCOLOR color for IupImage transparency was not according to the documentation.
It was using the default background color of the dialog.
Now it uses the BGCOLOR of the control where it is inserted.

Windows

Menus for notification icons (system tray) were not working correctly.
Cursors in Windows now accept more than 2 colors and can have size different from 32x32.
IupImage was rewritten in Windows to be more simple and flexible. This also solved some weird button backgrounds in gcc3.
New global attributes "SHIFTKEY" and "CONTROLKEY" can be "ON" or "OFF", return the the key state (windows only).
The default size for buttons in Windows was increased by 2 characters.
Returning IUP_CLOSE in a SHOW_CB of an IupPopup wasn't closing dialog.
IupOpen instead of initializing OLE, now only initializes COM (CoInitialize).
The border of buttons are now drawn by a system function instead of simulated.
New attribute "PLACEMENT" to show the dialog maximized or minimized.
In IupFileDlg when browsing for folder it will use a new interface, with a resizable dialog and other features.
Also in IupFileDlg fixed start position for IupPopup. New file selection callback and preview area. IupFileDlg was not using the
IUP_PARENTDIALOG attribute. Default value for IUP_NOOVERWRITEPROMPT was wrong. ALLOW_NEW was inconsistent with the
documentation.
The button callback now is called only when the button is released inside the button area.
WOM callback renamed to WOM_CB.
New "HELPBUTTON" attribute for the dialog.
The menu item now accepts auxiliary bitmaps.
When the dialog has a multiline and the user press ESC the window was improperly closed.
Fixed comboox resize feedback. When resizing the dialog the combobox was temporarily opened.
IupCanvas was not receiving arrow keys events correctly in keypress_cb.
IupHide now can close popup dialogs.
Attribute TABSIZE for IupMultiline in Windows was not documented.
Default value for attribute BGCOLOR for IupCanvas in Windows was not documented.
Direction keys now are processed by the ACTION callback for IupText.
The GETFOCUS_CB and KILLFOCUS_CB management for the controls was reviewed and optimized.
GETFOCUS_CB now works for toggle and button.
First RESIZE_CB of the canvas received a wrong canvas size.
Label alignment for images was always center.

Motif

New global attribute: "MOTIFVERSION".
IUP_SBDRAGV and IUP_SBDRAGH were not implemented.
HIGHLIGHT_CB menu item callback.
"COMPUTERNAME", "USERNAME" and "LOCKLOOP" global attributes.
IupMessage now uses native XmMessageBox.
The overwrite confirmation dialog was closing the file open if the user answered "No".
Implemented the IUP_NOOVERWRITEPROMPT attribute for IupFileDlg.
The dropdown list now uses the Motif 2 combobox widget. So IUP is not compatible with Motif 1.x anymore.
Now the GETFOCUS callback is also invoked when the list is dropdown.
KEYPRESS_CB is now called only for IupCanvas.

Controls

DEFAULTESC and DEFAULTENTER were missing in IupGetColor.
New function IupLoadImage that uses the library IM to load an image file (implemented in an additional library).
New dialog IupGetParam, similar to IupScanf but uses variable controls for fields.
IupTabs now uses the FGCOLOR for the text color.
ICTL_DASHED was missing in the documentation of IupGauge.
The control now has the attributes MIN and MAX just like the valuator.
For IupVal and IupDial, new keyboard and mouse wheel support.
New attribute "SHOWTICKS" to show tick marks around the valuator.
New attribute "UNIT" to change the angle unit to degrees in the dial.
Completely changed visual of the controls.
The controls can now be deactivated and it displays focus feedback.
Updated visual for the IupGauge and IupTabs controls.
In IupTabs the popup menu to select a tab sometimes did not set the new tab.

Matrix

Documentation reviewed and reorganized.
Returning IUP_CLOSE in CLICK_CB was not closing application.
The scrollbar drag will now simultaneously scroll the matrix.
New callback "DROPCHECK_CB" to aid the dropdown feedback in the cell.

IUP - Portable User Interface 07-Jan-25

43/496

New utility functions: IupMatSetAttribute, IupMatStoreAttribute IupMatGetFloat, IupMatSetfAttribute, IupMatGetAttribute, IupMatGetInt.
Fixed some display erros in Windows because of an error in the size of the scrollbar.
In Windows pressing a key in a menu activates the k_any of the last active element. In the matrix this turns into an infinit loop. The
matrix now uses the keypress_cb instead of the k_any callback.
Fixed empty selection in the dropdown list if the user press a regular key to start editing the cell.
Fixed invalid dropdown value if the user changed focus to the scrollbars.
CLICK_CB was called twice in a double click (press+release).
In Motif, the textbox and the dropdown did not open when you double click a cell. But now the user still needs to click again in the
control to put it into focus.
After editing the cell in the last line, now the focus goes to the column on the right at the last line, instead of the first line.
BGCOLOR now works also for titles.
FONT attribute now can be set/get just like BGCOLOR and FGCOLOR. But the cell size is calculated always from the matrix attribute
IUP_FONT.

Tree

Documentation reviewed and reorganized.
CTRL and SHIFT accepts only values IUP_YES and IUP_NO.
Default value of SHIFT and CONTROL is NO, it was NULL.
Pressing Space without Control now activates the RENAMENODE_CB callback.

IupLua

The selection callback wasn't working in Lua 5 binding.
MOUSEMOVE_CB in Dial control was receiving wrong angle parameter in Lua 5 binding.
IupGLCanvas wasn't working in Lua 5 binding.
Major IupLua5 change.
It now complies to LTN7 (namespaces). All exported functions are accessed only through iup.FunctionName (no Iup prefix anymore)
All callbacks in Lua are now access through their exact name in the C API. Mostly add sufix "_cb" to name (most common callbacks
renamed for ex: getfocus_cb, killfocus_cb). Also some names were fix: valuecb >> value_cb and mapcb >> map_cb.
Numeric definitions also changed: IUP_DEFAULT >> iup.DEFAULT
String definitions for values are no longer supported, use "YES", "NO", etc.
iupcb changed to iup.colorbrowser.
Use LoadLibrary to load IUP from Lua.
There was no stack pop in color processing loop fo IupImage in IupLua5.
IupLua4 is not supported anymore.

LEDC

Added support for IupTree and IupSbox.
Fixed include for IupColorBrowser.
Fixed small invalid memory access.

Version 2.1 (18/Feb/2004)

General

New split-panel control: IupSbox
IupTree and IupMatrix libraries are now part of iupcontrols
New functions to traverse IUP controls: IupGetNextChild, IupGetBrother, IupGetParent
IupAppend accepts elements other than predefined internal controls (allowing CPI containers)
Focus now may go to CPI controls
Attribute IUP_X, IUP_Y are now valid for every control that has a native representation (returns the position of the control in screen
coordinates)
CURSORPOS global attribute is now returned from the driver
IupGetFile was not allowing new files and should not change user directories
IupGetFile was not accepting long directories
IupAlarm does not take [ENTER] as button1 click anymore
IupScanf does not accept "," when option is float
Windows 95 is no longer supported

IupTree

Trying to get attribute NAME for and invalid ID returns NULL
Fixed attributes IUP_CTRL e IUP_SHIFT for mouse interaction

IupMatrix

Special keys such as backspace, control+c, etc. are now ignored when not in edit mode
leaveitem/enteritem were not being generated when the focus was leaving or entering the matrix
leaveitem/enteritem should not being called when the cell enters edition mode through the mouse

Windows

IupOpen/IupClose now initializes OLE (OleInitialize/OleUninitialize)

IUP - Portable User Interface 07-Jan-25

44/496

ENTERWINDOW/LEAVEWINDOW reimplementation. LEAVEWINDOW does not fail anymore
Mouse hook removed. Better performace
New attributes TRAY, TRAYTIP and TRAYIMAGE and new callback TRAYCLICK_CB which allows a dialog to be put in the tray
Action in IupText now responds to the [ENTER] key
Some keys were not working with keypress callback: \] [' ; / . ,
New attribute NATIVEPARENT, which makes any dialog in Windows able to be parent of a IUP dialog (even from other toolkits)
Better protection dealing with other processes messages
IupFileDialog when used to get directory was not updating STATUS attribute correctly
IUP_APPEND small memory problem fix
atexit removed
KILLFOCUS_CB and GETFOCUS_CB were not being called when focus goes to the menu
MAP_CB in a canvas is now called before RESIZE_CB (like the Motif driver)
ALT-F4 was not working to close application
Images sometimes show black using Visual C: do not use option in Visual C 6.0 /NODEFAULTLIB:libcd
IUP_TIP does not show when the fade effect is on: MS fixed the problem, use autoupdate

IupLua 3.2, 4.0, 5.0

Functions exported to Lua: IupGetType, IupGetParent, IupGetNextChild, IupGetBrother
IupTimer, IupSbox binding
IupTreeGetTable, IupTreeSetTableId, IupTreeGetTableId functions created
Several bug fixes in IupLua 5.0
New function iuplua_pushihandle, iuplua_dofile and iuplua_dostring, IupGetFromC
If iuplua_dofile and iuplua_dostring are used errors are reported through _ERRORMESSAGE function
Default _ERRORMESSAGE function shows a dialog with the error
IupLua5: Removed Lua redefinitions of dofile and dostring
Minor bug in IupTree function TreeSetValue
IupListDialog was not returning a table as it should when in multiple mode

IupVal

Attribute IUP_VALUE wasn't taking effect when set before mapping
CD canvas was being altered during mouse movement event

Manual

CPI manual revision
IupLua manual revision
Several examples revised
Controls section rearranged

Distribution

README on how to compile IUP with tecmake

Version 2.0.1 (31/Jul/2003)

General

Attribute IUP_TYPENAME replaced by IupGetType function
minor bugs introduced in 2.0 because of internal old misuse of the hash table.
Following controls were not working with LED: val, dial, gl, matrix, tree.
New canvas attribute "DRAWSIZE" that returns the drawing area of the canvas (in Windows we may have an addicional border included
in "RASTERSIZE").

Windows

Memory invasion when eliminating an item from an IupList with multiple items.
Callback IUP_OPEN_CB sometimes was not being called.
New dialog attribute "BRINGFRONT" which forces dialog to be the window in the front. Useful for multithreaded applications.
Attribute ACTIVE was not working with radio control.
Now folder selection in IupFileDlg uses IUP_DIRECTORY as a start path.
Now when ESC or ENTER is pressed KEYPRESS_CB is generated

Motif

Dropdown were becoming unstable when VALUE attribute is set after IupMap.
Dropdown were not being positioned accordingly.
IupList was not selecting the first item.
IupTimer callback were called only once.
The value "BGCOLOR" in a value of an image color table index appeared with erroneous color.
keyboard and mouse callbacks were not being called when in full screen.

LEDC

IUP - Portable User Interface 07-Jan-25

45/496

Updated to reflect 2.0 changes like "iupmatrx" to "iupmatrix".
Now tests if name is not NULL before using IupSetHandle.

IupLua

New binding for Lua 5. This is beta version since uses old notation "iuplabel" instead of "iup.label".

Version 2.0 (23/Jun/2003)

General

IUP has undergone a large internal reorganization, but no structural or algorithmic changes have occurred. The purpose of this
reorganization was to standardize function, variable and module nomenclature. This process is not yet complete, but the few remaining
details will be solved in the next version.
Table Hash was completely replaced with a modified version of Lua 4. This version is internal of IUP and does not affect applications.
This has brought us a better management of the memory used by attributes.
The CPI was changed to allow the creation of native controls, as well as controls based on IupCanvas. The internal controls were not yet
rewritten over the new CPI - this will be done progressively in the next versions.
The Ihandle definition changed from "void" to "typedef struct Ihandle_ Ihandle;". This has direct implications on C++ applications that
did not do pointer typecast. In C++, code errors might occur and, in C, there might be warnings.
New control IupTimer. Allows creating timers in Windows and Motif.
New callback "KEYPRESS_CB". Allows intercepting any key and replacing all callbacks "K_xxx".
IupHelp was rewritten in a simpler way. In Windows, it simply uses the system's configuration to open a URL and, in UNIX, it directly
runs Netscape or another executable configured by an environment variable.
New attribute "FULLSCREEN", allows creating a dialog that occupies exactly the whole screen.
Dialog IupGetFile was rewritten using IupFileDlg.

Windows

New attribute "CURSORPOS", allows programmatically changing the cursor's position on the screen.
New attribute "NOOVERWRITEPROMPT" for IupFileDlg. It prevents IupFileDlg in Save mode from asking the user if s/he really wishes to
overwrite a file.
Problem corrected in the file list in the use of attribute "MULTIPLE_FILES" for IupFileDlg. When only a folder was selected, it was not
setting the "STATUS" attribute in a cancelled action.
Greater driver stability - Ihandle is no longer dependant on the native handle (HWND).
New global attributes "HINSTANCE", "SYSTEMLANGUAGE", "COMPUTERNAME", "USERNAME".
Global attribute IUP_SYSTEM now returns a more complete string.
Cursor now changes instantly - it only changed before returning to IUP.
In an inactive IupToggle, the IMINACTIVE image is now correct.

Motif

The iupmot library no longer exists. Tecmake has been updated, but those who use their own metafiles must remove this file from the
list of libraries in the application.
New attribute "AUTOREPEAT" allows turning on and off the automatic repetition mode of pressed keys.

IupLua

[4/5] IupListDialog when selection type is 1 (single) was not returning any value.
[4/5] Callbacks mapcb and showcb had their names wrong: map_cb and show_cb
[3] Callback action in IupMultiline was not passing the parameter "after".
[4/5] In IupTree, callbacks "afterselection" and "beforeselection" were replaced with the callback "selection".

IupControls

We have joined seven libraries in one: dial, gauge, cb, gc, mask, tabs and val. But neither the initialization functions nor each control's
inclusion files were changed. The source code does not need to be altered, except for the makefiles. Tecmake was given a flag
USE_IUPCONTROLS to automatically include this library.

IupMatrix

The name of the library was changed from "iupmatrx" to "iupmatrix". The same for the inclusion files. Therefore, all applications that use
IupMatrix must change the source code and the makefile to reflect these changes.

IupTree

In one case, the active CD canvas was not being returned to the old canvas before drawing.

IupGL

In Linux, the additional GLw library was added to the control library.
New attributes for query in UNIX: CONTEXT (GLXContext), VISUAL (XVisualInfo*) , COLORMAP (Colormap).

IUP - Portable User Interface 07-Jan-25

46/496

History of Version 1.x

History of Changes in Version 1.x

Version 1.9.1 (17/Oct/2002)

General

Version number now resides in iup.h (it is also included in the library during compilation.)

Windows

IupLabel with \n was not working.
Line-break in attribute IUP_TIP is now accepted.
Double-click in the Windows top-left corner made the program crash.
IUP_READONLY was only accepted if used before IupMap in a IupText or IupMultiline.
Windows was limiting initial elements of a IupList to 999.
New attribute FULLSCREEN created.
The codes of the numeric keyboard when the CapsLock was turned on were not mapped correctly to IUP.
New callback added MENUSELECT_CB (called when the mouse hovers over a menu or item.) - not fully implemented.
Fixed IupList ACTION callback calls for pre-selected items on the first selection change.

Motif

IUP_MOTFONT did not accept IUP fonts. Now it accepts both native fonts and IUP fonts.
It is acceptable now to select an option in a popup menu with any mouse key.
Attribute IUP_STATUS in a filedlg was not working in a silicon.

IupLua

Better error messages.
In the iuptree control, the callback BRANCHOPEN_CB was not passing the node parameter.
In the iuptree control, new functions were implemented to associate and retrieve a Lua Table from a node or leaf.
IupGLCanvas binding.

IupTree

Expand and collapse no more alters selection of elements.
When all nodes were deleted using "DELNODE0", "CHILDREN" inside a tree_selection callback, the program crashed.
BRANCH_OPEN now passes parameter node.
IUP_DEPTH now works for folders and leaves. Attention: the depth works only with the appointed element, not with its children.
Some conditions necessary for a DEPTH change were wrong.
Redraw optimization.
When a tree was big, the scrollback was not working properly.
When the tree was totally expanded and the scrollbar was all down, collapsing folders made the thumb be wrongly calculated.
PGDN and PGUP were stopping in any folder that was closed.
Even when the user did not want a folder or leaf to be selected, sometimes the tree allowed it.
When the tree's folder does not have children, an empty box is shown next to it (instead of the + and - symbol.)
Sometimes an error occurred in selection when a double click was done in a tree.
Callback RENAMENODE_CB now works correctly.
When the TreeSetValue function was used to define a tree, using a folder with no leaves made the program crash.
New attribute "COLORid" allows the text color to be changed.

IupTabs

IUP_REPAINT was not repainting the elements in its interior.

IupMatrx

The attributes IUP_DEFAULTESC and IUP_DEFAULTENTER of a dialog were not working in Windows (they work only when the matrix is
not in edition mode.)
The matrix did not show the selected elements when the focus passed to another interface element.
In a dropdown, when the user left edition mode changing the focus away from the matrix, the previously entered value was lost.
Selection with the control key now works for selecting and deselecting.
The cell with the input focus now draws the selection status.
The attribute IUP_MARKED now works after the matrix is mapped.
The matrix now starts with no cell selected.
Clicking on the first column of a marked line with MARK_MODE LIN now also deselects the line.
When MARK_MODE is LIN, COL or LINCOL the selection is not done on the focused cell.
When MARK_MODE is CELL and MULTIPLE is NO the whole line cannot be marked.
When MARK_MODE is NO nothing can be selected.
The [TAB] key in the matrix now changes focus to next element.
When MARK_MODE was NO (default), after leaving the edition mode with [ENTER] the cell was being marked.

IUP - Portable User Interface 07-Jan-25

47/496

history1.html

IupVal

Mousemove is now standardized.
Idle is not used anymore (better optimization and code simplicity.)
Minimum and maximum value when different from 0 and 1 now work.
Clicking a position in the middle of the IupVal now work correctly.

Version 1.9.0 (18 Dec 2001)

General

The K_ANY callback now considers the state of the CAPSLOCK key. The native behavior of the combination of the keys CAPSLOCK and
SHIFT was kept.
New binding for IUP: Lua 4.0.
New binding for IupMask.

Windows

Driver Windows now deals only with messages generated for IUP elements (this used to be a problem with CD's print dialog).
Label fonts did not work when set before IupMap.
Attribute IUP_FILTERUSED now can be set on before the creation of IupFileDlg.
Tip in Windows now accepts \n.
Tip in Windows is now modified immediatly after it is set though programming.
Tip now can be removed immediatly.
In a SubMenu, the attribute ACTIVE was not working propertly.
The OPEN_CB callback was implemented in the SubMenu.

Motif

Callback OPEN_CB in a SubMenu was providing wrong parameter.
Attribute IUP_BORDER in a dialog was working differently from the manual when the window manager was sawfish.

iupMask

iupMask was becoming unstable when the user set the attribute IUP_SELECTION in a IupText.
There was a bug in the IupMask-IupMatrix combination.

IupMatrx

Adding a new column or line is now correctly dealing with color inheritance.
There was IUP_MARK_MODE defined but not: IUP_LIN, IUP_COL, IUP_LINCOL and IUP_CELL.
The drop_cb callback was being called for any focus change. It is now being called just when the matrix enters edition mode.
The matrix was not showing the selected cells when the user changed focus from the matrix.
The matrix was not calling K_ANY from the parent if the callback had been set after matrix creation.
IUP_RIGHTCLICK_CB is now called IUP_CLICK_CB. This callback is now called for every mouse button.
New callback IUP_MOUSEMOVE_CB.

IupTree

Attribute IUP_MARKED now also sets.
IupTree's binding now exports functions to set and get ID.
Redraw is now done with one attribute. This avoids unecessary redraw when the user wants to insert a lot of data.
IupTree now takes leafs and nodes before IupMap.
Clicking to select a LEAF was not always working in Windows.
BRANCHOPEN and BRANCHCLOSE callbacks were not testing the return value correctly.
Double clicking was not working propertly. When the user clicked a node, while the timer was still waiting for the second click, it was
impossible to click a nother node.
Hitting the space button with CTRL pressed now marks the element immediatly.
SELECTION_CB callback was created. This callback is called when any type of mark is made on the Tree. The return value blocks this
action.
Removed callbacks BEFORESELECTION_CB and AFTERSELECTION_CB.
Setting IUP_VALUE though programming does not activate callbacks anymore.
Keyboard control, including arrow keys, PGUP, PGDOWN, HOME e END were not working propertly.
Clicking + or - was not activating the SELECTION_CB callback.
SELECTION_CB is now in the binding. BEFORESELECTION_CB and AFTERSELECTION_CB are not.
The IUP_MARKEDid attribute now returns IUP_YES or IUP_NO depending on the state of the node's mark. If the node does not exist,
the returned value is NULL.
IupTree was breaking when it tried to erase a marked node inside BRANCHCLOSE_CB.
The BRANCHCLOSE_CB callback was not being called for the correct node.
SELECTION_CB was included in the binding.
Including a new leaf now does not alter selection.

IupGL

IUP - Portable User Interface 07-Jan-25

48/496

Created attribute "ERROR" indicating error in a GL canvas.

IupCB

User canvas was not being reactivated after the mouse callbacks.

IupLua

IupGetGlobal and IupSetGlobal were not doing toupper.
New function created to get an Ihandle created in C: IupGetFromC.
The IUP_BUTTON_CB callback was not being called.
Functions isshift, iscontrol, isbutton1, isbutton2, isbutton3 and isdouble are now exported.
IupPreviousField and IupNextField were not implemented.
The OPEN_CB callback was implemented in the binding with the name OPEN.
New callback IUP_MOUSEMOVE_CB for matrix.

Version 1.8.9 (07 May 2001)

IupMatrx Control

If the user defined FGCOLOR while the matrix was in edition mode, the application crashed.
Hitting Esc was causing garbage to be written in the matrix field.
A bug that made the value_edit callback be called several times was fixed (it was called several times because the matrix kept trying to
exit the edition mode with other events).

IupTree Control

New IupTree control.
Scrollbar.
Multiple selection.
Default image size: 16x16.
Lua Binding.

IupCB Control

The name of the Lua colorbrowser element has changed. Now it is called iupcb, not cb.

Windows

The IUP_MULTIPLEFILES attribute was created. Now it is possible, in Windows, to select several files in a FileDlg.
IupHelp now only initializes DDE when it is used.

Version 1.8.8 (15 Mar 2001)

The global.h, macros.h, rgb.h and hls.h files are no longer exported by IUP.
Some keys were in conflict among themselves (shift-home and 4, for instance). Shift-space and Ctrl-space were added to the K_ANY
callback (Windows and Motif).
IUP_VISIBLE was returning NULL on IUP when the dialog was not mapped.
IupSetLanguage can now be called before IupOpen();
iuptoolbar and iupfiletext were removed from the distribution.

CPI

Several defines (such as strieq) are no longer exported from iupcpi.h
Functions iupAddSymbol, iupGetSymbol, iupgetdata and iupsetdata are no longer exported from the CPI.

Motif

The Tip font is now inherited from the element it belongs.
Inserting a text (IUP_INSERT or IUP_APPEND) on Motif was ignoring the maximum number of characters.
Some ITALIC fonts were not working.
Several visibility problems were fixed for ZBOX inside a ZBOX.
The default value of the ALLOWNEW attribute (in fileopen mode) allowed creating a new file (now standardized).

IupTabs Control

IupTabs was not considering attribute IUP_ALIGNMENT.
Tabs was not showing the selected element if it was selected while the Tabs was invisible (it was a Motif bug).
The <TAB> key was neither passing the focus to IupTabs nor taking the focus off it.
The SIZE attribute is now defined for the tabs of IupTabs ICTL_TABSIZE.
Changing the text value for Tabs was not recomputing the Tabs size.
The appearance of IupTabs was enhanced.
IupTabs now sends the focus back to the first element when the user tries to shift right after the last element.

IUP - Portable User Interface 07-Jan-25

49/496

Now a redraw can be forced on Tabs with the IUP_REDRAW attribute.

IupMatrx Control

Ctrl+arrows was not working properly.
The behavior of the DEL key to delete a set of cells now also considers the return of the IUP_EDITION_CB callback.
The mark is now shown (not the focus) when matrx loses the focus (users were having problems when wishing to hit a button to cause
an action over the matrix).
Oh the NT platform, the fields of the created matrix had the wrong values when an automatic scroll occurred.
Right-clicking the matrix now passes the control parameter (as in BUTTON_CB) isshift(r), iscontrol(r), isbutton1(r), isbutton2(r),
isbutton3(r), isdouble(r)
Vertically scrolling by dragging the thumb now works properly.
The focus is now correctly drawn inside the matrix (when only half the cell appears, half of the focus is drawn).
When leaving the edition mode by clicking an element outside the matrix, the focus was remaining on the IupText in the matrix.
Colors and alignments are now moved when a cell is moved either by adding new lines or columns or by deleting lines or columns.
The matrix now leaves the edition mode whenever lines or columns are removed.
When the user clicked a cell near the end of the matrix (on the x coordinate) an automatic scroll was made and the cell beside the desired
cell was marked.

Windows

KEY in IupItem was replicating the underlined KEYs (and some times adding the wrong values because of that).

IupLua.exe

Now works properly with all controls.

IUP Manual

All elements now have examples at least in IupLua and C.
The IupMask manual was created.

Version 1.8.7 (23 Nov 2000)

The alignment of composition elements can now be changed on-the-fly.
Current language treatment has been changed. ATTENTION: previous putenv no longer works! Use new functions IupSetLanguage and
IupGetLanguage. Default language: Portuguese.
IupAlarm's design was reformulated. Now all buttons have the same size.
Functions IupUnMapFont and IupMapFont were created to make the use of the drivers fonts easier.
Attribute IUP_FONT now accepts a string either with the native font or the IUP font, and always returns the native font (attributes
WINFONT and MOTFONT are now obsolete).

Motif

Motif did not have K_ANY for IupList in dropdown mode.
The IUP_VISIBLE attribute now works for FRAME, ZBOX, VBOX, HBOX and RADIO (all elements were tested). Now it is no longer lost
for internal HBOX elements when the HBOX visibility is changed.
When the user changed from one ZBOX to another, the first one was forgetting which elements were visible.

Windows

When Toggle 1 (default) begins deactivated, it no longer remains marked forever.
Toggle with image now accepts images IUP_IMPRESS and IUP_IMINACTIVE, but it follows the Windows standard for Toggle
manipulation.
Toggle was not verifying whether it was active or not when it was created.
Canvas redraw was optimized. The canvas now uses transparent color as default. The user is in charge of drawing the canvas, but now it
no longer blinks when a redraw is made. Tip: To avoid unnecessary canvas redraws, do not put it inside a frame and use the
IUP_CLIPCHILDREN attribute.
Initializing Toggle (or Radio) with a value and then modifying it via callback was marking both toggles.
Changing Toggles color (IUP_FGCOLOR) was not working on Windows unless its background color was also changed.
IupItem outside a submenu was not calling the callback.
On Windows, the IUP_HOTSPOT attribute was being read incorrectly (the correct form is with ":").

IupMatrix Control

DROPDOWNs function in Matrix was corrected. Now the user fulfills the dropdown values, which always start at position 1. If the user
wishes, he/she can set the initial dropdown value by checking the IUP_PREVIOUSVALUE attribute about the dropdown element passed
as parameter. This attribute returns the previously selected string value.
Dropdown now enters edition mode just as regular fields do.
Dropdown can automatically close after the users choice. Simply return IUP_CONTINUE for the callback chosen by the dropdown.
Now the dropdown accepts the ESC key, restoring its previous value.
An element with focus is now drawn with double focus.
The color of a selected element is now 20% attenuated.
When the user entered edition mode using the mouse and exited it hitting ENTER, the cell remained selected.
Matrix no longer gets lost when it has 0 lines.

IUP - Portable User Interface 07-Jan-25

50/496

Matrix was not accepting a user to return a constant string with \n from a callback.
A Matrix that loses the focus does not lose the selection (but it is not apparent).
TAB no longer changes cells in the Matrix (it now changes IUP elements).
Hitting delete on a marked element deletes everything.
Matrix leaves the edition mode when IupTexts exit arrows are used.
There was a computation mistake in cell size when the Matrix was in edition mode.
When the user scrolls, the Matrix exits the edition mode.
ALL problems caused by cdActivate in Matrix were solved.

Other Extended Controls

The element from IupGL was not getting the focus when it was the only element in the dialog.
In IupGL, OpenGL now synchronizes its functioning with Motif (glXWaitX) at resize.
IupGC now works with IUP_ENGLISHs variable set (cancel/cancela, red/Verm, etc.)
IupGauge now accepts changing text or percentage values on-the-fly.
Tabs font now has a differentiated color when it is inactive.

IupLua

IupScanf at IupLua was not performing the final dialogs popup.
IupSetLanguage, IupGetLanguage, IupMapFont and IupUnMapFont were created at IupLua.
It now considers the IUPLUA_QUIET attribute.
The callbacks in IupLua are now inherited (eg.: k_any from a dialog is called when IupCanvas does not have k_any).
The librarys opening message now follows a standard.
IupLua was passing Luas pointer to IUP instead of copying its value in IupSetHandle (making it crash).

IupLua Program

iuplua was not running with IupVal and IupGetColor.
iuplua now accepts several files as a parameter.
iuplua is now joined with iupluafull
iuplua now shows line number and cursor column.

Version 1.8.6 (21 Jun 2000)

All libraries were generated for AIX 4.3.2, which is available in new IBM machines.
A series of memory management problems was solved for all platforms.
Attribute IUP_SELECTEDTEXT now can also be used to change the selected text in a IupText and IupMultiline field.
The IupLabel element now takes the IUP_ALIGNMENT attribute into account.
The IupList (dropdown) element now always leaves some option selected (unless there is none to select).
When the selected elements value in IupList (dropdown) is changed, it now remains selected with the new value.

User Manual

The user manual is now also available in several Windows Help formats, including the help format for Visual C++ (5 and 6). To
configure your account for Visual C++ to access IUPs Help, run W:\iup\help\iuphelp.reg (ATTENTION: On Visual Studio, IUPs manual
must be activated and deactivated through option Help -> Use extension Help). Other available formats can be found at W:\iup\Help.
A general revision of the user manual is being made.
The CPI manual was rewritten.
Several examples were included.
An application called iupluatest (W:\iup\bin) was created to run the IupLua examples included in the manual (it works with the controls
using the installed DLLs).

Windows

There is no longer any restriction for the number of dialogs created using IUP (the only limitation now is Windows capacity to create
native elements).
Events of IupButton and IupToggle were being improperly called when a IupHide or a IupShow was made on the dialog.
A bug when drawing an image associated to a IupToggle element was fixed.
The functioning of attributes IUP_DEFAULTENTER and IUP_DEFAULTESC was corrected.
Now, when a user changes the selection of a multiple IupList via programming, IUP internally updates the selection.
The IUP_BGCOLOR attribute to define a new cursor was not standardized with the Motif, and color 0 in the Windows image was never
allowed to be transparent.
A bug in the dropdown list was fixed. It was not calling callback GETFOCUS_CB, causing instability in the IupMatrix element).
The transparency color in a cursor now must be color number 0 (according to the manual, this is the way it was supposed to be).
The IupList (dropdown) callback is no longer called for element 0 (which does not exist).
A button in a Popup dialog was only allowing to be pressed via mouse. Now it can be pressed with the space key.
The IupSetAttribute(x,IUP_VISIBLE,IUP_YES) call, when x was a dialog, was not working.
Calling IupHide with a frame, with [hvz]box or with radio was not the same thing as calling IupSetAttribute(n,IUP_VISIBLE,IUP_NO)".
The IUP_MOUSEPOS position in a dialogs IupPopup was not functioning.

Motif

Several memory leaks were fixed. They occurred when IupGetAttribute called functions from XM which allocated memory to store the
attributes value. This change may cause problems for applications which did not copy the value returned from IupGetAttribute and used

IUP - Portable User Interface 07-Jan-25

51/496

the returned string. This usage of the return value from IupGetAttribute is not appropriate, because the user has to copy this string if
he/she intends to remain using it (the returned string is intern to IUP).
The dialog's Close callback was not closing the application when it returned IUP_CLOSE.
The IUP_ACTION callback from IupMultiline was not returning the new text value if the key was validated (parameter after).
The dropdown list was not automatically showing the first element when it was opened.
The Motif now returns the default font when IupGetAttribute(n,IUP_FONT) is performed.

IupLua

The names of callbacks show_cb and map_cb were corrected.
A bug that made a toggle image not appear was fixed.

Extended Controls

The default cursor of the IupMatrix element now looks like the MS Excel cursor. (Remember to call IupMatrixOpen() even when using
IupLua!)
Alignment (center) of the field in column 0 of the IupMatrix element.
The user can now return IUP_CONTINUE at the action callback of element IupMatrix to allow IUP to go on treating pressed keys in the
conventional IUP way.
The dropdown list at IupMatrix was losing its current value when the user changed cells.
The IupGetColor element was being drawn outside the canvas (old problem in cdActivate).
The font in IupTabs is now inherited.
Attributes ICTL_ACTIVE_FONT, ICTL_INACTIVE_FONT, ICTL_FONT were implemented in the IupTabs element.
Attribute IUP_MARGIN was implemented for the IupGauge element.

Version 1.8.5 (18 Apr 2000)

The versions of libraries IUP and IupLua were synchronized. From this version on, these tools will be distributed together.
The library generation mechanism was changed to use libmake. All DLLs are available and following the same standard as the DLLs of
other Tecgraf libraries.
A FAQ was created for IUP: http://www.tecgraf.puc-rio.br/~mark/iup/faq-iup.txt.
Several memory management problems were fixed.
Attribute IUP_DIALOGTYPE can now assume three values: IUP_OPEN, IUP_SAVE and IUP_DIR. Due to the creation of IUP_DIR, the
IUP_ALLOWDIR attribute is no longer used.
One more value was added to attribute BGCOLOR: IUP_TRANSPARENT (used only by the Canvas to avoid unnecessary drawing).
Function IupGetError was removed from iup.h.
Function IupDataEntry was removed from iup.h.

Windows

Function iupdrvSetIdleFunction was added to make the Windows compatible with Motif.
The bug that made IUP crash when using MessageBox inside a button callback was fixed.
IupDestroy now reconfigures the button control function (it was making IUP crash).
The IUP_READONLY attribute was implemented (valid for Text and Multiline).
The IUP_FILTERUSED attribute was implemented: it informs which is the filter selected by the user (1, 2, 3...).
A bug that caused IupPopup(IupMenu(item)) not to call the items callback was fixed.

Motif

IupDestroy was corrected. In a IupFrame, it made IUP crash.
IupList was corrected. It crashed when the user changed its elements and tried to set IUP_VALUE.
The memory leak at IupGetFile was removed.
List elements were not being correctly deleted.

IupMatrix Element

The bug in the NT matrix was fixed. It was not refreshing added elements (the values on the cells were wrong).
The bug in the scroll matrix was fixed.

Version 1.8.4 (09 Dec 1999)

Windows

A problem, which called the dropdown callback even for an already-deleted element, was fixed.
Function IupHelp is now available.
A bug was fixed; it caused excessive system resource usage when dialogs with several elements were used.
The size of the version dialog was corrected.
A bug was fixed; it made IUP crash depending on the use of MessageBox. Same for IupFileDialog.
Callback IUP_BUTTON_CB was added for the IupButton element.
A bug was fixed; it made IupGetInt(d,IUP_X) return a wrong value when the dialog was maximized.

CPI Controls

The color inheritance problem was fixed.

IUP - Portable User Interface 07-Jan-25

52/496

http://www.tecgraf.puc-rio.br/~mark/iup/faq-iup.txt

Corrections were made to the Dial size.
Attributes of colors FGCOLOR, BGCOLOR, and fonts FONT, WINFONT, MOTIFFONT.

Version 1.8.3 (15 Jun 1999)

Windows

The IUP_ACTIVE attribute now also works in the frame.
The action callback in Multiline now also accepts the DEL key.
Toggle element now accepts an image.
The IUP_TOOLBOX attribute was implemented for dialogs.
A bug was removed; it made a second IupShow in a dialog reset its position to the center of the screen.
Treatment of the SIZE and RASTERSIZE attributes was changed.
The IUP_ACTION callback now treats the DEL key and commands and keys from the Cut and Paste menu.
A conflict was solved; it made the key - generate a call to the callback as if it were key (plic).
Keyboard accelerators for menus now work, since the focus is no longer on the dialog. When a dialog receives the focus back, it sets the
focus to the last control inside it that had the focus.
IUP_K_ANY no longer issues beeps when keys are pressed on the canvas.
When the IUP_STARTFOCUS attribute is not defined, the focus is set for the first control in the dialog that accepts it, thus preventing the
dialog from keeping the focus and allowing the menus to be called via accelerator.
Attribute IUP_SELECTION was implemented.

Motif

Color management for 8bpp displays (256 colors) was re-implemented. Basic colors used by IUP (black, white and the grays used for
highlight and shadow) are now reserved, and the search for colors in the palette was optimized.
Elements such as IupCanvas now have their own visual, independent from their parents. If allowed by the display, the default visual of a
canvas will be TrueColor (24bpp); if not, it will be the same as the default display visual.
The IupToggle element now processes the IMAGE attribute differently: it now shows the toggle with the same appearance as the
IupButton element, but maintaining its functionality the button remains pressed until the user clicks it again. The IMPRESS attribute can
be used to define the image used for the pressed button. In this case, the user is in charge of giving it a 3D appearance.
IMPORTANT: The size of the dialog can be adjusted after being mapped, by means of the SIZE and RASTERSIZE attributes

The size of the dialog has now precedence over the smallest size required by its children (either having been specified in its
creation or in run-time).
Attributing a NULL value to the SIZE or RASTERSIZE (in C) of a dialog will re-compute its size according to the size of its
children.
Partial dimensions (###x and x###) are now treated correctly.
Therefore, applications that define sizes for dialogs (either in LED or in C) smaller than the minimum size required by their
children will show truncated dialogs. To force a computation based on the size of the children, set any of these attributes to
NULL (in C) or simply do not define them in LED. As a general rule, avoid specifying a dialog size unless there is a real need
for such in this case, be careful to specify a sufficient size.

IupFileDlg:
The default value for the DIALOGTYPE attribute was not being recognized (the program aborted when there was no defined
value).
When ALLOWNEW = NO, the dialog informs if the user is specifying a non-existing file (instead of simply returning, as was
happening).
When the dialog type was OPEN, the returned value was 1 (Cancel) even when the user confirmed the operation.
If DIALOGTYPE is SAVE, a confirmation is required if the file already exists.
A new dialog was created for each popup without destroying the previous dialog.
The NOCHANGEDIR attribute was implemented.
The dialog does not return if the user specifies a new file when attribute ALLOWNEW = NO. The same happens when attribute
ALLOWDIR = NO and a directory is specified. In these cases, alerts are shown.

The iupGetColor function for CPI controls was replaced in functionality by the iupGetRGB function (iupGetColor is maintained for
compatibility purposes, but it should no longer be used).
TRUECOLORCANVAS was created. It indicates if the display allows the creation of TrueColor windows (> 8bpp), even if the default is
PseudoColor.
Tabs: a problem was fixed concerning the use of the VISIBLE attribute for elements belonging to a non-selected tab.
IupHelp: allows using a browser (default = Netscape) for viewing HTML pages.
The ACTION_CB callback, from IupText, now receives, apart from Ihandle* and int, a char* pointing to the new text value in case the
key is confirmed.
Dropdown lists were not correctly processing the VISIBLE attribute.
A problem with the initialization of multiple-selection lists was solved: the VALUE attribute was not being respected in some cases.
Attributes FGCOLOR and BGCOLOR from the dropdown list were not being correctly updated.
IupLoopStep was re-implemented: now it no longer blocks when there are no events to be processed (it simply returns DEFAULT).
The dropdown list is closed when the associated textbox is totally or partially darkened.
The dropdown list was not being closed when the dialog lost the focus if IupIdle was registered.
A problem in the exhibition of CPI controls was fixed.
New return code (CONTINUE) was created, specific for key callbacks, to be used when the event is to be propagated to the parent of the
element receiving it.
In some situations, elements destroyed by means of IupDestroy were receiving events, making the application abort.
The redefinition of items in the main menu was making the dialog return to its original size.
Consulting attribute BGCOLOR in a dropdown list was aborting the application.
Consulting attributes BGCOLOR and FGCOLOR of a canvas with a different visual from the default was generating an X-Windows error
message.
The problem with IupFileDlg was fixed (the application was aborting).
IupDestroy in a bar menu was inducting an infinite loop to the application.
The list now matches the documentation: it calls the action callback for the de-selected element (with the v = 0 parameter).

IUP - Portable User Interface 07-Jan-25

53/496

Bug correction: The use of a Motif attribute instead of a function was making Motif lost control of memory management (memory
already liberated was liberated again, which aborted the application).
ACTION in IupText caused SIGSEV when the user pressed ENTER.
New IupMapFont for mapping IUP fonts -> Motif.

Version 1.8.2

Windows (12 Jan 99)

Function char* IupMapFont(char* font) converts a IUP font describer (used by the IUP_FONT attribute) into a native font describer
(used by IUP_WIN_FONT).
File Drag & Drop was implemented in dialogs and canvases, via the IUP_DROPFILES_CB callback.
Attribute IUP_EXTFILTER was implemented for the IupFileDlg control, allowing the use of more than one filter.
Changes were made to allow the creation of CPI elements other than CANVASes or dialogs.
The IUP_ACTIVE attribute of a dialog can now be changed after it was mapped.
List callback correction: the callback is now called both for selected and not selected items.
New function void IupHelp(char *url) shows a URL in a Netscape window.
The treatment of the new return value for keyboard callbacks, IUP_CONTINUE, was implemented.
IUP_CURSOR attribute was implemented.
A code was added to treat the case of toggle de-selection via IupSetAttribute.
IUP_CARET now uses , as a separator instead of old :.
A restriction was eliminated that prevented the function iupGetTextSize from being called passing a dialog or frame as a parameter.
New text callback was implemented; it receives the text both before and after the change, and receives the code of the typed key.
It was possible to set two activated radio toggles by selecting VALUE for one of them on the radio and VALUE = ON on the other toggle.
Attributes IUP_STARTFOCUS, IUP_DEFAULTENTER and IUP_DEFAULTESC were implemented.
The IUP_VALUE of a IupRadio was not allowing to be changed if it was not visible.
A problem was corrected for the lists, which were being reset between a IupShow/IupPopup and another.
Attribute IUP_SELECTEDTEXT was implemented. It returns the selected text (if there is any), with the \r already filtered.
A bug was corrected; it caused and Assertion Failed when the mouse was moved after a window was destroyed.
The value of IUP_VALUE of a IupText and a IupMultiline now does not contain \r.

Motif v1.8.2 (14 Aug 98)

IupFileDlg was corrected: the IUP_FILE and IUP_DIR attributes were not being treated correctly.
In some specific situations, closing a dialog could lead to the end of IupMainLoop, causing an abortion of the application.

Version 1.8.1

Windows v1.8.1 (17 Jul 98)

Correction: IUPs Matrix element was being shown with different fonts from the ones used by IUP, especially on UNIX platforms.
A bug related to ZBOX was fixed.
IupAppend on Multiline now includes \n at the end of the text.
A font set by CD no longer affects canvas size computation.
IupSetAttribute from a IupRadios VALUE with the name of a toggle with more than one name now works.
Default attributes now store values that match the documentation.
Function IupFlush was implemented.
Small errors in dialog size computations were corrected.
Now the dialog size is changed when the size of one of its children increases.

Motif v1.8.1 (16 Jun 98)

Correction: IUPs Matrix element was being shown with different fonts from the ones used by IUP, especially on UNIX platforms.
Dropdown list (combo box) remained opened if the element was hidden or destroyed.
The use of popup dialogs was sometimes preventing the last IUP_CLOSE (or IUP_DEFAULT) from ending IupMainLoop.
[LINUX] The button press event was not being received by the canvas when the CTRL key was pressed.

Version 1.8 (29 May 98)

General (also includes changes to both drivers)

BUG: Valuator, Dial and Gauge could cause an invalid memory access on resize or destroy.
BUG: The parse of CPI elements described in LED was corrected.
BUG: Valuator was removing the applications idle action.
NEW: FILEDLG control.
NEW: IupStoreAttribute function.
NEW: IupSetfAttribute function.
NEW: IupSetGlobal, IupGetGlobal and IupStoreGlobal functions for global attributes.
NEW: K_sCR key; shift-enter combination is now treated by IUP (callback: IUP_K_sCR, code: K_sCR).
NEW: IUP_TYPENAME attribute returns the name of the element type.
NEW: CPI popup method.
NEW: Definition of global attributes (verification only) IUP_VERSION, IUP_DRIVER, IUP_SYSTEM and IUP_SCREENSIZE.
NEW: Attributes IUP_X and IUP_Y were implemented, for dialogs only. They provide the dialogs upper left corner coordinates in relation
to the upper left corner of the screen.

IUP - Portable User Interface 07-Jan-25

54/496

NEW: IUP_SHRINK attribute to change the computation of the position and size of elements.
NEW: CPI control for an OpenGL canvas.
CHANGE: The IUP_TYPE attribute of the IupFileDlg control was changed into IUP_DIALOGTYPE, which must contain OPEN, SAVE or
NULL.
CHANGE: The IupSetAttributes function now returns the Ihandle*.
CHANGE: The IupSetAttribute function no longer returns the old value.
CHANGE: CPIs create method now creates the handle.
CHANGE: New function for CPI class creation.
CHANGE: Some obsolete definitions of iup.h are now only available when the IUP_COMPAT macro is set.
CHANGE: The ICTL_TYPE attribute of the IupTabs control was changed to ICTL_TABTYPE.

Lua Binding

NEW: iupkey_open function allows using IUPs key definitions in Lua.

Windows

NEW: Image now accepts BGCOLOR color. This turns the color associated to the index into the background color of the element linked to
the image.
BUG: the IUP_TITLE attribute of the IupItem element can now be changed after the element has been mapped.
BUG: A color problem was fixed; it occurred when the name or path of the executable file contained spaces.

Motif

BUG: The dropdown list no longer remains on the screen.
BUG: The computation of scrollbar attributes POSX and POSY was fixed.
BUG: Double-click was only being generated for the first button.
BUG: FRAME layout was corrected.
BUG: The color of the menu item was corrected.
BUG: The management of the nested elements of a ZBOX and/or with the VISIBLE attribute defined for its children was fixed.
BUG: The color remained undefined when the value of attribute FGCOLOR or BGCOLOR was not valid.
BUG: General cleaning was made to remove memory leaks from the driver.
NEW: Attributes IUP_X and IUP_Y to provide the pixel position of any element.
NEW: Attribute IUP_RASTERSIZE can be consulted.
NEW: Menu item now accepts \t to align the text to the right Windows already allowed it.
NEW: Version number was added; can be retrieved with tecver.
CHANGE: Multilines scrollbar is no longer deactivated with ACTIVE=NO.
CHANGE: Multilines and lists BGCOLOR no longer affects the scrollbars.

Version 1.7

The implemented code was made compatible with manual specifications. iup.h was changed to reflect that. To use old definitions, set
IUP_COMPAT before including the iup.h file to the applications.

To Do

Roadmap for the Next Versions

Version 4.0

CMake support
LuaRocks and Vcpkg support
C++ API
Complete the Tutorial

Next Versions (?)

Interactive change of column position in IupMatrix

Future Versions (??)

Complete the MacOS X native driver
Cassowary Constraint Layout Controls
Dialog construction from Sketches
Dialog Templates

General

Important: RPM, Debian and LuaRocks distribution packages.
Important: IupGLCanvas in MACOS X using native OpenGL support.
Important: a MacOS X native driver using Cocoa.
The actual model for control data structure in the internal SDK is restricted for derived classes.
Loading and saving RTF files in IupText. Add support for images inside the text.

IUP - Portable User Interface 07-Jan-25

55/496

Possibility to change the system menu in Windows.
Support for cascading IupPopup for menus.

Windows

Known Issue: when using a IupScrollBox on top of a IupGLCanvas in Windows 7, during the scroll some regions of the canvas are
overlaped by an internal system drawing of the scrolled controls.
Known Issue: sometimes when there is child dialog displayed in a secondary monitor, the IupList dropdown in the main dialog is
displayed in an incorrect position.
Known Issue: when in Windows 8 the IupFontDlg dialog does not supports the TITLE attribute nor can be positioned.
Known Issue: when an IupVal is inside an IupTabs, the tabs disappear when the mouse moves over it after being used in the valuator.
A workaround is to put the valuator inside an IupFrame and then inside the IupTabs, so the problem does not occur.
Known Issue: when the dialog background is dynamically changed the IupVal background is only updated after the user click on the
control or when the control is redisplayed.
Known Issue: in Windows Vista the COMPOSITE=YES attribute of the IupDialog is not working as expected. There is still flicker when
the dialog is resized. IupTabs in Windows Vista when COMPOSITE=YES works only if MULTILINE=YES. (since 3.0)
Known Issue: in Windows when CANFOCUS=NO only the Tab key navigation is not done, when clicked the control will still get the
focus. The only exceptions are button and canvas.
Known Issue (Compiler): the IupImgLib takes an very long time to compile under Visual C++ up to version VC9 (starting in VC10 the
problem does no occur). (since 3.0)
Known Issue (Compiler): when building with Open Watcom the additional controls crash. When you add debug information to the main
IUP library the problem solves. We tried to track down this error but it does not occurs with debug information and our attempts without
debug does not gives any results. So the IUP main library for Watcom is now distributed with debug information. (since 3.0)

GTK

Known Issue: can not set focus to a child inside TABCHANGE_CB or TABCHANGEPOS_CB in IupTabs, because internally GTK will
always set the focus to the first child.
Known Issue: in Ubuntu 11.10 the canvas scrollbar is not notifying IUP that the user dragged the control. To solve the problem remove
the overlay-scrollbar, this is the package that makes the scrollbar invisible until the mouse is near it.
Known Issue: OPEN_CB, MENUCLOSE_CB and HIGHLIGHT_CB callbacks not working in GTK > 3.14.

Motif

Known Issue: when the IupList has DROPDOWN=Yes in Motif, and the list has items with the same string, the ACTION callback will
return the index of the item with the first instance of the string only. This seems to be a bug or limitation in Motif.
Known Issue: an element when inside an IupScrollBox is not being displayed until the box is scrolled if its size alone is greater than the
scrollbox visible size.
Known Issue: IupMatrix crash the application during its creation on OpenMotif 2.3.3. inside the creation of the internal IupList.

Lua Binding

Important: create a base library for exported functions. All other libraries will be pure Lua modules only.
Important: remove the standard "lib" prefix from pure modules dynamic libraries names in UNIX.
Important: remove the Lua version number suffix from all libraries.

IupMatrixEx

Important: drag&drop of columns, i.e. interactive change of column position.

IupTree

Known Issue: the rubber band gets lost depending on what you do inside the SELECTION_CB callback in GTK. To avoid that set
RUBBERBAND=NO.
Known Issue: the SELECTION_CB callback may be called more than once for the same node with the same status.
Known Issue: in Windows XP, when using a font for an node with TITLEFONTid in IupTree that is larger than the element FONT the
item text will be cropped at right and bottom because the system uses the element font to calculate the item size. The only exception is
when you just change the font to add a Bold style.
RENAMEEDIT_CB callback and RENAMEMASKid attribute.
Add new nomenclature option for id, for example ":2:1:4"
Define minimum size based on tree nodes.
drag&drop of multiple selected nodes.

IupMglPlot

Important: text render quality is lower than in IupPlot.
Important: add UTF-8 mode using MathGL Unicode support.
Compile MathGL using OpenMP support.
Logarithm scale is not working properly.
Automatic ticks computation needs to be improved.

Possible New Controls

Table - similar to IupMatrix but using native controls (Windows,GTK,Motif)

IUP - Portable User Interface 07-Jan-25

56/496

Scrollbar - just the scrollbar as a control. (Windows,GTK,Motif)
PropertyGrid - a 2 column matrix with expandable/closeable items
IP Address (Windows)

Comparing IUP with Other Interface Toolkits

Why to still maintain IUP if today we have so many other popular toolkits?

This is a question we always ask to ourselves before going on for another year.

To answer that question we must first define the characteristics of the reference toolkit, list the available toolkits and compare them with the
reference and with IUP.

We would like a toolkit that has:

Portability. That provides an abstraction for Graphical User Interface in Windows, UNIX and Macintosh. Also called Cross platform and
multi-platform GUI toolikit.
Free License and Open Source. This means that we can also produce commercial applications. The pure GPL license can not be used
but the LGPL can but must contain an exception stating that derived works in binary form may be distributed on the user's own terms.
This is a solution that satisfies those who wish to produce GPL'ed software and also those producing proprietary software. Many libraries
are distributed with this license combination.
Small and Simple API. This is rare. Many libraries assume that an Interface toolkit is also a synonymous of a system abstraction and
accumulate thousands of extra functions that are not related to User Interface. At Tecgraf we like many small libraries instead of one big
library. Almost all available toolkits today are in C++ only, so C applications are excluded, also this means a hundred classes to include
and understand each member function. The use of attributes makes a lot of things more elegant and simpler to understand.
Native Look & Feel. Many toolkits draw their own controls. This gives an uniformity among systems, but also a disparity among the
available applications in the same system. Native controls are also faster because they are drawn by the system. But the problem is
what's "native" in UNIX? Some commercial applications in UNIX start using Motif as the "native" option. It was the official standard but
because of license restrictions, before the OpenMotif event, the system became old and some good alternatives were developed,
including GTK and Qt. Update: lately with the wide spread of mobile interfaces that focus in simplicity, that directly reflected in the
Windows 10 appearance, with almost no decorations in the controls. So we decide to provide our own controls with a more flexible
range of attributes, usually they start with IupFlat* prefix, but there are others.

Toolkits

With these characteristics in mind we select some of the available toolkits:

Name License Last
Update Version Language Platforms Controls Team Comments

FOX LGPL* 1997-
2018/02 1.7.64 C++ Win, X own 2 great look, license restrictions

FLTK LGPL* 1998-
2016/11 1.3.4 C++ Win, X,

Mac own 6 was from Digital Domain. Easy to learn.
1.4.x has weekly snapshots but no stable yet

GTK+ LGPL* 1997-
2018/04 3.22 C Win, X,

Mac own 11 target for X-Windows, basis of GNOME, Windows
and Mac are secondary

Qt LGPL 1994-
2018/05 5.11 C++ Win, X,

Mac own (many) Is free for Non Commercial, a dual-licensing model,
basis of KDE, Emulates the native look and feel

wxWidgets LGPL* 1992-
2018/02 3.1.1 C++ Win, X,

Mac native/own 6 X can use Motif or GTK, has many contributors

IUP MIT 1994-
2018/05 3.25 C Win, X,

Mac native/own 2 X can use Motif or GTK, Mac using X

Table Last Update: August 2018

More toolkits can be found here: The GUI Toolkit, Framework Page and List of widget toolkits.
An interesting article can be found here: Bad UI of the Week: The Cross-Platform User Interface.

Discussion

FOX has a great look but the license can be restrictive in some cases.

FLTK promises a new version with a better look and new features, but there are no concrete release dates. The FLTK documentation also does
not help.

GTK+ can be used as a replacement for Motif, but not as a fully "portable" toolkit since it is was originally target for X-Windows. Nowadays
GTK+ is a great free C toolkit. But some predefined dialogs could be the native ones, like the File Selection, specially in Windows. The Windows
port has a look and feel very similar to the Windows native look and feel, but it is different from a native application. A MacOS X port without
using X-Windows is on the way, but very slowly. Unfortunately the Windows port has been orphan for some time and there is no release of new
binaries for a while.

IUP - Portable User Interface 07-Jan-25

57/496

http://www.fox-toolkit.org/
http://www.fltk.org/
http://www.gtk.org/
https://www.qt.io/
http://www.wxwidgets.org/
http://www.tecgraf.puc-rio.br/iup/
http://www.atai.org/guitool/
http://en.wikipedia.org/wiki/List_of_widget_toolkits
http://www.informit.com/articles/article.aspx?p=787261

wxWidgets is an excellent choice because of the native controls and its portability.

Qt had several license limitations, but since mid 2009 a new license model take place and it became more attractive. It is a very stable and
powerful toolkit. Nowadays in terms of professional development Qt is the most prominent one.

It is hard to compare IUP with wxWidgets and Qt since they are much more than an User Interface Toolkit. They are complete development
platforms that include several secondary libraries not related to User Interface. In IUP we focus only in Graphical User Interface. Also both have
a heavy C++ APIs with some very complex constructions that may be more difficult to understand.

Developing IUP

IUP has a C API, only has functions for Graphical User Interface, and uses "Native Controls" in Windows, Motif and GTK+. These are the major
differences between IUP and other toolkits. Because of that IUP is small, fast and very powerful.

We have a small but very active team and we have many Tecgraf and foreign applications that today use IUP, collaborating for its evolution. Our
objective is to surpass the Tecgraf needs, keeping backward compatibility and improving the internal code.

IUP does not have a wide localization feature, internally it only includes support for messages in English, Spanish and Portuguese. But is can be
expanded.

Why Not Mac? The first Mac driver was developed for MacOS 9 and had several memory limitations so it was abandoned. With Mac OS X we
have the opportunity to do something better. Today IUP runs on Mac OS X using X11 with Motif or GTK. We plan for the future to build a native
driver, but it is not a Tecgraf priority.

Why Still Motif? Motif is very important for non Linux systems, some Tecgraf applications run on old AIX, SGI and Sun systems, that only have
Motif installed and we can not force the installation of other toolkits like GTK. Update: we don't test or build the Motif version in a couple of
years.

.. "Make it Reusable, Make it Simple, Make it Small" ...

Gallery

Standard Controls

IupLabel

IupButton

Motif Windows
Classic

Windows
w/ Styles GTK

IupToggle

Motif Windows
Classic

Windows
w/ Styles GTK

IUP - Portable User Interface 07-Jan-25

58/496

elem/iuplabel.html
elem/iupbutton.html
elem/iuptoggle.html

IupText

Motif Windows
Classic

Windows
w/ Styles GTK

Using FORMATTING:

When SPIN=YES:

Motif Windows
Classic

Windows
w/ Styles GTK

IupFrame

Windows Classic

Windows w/ Styles

Motif

GTK

IUP - Portable User Interface 07-Jan-25

59/496

elem/iuptext.html
elem/iupframe.html

IupList

Windows Classic

Windows w/ Styles

Motif

GTK

IupTree

Windows

Motif

IUP - Portable User Interface 07-Jan-25

60/496

elem/iuplist.html
elem/iuptree.html

GTK

IupCanvas

Windows
Classic

Windows
w/ Styles

Motif GTK

IupProgressBar

Motif

Windows Classic

Windows XP Style

Windows Vista

GTK

IUP - Portable User Interface 07-Jan-25

61/496

elem/iupcanvas.html
elem/iupprogressbar.html

IupVal

Motif Windows
Classic

Windows
w/ Styles

Windows
Vista GTK

IupTabs

Windows
Classic

Windows
w/ Styles

GTK

IUP - Portable User Interface 07-Jan-25

62/496

elem/iupval.html
elem/iuptabs.html

Motif

IupSplit

Natural Size After Changing the Bar Position

IupDetachBox

(ORIENTATION = VERTICAL) New dialog created after the detach action

IupExpander

IUP - Portable User Interface 07-Jan-25

63/496

elem/iupsplit.html
elem/iupdetachbox.html
elem/iupexpander.html

Container Expanded
(STATE = "OPEN")

Container Collapsed
(STATE = "CLOSE")

IupScrollBox

IupColorBrowser

IupDial

IUP - Portable User Interface 07-Jan-25

64/496

elem/iupscrollbox.html
elem/iupcolorbrowser.html
elem/iupdial.html

Resources

IupMenu, IupSubmenu and IupItem

Windows
Classic

Windows
w/ Styles

Motif GTK

The IupItem check is affected by the RADIO attribute in IupMenu:

Windows
Classic

Windows
w/ Styles

IUP - Portable User Interface 07-Jan-25

65/496

elem/iupmenu.html
elem/iupsubmenu.html
elem/iupitem.html

Motif GTK

Several Submenus:

IupImage

See also the IupImgLib, a library of pre-defined images.

Gallery

Additional Controls

IupMatrix

IupGLCanvas

IupGLControls

IUP - Portable User Interface 07-Jan-25

66/496

elem/iupimage.html
iupimglib.html
ctrl/iupmatrix.html
ctrl/iupglcanvas.html
iupglcontrol.html

IupPlot

IUP - Portable User Interface 07-Jan-25

67/496

ctrl/iup_plot.html

IupWebBrowser

IUP - Portable User Interface 07-Jan-25

68/496

ctrl/iupweb.html

IupScintilla

Pre-defined Dialogs

IupAlarm

IUP - Portable User Interface 07-Jan-25

69/496

ctrl/iup_scintilla.html
dlg/iupalarm.html

IupMessageDlg

Windows XP

Motif/Mwm

GTK/GNOME

IupFontDlg

Windows XP

GTK/GNOME

IUP - Portable User Interface 07-Jan-25

70/496

dlg/iupmessagedlg.html
dlg/iupfontdlg.html

IupFileDlg

Windows XP

Motif/Mwm

GTK/GNOME

IUP - Portable User Interface 07-Jan-25

71/496

dlg/iupfiledlg.html

IupColorDlg

Windows XP

GTK/GNOME

ColorBrowser Based

IUP - Portable User Interface 07-Jan-25

72/496

dlg/iupcolordlg.html

IupGetText

IupListDialog

IupGetParam

IUP - Portable User Interface 07-Jan-25

73/496

dlg/iupgettext.html
dlg/iuplistdialog.html
dlg/iupgetparam.html

Screenshots
(Click on the picture to enlarge image.)

IMLAB

Image Processing Laboratory
http://imlab.sourceforge.net/

IUP - Portable User Interface 07-Jan-25

74/496

http://imlab.sourceforge.net/

FTOOL

Two Dimensional Frame Analysis Tool
http://www.tecgraf.puc-rio.br/ftool

Nokia N800

IUP running on a Nokia N800 Internet Tablet using the GTK driver (contribution by Otfried Cheong).

iRex Iliad Book Reader

IUP running on a iRex Iliad Book Reader using the GTK driver (contribution by Hans Elbers).

IUP - Portable User Interface 07-Jan-25

75/496

screenshots/imlab.png
screenshots/imlab_analyze.png
http://www.tecgraf.puc-rio.br/ftool
screenshots/ftool.png
screenshots/n800_photo.jpg
screenshots/n800_screenshot.png

Tecgraf Applications

These are internal Tecgraf applications, developed across our partnerships. Their use is exclusive to the partner. The models seen in the
screenshots are fake models used for this purpose alone.

Older Tecgraf Applications

IUP - Portable User Interface 07-Jan-25

76/496

screenshots/irex_iliad_photo.jpg
screenshots/irex_iliad_screenshot.png
screenshots/tecgraf/anflex.png
screenshots/tecgraf/geresim.png
screenshots/tecgraf/mg.png
screenshots/tecgraf/recon.png
screenshots/tecgraf/sstab1.png
screenshots/tecgraf/sstab2.png
screenshots/tecgraf/pretpn1.png
screenshots/tecgraf/pretpn2.png
screenshots/tecgraf/sjd.png
screenshots/tecgraf/sigma3d.jpg

Contributions
We would like to thank all the contributions and bug reports. They are very valuable to us.

Particularly we would like to thank some contributors that sent us source code that we incorporated in IUP:

Chris Matzenbach
Danny Reinhold
Eric Wing
Heesob Park
Marian Trifon
Nicolas Noble
Otfried Cheong
Ranier Vilela
Steve Donovan
Warren Music

Here are some additional contributions that were shared with us but have their own pages. All the following use the same license terms of the
IUP license. Thank you all too.

Please let us know if something is missing from this page.

Distribution

Debian Packages by Matthew Kennedy

Build scripts to create Debian packages for IUP, CD and IM.

Releases can be found here: https://github.com/lispnik/tecgraf-docker/releases/

Drivers

IUP WebBrowser Driver by Eric Wing & Chris Matzenbach

A native driver for Web browser using Emscripten, a C/C++ to JavaScript compiler. On going work. Help needed!!!!!

IUP - Portable User Interface 07-Jan-25

77/496

screenshots/tecgraf/mec_mtool.png
screenshots/tecgraf/mec_mview.png
screenshots/tecgraf/mec_pos3d.png
screenshots/tecgraf/naval_predyna.png
screenshots/tecgraf/naval_prea3d_sea_bottom.png
screenshots/tecgraf/naval_prea3d_sea_bottom_fendp.png
screenshots/tecgraf/superv_seguro.png
screenshots/tecgraf/superv_sigdraw.png
screenshots/tecgraf/visorgraf-ematrix.png
https://github.com/lispnik/tecgraf-docker
https://github.com/lispnik/tecgraf-docker/releases/
https://github.com/ewmailing/IupEmscripten

IUP Android Driver by Eric Wing & Chris Matzenbach

A native driver for Andoid. On going work. Help needed!!!!!

IUP iOS Driver by Eric Wing & Chris Matzenbach

A native driver for iOS using Cocoa Touch. On going work. Help needed!!!!!

IUP MacOSX Driver by Eric Wing & Chris Matzenbach

A native driver for MacOSX using Cocoa. Current initiative. On going work. Help needed!!!!!

NOTE: in IUP 3.28 we added all the Eric and Chris contributions to the IUP SVN hoping more people can notice them
and also contribute. Thanks!

IUP MacOSX Driver by Heesob Park

A native driver for MacOSX using Cocoa. Old initiative.

Language Bindings

A Basic Guide to using IupLua by Steve Donovan

A very nice introductory tutorial for IupLua.

Ruby-IUP by Heesob Park

ruby-iup is an extension module for Ruby that provides an interface to the IUP GUI toolkit. The source is hosted on
github.com at http://github.com/phasis68/ruby-iup.

EuIup by Jeremy Cowgar

IUP wrapped for Euphoria.

FreeBasic Binding by AGS

The first release of FreeBASIC bindings for IUP 3. See the Forum post Portable GUI toolkit (IUP) version 3.0 (RC2)

Perl Binding by Kmx

Perl binding for IUP and related libraries.

Go-iup by Jeremy Cowgar

IUP wrapped for Go.

ScriptBasic Binding by John Spikowski

ScriptBasic binding for IUP. See the Forum posts about the Extension Module at IUP.

Component Pascal Binding by Boris Ilov

Component Pascal binding for IUP and CD, part of the BlackBox Framework.

Iup4D - D Language Binding by Heromyth

A D binding library for IUP with OOP style. Its API is similar to WinForms.

Common Lisp Bindings by Matthew Kennedy

Portable Common Lisp bindings for IUP. Featuring:

interactive development is supported (e.g. replacing/modifying callbacks at time to get immediate feedback on
changes)
bindings generated automatically from IUP's introspection functionality (little change in the bindings from release
to release)
attributes and callbacks carried through to the arg lists (helpful during development to know what attributes and
callbacks are applicable)

There are also bindings for IM and CD here:

IUP - Portable User Interface 07-Jan-25

78/496

https://github.com/ewmailing/IupAndroid
https://github.com/ewmailing/IupCocoaTouch
https://github.com/ewmailing/IupCocoa
http://github.com/phasis68/iup_mac
basic/index.html
http://rubyforge.org/projects/ruby-iup/
http://www.ruby-lang.org/
http://github.com/phasis68/ruby-iup
http://jeremy.cowgar.com/euiup
http://openeuphoria.org/
http://www.freebasic.net/
http://www.freebasic.net/forum/viewtopic.php?t=14230&start=0&postdays=0&postorder=asc&highlight=
http://search.cpan.org/dist/IUP/
http://github.com/jcowgar/go-iup
http://www.golang.org
http://www.scriptbasic.org
http://www.scriptbasic.org/forum/index.php/board,48.0.html
http://code.google.com/p/cp-iup
http://code.google.com/p/cp-cd/
http://blackboxframework.org/
https://github.com/Heromyth/Iup4D
https://github.com/lispnik/iup

https://github.com/lispnik/im
https://github.com/lispnik/cd

Localization Strings

Czech - Jiří Klimeš
Russian - A lexey Bogdanov

C++ Wrappers

RSSGui by Danny Reinhold. (RSS_GUI_0_5.zip)

Described by his words:
- It works fine with the C++ STL and doesn't define a set of own string, list, vector etc. classes like many other toolkits do
(for example wxWidgets).
- It has a really simple event handling mechanism that is much simpler than the system that is used in MFC or in
wxWidgets and that doesn't require a preprocessor like Qt. (It could be done type safe using templates as in a signal and
slot library but the current way is really, really simple to understand and to write.)
- It has a Widget type for creating wizards.
- It is not complete, some things are missing. It was tested only on the Windows platform.

IupTreeUtil by Sergio Maffra and Frederico Abraham. (IupTreeUtil3.zip or IupTreeUtil3.tar.gz)

 It is an utility wrapper for the IupTree control. It has several limitations, including to add leaves only after all branches
inside a branch. It uses STL.

IUP with C++ 11 and variadic templates (IUP++) by PulkoMandy

The IUP++ class registers itself as an IUP callback (with any arguments) and forwards the call to a C++ object and
method.

Tools

IupAsync by Ross Berteig

Described by his words:
IUP is not designed to be accessed from multiple threads, but occasionally there is a need (especially in a multi-threaded
application) for the UI to update a display or dispatch an action in response to messages from other threads or from an
OS component. To address this need, we designed an IUP control that translates calls from any application thread into a
callback function guaranteed to be running in IUP's thread.
The IupAsync control is presently an alpha release proving the concept for the Windows platform only. It is intended that
it be ported to the other platforms supported by IUP (GTK and Motif for Linux and OSX).

Guide
Getting Started

IUP has four important concepts that are implemented in a very different way from other toolkits.

First is the control creation timeline. When a control is created it is not immediately mapped to the native system. So some attributes will not
work until the control is mapped. The mapping is done when the dialog is shown or manually calling IupMap for the dialog. You can not map a
control without inserting it into a dialog.

Second is the attribute system. IUP has only a few functions because it uses string attributes to access the properties of each control. So get used
to IupSetAttribute and IupGetAttribute, because you are going to use them a lot.

Third is the abstract layout positioning. IUP controls are never positioned in a specific (x,y) coordinate inside the dialog. The positioning is
always calculated dynamically from the abstract layout hierarchy. So get used to the IupFill, IupHbox and IupVbox controls that allows you to
position the controls in the dialog.

Fourth is the callback system. Because of the LED resource files IUP has an indirect form to associate a callback to a control. You associate a C
function with a name using IupSetFunction, and then associate the callback attribute with that name using IupSetAttribute. But applications
now should use the IupSetCallback function to directly associate a callback for a control.

LED is the original IUP resource file which has been replaced in favor of Lua files, although it is still supported. But keep in mind that you can use
IUP without using LED or Lua, by just using the C API.

Building Applications

To compile programs in C, simply include file iup.h. If the application only uses functions from IUP and other cross-platform libraries that have
the same API in all platforms, then the application immediately becomes platform independent. The implementation of the IUP functions is

IUP - Portable User Interface 07-Jan-25

79/496

https://github.com/lispnik/im
https://github.com/lispnik/cd
https://github.com/lispnik/cd
../download/rss_gui.html
../download/RSS_GUI_0_5.zip
../download/IupTreeUtil3.zip
../download/IupTreeUtil3.tar.gz
http://pulkomandy.tk/_/_Development/_IUP portable user interface
http://pulkomandy.ath.cx/projects/thomson/browser/Thomson/elec/CrO2/software/iupplusplus.h
http://www.cheshireeng.com/free/index.html

different in each platform and the linker is in charge of solving the IUP functions using the library specified in the project/makefile. For further
information on how to link your application, please refer to the specific driver documentation.

IUP can also work together with other interface toolkits. The main problem is the IupMainLoop function. If you are going to use only Popup
dialogs, then it is very simple. But to use non modal dialogs without the IupMainLoop you must call IupLoopStep from inside your own
message loop. Also it is not possible to use Iup controls with dialogs from other toolkits and vice-versa.

The generation of applications is highly dependent on each system, but at least the iup library must be linked.

To use the additional controls you will need the iupcontrols and iupcd libraries and the CD library cd.

Other controls are available in secondary libraries, they also may have other external dependencies, check the documentation of the control.

If you are using IUP libraries in Windows DLLs or in Posix SOs dynamic libraries, then it is not necessary to worry about secondary
dependencies, only specify the libraries you directly use. If you link to the static libraries then you must include all the secondary dependencies.

To use the Lua Binding, you need to link the program with the iuplua library and with the lua library. The other secondary libraries also have
their Lua binding libraries that must be linked to use the control in Lua.

The download files list includes the Tecgraf/PUC-Rio Library Download Tips document, with a description of all the available binaries.

Windows

For Windows, if you statically link the application with IUP you must link also with the libraries ole32.lib and comctl32.lib (provided with the
compilers). The iup.rc resource file (or a custom version) should be included in the application's project/makefile so that some icons and cursors
can be used when not using the DLLs and to enable Windows Visual Styles. iup.rc is located in "/etc" folder of the distribution.

There is also guides for using some IDEs: C++ Builder X, Dev-C++, OpenWatcom C++, Visual C++ 7 (Visual Studio 2003), Visual C++ 8
(Visual Studio 2005), CodeLite, Code Blocks, NetBeans and Eclipse for C++.

In Windows, when using Gcc to link an application the libraries order are as important as in UNIX. Always put the less dependent library at the
end, for example:

-liup -lgdi32 -lcomdlg32 -lcomctl32 -luuid -loleaut32 -lole32

See more information in the Windows System Driver.

Motif

For Motif, IUP uses the Motif (Xm), the Xtoolkit (Xt) and the Xlib (X11) libraries. To statically link an application with IUP, use the following
options in the linker call (in the same order):

-liup -lXm -lXmu -lXt -lX11 -lm

Though these are the minimum requirements, depending on the platform other libraries might be needed. Typically, they are X extensions
(Xext), needed in SunOS, and Xpm (needed in Linux only). They must be listed after Xt and before X11. For instance:

-liup -lXm -lXpm -lXmu -lXt -lXext -lX11 -lm

Usually these libraries are placed in default directories, but you may require additional options:

Linux -L/usr/X11R6/lib -I/usr/X11R6/include

IRIX -L/usr/lib32 (X11)
-L/usr/Motif-2.1/lib32 -I/usr/Motif-2.1/include (Motif)

SunOS -L/usr/openwin/lib -I/usr/openwin/share/include (X11)
-L/usr/dt/lib -I/usr/dt/share/include (Motif)

See more information in the Motif System Driver.

GTK+ (since IUP 3.0)

For GTK, IUP uses the GTK, GDK, Pango, Cairo if GTK 3, and GLib. To statically link an application with IUP, use the following options in the
linker call (in the same order):

-lgtk-x11-2.0 -lgdk-x11-2.0 -lgdk_pixbuf-2.0 -lpangox-1.0 -lpango-1.0 -lgobject-2.0 -lgmodule-2.0 -lglib-2.0 -lXext -lX11 -lm (for GTK 2)
or
-lgtk-3 gdk-3 -lgdk_pixbuf-2.0 -lpangocairo-1.0 -lpango-1.0 -lcairo -lgobject-2.0 -lgmodule-2.0 -lglib-2.0 -lXext -lX11 -lm (for GTK 3)

 A simpler way to obtain GTK parameters for static linking is to use the pkg-config tool:

LIBS += $(shell pkg-config --libs gtk+-2.0 gdk-2.0)

IUP - Portable User Interface 07-Jan-25

80/496

download_tips.html
ide_guide/cppbx.html
ide_guide/dev-cpp.html
ide_guide/owc.html
ide_guide/msvc.html
ide_guide/msvc8.html
ide_guide/codelite.html
ide_guide/codeblocks.html
ide_guide/netbeans.html
ide_guide/eclipse.html
drv/win32.html
drv/motif.html

See more information in the GTK System Driver.

Multithread

User interface is usually not thread safe and IUP is not thread safe. The general recommendation when you want more than one thread is to
build the application and the user interface in the main thread, and create secondary threads that communicates with the main thread to update
the interface. The secondary threads should not directly update the interface.

Dynamic Loading

Although we have dynamic libraries we do not recommend the dynamic loading of the main IUP library in Motif. This is because it depends on
Motif and X11, you will have to load these libraries first. So it is easier to build a base application that already includes X11, Motif and the main
IUP library than trying to load them all. In Windows this is not a problem.

The IUP secondary libraries can be easily dynamic loaded regardless of the system.

Building The Library

In the Downloads you will be able to find pre-compiled binaries for many platforms, all those binaries were built using Tecmake. Tecmake is a
command line multi compiler build tool based on GNU make, available at http://www.tecgraf.puc-rio.br/tecmake. Tecmake is used by all the
Tecgraf libraries and many applications.

You do not need to install Tecmake, scripts for Posix and Windows systems are already included in the source code package. Just type "make" in
the command line on the main folder and all libraries and executables will be build.

In Linux, check the "Building Lua, IM, CD and IUP in Linux" guide.

In Windows, check the "Building Lua, IM, CD and IUP in Window" guide.

If you decide to install Tecmake, the Tecmake configuration files (*.mak) are available at the "src*" folders, and are very easy to understand. In
the main folder, and in each source folder, there are files named make_uname.bat that build the libraries using Tecmake. To build for Windows
using Visual C 9.0 (2008) for example, just execute "make_uname vc9" in the iup main folder, or for the DLLs type "make_uname dll9". The
Visual Studio workspaces with the respective projects available in the source package is for debugging purposes only.

IUP runs on many different systems and interact with many different libraries such as Motif, OpenGL, Canvas Draw (CD) and Lua. You have to
install some these libraries to build the secondary IUP libraries. Make sure you have all the dependencies for the library you want installed, see
the documentation below.

If you are going to build all the libraries, the makefiles and projects expect the following directory tree:

/mylibs/
 iup/
 cd/
 im/
 lua5.1/

To control that location set the TECTOOLS_HOME environment variable to the folder were the CD, IM and Lua libraries are installed.

IUP_ASSERT can be defined to enable some runtime checks for the main API.

File Encoding

Almost all IUP source code files are in pure ASCii encoding. But some files are encoded in ISO8859-1 and some in UTF-8 where Portuguese and
Spanish strings are written.

This occurs in a few source files only. If you have trouble compiling these source files you can convert the strings to contain pure ASCii
characters using an Hexadecimal representation of the non ASCii characters, for instance: "Atenção!" will be "Aten\xE7\xE3o!". You can use the
Lua script convert2ascii.lua to do that. The following files will be affected:

src/iup_lng*.h
srccontrols/matrixex/iup_lng*.h
srcplot/iup_lng*.h

Notice that the UTF-8 strings will also be correct using the Hexadecimal representation.

Libraries Dependencies

iupwin* -> gdi32 user32 comdlg32 comctl32 uuid ole32 (system - Windows)
iupmot* -> [Xpm Xmu Xext] Xt X11 (system - UNIX)
iupgtk* -> gtk-win32-2.0 gdk-win32-2.0 pangowin32-1.0(system - Windows)
 -> gtk-x11-2.0 gdk-x11-2.0 pangox-1.0 (system - UNIX)
 -> gdk_pixbuf-2.0 pango-1.0 gobject-2.0 gmodule-2.0 glib-2.0 (system - Windows/UNIX)
iupgl -> iup
 -> opengl32 glu32 glaux (system - Windows)
 -> GLU GL (system - UNIX)

IUP - Portable User Interface 07-Jan-25

81/496

drv/gtk.html
http://www.tecgraf.puc-rio.br/tecmake
building.html
buildwin.html
http://www.opengroup.org/openmotif/
http://www.opengl.org
http://www.tecgraf.puc-rio.br/cd
http://www.lua.org
../download/convert2ascii.lua

iupcd -> iup
 -> cd
iupcontrols -> iupcd
iup_plot -> iupcd
iupim -> iup
 -> im
iupimglib -> iup
iuplua51 -> iup
 -> lua5.1
iupluacd51 -> iuplua51
 -> cdlua51
 -> iupcd
iupluacontrols51 -> iuplua51
 -> iupcontrols
iupluagl51 -> iuplua51
 -> iupgl
iupluaim51 -> iuplua51
 -> imlua51
 -> iupim
iupluaole51 -> iuplua51
 -> iupole
iuplua_plot51 -> iuplua51
 -> iup_plot
iupole -> iup
iupweb -> iupole (Windows)
 -> webkit-1.0 (Linux)

(*) In Windows, "iupwin" is called "iup".
 In Linux and BSD "iupgtk" is called "iup".
 In IRIX, AIX and SunOS "iupmot" is called "iup".

As a general rule (excluding system dependencies): IUP depends on CD and IM, and IUPLua depends on Lua, CDLua and IMLua. Notice that not
all IUP libraries depend on CD and IM.

Instead of building all the libraries, try building only the libraries you are going to use. The Makefile on the root folder will build all the libraries,
but in each source folder there are secondary Makefiles. We use the following source code structure:

iup/
 src/ - The core library. Motif, GTK and Windows code
 srccd/ - CD_IUP canvas driver for the CD library
 srccontrols/ - IupControls additional controls - IupMatrix, IupMatrixEx, IupMatrixList, IupCells
 srcgl/ - IupGLCanvas
 srcglcontrols/ - IupGLControls additional OpenGL controls
 srcim/ - IUP/IM utilities
 srcimglib/ - Image Libraries with Icons, Logos and Bitmaps
 srclua5/ - Lua 5 binding
 srcole/ - IupOleControl
 srcplot/ - IupPlot
 srcscintilla/ - IupScintilla
 srctuio/ - IupTuioClient
 srcweb/ - IupWebBrowser

The Lua bindings for IUP, CD and IM (Makefiles and Pre-compiled binaries) depend on the LuaBinaries distribution. So if you are going to build
from source, then use the LuaBinaries source package also, not the Lua.org original source package. If you like to use another location for the
Lua files define LUA_SUFFIX, LUA_INC, LUA_LIB and LUA_BIN before using Tecmake.

In Ubuntu you will need to install the following packages and their dependencies (they are not installed by default):

libgtk2.0-dev (for the GTK driver)
or
libgtk3.0-dev (for the GTK driver)
 libmotif-dev and x11proto-print-dev (for the Motif driver, if used)
libgl1-mesa-dev and libglu1-mesa-dev (for the IupGLCanvas)
libwebkitgtk-dev (for the IupWebBrowser)
or
libwebkitgtk3.0-dev (for the IupWebBrowser)

Using IUP in C++

IUP is a low level API, but at the same time a very simple and intuitive API. That's why it is implemented in C, to keep the API simple. But most
of the actual IUP applications today use C++. To use C callbacks in C++ classes, you can declare the callbacks as static members or friend
functions, and store the pointer "this" at the "Ihandle*" pointer as an user attribute. For example, you can create your dialog by inheriting from
the following dialog.

class iupDialog
{
private:
 Ihandle *hDlg;
 int test;

 static int ResizeCB (Ihandle* self, int w, int h);

IUP - Portable User Interface 07-Jan-25

82/496

http://luabinaries.sourceforge.net/

 friend int ShowCB(Ihandle *self, int mode);

public:
 iupDialog(Ihandle* child)
 {
 hDlg = IupDialog(child);
 IupSetAttribute(hDlg, "iupDialog", (char*)this);
 IupSetCallback(hDlg, "RESIZE_CB", (Icallback)ResizeCB);
 IupSetCallback(hDlg, "SHOW_CB", (Icallback)ShowCB);
 }

 void ShowXY(int x, int y) { IupShowXY(hDlg, x, y); }

protected:

 // implement this to use your own callbacks
 virtual void Show(int mode) {};
 virtual void Resize (int w, int h){};
};

int iupDialog::ResizeCB(Ihandle *self, int w, int h)
{
 iupDialog *d = (iupDialog*)IupGetAttribute(self, "iupDialog");
 d->test = 1; // private members can be accessed in private static members
 d->Resize(w, h);
 return IUP_DEFAULT;
}

int ShowCB(Ihandle *self, int mode)
{
 iupDialog *d = (iupDialog*)IupGetAttribute(self, "iupDialog");
 d->test = 1; // private members can be accessed in private friend functions
 d->Show(mode);
 return IUP_DEFAULT;
}

This is just one possibility on how to write a wrapper class around IUP functions. Some users contributed with C++ wrappers, see next on
Contributions.

To help the creation of callbacks as methods in C++ Classes we provide (since 3.15) a header file called "iup_class_cbs.hpp" that has some
macros for that usage. There are 3 macros that need to be called:

IUP_CLASS_INITCALLBACK(ih, class) - to register the object as a callback receiver
 (called only once for a dialog, usually in the constructor, but can be called for children)
 (it can be called several times with the same class name to handle more than one dialog)
IUP_CLASS_SETCALLBACK(ih, name, function) - to associate the callback for a given element
IUP_CLASS_DECLARECALLBACK_IFn*(class, function) - to declare the callback as a member function
 (defined as the typedefs in "iupcbs.h" for all callbacks)

There is no order when calling the macros. The function name must match in SETCALLBACK and DECLARECALLBAK or it will not work. The
class name must match in INITCALLBACK and DECLARECALLBAK or it will not work. The macros will not work for a hierarchy of classes, all 3
macros must be set on the same class. For a class that inherits from another class where the macros where use, the macros must be called again
and they will not affect the inherited class behavior.

This allows an application to define callbacks as methods of any class it is using in the application. The method will have exactly the same
definition as the callback. And it will not be a static method, so there will be no need to access a pointer to the this object. Here is an example:

class SampleClass
{
 int sample_count;

public:
 SampleClass()
 {
 sample_count = 0;

 Ihandle* button1 = IupButton("Inc", NULL);
 Ihandle* button2 = IupButton("Dec", NULL);
 Ihandle* dialog = IupDialog(IupHbox(button1, button2, NULL));

 // 1) Register "this" object as a callback receiver (needed only once for the dialog)
 IUP_CLASS_INITCALLBACK(dialog, SampleClass);

 // 2) Associate the callback with the button
 IUP_CLASS_SETCALLBACK(button1, "ACTION", ButtonAction1);
 IUP_CLASS_SETCALLBACK(button2, "ACTION", ButtonAction2);

 IupShow(dialog);
 };

protected:
 // 3) Declare the callback as a member function
 IUP_CLASS_DECLARECALLBACK_IFn(SampleClass, ButtonAction1);
 IUP_CLASS_DECLARECALLBACK_IFn(SampleClass, ButtonAction2);

IUP - Portable User Interface 07-Jan-25

83/496

};

// 4) Define the callback as a member function
int SampleClass::ButtonAction1(Ihandle*)
{
 sample_count++;
 return IUP_DEFAULT;
}

int SampleClass::ButtonAction2(Ihandle*)
{
 sample_count--;
 return IUP_DEFAULT;
}

Memory Checking

Periodically we run some tool to check for memory usage and check for leaks or other misuse.

In Windows we use Visual Leak Detector (https://kinddragon.github.io/vld/). You just have to include this in your code once:

 #ifdef WIN32
#define VLD_MAX_DATA_DUMP 80
#include <vld.h>
#endif

For Linux we use Valgrind (http://valgrind.org/), but there are a few problems with GTK that should be ignored. We suggest the following
environment variable:

export VALGRIND_OPTS="--tool=memcheck -v --leak-check=full --show-reachable=yes --num-callers=30 --leak-resolution=high --error-limit=no --suppressions=gtk.supp --track-origins=yes"

The file with the necessary suppressions can be downloaded here. Take a look at this page for more info: https://wiki.gnome.org/Valgrind.

Another free tool available for Linux and Windows is Doctor Memory (https://drmemory.org/). EletricFence is another tool for Linux
(https://elinux.org/Electric_Fence).

Building Lua, IM, CD and IUP in Linux
This is a guide to build all the Lua, IM, CD and IUP libraries in Linux. Notice that you may not use all the libraries, although this guide will show
you how to build all of them. You may then choose to build specific libraries.

The Linux used as reference is the Ubuntu distribution (considering Ubuntu >= 14 and GTK 3).

System Configuration

To build the libraries you will have to download the development version of some packages installed on your system. Although the run time
version of some of these packages are already installed, the development versions are usually not. The packages described here are for Ubuntu,
but you will be able to identify them for other systems as well.

To build Lua you will need:

libreadline-dev

To build IM you will need:

g++
libfftw3-dev

To build CD you will need:

libfreetype6-dev (already installed if libgtk-3-dev is installed)
libgl1-mesa-dev and libglu1-mesa-dev (for the ftgl library used by CD_GL)
libgtk-3-dev (for the GTK driver)

To build IUP you will need:

libgtk-3-dev (for the GTK driver)
libgl1-mesa-dev and libglu1-mesa-dev (for the IupGLCanvas)
libwebkit2gtk-3.0-dev or libwebkit2gtk-4.0-dev depending what's available on the system (for the IupWebBrowser)

To install them you can use the Synaptic Package Manager and select the packages, or can use the command line and type:

sudo apt-get install package_name

IUP - Portable User Interface 07-Jan-25

84/496

https://kinddragon.github.io/vld/
http://valgrind.org/
../download/gtk.supp
https://wiki.gnome.org/Valgrind
https://drmemory.org/
https://elinux.org/Electric_Fence

Source Download

Download the "xxx-X.X_Sources.tar.gz" package from the "Docs and Sources" directory for the version you want to build. Here are links for the
Files section in Source Forge:

Lua - http://sourceforge.net/projects/luabinaries/files/
IM - http://sourceforge.net/projects/imtoolkit/files/
CD - http://sourceforge.net/projects/canvasdraw/files/
IUP - http://sourceforge.net/projects/iup/files/

Unpacking

To extract the files use the tar command at a common directory, for example:

mkdir -p xxxx
cd xxxx

[copy the downloaded files, to the xxxx directory]

tar -xpvzf lua-5.3.3_Sources.tar.gz [optional, see note below]
tar -xpvzf ftgl-2.1.4_Sources.tar.gz
tar -xpvzf im-3.11_Sources.tar.gz
tar -xpvzf cd-5.10_Sources.tar.gz
tar -xpvzf iup-3.19_Sources.tar.gz

If you are going to build all the libraries, the makefiles and projects expect the following directory tree:

/xxxx/
 cd/
 ftgl/ (included in CD)
 im/
 iup/
 lua53/ [optional, see note below]

If you unpack all the source packages in the same directory, that structure will be automatically created.

After the build, if you want to use some of these libraries that are installed on the system (see Installation section below) you will have to define
some environment variables before building them. For example:

export IM_INC=/usr/include/im
export IM_LIB=/usr/lib [not necessary, already included by gcc]

export CD_INC=/usr/include/cd
export CD_LIB=/usr/lib [not necessary, already included by gcc]

export IUP_INC=/usr/include/iup
export IUP_LIB=/usr/lib [not necessary, already included by gcc]

Lua (from the system)

Although we use Lua from LuaBinaries, any Lua installation can also be used. In Ubuntu, the Lua run time package is:

lua5.1

And the Lua development package is:

liblua5.1-0-dev

To use them, instead of using the directory "/xxxx/lua5.1" described above, you will have to define some environment variables before building
IM, CD and IUP:

export LUA_SUFFIX=
export LUA_INC=/usr/include/lua5.1
export LUA_LIB==/usr/lib [not necessary, already included by gcc]

By default the Makefiles and Tecmake files will build for Lua 5.1. To build for other Lua versions define USE_LUA_VERSION=52 or
USE_LUA_VERSION=53 in the environment.

If you need to rebuild the .lh files from the Lua files, then you will need also the path to Lua executable. This can be configured using:

export LUA_BIN=/usr/bin

IUP - Portable User Interface 07-Jan-25

85/496

http://sourceforge.net/projects/luabinaries/files/
http://sourceforge.net/projects/imtoolkit/files/
http://sourceforge.net/projects/canvasdraw/files/
http://sourceforge.net/projects/iup/files/

Building

As a general rule (excluding system dependencies): IUP depends on CD and IM, and CD depends on IM. So start by build IM, then CD, then IUP.

To start building go the the "src" directory and type "make" (except for Lua). In IUP there are many "srcxxx" folders, so go to the up directory
"iup" and type "make" that all the sub folders will be built. For example:

cd lua53/src
make -f Makefile.tecmake
cd ../..

// repeat the following for IM, FTGL, CD and IUP (in this order)

cd im
make
cd ..

TIP: Instead of building all the libraries, try building only the libraries you are going to use. The provided makefiles will build all the libraries,
but take a look inside them and you will figure out how to build just the libraries you need.

TIP: If GTK headers or libraries are not being found, even when the libgtk*.0-dev package is installed, then their installation folder is not where
our Makefiles expect. Build the GTK/GDK dependent libraries using "make USE_PKGCONFIG=Yes".

Pre-compiled Binaries

Instead of building from sources you can try to use the pre-compiled binaries. Usually they were build in the latest Ubuntu versions for 32 and
64 bits. The packages are located in the "Linux Libraries" directory under the Files section in Source Forge, with "xxx-
X.X_Linux26g4_lib.tar.gz" and "xxx-X.X_Linux26g4_64_lib.tar.gz" names.

Do not extract different pre-compiled binaries in the same directory, create a subdirectory for each one, for example:

mkdir lua53
cd lua53
tar -xpvzf ../lua-5.3.3_Linux26g4_lib.tar.gz (if not using Lua from the system)
cd ..

mkdir im
cd im
tar -xpvzf ../im-3.6.2_Linux26g4_lib.tar.gz
cd ..

mkdir cd
cd cd
tar -xpvzf ../cd-5.4_Linux26g4_lib.tar.gz
cd ..

mkdir iup
cd iup
tar -xpvzf ../iup-3.2_Linux26g4_lib.tar.gz
cd ..

For the installation instructions below, remove the "lib/Linux26g4" from the following examples if you are using the pre-compiled binaries.

Installation (System Directory)

After building you can copy the libraries files to the system directory. If you are inside the main directory, to install the dynamic libraries you can
type, for example:

sudo cp -f im/lib/Linux26g4/*.so /usr/lib [script version: install]
sudo cp -f cd/lib/Linux26g4/*.so /usr/lib
sudo cp -f iup/lib/Linux26g4/*.so /usr/lib

To install the development files, then do:

sudo mkdir -p /usr/include/im [script version: install_dev]
sudo cp -fR im/include/*.h /usr/include/im
sudo cp -f im/lib/Linux26g4/*.a /usr/lib

sudo mkdir -p /usr/include/cd
sudo cp -f cd/include/*.h /usr/include/cd
sudo cp -f cd/lib/Linux26g4/*.a /usr/lib

sudo mkdir -p /usr/include/iup
sudo cp -f iup/include/*.h /usr/include/iup
sudo cp -f iup/lib/Linux26g4/*.a /usr/lib

Then in your makefile use -Iim -Icd -Iiup for includes. There is no need to specify the libraries directory with -L. Development files are only
necessary if you are going to compile an application or library in C/C++ that uses there libraries. To just run Lua scripts they are not necessary.

IUP - Portable User Interface 07-Jan-25

86/496

../download/install
../download/install_dev

Installation (Build Directory) [Alternative]

If you don't want to copy the dynamic libraries to your system directory, you can use them from build directory. You will need to add the
dynamic libraries folders to the LD_LIBRARY_PATH (DYLD_LIBRARY_PATH in MacOSX), for example:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/xxxx/im/lib/Linux26g4:/xxxx/cd/lib/Linux26g4:/xxxx/iup/lib/Linux26g4
or for the current folder
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:.

And in your makefile will will also need to specify those paths when linking using -L/xxxx/iup/lib/Linux26g4, and for compiling use -
I/xxxx/iup/include.

Installation (Lua Modules)

Lua modules in Ubuntu are installed in the "/usr/lib/lua/5.1" directory. So to be able to use the Lua "require" with IUP, CD and IM you must
create symbolic links inside that directory.

sudo mkdir -p /usr/lib/lua/5.1 [script version: config_lua_module]
cd /usr/lib/lua/5.1

sudo ln -fs /usr/lib/libiuplua51.so iuplua.so
sudo ln -fs /usr/lib/libiupluacontrols51.so iupluacontrols.so
...

Using those links you do not need any extra configuration.

Installation (Lua Modules) [Alternative]

If you use the alternative installation directory, and you also do NOT use the LuaBinaries installation, then you must set the LUA_CPATH
environment variable:

export LUA_CPATH=./\?.so\;./lib\?.so\;./lib\?51.so\;

Building Lua, IM, CD and IUP in Windows
This is a guide to build all the Lua, IM, CD and IUP libraries in Windows. Notice that you may not use all the libraries, although this guide will
show you how to build all of them. You may then choose to build specific libraries.

System Configuration

The Tecmake configuration files are for the GNU make tool. So first the GNU make must be installed, and it must be in the PATH before other
makes. MingW, MingW-w64 , Cygwin and Win-builds distributions have the GNU make binaries ready for download.

The mkdir and rm utilities are also necessary.

To build the dependencies file you will need: which, sed and g++. If you don't need the dependencies or some other options just ignore them.
You can set NO_DEPEND=Yes to disable the dependencies build.

And some features will work best if bash is installed.

Cygwin and MingW* (with MSYS) have all these tools.

When installing Cygwin un-select all pre-selected items. This is easier to do in "Partial" mode view. Then select only "make", it will
automatically select other packages that "make" depends on. And select the mkdir, rm, which, sed and g++ packages. Change PATH in
"Control Panel/System/Advanced/Environment Variables" and add "c:\cygwin\bin;".

When installing MingW select: C Compiler, C++ Compiler, MSYS Basic System, and MinGW Developer Toolkit. Change PATH in "Control
Panel/System/Advanced/Environment Variables" and add "C:\mingw4\msys\1.0\bin;C:\mingw4\bin;".

Notice that in alternative distributions of MingW, like TDM-gcc or Mingw-w64, make is named "mingw32-make" and MSYS is
available as a separate package.

As an alternative, Win-Bash contains a "Shell-Complete" distribution and can also be used. It contains all the tools and bash. It does not include a
compiler.

Finally install the compiler of your choice, among the following supported compilers:

Visual C++ or just the W indows SDK.
Gnu gcc (MingW, TDM-gcc, Mingw-w64 or Cygwin)
Open Watcom C++
Embarcadero C++ (ex-Borland)

Tecmake Configuration

IUP - Portable User Interface 07-Jan-25

87/496

../download/config_lua_module
http://www.mingw.org/
http://mingw-w64.org/
http://www.cygwin.com/
http://win-builds.org/
http://tdm-gcc.tdragon.net/
http://mingw-w64.org/
http://win-bash.sourceforge.net/
http://sourceforge.net/projects/win-bash/files/shell-complete/latest/shell.w32-ix86.zip/download
http://www.microsoft.com/express/vc/
http://www.microsoft.com/download/en/details.aspx?id=8279
http://www.mingw.org/
http://tdm-gcc.tdragon.net/
http://mingw-w64.org/
http://www.cygwin.com/
http://www.openwatcom.org/
https://downloads.embarcadero.com/free/c_builder

Since the compilers in Windows are not in the path, you must set a few environment variables to configure their location. For example:

VC10=c:/progra~2/micros~1/vc (C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC)
VC10SDK=c:/progra~1/micros~1/Windows\v7.1 (C:\Program Files\Microsoft SDKs\Windows\v7.1)
 (if you only installed the Windows SDK with its own compiler set,
 then set both variables to the same location)
 (VC9,VC9SDK,VC8 and PLATSDK can also be set)
MINGW4=c:/mingw
GCC4=c:/cygwin
OWC1=d:/lng/owc1
BC6=d:/lng/bc6

Noticed that the path used can not have spaces because of the GNU make internal processing. So you should install or copy the compiler files to
a path with no spaces, or you can use the short path name instead as in the example above. To obtain the short path name you can use the
"shortpath.exe" Tecmake utility or use the CMD command “dir /X”.

If you installed the Visual Studio compiler set, then to use it in the command line run the "Visual Studio Command Prompt" item in the
"Microsoft Visual Studio 2010\Visual Studio Tools" start menu.

In Windows, there are several compilers that build for the same platform. So when using the Makefiles included in the distributions of those
libraries you must first specify which compiler you want to use. To do that set the TEC_UNAME environment variable. This variable will also
define if you are going to build static or dynamic (DLL) libraries, and if building 32 or 64 bits binaries. For example:

TEC_UNAME=vc10 (Visual C++ 10, static library, 32bits)
TEC_UNAME=dll10 (Visual C++ 10, dynamic library, 32bits)
TEC_UNAME=vc10_64 (Visual C++ 10, static library, 64bits)
TEC_UNAME=dll10_64 (Visual C++ 10, dynamic library, 64bits)
TEC_UNAME=mingw4 (MingW gcc 4, static library, 32bits)
TEC_UNAME=dllw4 (MingW gcc 4, dynamic library, 32bits)
TEC_UNAME=gcc4 (Cygwin Win32 gcc 4, static library, 32bits)
TEC_UNAME=cygw17 (Cygwin Posix gcc 4, both static and dynamic libraries, 32bits)
TEC_UNAME=owc1 (Open Watcom C++ 1, static library, 32bits)
TEC_UNAME=bc6 (Embarcadero C++ 6, static library, 32bits)

Here is an example for MingW:

Download MingW installation tool:
 http://sourceforge.net/projects/mingw/files/Installer/mingw-get-inst/
Install MingW:
 Select C and C++ Compiles, MSYS Basic System, and MinGW Developer Toolkit.
Configure Environment (Minimum):
 set PATH=C:\mingw4\msys\1.0\bin;C:\mingw4\bin;%PATH%
 set MINGW4=c:/mingw4
 set TEC_UNAME=mingw4
Start Building:
 make

Here is an example for Visual C++:

Download Visual C++ Express edition:
 http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-for-windows-desktop
Install Visual C++ and the Windows SDK (also called Platform SDK)
Download Cygwin:
 http://www.cygwin.com/
Install Cygwin:
 Unselect all option, and select only "make"
Configure Environment (Minimum):
 set PATH=C:\cygwin\bin;%PATH%
 set VC9=C:/PROGRA~1/MICROS~1.0/VC
 set VC9SDK=C:/PROGRA~1/MICROS~2/Windows/v6.0A
Run the "CMD Shell" or "Build Environment" item in the Start Menu.
 or manually run the vcvars32.bat or vcvars64.bat script
 just once, before building any of the targets.

If not using the vcvars*.bat configuration scripts, then you must also set PATH:

REM The first two are just auxiliary variables.
set VS9=C:\Program Files (x86)\Microsoft Visual Studio 9.0
set VS9SDK=C:\Program Files\Microsoft SDKs\Windows\v6.0A\bin
set PATH=%VS9%\Common7\IDE;%VS9%\VC\BIN;%VS9%\Common7\Tools;%VS9%\Common7\Tools\bin;%VS9%\VC\VCPackages;%VS9SDK%\bin;%PATH%

Source Download

Download the "xxx-X.X_Sources.tar.gz" package from the "Docs and Sources" directory for the version you want to build. Here are links for the
Files section in Source Forge:

Lua - http://sourceforge.net/projects/luabinaries/files/
IM - http://sourceforge.net/projects/imtoolkit/files/
CD - http://sourceforge.net/projects/canvasdraw/files/

IUP - Portable User Interface 07-Jan-25

88/496

http://sourceforge.net/projects/mingw/files/Installer/mingw-get-inst/
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-for-windows-desktop
http://www.cygwin.com/
http://sourceforge.net/projects/luabinaries/files/
http://sourceforge.net/projects/imtoolkit/files/
http://sourceforge.net/projects/canvasdraw/files/

IUP - http://sourceforge.net/projects/iup/files/

Unpacking

To extract the files use the tar command at a common directory, for example:

mkdir -p xxxx
cd xxxx

[copy the downloaded files, to the xxxx directory]

unzip lua-5.3.3_Sources.zip [optional, see note below]
unzip zlib-1.2.8_Sources.zip
unzip freetype-2.6.3_Sources.zip
unzip ftgl-2.1.4_Sources.zip
unzip im-3.11_Sources.zip
unzip cd-5.10_Sources.zip
unzip iup-3.19_Sources.zip

If you are going to build all the libraries, the makefiles and projects expect the following directory tree:

/xxxx/
 cd/
 freetype/ (included in CD)
 ftgl/ (included in CD)
 im/
 iup/
 lua53/
 zlib/ (included in IM)

If you unpack all the source packages in the same directory, that structure will be automatically created.

By default the Makefiles and Tecmake files will build for Lua 5.1. To build for other Lua versions define USE_LUA_VERSION=52 or
USE_LUA_VERSION=53 in the environment.

Building

As a general rule (excluding system dependencies): IUP depends on CD and IM, and CD depends on IM. So start by build IM, then CD, then IUP.

To start building go the the "src" directory and type "make". In IUP there are many "srcxxx" folders, so go to the up directory "iup" and type
"make" that all the sub folders will be built. For example:

cd lua53/src
make
cd ../..

// repeat for zlib, Freetype, FTGL, IM and CD

cd iup
make
cd ..

TIP: Instead of building all the libraries, try building only the libraries you are going to use. The provided makefiles will build all the libraries,
but take a look inside them and you will figure out how to build just one library.

Pre-compiled Binaries

Instead of building from sources you can try to use the pre-compiled binaries. Usually they were build in the latest Windows versions for 32 and
64 bits. The packages are located in the "Windows Libraries" directory under the Files section in Source Forge, with "xxx-
X.X_Win32_xx_lib.tar.gz" and "xxx-X.X_Win64_xx_lib.tar.gz" names.

Do not extract different pre-compiled binaries in the same directory, create a subdirectory for each one, for example:

mkdir lua53
cd lua53
tar -xpvzf ../lua-5.3.3_Win32_vc10_lib.tar.gz
cd ..

mkdir im
cd im
tar -xpvzf ../im-3.6.2_Win32_vc10_lib.tar.gz
cd ..

mkdir cd
cd cd
tar -xpvzf ../cd-5.4_Win32_vc10_lib.tar.gz
cd ..

mkdir iup

IUP - Portable User Interface 07-Jan-25

89/496

http://sourceforge.net/projects/iup/files/

cd iup
tar -xpvzf ../iup-3.2_Win32_vc10_lib.tar.gz
cd ..

Usage

For makefiles use:

1) "-I/xxxx/iup/include" and so on, to find include files when compiling
2) "-L/xxxx/iup/lib/vc10" and so on, to find library files when linking
3) "-liup" and so on, to specify the library files when linking

For IDEs the configuration involves the same 3 steps above, but each IDE has a different dialog. The IUP toolkit has a Guide for some IDEs:

Borland C++ BuilderX - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/cppbx.html
Code Blocks - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/codeblocks.html
Dev-C++ - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/dev-cpp.html
Eclipse for C++ - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/eclipse.html
Microsoft Visual C++ (Visual Studio 2003) - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/msvc.html
Microsoft Visual C++ (Visual Studio 2005) - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/msvc8.html
Open Watcom - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/owc.html

C++ BuilderX IDE Project Options Guide

http://www.borland.com/products/downloads/download_cbuilderx.html

Borland C++ Builder X is an Integrated Development Environment (IDE) for Java and C/C++ languages. It can use several sets of compilers,
including the Borland command line compilers version 5.6.

It also has many features, with the Borland name behind it. Its download is free. To use IUP with C++BuilderX you will need to download the
"bc56" binaries in the download page.

After unpacking the file in your conputer, you must create a new Project for a "New GUI Application" and configure your Project Options. In the
Project Build Options Explorer dialog there are 3 important places:

In the Tools list, click on ILINK32. Then below select the Path and Defines tab - there you are going to add the path of the libraries you
use, for example:

.\lib\bc56;..\..\iup\lib\bc56;..\..\cd\lib\bc56;..\..\im\lib\bc56

In the same ILINK32 options, in the tab Options, select Other Options and Parameters, then Library files - there you are going to list the
libraries, for example:

cw32.lib import32.lib vfw32.lib comctl32.lib iup.lib iupcontrols.lib cd.lib iupcd.lib im.lib im_capture.lib im_avi.lib im_process.lib iupgl.lib opengl32.lib glu32.lib

In the Tools list, click on IBCC32. Then below select the Path and Defines tab - there you are going to list the include path, for example:

..\include;..\..\iup\include;..\..\cd\include;..\..\im\include

IUP - Portable User Interface 07-Jan-25

90/496

http://www.tecgraf.puc-rio.br/iup/en/ide_guide/cppbx.html
http://www.tecgraf.puc-rio.br/iup/en/ide_guide/codeblocks.html
http://www.tecgraf.puc-rio.br/iup/en/ide_guide/dev-cpp.html
http://www.tecgraf.puc-rio.br/iup/en/ide_guide/eclipse.html
http://www.tecgraf.puc-rio.br/iup/en/ide_guide/msvc.html
http://www.tecgraf.puc-rio.br/iup/en/ide_guide/msvc8.html
http://www.tecgraf.puc-rio.br/iup/en/ide_guide/owc.html
http://www.borland.com/products/downloads/download_cbuilderx.html
cppbx1.gif
cppbx2.gif

Code Blocks Project Properties Guide

http://www.codeblocks.org/

This guide was built using Code Blocks 8.02 IDE in Windows (but similar configuration can be applied for Linux).

To create a new project go to the menu "File / New / Project" and select "Win32 GUI project":

You can use several compilers, for this tutorial we will choose the MingW3 compiler. Just use the respective IUP binaries package: "mingw3".

Then remove the automatically added files and add your files to the projet workspace.

After creating the project you must configure it to find the IUP includes and libraries. Go the menu "Project / Build Options".

To configure the include files location go to "Search Directories" then in Compiler add the paths you need:

To configure the library files location go to "Search Directories" then in Compiler add the paths you need:

To add the library files go to "Linker Settings" then in "Link libraries" add the files you need:

CodeLite IDE 10.0 Project Properties Guide

https://www.codelite.org

This guide was created using CodeLite 10.0 IDE in Windows 10 x64 bit OS (but similar configuration also tested in Linux). CodeLite is free cross
platform, open source C, C++, PHP and Node.js IDE developed by Eran Ifrah. It was created especially for wxWidgets GUI projects
development, but it also could be used for IUP, IM, CD project.

IUP - Portable User Interface 07-Jan-25

91/496

cppbx3.gif
http://www.codeblocks.org/
codeblocks1.png
codeblocks2.png
codeblocks3.png
codeblocks4.png
https://www.codelite.org

To create a new project one would have to create a new "Workspace" using "File -> New -> New Workspace" and then create a new project in
that workspace using "File -> New -> New Project" and select either "Executable GUI GTK 3.0/C" or "Executable GUI GTK 2.4/C" option:

 You can choose which compiler to use, for this tutorial we will choose the MinGW_TDM x64 compiler (Please note that in CodeLite it would be
listed as "MinGW (TDM_GCC-32)" even if you use x64 version of compiler !). Just use the respective IUP/CD/IM dynamic library package:
"dllw4_64" or compile required libraries yourself (we will be using dynamic library linking - for static libraries things would be quite similar, but
do not forget about proper library order in that case)

CodeLite would create default main.c file designed for GTK libraries usage. Remove default content of that file and replace it with required one
for IUP/CD/Project or add your own file to the.

After creating the project you must configure it use IUP include files and libraries. Select your project and use option "Settings...", that would be
available when one press right mouse button (MB3).

First of all configure "Compiler" options:

· Remove: "; $(shell pkg-config --cflags gtk+-2.0)" in "C Compiler Option"

· Add required IUP/CD/IM directories with include files:

Do not forget that same procedure would have to be repeated for both Debug and Release configurations. They got different settings !.

To configure library files location once again got to the project settings (MB3 on project and select option "Settings...") and then edit "Linker"
options:

· Remove "$(shell pkg-config --libs gtk+-2.0)" from Linker Options line

· Add required path entries to the "Libraries Search Path"

· Add required libraries that would be required for your project in "Libraries" line.

Another possible option is to add required libraries path and include files path in global CodeLite settings: "Settings -> Build Settings ->
Compilers -> Advanced" and set required "Include Path" and "Libraries Path"

Additional hint:

· In Windows steps mentioned above would allow you to build IUP/CD/IM applications. But if you would try to use "Run" option - system
would unable to execute your new application because path to the required dll files would not be found. To overcame this problem one could
put all required dll to the directory of your choice (in my case I use C:\Tools\IUP) and add this directory to the PATH Windows environment.

Dev-C++ IDE Project Options Guide

http://www.bloodshed.net/devcpp.html

"Bloodshed Dev-C++ is a full-featured Integrated Development Environment (IDE) for the C/C++ programming language. It uses Mingw port of
GCC (GNU Compiler Collection) as it's compiler. Dev-C++ can also be used in combination with Cygwin or any other GCC based compiler."

It has many features, and integrated debug and it is free! To use IUP with Dev-C++ you will need to download the "mingw3" binaries in the

IUP - Portable User Interface 07-Jan-25

92/496

codelite1.png
codelite2.png
codelite3.png
codelite4.png
http://www.bloodshed.net/devcpp.html

download page.

After unpacking the file in your conputer, you must create a new Project and configure your Project Options. In the Project Options dialog there
are 3 important places:

General / Type - you can configure Win32 GUI or Win32 Console, but if you set to console it will always create a console screen behind
your window when the program starts. Do not select "Support Windows XP Themes".

Parameters / Linker - where you are going to list the libraries you use, for example:

-liup
-liupcontrols
-lcd
-liupcd
-lcomctl32
-lole32
-lgdi32 (if Win32 Console)
-lcomdlg32 (if Win32 Console)

In this configuration you are using also the additional library of Controls that uses the CD library, also available at the download page.

Directories / Library Directories and Include Directories - where you are going to list the include path, for example:

..\..\iup\lib\mingw3

..\..\cd\lib\mingw3
or
c:\tecgraf\iup\lib\mingw3
c:\tecgraf\cd\lib\mingw3

And:

..\..\iup\include

..\..\cd\include
or
c:\tecgraf\iup\include
c:\tecgraf\cd\include

In some cases the IDE may force the compilation of C files as C++. If do not want that then uncheck the option in the settings for each file. Still
in the Project Options dialog, in the Files tab, select the file and uncheck "Compile File as C++".

Eclipse for C++ Project Properties Guide

IUP - Portable User Interface 07-Jan-25

93/496

dev_cpp1.gif
http://www.tecgraf.puc-rio.br/cd
dev_cpp2.gif
dev_cpp3.gif
dev_cpp4.gif
dev_cpp5.gif

http://www.eclipse.org/

This guide was built using Eclipse 3.3 IDE for C/C++ Developers in Windows (but similar configuration can be applied for Linux).

To create a new project go to the menu "File / New / C or C++ Project":

You can use the MingW3 or Cygwin compiler. Just use the respective IUP binaries package: "mingw3" or "gcc3".

Then add your files to the projet folder if they are not already there.

After creating the project you must configure it to find the IUP includes and libraries.

Go the menu "Project / Properties", then to configure the include files location select "GCC C Compiler / Directories" in the left tree, then add the
list of folders in "Include Paths".

Be aware that you will have to repeat the configuration for the C++ compiler.

To configure the library files location select "MinGW C++ Linker / Libraries" in the left tree, then add the list of folders in "Library Search Path"
and add the add the list of folders in "Libraries".

NetBeans IDE 8.2 Project Properties Guide

https://netbeans.org

This guide was created using NetBeans 8.2 IDE in Windows 7 x64 bit OS (but similar configuration also tested in Linux).

To create a new project go to the menu "File -> New Project..." or use "Ctrl+Shit+N" and select "C/C++ Application":

 You can use several compilers, for this tutorial we will choose the MinGW_TDM x64 compiler. Just use the respective IUP binaries package:
"dllw4_64" or compile required libraries yourself.

Then remove the automatically added files and add your files to the newly created project or just start by editing default main.c file.

After creating the project you must configure it to find the IUP includes and libraries. Select your project and use option "Properties", that would
be available when one press right mouse button (MB3)".

IUP - Portable User Interface 07-Jan-25

94/496

http://www.eclipse.org/
eclipse1.png
eclipse2.png
eclipse3.png
https://netbeans.org
netbeans1.png

To configure the include files location go to "Build -> C Compiler -> General -> Include Directories" and add the paths you need in your project:

Do not forget that by default one use Configuration: Debug (active). You should as well repeat all these steps for Configuration: Release.

To configure the library files location go to project properties and then "Build -> C Compiler -> General -> Linker -> Additional Libraries
Directories" and add the paths you need:

And then add the library files by using option "Build -> C Compiler -> General -> Linker -> Libraries" then in "Link libraries" add the files that
you need:

 Additional hints:

· Oracle Java SE Development Kit (JDK) 8 is required to install NetBeans 8.2 IDE on Windows or Linux OS. Download it here: Oracle
JDK Download

· When downloading NetBeans IDE please select C/C++ version. It is available for both x86 and x64 platforms (corresponding x86 or
x64 Java JDK required).

· On Windows 10 x64 platform one could face issue with installation of NetBeans 8.2 IDE, when system would complain about
"unsupported Java version" and aborting installation. In that case just download portable version, that would not require installation, extract
it to required directory and start NetBeans 8.2 from there.

· NetBeans IDE is multiplatform one and could run on Windows and Linux providing the same user interface and features.

· On Windows or Linux platforms NetBeans would use locale to set GUI language. If you would prefer IDE in English then just edit
shortcut (on Windows OS) and all option: --locale en_US, something like:

"D:\Program Files\NetBeans 8.2\bin\netbeans64.exe" --locale en:US

and then IDE would start in English when you restart it. Another way to get the same result is to edit netbeans.conf and add parameters:
"-J-Duser.language=en -J-Duser.region=US" to the option "netbeans_default_options". (working on both Linux and Windows)

OpenWatcom C++ IDE Project Options Guide

http://www.openwatcom.org/

Open Watcom is an Integrated Development Environment (IDE) for Fortran and C/C++ languages using the Watcom compilers.

"It is a joint effort between SciTech Software Inc, Sybase and the Open Source development community to maintain and enhance the
Watcom C/C++ and Fortran cross compilers and tools. An Open Source license from Sybase allows free commercial and non-commercial
use of the Open Watcom tools."

To use IUP with Open Watcom you will need to download the "owc1" binaries in the download page.

After unpacking the file in your conputer, you must create a new Project for a "Windowed Executable" and configure your Project Options.
In the Project Options there are 2 important places:

In the Windows Linking Switches dialog, select option 2. Import, Export and Library Switches. Then enter the Library directories
and Library files. For example:

IUP - Portable User Interface 07-Jan-25

95/496

netbeans2.png
netbeans3.png
netbeans4.png
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://netbeans.org/downloads/index.html
http://www.openwatcom.org/

.\lib\owc1;..\..\iup\lib\owc1;..\..\cd\lib\owc1;..\..\im\lib\owc1

comctl32.lib iup.lib iupcontrols.lib cd.lib iupcd.lib im.lib im_process.lib iupgl.lib opengl32.lib glu32.lib

In the C Compiler Switches dialog, select 1. File Option Switches. Then enter the include path, for example:

..\include;..\..\iup\include;..\..\cd\include;..\..\im\include

Visual C++ 7 IDE Project Properties Guide

http://msdn2.microsoft.com/en-us/vstudio/aa700867.aspx

This guide was built using Microsoft Visual Studio .NET 2003, which includes Visual C++ 7.1.

To create a new project go to the menu "File / New / Project":

Select "Win32 Project" on the Templates. Before finishing the Wizard, select "Application Settings". Mark "Windows application" and
"Empty project".

You can also create a "Console application", and whenever you execute your application a text console will also be displayed. But this is a
very useful situation so you can the use standard C printf function to display textual information for debugging purposes.

Then add your files in the menu "Project / Add New Item" or "Project / Add Existing Item".

After creating the project you must configure it to find the IUP includes and libraries. In Visual Studio there are two places where you can
do this.

One is in the menu "Tools / Options", then select "Project / Visual C++ Directories". Select "Include Files" or "Library Files" in "Show
directories for:". In this dialog you will configure parameters that will affect all the projects you open.

Or you can configure the parameters only for the project you created. In this case go the menu "Project / Properties". To configure the
include files location select "C/C++ / General" in the left tree, then write the list of folders separated by ";" in "Additional Include
Directories".

IUP - Portable User Interface 07-Jan-25

96/496

owc1.gif
owc2.gif
http://msdn2.microsoft.com/en-us/vstudio/aa700867.aspx
msvc1.gif
msvc2.gif
msvc3.gif

To configure the library files location select "Linker / General" in the left tree, then write the list of folders separated by ";" in "Additional
Library Directories".

Now you must add the libraries you use. In this same dialog, select "Linker / Input" in the left tree, then write the list of files separated by
spaces " " in "Additional Dependencies".

In this sample configuration the project is using the additional library of Controls that uses the CD library, also available at the download
page.

When you build the project the Visual C++ linker will display the following message:

LINK : warning LNK4098: defaultlib 'LIBC' conflicts with use of other libs; use /NODEFAULTLIB:library

The default configuration use the C run time library with debug information, and IUP uses the C run time library without debug
information. You can simply ignore this warning or change your project properties in "C/C++ / Code Generation" in the left tree, then
change "Run Time Library" to "Single Threaded (/ML)".

If you want to use multithreading then you must use the DLL version of the IUP libraries. They are built with the "Multi-threaded DLL
(/MD)" option. Or you must rebuild the libraries with your own parameters.

Visual C++ 8 IDE Project Properties Guide

http://msdn2.microsoft.com/en-us/vstudio/default.aspx
http://msdn.microsoft.com/vstudio/express/downloads/ (free version)

This guide was built using Microsoft Visual Studio 2005, which includes Visual C++ 8. Also works for Visual Studio Express Edition.

To create a new project go to the menu "File / New / Project":

Select "Win32 Project" on the Templates. Before finishing the Wizard, select "Application Settings". Mark "Windows application" and
"Empty project".

IUP - Portable User Interface 07-Jan-25

97/496

msvc4.gif
msvc5.gif
msvc6.gif
http://www.tecgraf.puc-rio.br/cd
msvc7.gif
http://msdn2.microsoft.com/en-us/vstudio/default.aspx
http://msdn.microsoft.com/vstudio/express/downloads/
msvc2005a.png

You can also create a "Console application", and whenever you execute your application a text console will also be displayed. This is a
very useful situation so you can the use standard C printf functions to display textual information for debugging purposes.

Then add your files in the menu "Project / Add New Item" or "Project / Add Existing Item".

After creating the project you must configure it to find the IUP includes and libraries. In Visual Studio there are two places where you can
do this.

One is in the menu "Tools / Options", then select "Project and Solutions / Visual C++ Directories". Select "Include Files" or "Library Files"
in "Show directories for:". In this dialog you will configure parameters that will affect all the projects you open.

Or you can configure the parameters only for the project you created. In this case go the menu "Project / Properties". To configure the
include files location select "Configuration Properties / C/C++ / General" in the left tree, then write the list of folders separated by ";" in
"Additional Include Directories".

To configure the library files location select "Configuration Properties / Linker / General" in the left tree, then write the list of folders
separated by ";" in "Additional Library Directories".

Now you must add the libraries you use. In this same dialog, select "Configuration Properties / Linker / Input" in the left tree, then write
the list of files separated by spaces " " in "Additional Dependencies".

The default configuration use the C run time library with debug information and in a DLL. The standard IUP binary distribution has two
packages for Visual Studio 2005 (or Visual C++ 8). Both do not have debug information, but this could be ignored even if a warning
appears in the Output log. To change your project properties go to "Configuration Properties / C/C++ / Code Generation" in the left tree,
then change "Run Time Library" to match the IUP binary package you are using.

The "vc8" package includes static libraries without debug information. So to match this package configuration you should select "Multi-
threaded (/MT)".

The "dll8" package includes dynamic libraries without debug information. So to match this package configuration you should select "Multi-

IUP - Portable User Interface 07-Jan-25

98/496

msvc2005b.png
msvc2005c.png
msvc2005d.png
msvc2005e.png
msvc2005f.png
msvc2005g.png

threaded DLL (/MD)".

When using the "iup.manifest" from "iup.rc", configure the linker properties of your project to do NOT generate a manifest file or the
Windows Visual Styles won't work.

Tools
IMPORTANT: starting in IUP version 3.30 the pre-compiled binaries of the tools executables are built with Visual C++ 15 (Visual Studio
2019) and they are NOT compatible with Windows XP nor Windows Vista, only with Windows 7, 8 and 10. Although they can still be built
from source to run on Windows XP/Vista.

IupView

The IupView application can be used to test LED files, load images to IupImage, or save IupImage as several formats, display all images
and test them when disabled, display dialogs and popup menus. The IupView application is available in the distribution files source code
and pre-compiled binaries at the Download pages.

It can also be used from the command line to perform the image conversion from image files to source code that creates an IupImage
(since 3.9).

iupview [-h] [-t type] [-o out_file] in_files
 IUP version: 3.9
 Converts image files to source code that creates an IupImage.
 Can pack several files in a single output file.
 Each image will correspond to a function called load_image_,
 where is the file name of the input image without path.
 -h print this help
 -t output format, can be LED, LUA or C (default: C)
 -o out_file place output in file (default: images.c)

For example:

> iupview -t LUA EditCut.png

> cat images.c
function load_image_EditCut_png()
 local EditCut_png = iup.imagergba
 {
 width = 16,
 height = 16,
 pixels = {
 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 4, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0,
 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 169, 178, 191, 139, 155, 166, 178, 228, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 47, 220, 224, 229, 238, 123, 133, 148, 176, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0,
 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 147, 157, 172, 52, 140, 150, 163, 254, 122, 133, 153, 25, 255, 255, 255, 0, 246, 247, 248, 133, 171, 178, 188, 254, 100, 108, 122, 92, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0,
 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 146, 155, 169, 250, 147, 156, 171, 163, 255, 255, 255, 15, 230, 232, 236, 233, 102, 111, 124, 254, 22, 18, 14, 33, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0,
 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 169, 177, 190, 242, 138, 147, 161, 249, 200, 204, 209, 128, 193, 198, 206, 251, 86, 95, 107, 253, 22, 18, 14, 27, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0,
 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 161, 170, 184, 179, 139, 148, 162, 254, 141, 150, 161, 191, 119, 129, 142, 254, 76, 82, 91, 234, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0,
 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 137, 145, 161, 65, 116, 128, 142, 254, 99, 110, 126, 254, 85, 93, 105, 253, 70, 75, 82, 170, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0,
 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 96, 110, 132, 238, 86, 96, 113, 255, 84, 102, 134, 252, 79, 96, 132, 88, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0,

IUP - Portable User Interface 07-Jan-25

99/496

msvc2005h.png
download.html

 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 91, 136, 238, 45, 88, 137, 235, 179, 84, 131, 224, 249, 75, 118, 202, 173, 76, 119, 205, 251, 78, 122, 211, 247, 76, 117, 203, 159, 70, 107, 185, 74, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0,
 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 88, 135, 234, 49, 89, 140, 238, 243, 83, 128, 220, 247, 59, 91, 158, 244, 53, 82, 142, 221, 70, 110, 190, 236, 79, 123, 213, 255, 69, 107, 185, 255, 58, 92, 159, 144, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0,
 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 86, 135, 231, 176, 86, 134, 229, 255, 65, 102, 176, 255, 53, 82, 142, 248, 53, 82, 141, 180, 75, 116, 202, 250, 79, 121, 213, 24, 66, 104, 178, 96, 52, 83, 143, 250, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0,
 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 85, 132, 226, 250, 82, 129, 222, 49, 66, 101, 178, 48, 51, 80, 139, 250, 53, 82, 141, 18, 80, 123, 213, 250, 77, 120, 205, 48, 56, 88, 150, 107, 43, 64, 106, 251, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0,
 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 83, 130, 222, 250, 79, 118, 210, 48, 62, 99, 172, 98, 49, 76, 132, 250, 255, 255, 255, 0, 75, 116, 199, 205, 62, 98, 170, 255, 41, 60, 99, 255, 28, 31, 41, 244, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0,
 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 78, 121, 209, 206, 63, 98, 171, 255, 51, 80, 138, 255, 39, 54, 87, 227, 22, 18, 14, 3, 63, 100, 172, 89, 42, 59, 96, 238, 39, 55, 88, 239, 51, 79, 135, 104, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0,
 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 67, 104, 180, 88, 54, 84, 146, 227, 40, 58, 93, 238, 49, 74, 124, 110, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0,
 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0,
 },
 }
 return EditCut_png
end

IupLua Console

The IupLuaConsole can load and execute Lua scripts using the IupLua binding. Lua print calls are output in a IupMultiline. The
executable package also includes the CD, IM, LuaFileSystem and LuaGL libraries.

The IupLuaConsole application is available in the distribution files source code and pre-compiled binaries at the Download pages. The
executable from the distribution package in UNIX needs that the LD_LIBRARY_PATH (DYLD_LIBRARY_PATH in MacOSX) environment
variable must contains the executable folder, for example:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/tecgraf/iup3/bin/$TEC_UNAME

LED Compiler for C

Description

The LED compiler (ledc) generates a C module from one or more LED files. The C module exports only one function, which builds the IUP
interface described in the LED files. Running this function is equivalent to calling the IupLoad function over the original LED files.

One advantage of using the compiler is that it allows the application to be independent from LED files during its execution. Since the
interface description is inside the executable file, there is no need to worry about locating the configuration files.

Another advantage is that ledc performs a stricter verification than IUP’s internal parser. This makes error detection in LED files easier.

Finally, running the function generated by the compiler is faster than reading the corresponding LED file with IupLoad, since the parsing step
of the LED file is transferred from execution to compilation. However, creating the IUP elements described in LED takes most of the
execution time of the IupLoad function, so the gain in efficiency may not be very significant.

Usage

ledc [-v] [-c] [-f funcname] [-o file] files

IUP - Portable User Interface 07-Jan-25

100/496

https://keplerproject.github.io/luafilesystem/
http://luagl.sourceforge.net
download.html

-v shows ledc’s version number

-c does not generate code, just checks for errors in the LED files

-f funcname uses <funcname> as the name of the generated exported function (default:
led_load)

-o file uses <file> as the name of the generated file (default: led.c)

Error Messages

Several warnings and error messages might be generated during compilation. Errors abort the compilation. The messages can be the
following:

warning: undeclared control name (argument number)
The name name was used as an argument where a IUP element was expected, but no element with this name was previously declared.

warning: string expected (argument number)
A name (callback?) was passed as a parameter for a string-type argument.

warning: callback expected (argument number)
A string was passed as a parameter for a callback-type argument.

warning: unknown control name used
An unknown element, called name, was used. The compiler assumes the element’s creation function is called IupName, with name
capitalized, and assumes the arguments’ types based on what was passed on LED.

warning: elem declared without a name
An elem-type element was declared without being associated to any name. This declaration creates the element, but it will not be
accessible, so it cannot be used.

element name already used in line number
The name element was already used in line number. In IUP, the same element cannot have more than one parent.

too few arguments for name
The name element expects more arguments than those already passed.

too many arguments for name
The name element expects less arguments than those passed.

name is not a valid child
The name element cannot be used as a parameter in this case. This happens when trying to insert an image into a vbox, for instance.

control expected (argument number)
A string was passed as a parameter for an element-type argument.

string expected (argument number)
An element was passed as a parameter for a string-type argument.

number expected (argument number)
An element or a string was passed as a parameter for a number-type argument.

callback expected (argument number)
An element was passed as a parameter for a callback-type argument.

hotkeys not implemented
Even though it is a LED word reserved to an element, it is not implemented.

IupVisualLED (since 3.28)
IupVisualLED, or simply VLed, is an integrated development environment to edit and test LED files. It is inspired by some popular visual
interface editors, but it has its own characteristics and features.

Historically the VLed name came from a master dissertation written by Raquel Prates back in 1994:

Oliveira Prates, R.; Gattass, M. ;and Figueiredo, L. H.
"Visual LED: uma ferramenta interativa para geração de interfaces gráficas"
M.Sc. dissertation, Computer Science Department, PUC-Rio, 1994.
[prates94.pdf in Portuguese]

The new VLed has the essence of that work and evolve it with the objective of providing a complete environment for editing and testing
LED files.

When a LED file is automatically loaded and its elements are created and displayed at the tree bellow. The elements in the tree are listed in
the same order they are declared in the code. Some elements in the hierarchy tree are links to the element itself, a double click will select
the actual element. A double click in the element will select it in the code. The automatic load can be disabled and the load or unload can
be done manually in the LED menu. After editing the elements can be updated using the Load option.

IUP - Portable User Interface 07-Jan-25

101/496

../download/prates94.pdf

Internally the main dialog inherits from the IupScintillaDlg dialog and provides a very powerful multiple file text editor.

Openning a File

A file can be opened from the File/Open menu item, the Recent submenu, from the project file list, it can be dragged and dropped from
the system file manager in Windows and in Linux, or from the command line. The command line will process regular led files and if the
extension is vled it will open a project file. So the executable can be associated with the led and vled extensions, so the user will be able to
double click these files in the system file manager.

Load and Unload

By default automatic loading is enabled, so when a file is opened its elements are created and the tree of elements is filled. But even in
this configuration after editing the text the changes are not automatically processed. To do so, the LED/Load menu item must be called
after finished editing.

Projects

When a Project is used all parameters are saved in the project file instead of the global configuration file. In a project you can add
several files for easy access.

By default we use the .vled file extension so it can be associated in the file manager with the Vled application.

IUP - Portable User Interface 07-Jan-25

102/496

dlg/iupscintilladlg.html

New Controls

In the context menu of the tree of elements, the layout of a dialog can be displayed and its hierarchy edited. But whenever an element is
added or removed from the layout the LED is re-written to reflect the changes. When this occurs all comments (except those at the
beginning of the original file) are lost and the file is completely reformatted even for small modifications. For now this is what we need to
do to keep the LED in sync with the new dialog layout. Maybe in the future we will be able to update selected regions of the LED.

The layout of a dialog allow also to move controls around or to insert new controls. The operation can be done at the tree or at the
layout. The menu Elements (shown also with a right click) has several interesting options too, including several forms to insert new
elements. To insert at a visually specified location first select the container where you want to move or insert the element, then you will
notice a green line indicating the insertion point.

Tools

Similar to the Element Properties dialog, the user can display the list of global attributes, handle names and functions using the Tools /
Globals menu. The attributes can be changed in the dialog.

IUP - Portable User Interface 07-Jan-25

103/496

Also in the Tools menu the Class Info item displays a dialog that show all IUP control classes, with their respective information, attributes
and callbacks. When an attribute or callback is selected, information about that attribute or callback is displayed.

Two other available tools are dialogs to show the loaded images and the stock images, where the visual appearance of the images can be
inspected.

IUP - Portable User Interface 07-Jan-25

104/496

Export

If you don't want to rewrite your own LED files, or if you want to work with Lua or C files, then the working files can be exported to LED,
C or Lua, in the menu Tools. But only the loaded elements will be exported.

IupLuaScripter (since 3.22)
Similar to the IupLuaConsole, but much more powerful. Provides a complete editor interface, with the capability of debug the Lua script.
It uses the IupLuaScripterDlg pre-defined dialog.

Download and installation is the same as the IupLuaConsole.

IUP - Portable User Interface 07-Jan-25

105/496

dlg/iupluascripterdlg.html
tools.html

The Console tab allow the user to insert Lua commands and it captures the 'print' function output in the text log bellow. The up and
down arrow keys display the command history. The command line can also enter a single name and if it is a Lua variable its value is
printed. Special treatment is performed when printing tables and other special types.

The Break tab displays and edit a list of the breakpoints. Breakpoints can be added by clicking the left margin in its most right area (the
left area can has line numbers and bookmarks) or in the Breaks tab using the "Toggle Breakpoint" at the caret position or using the
"Add" button and writing a filename and a line number. Breakpoints (and bookmarks) are saved in the application configuration file. When
lines are removed or added, breakpoints position are automatically updated. But breakpoints are not restored in undo operations.

 The Watch tab display and edit a list of variables to be watched during debug.

The Debug tab, during debug, displays the stack and the local variables at the selected stack level. If another level is selected the local
variables are updated accordingly. The actual level is not changed when a Call Stack list level is selected, only its local variables are
updated in the Locals list. The list supports 3 types of local variables: variables declared as "local" and function
parameters; Vararg parameters; and Upvalues (external local variables). Varargs don't have names, so we list them as if a table called
"vararg" was created and each element of the table is listed separately. Upvalues are listed last with a ":: " prefix, used simply to
distinguish them from the other variables. For now, a local variable can be changed only if it is a boolean, string or a number. Variable
arguments (vararg) are displayed only for Lua version 5.2 or newer.

Lua code that are run from strings, instead of files, can also be debugged. But you can only set breakpoints when you step in the string
and its contents are displayed in a new document. This temporary document is automatically closed when the debug is ended.

When a Project is used all Lua parameters and breakpoints are saved in the project file instead of the global configuration file. By default
we use the .vlua file extension so it can be associated in the file manager with the LuaScripter application.

Complete Samples

Standard Controls

The following example creates a dialog with virtually all of IUP standard elements as well as some variations of them, with some attributes

IUP - Portable User Interface 07-Jan-25

106/496

changed. The same example is implemented in C, LED and Lua. The C code is ready to compile. The LED code can be loaded and viewed
in the IupView application. The Lua code can be loaded and executed in the IupLua standalone application.

in C in LED in IupLua

sample.c sample.led sample.lua

You can see the results in Windows, Motif and GTK on the Sample Results.

All Samples

The IUP samples are spread in the documentation. Each control, dialog, menu has its own set of examples in C, LED and Lua.

Browse for Example Files

iupglcap

This application uses IUP and OpenGL to create a window with two canvases and draw a video capture image into one canvas. A
processed image can be displayed in the second canvas. It can also process frames from a video file. It is very useful for Computer Vision
courses. You can download the source code here: iupglcap.zip. You will also need to download IUP, CD and IM libraries for the compiler
you use.

External Samples

The CD and IM libraries have samples that use IUP, check in their documentation.

Some freely available applications also use IUP:

ImLab - Image Processing Laboratory

EdPatt - Pattern Editor

Ftool - Two-dimensional Frame Analysis Tool

The Lua for Windows distribution is a 'batteries included environment' for the Lua scripting language on Windows, that also includes
LuaGL, IUP, CD and IM.

Sample Results (1)
The following screenshots shows the sample.c results. See also the same sample changing the dialog BACKGROUND, the dialog
BGCOLOR and the children BGCOLOR.

Motif in MWM

GTK in Gnome

IUP - Portable User Interface 07-Jan-25

107/496

executables.html
../examples/C/sample.c
../examples/LED/sample.led
../examples/Lua/sample.lua
sample_results.html
../examples/
../download/iupglcap.zip
http://www.tecgraf.puc-rio.br/cd/
http://www.tecgraf.puc-rio.br/im/
http://imlab.sourceforge.net/
http://www.tecgraf.puc-rio.br/edpatt
http://www.tecgraf.puc-rio.br/ftool/
https://github.com/rjpcomputing/luaforwindows/
../examples/C/sample.c
sample_results_background.html
sample_results_bgcolor.html
sample_results_bgcolor_indiv.html

Windows Classic

Windows with Visual Styles

IUP - Portable User Interface 07-Jan-25

108/496

Windows Vista

Sample Results (2)
The following screenshots shows the sample.c results when the dialog BACKGROUND attribute is changed. See also the same sample with
normal background, the dialog BGCOLOR and the children BGCOLOR.

Notice that the dialog BACKGROUND attribute affects only the background of the dialog, the background of each control is preserved
except for the ones that the background is transparent.

Motif in MWM

IUP - Portable User Interface 07-Jan-25

109/496

../examples/C/sample.c
dlg/iupdialog.html#Attributes
sample_results.html
sample_results_bgcolor.html
sample_results_bgcolor_indiv.html

GTK in Gnome

Windows Classic

IUP - Portable User Interface 07-Jan-25

110/496

Windows with Visual Styles

Windows Vista

IUP - Portable User Interface 07-Jan-25

111/496

Sample Results (3)
The following screenshots shows the sample.c results when the dialog BGCOLOR attribute is changed. See also the same sample with
normal background, changing the dialog BACKGROUND and the children BGCOLOR.

Since BGCOLOR is an inheritable attribute changing it at the dialog affects all controls. And notice that on Windows the BGCOLOR is
ignored for several controls.

Motif in MWM

GTK in Gnome

IUP - Portable User Interface 07-Jan-25

112/496

../examples/C/sample.c
attrib/iup_bgcolor.html
sample_results.html
sample_results_background.html
sample_results_bgcolor_indiv.html

Windows Classic

Windows with Visual Styles

IUP - Portable User Interface 07-Jan-25

113/496

Windows Vista

Sample Results (4)
The following screenshots shows the sample.c results when the BGCOLOR attribute of the dialog children is changed, but NOT the dialog.
See also the same sample with normal background, changing the dialog BACKGROUND and the dialog BGCOLOR.

In this case, the BGCOLOR attribute affects only the controls. A lso notice that the transparent area of the controls are not affected. And
notice that on Windows the BGCOLOR is ignored for several controls.

Motif in MWM

IUP - Portable User Interface 07-Jan-25

114/496

../examples/C/sample.c
attrib/iup_bgcolor.html
sample_results.html
sample_results_background.html
sample_results_bgcolor.html

GTK in Gnome

Windows Classic

IUP - Portable User Interface 07-Jan-25

115/496

Windows with Visual Styles

Windows Vista

IUP - Portable User Interface 07-Jan-25

116/496

Windows Shell Extensions Handlers

Description

When the user is using the Microsoft Windows Explorer to navigate along the files on the file system there are some opportunities for
developers to provide visual information for custom file formats.

In Windows XP was introduced Thumbnail Handlers and in Windows Vista was introduced Preview Handlers.

Thumbnail Handlers allow the developer to provide thumbnail visualization for their custom file formats. The thumbnails are static images
with small size and no interaction. The image bellow show thumbnails for JPEG images in Windows XP.

Preview Handlers allow the developer to provide a preview visualization for their custom file formats. The preview can have larger sizes
and interaction because they are show in a separate are on the Windows Explorer window. The image bellow show the preview pane for a
JPEG image in Windows 7.

IUP - Portable User Interface 07-Jan-25

117/496

The MSDN documentation describing this process in at "Implementing a Custom File Format". The two samples that helped us to create
this tutorial are "C++ Windows Shell thumbnail handler (CppShellExtThumbnailHandler)" and "C++ Windows Shell preview handler
(CppShellExtPreviewHandler)".

Implementation

Both handlers are implemented as DLLs that exports 4 functions with known names and behavior. Here is a DLL def file need by the
project: "GlobalExportFunctions.def".

The 4 functions are implemented in the module "dllmain.cpp". They use the definitions declared in the "Config.h". Every custom file
format must define its own values in this header, the "dllmain.cpp" file itself does not need to be modified.

The first thing to do is to generate two GUID codes to uniquely identify the handler. These codes are generated with the Microsoft ®
GUIDGEN Application (guidgen.exe) option 3, included in Windows SDK and Visual Studio distributions. It can also be launched from
inside Visual Studio in the menu "Tools / Create GUID". Then define a few strings that describe your file format and finally define which
handler you are building: a thumbnail handler or a preview handler.

Then it is time to implement your own handler.

The package ShellExtensionHandlers.zip contains all the files necessary to build both handlers. It includes a Visual Studio 2013 project
already configured to use IUP, CD and IM with or without OpenGL. Change the name of the project to change the name of the DLL. By
default it will generate a DLL called "ShellExtensionHandler.dll".

A sample thumbnail handler is provided in the file "imThumbnail.cpp" implemented using IM only to load a TGA image file contents,
resize it to the thumbnail size and return the proper handle.

A sample preview handler is provided in the file "IupPreviewWindow.cpp". This is the second file you need to edit to implement your own
preview handler. The sample code is very easy to understand. It will use IUP and, CD or OpenGL, to draw a TGA image file loaded using
IM. Take a look and change it according to your needs. But it is recommended that the creation of the IupDialog should not be changed.

Setup

The DLL and its dependencies do not need to be installed on the system. They can be placed in any folder to be used from there. That
folder also does not need to be in the PATH. But it is necessary to register the handler in the system.

The command:

regsvr32 ShellExtensionHandler.dll

will register the shell extension handler. This command can be executed as a post operation during an application setup for instance.

To uninstall the handler the command is:

regsvr32 /u ShellExtensionHandler.dll

IMPORTANT: the command must be executed with administrator privileges or it will fail.

Custom Controls (since 3.0)

Introduction

IUP - Portable User Interface 07-Jan-25

118/496

https://msdn.microsoft.com/en-us/library/windows/desktop/ff521657(v=vs.85).aspx
https://code.msdn.microsoft.com/windowsapps/CppShellExtThumbnailHandler-32399b35
https://code.msdn.microsoft.com/windowsapps/CppShellExtPreviewHandler-58db53b8
../examples/shell_extensions/GlobalExportFunctions.def
../examples/shell_extensions/dllmain.cpp
../examples/shell_extensions/Config.h
../download/ShellExtensionHandlers.zip
../examples/shell_extensions/imThumbnail.cpp
../examples/shell_extensions/IupPreviewWindow.cpp

All the IUP controls use the same internal API to implement their functionalities.

Each control, needs to export only one function that register the control so it can be used by IupCreate and other functions. Actually
another utility function is exported to simplify the creation of the control.

Internally the control must implement the methods of the IUP class, and create functions that handle attributes.

See the Internal SDK for more details.

Control Class Registration

The new control must export function to register the control. This function is quite simple and it is just a call to iupRegisterClass. For
example:

void IupXxxOpen(void)
{
 iupRegisterClass(iupXxxNewClass());
}

The function iupXxxNewClass is internal to the control and it creates the control class.

Control Class Implementation

The function that creates the class will (1) initialize a base class, then (2) fill its configuration parameters, (3) set the class methods, (4)
register the callbacks and (5) register the attributes. For example:

Iclass* iupXxxNewClass(void)
{
 /* (1) - initialize the class */
 Iclass* ic = iupClassNew(NULL);

 /* (2) - configuration parameters */
 ic->name = "xxx";
 ic->format = ""; /* no creation parameters */
 ic->nativetype = IUP_TYPECONTROL;
 ic->childtype = IUP_CHILDNONE;
 ic->is_interactive = 1;
 ic->has_attrib_id = 0;

 /* (3) - class methods */
 ic->New = iupXxxGetClass;
 ic->Create = iXxxCreateMethod;
 ic->Map = iXxxMapMethod;
 ic->Destroy = iXxxDestroyMethod;
 ic->ComputeNaturalSize = iXxxComputeNaturalSizeMethod;
 ...

 /* (4) - callbacks */
 iupClassRegisterCallback(ic, "XXX_CB", "i");
 iupClassRegisterCallback(ic, "MAP_CB", "");
 iupClassRegisterCallback(ic, "HELP_CB", "");
 iupClassRegisterCallback(ic, "GETFOCUS_CB", "");
 iupClassRegisterCallback(ic, "KILLFOCUS_CB", "");
 iupClassRegisterCallback(ic, "ENTERWINDOW_CB", "");
 iupClassRegisterCallback(ic, "LEAVEWINDOW_CB", "");
 iupClassRegisterCallback(ic, "K_ANY", "i");
 ...

 /* (5) - attributes */

 /* Common */
 iupClassRegisterAttribute(ic, "SIZE", iupGetSizeAttrib, iupDlgSetSizeAttrib, NULL, IUP_NOT_MAPPED, IUP_NO_INHERIT);
 iupClassRegisterAttribute(ic, "RASTERSIZE", iupGetRasterSizeAttrib, iupDlgSetRastersizeAttrib, NULL, IUP_NOT_MAPPED, IUP_NO_INHERIT);
 iupClassRegisterAttribute(ic, "WID", iupGetWidAttrib, iupNoSetAttrib, NULL, IUP_MAPPED, IUP_NO_INHERIT);
 iupClassRegisterAttribute(ic, "FONT", NULL, iupdrvSetFontAttrib, IupGetGlobal("DEFAULTFONT"), IUP_NOT_MAPPED, IUP_NO_INHERIT);

 /* Common, but only after Map */
 iupClassRegisterAttribute(ic, "ACTIVE", iupGetActiveAttrib, iupSetActiveAttrib, "YES", IUP_MAPPED, IUP_INHERIT);
 iupClassRegisterAttribute(ic, "VISIBLE", iupGetVisibleAttrib, iupSetVisibleAttrib, "YES", IUP_MAPPED, IUP_NO_INHERIT);
 iupClassRegisterAttribute(ic, "ZORDER", NULL, iupdrvSetZorderAttrib, NULL, IUP_MAPPED, IUP_NO_INHERIT);

 /* only the default value. */
 iupClassRegisterAttribute(ic, "BORDER", NULL, NULL, "YES", IUP_NOT_MAPPED, 0);
 ...

 return ic;
}

You can use the iupXxxNewClass equivalent function of other controls to initialize a new base class for a new control that inherits the
functionalities of the base class. For example:

IUP - Portable User Interface 07-Jan-25

119/496

../doxygen/index.html
../doxygen/group__register.html
../doxygen/structIclass__.html
../doxygen/group__iclass.html
../doxygen/group__iclass.html
../doxygen/group__iclass.html

Iclass* ic = iupClassNew(iupRegisterFindClass("canvas"));

You can also use the Base Class methods and attribute functions to simplify your iupXxxNewClass.

If the control is a native control then it usually will have separate modules for each driver. The iupXxxNewClass function could call a
iupdrvXxxInitClass(ic) function to initialize methods and attributes that are driver dependent.

Control Creation

All controls can be created using the IupCreate functions. But it is a common practice to have a convenience function to create the control:

Ihandle* IupXxx(void)
{
 return IupCreate("xxx");
}

Control Exported Functions

The file header with the exported functions should look like this:

#ifndef __IUPXXX_H
#define __IUPXXX_H

#ifdef __cplusplus
extern "C" {
#endif

void IupXxxOpen(void);

Ihandle* IupXxx(void);

#ifdef __cplusplus
}
#endif

#endif

Lua Binding

Overview

All the IUP functions are available in Lua, with a few exceptions. We call it IUPLua. To use them the general application will do
require"iuplua", and require"iupluaxxxx" to all other secondary libraries that are needed. The functions and definitions will be available
under the table "iup" using the following name rules:

iupXxx -> iup.Xxx (for functions)
IUP_XXX -> iup.XXX (for definitions)

All the metatables have the "tostring" metamethod implemented to help debugging.

Also the functions which receive values by reference in C were modified. Generally, the values of parameters that would have their values
modified are now returned by the function in the same order.

Notice that, as opposed to C, in which enumeration flags are combined with the bitwise operator OR, in Lua the flags are added
arithmetically.

In Lua all parameters are checked and a Lua error is emitted when the check fails.

A ll the objects are NOT garbage collected by the Lua garbage collector, you must manually call iup.Destroy or elem:destroy, if you
would like to destroy an element.

In Iup additional features were created for the Lua Binding using the metamethods. Attributes and callbacks can be set and get in a much
more natural way:

IupSetAttribute(label, "TITLE", "test") >> label.title = "test" (names are in lower case)
title = IupGetAttribute(label, "TITLE") >> title = label.title

IupSetCallback(button, "ACTION", button_action_cb); >> function button:action() ... end

Also the element constructors were changed so you can use tables to initialize their parameters and attributes:

IupButton("test") >> iup.button{title = "test", alignment="acenter"}
IupHbox(bt1, bt2, NULL) >> iup.hbox{bt1, bt2, margin="10x10"}

IUP - Portable User Interface 07-Jan-25

120/496

../doxygen/group__iclassbase.html

Lua was created after LED, so that's why LED exists. Since we have many application still using LED, its support will continue in IUP.
Today IupLua completely replaces the LED functionality and adds much more.>

The distribution files include an executable called iuplua51, that you can use to test your Lua code. It has support for all the additional
controls, for IM, CD and OpenGL calls. It is available at the Download.

IupLua Initialization

Lua 5.1 "require" can be used for all the IupLua libraries. You can use require"iuplua" and so on, but the LUA_CPATH must also
contains at least the following:

"./lib?51.so;" [in UNIX]

".\\?51.dll;" [in Windows]

Also compatible with Lua 5.2 and 5.3, just replace the "51" suffix by "52" or "53".

The LuaBinaries distribution already includes these modifications on the default search path.

If you are using another Lua distribution you can use the environment:

export LUA_CPATH=./\?.so\;./lib\?.so\;./lib\?51.so\; [in UNIX]

Or you can set it in Lua before loading iup modules:

package.cpath = package.cpath .. "./lib?51.so;" [in UNIX]

package.cpath = package.cpath .. ".\\?51.dll;" [in Windows]

The simplest form require"iup" and so on, can not be used because there are IUP dynamic libraries with names that will conflict with the
names used by require during search.

Additionally you can statically link the IupLua libraries, but you must call the initialization functions manually. The iuplua_open
function is declared in the header file iuplua.h, see the example below:

#include <lua.h>
#include <lualib.h>
#include <lauxlib.h>
#include <iuplua.h>

void main(void)
{
 lua_State *L = lua_open();

 luaopen_string(L);
 luaopen_math(L);
 luaopen_io(L);

 iuplua_open(L);
 lua_dofile("myprog.lua");

 lua_close(L);
}

When using Lua the Iup initialization functions, IupOpen, IupControlsOpen and others, are not necessary. The initialization is
automatically done inside the respective IupLua initialization function.

To use IUP inside coroutines, define the global attribute "IUPLUA_THREADED".

Embedding Lua files in the Application Executable

The Lua files are dynamically loaded and must be sent together with the application’s executable. However, this often becomes an
inconvenience. To deal with it, there is the LuaC compiler that creates a C module from the Lua contents. For example:

luac -o myfile.lo myfile.lua
lua bin2c.lua myfile.lo > myfile.loh

In C, you can use a define to interchanged the use of .LOH files:

#ifdef _DEBUG
 ret_val = iuplua_dofile("myfile.lua");
#else
#include "myfile.loh"

IUP - Portable User Interface 07-Jan-25

121/496

download.html
http://luabinaries.sourceforge.net/

#endif

This does not work when using LuaJIT. To be able to do that, use Lua files directly as strings:

lua bin2c.lua myfile.lua > myfile.lh

In C, simply include the .LH files:

#include "myfile.lh"

LuaJIT

LuaJIT is a Just-In-Time Compiler for Lua that can be found at http://luajit.org/. IUP can be used with LuaJIT but there are a few
remarks.

First, LuaJIT is for Lua 5.1 ONLY (as of May 2019), but can be built for 32 or 64 bits.

In Windows, It builds a modified "lua51.dll", so the Lua DLL in IUP Tools packages must be ignored. But in IUP we use a "lua5.1.dll",
notice the difference in the name. To use it with IUP there two options, rebuild LuaJIT using the same suffix, or use a DLL proxy that will
map calls for "lua5.1.dll" into "lua51.dll". The DLL proxy can be found here lua5.1_proxy.zip (notice that the IUP Tools packages includes
a proxy in the other way, mapping "lua51.dll" calls into "lua5.1.dll", this is NOT the case).

In Linux this can be easily fixed with links in the file system.

More Information

Steve Donovan wrote a very nice "A Basic Guide to using IupLua" that was included in Lua for Windows. It is now available as part of the
IUP documentation.

The slides for "Tecgraf Development Tools: IUP, CD and IM" presented at the Lua Workshop 2009 are also available for Download
[iupcdim_wlua2009_en.pdf].

A Basic Guide to using IupLua
by Steve Donovan

IupLua is a cross-platform kit for creating GUI applications in Lua. There are particularly powerful facilities for getting user input that don't
require complicated coding, so it is particularly good for utility scripts.

Attributes are an important concept in IUP. You set and get them just like table fields, but they are different from fields in several crucial
ways. First, case is not significant, SIZE is just as good as size (but try to be consistent!). Second, writing to a non-existent attribute will
not give you an error, so proof-read carefully. Third, writing to an attribute often causes some action; e.g the visible attribute of controls
can be used to hide them. It is best to think of them as a special kind of function call.

Functions which create IupLua objects (i.e. constructors) take tables as arguments. Lua allows you to drop the usual parentheses in such a
case, but remember that something like iup.fill{} is not the same as iup.fill(); it is actually short for iup.fill({}). A Lua table can
contain an array-like part (just items separated by commas) and a map-like part (attribute-value pairs); the convention is to put the array
part first, and separate the map part from it with a semicolon. (See Attributes/Guide/IupLua in the Manual for a good discussion.)

All the examples presented here and some utilities can be found at the "misc" folder in the IupLua examples.

Simple Output
Even simple scripts need to give the user some feedback. Otherwise people get anxious and start worrying if their files really have been
backed up, for example. This is easy in IUPLua, and takes exactly one line. Note that all IUP scripts must at least have a require 'iuplua'
statement at the begining:

require("iuplua")

iup.Message('YourApp','Finished Successfully!')

Of course, many operations require confirmation from the user. iup.Alarm is designed for this:

require("iuplua")

b = iup.Alarm("IupAlarm Example", "File not saved! Save it now?" ,"Yes" ,"No" ,"Cancel")

-- Shows a message for each selected button
if b == 1 then
 iup.Message("Save file", "File saved sucessfully - leaving program")
elseif b == 2 then
 iup.Message("Save file", "File not saved - leaving program anyway")
elseif b == 3 then
 iup.Message("Save file", "Operation canceled")

IUP - Portable User Interface 07-Jan-25

122/496

http://luajit.org/
../download/lua5.1_proxy.zip
basic/index.html
https://github.com/rjpcomputing/luaforwindows
../download
../download/iupcdim_wlua2009_en.pdf
../../examples/Lua/misc/
../../examples/Lua/

end

Like iup.Message, the first parameter appears in the title bar of the dialog box, the second parameter appears above the buttons, but
iup.Alarm allows you to specify a number of buttons. The return code will then tell you which button has been pressed, starting at 1
(which is always the Lua way.)

Simple Input

Asking for a Filename

The most common thing an interactive script will require from a user is a file, or set of files. For simple cases, iup.GetFile will do the
job:

require("iuplua")

f, err = iup.GetFile("*.txt")
if err == 1 then
 iup.Message("New file", f)
elseif err == 0 then
 iup.Message("File already exists", f)
elseif err == -1 then
 iup.Message("IupFileDlg", "Operation canceled")
end

This will present you with the standard Windows File Open dialog box, and allow you to either choose a filename, or cancel the operation.
Notice that this function returns two values, the filename and a code. The code will tell you whether the file does not exist yet (if for
instance you typed a new filename into the file dialog box.)

Asking for Multiline Text

The simplest way of getting general text is to use iup.GetText:

require 'iuplua'

res = iup.GetText("Give me your name","")

if res ~= "" then
 iup.Message("Thanks!",res)
end

Using this dialog, you can enter as many lines as you like, and press OK.

Asking for a Single String, or Number

A better option for asking for a single string is the very versatile iup.GetParam:

require("iuplua")
require("iupluacontrols")

res, name = iup.GetParam("Title", nil,
 "Give your name: %s\n","")

iup.Message("Hello!",name)

This has two advantages over plain GetText; you can give a prompt line, and you can press Enter after entering text.

The %s code requires some explanation. Although you might at first think it is a C-style formating code, as you would use in
string.format, it actually describes how the value is going to edited; %s here merely means that a regular text box is used; if you had
used %m, then a multiline edit box (like that used by iup.GetText) would be used.

If there is a limited set of choices, then the %l format is useful:

res, prof = iup.GetParam("Title", nil,
 "Give your profession: %l|Teacher|Explorer|Engineer|\n",0)

Note the |item1|item2|...| list after the %l format; these are the choices presented to the user. The initial value you give it, and the

IUP - Portable User Interface 07-Jan-25

123/496

value you receive from it, are going to be an index into this list of choices. Somewhat confusingly, they start at 0 (which is not the Lua
way!) So in this case, 0 means that 'Teacher' is to be selected, and if I then selected 'Engineer', the resulting value of prof would be 2.

The %i code allows you to enter an integer value, with up/down arrows for incrementing/decrementing the value.

require("iuplua")
require("iupluacontrols")

res, age = iup.GetParam("Title", nil,
 "Give your age: %i\n",0)

if res ~= 0 then -- the user cooperated!
 iup.Message("Really?",age)
end

Dialogs

Constructing General Layouts

GetParam is a very versatile facility for asking for data, but it is not very interactive. In general, you want to present something back to the
user that is more complicated than a simple message. Up to now we have used the predefined dialogs available to IupLua; it is now time
to go beyond that and examine custom dialogs. The structure of a simple IupLua program is straightforward:

require 'iuplua'

text = iup.multiline{expand = "YES"}

dlg = iup.dialog{text; title="Simple Dialog",size="QUARTERxQUARTER"}

dlg:show()

iup.MainLoop()

A multiline edit control is created, and put inside a window frame with a given size, which is then made visible with the show method. We
then enter the main loop of the application with MainLoop, which will only finish when the window is closed.

Controls are also windows, but without the frame and decorations of a top-level window; they are always meant to be inside some
window frame or other container. We set the expand attribute of multiline to force it to use up all the available space in the frame, so
that it takes its size from its container. The dialog's size attribute is a string of the form "XSIZExYSIZE", where sizes can be expressed as
fractions of the desktop window size, in this case a quarter of the width and height. (You can of course also use numerical sizes like
"100x301" but these will not always scale well on displays with different resolutions. See Attributes/Common/SIZE in the manual for these
units.)

It's good to pause a moment to look at the resulting application in action; it is fully responsive and you can enter text, paste, etc. into the
edit control. Common keyboard shortcuts like Ctrl+V and Ctrl+C work as expected. All this functionality comes with the windowing
system you are currently using. On my system, Task Manager shows that this program uses 3.8 Meg of memory, and an instance of
Notepad uses 3.3 Meg, which represents all the common code necessary to support a simple GUI application; you are not actually paying
much for using IupLua at all. The equivalent C program using the Windows API would be about 150 lines, so the gain in programmer
efficiency is tremendous!

Of course, there is not much interaction possible with such a simple program. To make a program respond to the user we define callbacks
which the system calls when some event takes place. For example, we can put a button control in the dialog, and define its action
callback:

require 'iuplua'

btn = iup.button{title = "Click me!"}

function btn:action ()
 iup.Message("Note","I have been clicked!")
 return iup.DEFAULT
end

dlg = iup.dialog{btn; title="Simple Dialog",size="QUARTERxQUARTER"}

dlg:show()

iup.MainLoop()

IUP - Portable User Interface 07-Jan-25

124/496

This is perfectly responsive, although not very useful! The button sizes itself to its natural size since expand is not set (try setting expand to
see the button fill the whole window frame.) Callbacks usually return the special value iup.DEFAULT, although in IupLua this is not really
necessary.

dialog takes only one control, so IupLua defines containers in which you can pack as many controls as you like. Here vbox is used to pack
two buttons into the dialog vertically (To save space I'm leaving out the 'dlg:show...' common code at the bottom)

btn1 = iup.button{title = "Click me!"}
btn2 = iup.button{title = "and me!"}

function btn1:action ()
 iup.Message("Note","I have been clicked!")
end

function btn2:action ()
 iup.Message("Note","Me too!")
end

box = iup.vbox {btn1,btn2}

dlg = iup.dialog{box; title="Simple Dialog",size="QUARTERxQUARTER"}

This does the job, although the buttons are sized differently according to their contents; this program would not win any design contests!
Still, you now have two commands in your application. You can actually get a more pleasing result by using a horizontal packing box
(hbox) and specifying a non-zero gap between the buttons:

box = iup.hbox {btn1,btn2; gap=4}

You can nest boxes as much as you like, which is the way to construct more complicated layouts. Here are our horizontal buttons packed
vertically with a multiline edit control:

bbox = iup.hbox {btn1,btn2; gap=4} text = iup.multiline{expand = "YES"} vbox = iup.vbox{bbox,text}

dlg = iup.dialog{vbox; title="Simple Dialog",size="QUARTERxQUARTER"}

We have effectively implemented a crude but functional toolbar:

A labeled frame can be put around a control using iup.frame:

edit1 = iup.multiline{expand="YES",value="Number 1"}
edit2 = iup.multiline{expand="YES",value="Number 2?"}

box = iup.hbox {iup.frame{edit1;Title="First"},iup.frame{edit2;Title="Second"}}

A useful way to present various views to a user is to put them in tabs. This places each control in a separate page, accessible through the
tabbar at the top. Notice in this example that the titles of the tab pages are actually set as attributes of the pages through tabtitle. This is
not one of the standard IUP controls (see Controls/Additional in the manual) so we also need to bring in the iupluacontrols library.

require("iupluacontrols")

edit1 = iup.multiline{expand="YES",value="Number 1",tabtitle="First"}
edit2 = iup.multiline{expand="YES",value="Number 2?",tabtitle="Second"}

tabs = iup.tabs{edit1,edit2,expand='YES'}

Timers and Idle Processing

Sometimes a program needs to wake up and perform some operation, such as a scheduled backup or an autosave operation. IupLua
provides timers for this purpose. (Note at this point that there is no reason why you can't have print in a IupLua application; sometimes
there is no better way to track what's going on. But on Windows you do have to run the program using the regular lua.exe, not wlua.exe.)

-- timer1.lua

require "iuplua"

timer = iup.timer{time=500}

btn = iup.button {title = "Stop",expand="YES"}

IUP - Portable User Interface 07-Jan-25

125/496

function btn:action ()
 if btn.title == "Stop" then
 timer.run = "NO"
 btn.title = "Start"
 else
 timer.run = "YES"
 btn.title = "Stop"
 end
end

function timer:action_cb()
 print 'timer!'
end

timer.run = "YES"

dlg = iup.dialog{btn; title="Timer!"}
dlg:show()
iup.MainLoop()

After a timer has been started by setting its run attribute to "YES", it will continue to call action_cb using the given time in milliseconds.
Notice that it is important to set the timer going only after the callback has been defined. It is perfectly permissable to switch a timer off in
the callback, which is how you can perform a single action after waiting for some time.

It is a well-known fact that computers spend most of the time doing very little, waiting for incredibly slow humans to type something new.
However, when a computer is actually doing intense processing, users become impatient if not told about progress. If you do your
lengthy processing directly, then the windows of the application become unresponsive. The proper way to organize such work is to do it
when the system is idle.

IupLua provides a gauge control which is intended to show progress; this little program shows that even when the computer is almost
completely preoccupied doing work, it is still keeping the user informed and in fact the window remains useable, although a little slow to
respond.

-- idle1.lua
require "iuplua"
require "iupluacontrols"

function do_something ()
 for i=1,6e7 do end
end

gauge = iup.gauge{show_text="YES"}

function idle_cb()
 local value = gauge.value
 do_something()
 value = value + 0.1
 if value > 1.0 then
 value = 0.0
 end
 gauge.value = value
 return iup.DEFAULT
end

dlg = iup.dialog{gauge; title = "IupGauge"}

iup.SetIdle(idle_cb)

dlg:showxy(iup.CENTER, iup.CENTER)

iup.MainLoop()

Lists

It is easy to display a list of values in IupLua. The values can be directly specified in the iup.list constructor, like so:

-- list1.lua
require "iuplua"

list = iup.list {"Horses","Dogs","Pigs","Humans"; expand="YES"}

dlg = iup.dialog{list; title="Lists"}
dlg:show()
iup.MainLoop()

(Remember that the single argument to these constructors is just a Lua table, which you can construct in any way you choose, say by
reading the values from a file.)

Tracking selection changes is straightforward:

IUP - Portable User Interface 07-Jan-25

126/496

function list:action(t,i,v)
 print(t,i,v)
end

Now, as I move the selection through the list, from the start to the finish, the output is:

Horses 1 1
Horses 1 0
Dogs 2 1
Dogs 2 0
Pigs 3 1
Pigs 3 0
Humans 4 1

So v is 1 if we are selecting an item, 0 if we are deselecting it; i is the one-based index in the list, and t is the actual string value. If you
want to associate some other data with each value, then all you need to do is keep a table of that data and look it up using the index i.

To register a double-click is a little more involved. There is (as far as I can tell) no way to detect whether a double-click has happened in
the action callback. So we track the selection manually; if two selection events for a given item happen consecutively, then that is
understood to be a double-click. It ain't pretty, but it works (except perhaps for the valid case of a person wanting to double-click the
same item repeatedly):

local lastidx,doubleclick

function on_double_click (t,i)
 print(t,i)
end

function list:action(t, i, v)
 if v ~= 0 then
 if lastidx == i and doubleclick ~= i then
 on_double_click(t,i)
 doubleclick = i
 end
 lastidx = i
 end
end

Once a list has been created, how does one change the contents? The answer is that the list object behaves like an array. For example, to
fill a list with all the entries in a directory, I can use this function:

function fill (path)
 local i = 1
 for f in lfs.dir(path) do
 list[i] = f
 i = i + 1
 end
 list[i] = nil
end

Note that this does not mean that a list object is a table. In particular, you have to explicitly set the end of the list of elements by setting a
nil value just after the end.

Trees

The most flexible way to present a hierarchy of information is a tree. A tree has a single root, and several branches. Each of these
branches may have leaves, and other branches. All of these are called nodes. Thinking of a family tree, a node may have child nodes,
which all share the same parent node.

A good example of this in everyday computer experience is a filesystem, where the leaves are files and the branches are directories. Lua
tables naturally express these kind of nested structures easily, and in fact it is easy to present a Lua table as a tree, where array items are
leaves, and the branches are named with the special field branchname:

require 'iuplua'
require 'iupluacontrols'

tree = iup.tree{}
tree.addexpanded = "NO"

list = {
 {
 "Horse",
 "Whale";
 branchname = "Mammals"
 },
 {
 "Shrimp",
 "Lobster";
 branchname = "Crustaceans"

IUP - Portable User Interface 07-Jan-25

127/496

 },
 {
 branchname = "Birds"
 },
 branchname = "Animals"
}

iup.TreeAddNodes(tree, list)

f = iup.dialog{tree; title = "Tree Test"}

f:show()

iup.MainLoop()

This example begins with the branches 'collapsed', and you will have to explicitly expand them with a mouse click. By default, trees are
presented in their fully expanded form; try taking out the fourth line that sets the addexpanded attribute of the tree object. Note that
branches can be empty!

Tree operations are naturally more complicated than list operations, but there is a callback which happens when a node is selected or
unselected. Add this to the example:

function tree:selection_cb (id,iselect)
 print(id,iselect,tree.name)
end

You will see that iselect is 0 for the unselection operation, and 1 for selection; id is a tree node index. These indices are always in order
of appearance in a tree, starting at 0 for the root node. The name attribute of the tree object is the text of the currently selected node.

A pair of useful callbacks are branchopencb and branchclosecb. If you were displaying a potentially very large tree (like your computer's
filesystem) then it would be inefficient to create the whole tree at once, especially considering that you would normally be only interested
in a small part of that tree. Trapping branchopencb allows you to add child nodes to your selected node before it is expanded.
executeleafcb is called when you double-click on a leaf, as if you were running a program in a file explorer.

In itself, the id is not particularly useful. The id order is always the same in the tree, so as nodes get added and removed, the id of a
particular node will change. Generally, there is going to be some deeper data associated with a node. On a filesystem, a node represents a
full path to a file or directory, or there may be an ip address associated with a computer name. IUP provides you with a way to associate
arbitrary data with nodes even if the id changes. But to use this you will have to understand how to build up a tree from scratch -
TreeAddNodes is very convenient, but won't help you if you have to add nodes later. Replace the definition of list and the call to
TreeAddNodes with this code:

tree.name = "Animals"
tree.addbranch = "Birds"
tree.addbranch = "Crustaceans"
tree.addbranch = "Mammals"

You will get the top level branches of the tree; notice that they are specified in reverse order, since nodes are always added to the top.
Also note the curious way in which the addbranch attribute is used. For a start, it is write-only, and the effect of setting a value to it is to
add a new branch to the currently selected node. By default, this starts out as the root (which is set using the name attribute) The id of the
root is always 0; when we add "Birds", the new branch has id 1, again when we add "Crustaceans" the new branch also has id 1 - by
which time "Birds" has moved to id 2, further down the tree.

To add leaves, a similar process:

tree.name = "Animals"
tree.addbranch = "Mammals"
tree.addleaf1 = "Whale"

The addleaf attribute works like addbranch, and both of them can take an extra parameter, which is the id of the node to add to. In this
case, "Whale" is a child leaf of the "Mammals" branch, which has id 1 at this stage. This new leaf gets an id of 2, which is one more than
the parent. So this gives us a way to build up arbitrary trees, knowing the id at each point. IUP provides a function TreeSetUserId
which can associate a Lua table with a node id. We can choose to put a string value inside this table, but it really can contain anything.
Here is the first example, using some helper functions to simplify matters:

-- testtree2.lua

require 'iuplua'
require 'iupluacontrols'
tree = iup.tree{}

function assoc (idx,value)
 iup.TreeSetUserId(tree,idx,{value})
end

function addbranch(self,label,value)
 self.addbranch = label
 assoc(1,value or label)
end

IUP - Portable User Interface 07-Jan-25

128/496

function addleaf(self,label,value)
 self.addleaf1 = label
 assoc(2,value or label)
end

tree.name = "Animals"
addbranch(tree,"Birds")
addbranch(tree,"Crustaceans")
addleaf(tree,"Shrimp")
addleaf(tree,"Lobster")
addbranch(tree,"Mammals")
addleaf(tree,"Horse")
addleaf(tree,"Whale")

function dump (tp,id)
 local t = iup.TreeGetUserId(tree,id)
 -- our string data is always the first element of this table
 print(tp,id,t and t[1])
end

function tree:branchopen_cb(id)
 dump('open',id)
end

function tree:selection_cb (id,iselect)
 if iselect == 1 then dump('select',id) end
end

f = iup.dialog{tree; title = "Tree Test"}

f:show()

iup.MainLoop()

There is a corresponding function TreeGetUserId which accesses the table associated with the node id. There is also a function
TreeGetId which will return the id, given the unique table associated with it. You can use this to programmatically select a tree node
given its data by setting the value attribute to the returned id.

Now let's do something interesting with a tree control, a simple file browser. It is straightforward to get the files and directories contained
within a directory:

require 'lfs'

local append = table.insert

function get_dir (path)
 local files = {}
 local dirs = {}
 for f in lfs.dir(path) do
 if f ~= '.' and f ~= '..' then
 if lfs.attributes(path..'/'..f,'mode') == 'file' then
 append(files,f)
 else
 append(dirs,f)
 end
 end
 end
 return files,dirs
end

We ignore '.' and '..' (the current and parent directory respectively) and check the mode to see if we have file or a directory; this requires
the full path to be passed to attributes. This function returns two separate tables containing the names of the files and directories.

It is useful to define two helper functions for setting and getting data to be associated with the tree nodes:

tree = iup.tree {}

function set (id,value,attrib)
 iup.TreeSetUserId(tree,id,{value,attrib})
end

function get(id)
 return iup.TreeGetUserId(tree,id)
end

Filling a tree with the contents of a directory is straightforward. We want the directories before the files, so we put them in last; nodes
must be added in reverse order! The id of the new nodes will always be id+1 where id is going to be the directory which we are filling.
The fullpath plus a field indicating whether we are a directory is associated with each new item:

function fill (path,id)
 local files,dirs = get_dir(path)
 id = id + 1

IUP - Portable User Interface 07-Jan-25

129/496

 local state = "STATE"..id
 for i = #files,1,-1 do -- put the files in reverse order!
 tree.addleaf = files[i]
 set(id,path..'/'..files[i])
 end
 for i = #dirs,1,-1 do -- ditto for directories!
 tree.addbranch = dirs[i]
 set(id,path..'/'..dirs[i],'dir')
 tree[state] = "COLLAPSED"
 end
end

By default, the directory branches will be created in their expanded form, so we use the STATE attribute to force them into their collapsed
state. Normally you would say this in Lua like so state2 = "COLLAPSED" but here we build up the appropriate attribute string with the
given id and use array indexing to set the tree attribute.

Just calling fill('.',0) and putting the tree into a dialog as usual will give you a directory listing of the current directory! But it would be
cool if expanding a directory node would automatically fill that node; it would obviously be wasteful to fill the whole tree at startup, since
your filesystem contains thousands of files. The branchopencb callback is called when a user tries to expand a directory. We use this to fill
the directory with its contents, but only on the _first time that we expand this node:

function tree:branchopen_cb(id)
 tree.value = id
 local t = get(id)
 if t[2] == 'dir' then
 fill(t[1],id)
 set(id,t[1],'xdir')
 end
end

This is why directories need to be specially marked, so we can tell later whether we have actually generated the contents of that directory!

The first statement of this function makes the node we are opening to be the selected node of the tree. (Although we are passed the
correct id of the node, it seems to be necessary to perform this step to make things work correctly.)

See directory.lua in the examples folder.

Menus

Any application that can perform a number of operations needs a menu. These are not difficult to create in Iuplua, although it can be a
little tedious to set up. The basic idea is this: create some items, make a menu out of these items, and set the menu attribute of the dialog.
The items have an associated action callback, which actually performs the operation.

-- simple-menu.lua

require("iuplua")

-- Creates a text, sets its value and turns on text readonly mode
text = iup.text {readonly = "YES", value = "Show or hide this text"}

item_show = iup.item {title = "Show"}
item_hide = iup.item {title = "Hide"}
item_exit = iup.item {title = "Exit"}

function item_show:action()
 text.visible = "YES"
 return iup.DEFAULT
end

function item_hide:action()
 text.visible = "NO"
 return iup.DEFAULT
end

function item_exit:action()
 return iup.CLOSE

IUP - Portable User Interface 07-Jan-25

130/496

end

menu = iup.menu {item_show,item_hide,item_exit}

-- Creates dialog with a text, sets its title and associates a menu to it
dlg = iup.dialog{text; title="Menu Example", menu=menu}

-- Shows dialog in the center of the screen
dlg:showxy(iup.CENTER,iup.CENTER)

iup.MainLoop()

A menu may contain items and submenus. This example shows a small function which makes creating arbitrarily complicated menus
easier:

-- menu.lua

require("iuplua")

function default ()
 iup.Message ("Warning", "Only Exit performs an operation")
 return iup.DEFAULT
end

function do_close ()
 return iup.CLOSE
end

mmenu = {
 "File",{
 "New",default,
 "Open",default,
 "Close",default,
 "-",nil,
 "Exit",do_close,
 },
 "Edit",{
 "Copy",default,
 "Paste",default,
 "-",nil,
 "Format",{
 "DOS",default,
 "UNIX",default
 }
 }
}

function create_menu(templ)
 local items = {}
 for i = 1,#templ,2 do
 local label = templ[i]
 local data = templ[i+1]
 if type(data) == 'function' then
 item = iup.item{title = label}
 item.action = data
 elseif type(data) == 'nil' then
 item = iup.separator{}
 else
 item = iup.submenu {create_menu(data); title = label}
 end
 table.insert(items,item)
 end
 return iup.menu(items)
end

-- Creates a text, sets its value and turns on text readonly mode
text = iup.text {value = "Some text", expand = "YES"}

-- Creates dialog with a text, sets its title and associates a menu to it
dlg = iup.dialog {text; title = "Creating Menus With a Table",
 menu = create_menu(mmenu), size = "QUARTERxEIGHTH"}

-- Shows dialog in the center of the screen
dlg:showxy (iup.CENTER,iup.CENTER)

iup.MainLoop()

The function create_menu does all the work; we provide it with a Lua table containing pairs of values; the first value of a pair is always a
string, and will be the label. The second value can either be a function, in which case it represents an item to be associated with a
callback, or nil, which means that it's a separator, or otherwise must be a table, which represents a submenu. It is a nice example of how
recursion can naturally handle nested structures like menus, and how Lua's flexible table definitions can make specifying such structures
easy. This useful function is available in the iupx utility library as iupx.menu.

Plotting Data

IUP - Portable User Interface 07-Jan-25

131/496

Many kinds of numerical data are best seen as X-Y plots. iup.plot is a control which can show several kinds of plots; you can have lines
between points, show them as markers, or both together. Several series (or datasets) can be shown on a single plot, and a simple legend
can be shown. The plot will automatically scale to view all datasets, but the default minimum and maximum x and y values can be
changed. It is even possible to select points and edit them on the plot.

A simple plot is straightforward:

-- plot1.lua
require("iuplua")
require("iupluacontrols")
require("iuplua_plot51")

plot = iup.plot{TITLE = "A simple XY Plot",
 MARGINBOTTOM="35",
 MARGINLEFT="35",
 AXS_XLABEL="X",
 AXS_YLABEL="Y"
 }

iup.PlotBegin(plot,0)
iup.PlotAdd(plot,0,0)
iup.PlotAdd(plot,5,5)
iup.PlotAdd(plot,10,7)
iup.PlotEnd(plot)

dlg = iup.dialog{plot; title="Plot Example",size="QUARTERxQUARTER"}

dlg:show()

iup.MainLoop()

Creating a dataset involves calling PlotBegin, a number of calls to PlotAdd to add data points, and finally a call to PlotEnd. You can create
multiple datasets (or series) using multiple begin/end calls, and can of course use loops to add points:

iup.PlotBegin(plot,0)
for x = -2,2,0.01 do
 iup.PlotAdd(plot,x,math.sin(x))
end
iup.PlotEnd(plot)

iup.PlotBegin(plot,0)
for x = -2,2,0.01 do
 iup.PlotAdd(plot,x,math.cos(x))
end
iup.PlotEnd(plot)

plot.DS_LINEWIDTH = 3

A limitation of the plot library is that it does not choose appropriate sizes for the plot margins. So I've had to set the bottom and left
margins (in pixels) to properly accomodate the axes and their titles. As with all IupLua attributes, you can choose to make them upper
case if you like; a full list is found in the manual under Controls/Additional/IupPlot. Some of these attributes refer to the plot as a whole,
some to the current dataset. For instance, setting GRID to "YES" will draw gridlines for both axes, but if we set DS_LINEWIDTH to 3 after the
construction of the cosine dataset, then only that line is affected.

Some attributes affect others. DS_MODE is used to specify how to draw the dataset; it can be "LINE", "BAR", (for a bar chart) "MARK" (just
for marks) or "MARKLINE" (for lines and marks). But it has to be set before any of the other DS_ attributes like DS_MARKSIZE, etc. In
another case, you will often find it useful to set an explicit minimum y value by setting AXS_YMIN. But it will only take effect if
AXIS_YAUTOMIN has been set to "NO" to disable auto scaling.

As with menus, making a Lua-friendly wrapper around an API is not difficult and can be very labour-saving. It would be clearer if we
could work with the plot object in a more object-oriented way:

 plot:Begin()
 for i = 1,#xvalues do
 plot:Add(xvalues[i],yvalues[i])
 end
 plot:End()

And for the common case where you have arrays of values, it would be convenient to be able to say:

plot:AddSeries({{0,1.5},{5,4.5},{10,7.6}},{DS_MODE="MARK"})

Here is a function which wraps the Plot API:

function create_plot (tbl)
 -- don't need to remember this anymore!
 require("iuplua_plot51")

 -- the defaults for these values are too small, at least on my system!

IUP - Portable User Interface 07-Jan-25

132/496

 if not tbl.MARGINLEFT then tbl.MARGINLEFT = 30 end
 if not tbl.MARGINBOTTOM then tbl.MARGINBOTTOM = 35 end

 -- if we explicitly supply ranges, then auto must be switched off for that direction.
 if tbl.AXS_YMIN then tbl.AXS_YAUTOMIN = "NO" end
 if tbl.AXS_YMAX then tbl.AXS_YAUTOMAX = "NO" end
 if tbl.AXS_XMIN then tbl.AXS_XAUTOMIN = "NO" end
 if tbl.AXS_XMAX then tbl.AXS_XAUTOMAX = "NO" end

 local plot = iup.plot(tbl)
 plot.End = iup.PlotEnd
 plot.Add = iup.PlotAdd
 function plot.Begin ()
 return iup.PlotBegin(plot,0)
 end

 function plot:AddSeries(xvalues,yvalues,options)
 plot:Begin()
 -- is xvalues a table of (x,y) pairs?
 if type(xvalues[1]) == "table" then
 -- because there's only one data table, the next must be options
 options = yvalues
 for i,v in ipairs(xvalues) do
 plot:Add(v[1],v[2])
 end
 else
 for i = 1,#xvalues do
 plot:Add(xvalues[i],yvalues[i])
 end
 end
 plot:End()
 -- set any series-specific plot attributes
 if options then
 -- mode must be set before any other attributes!
 if options.DS_MODE then
 plot.DS_MODE = options.DS_MODE
 options.DS_MODE = nil
 end
 for k,v in pairs(options) do
 plot[k] = v
 end
 end
 end

 function plot:Redraw()
 plot.REDRAW='YES'
 end
 return plot
end

This function creates a Plot object as usual, but supplies some more sensible defaults for the margins, makes setting things like AXS_XMAX
also set AXS_XAUTOMAX, and adds some new methods to the object. Of these, AddSeries is the interesting one. It allows you to specify the
data in two forms; either as two arrays of x and y values, or as a single array of x-y pairs. It also allows optionally setting DS_ attributes,
taking care to set the plot mode before any other attributes. In this way, the actual details can be hidden away from the programmer, who
has then less things to worry about.

Given this function, we can write a little program which plots some points and draws the linear least-squares fit between them:

-- simple-plot.lua

local xx = {0,2,5,10}
local yy = {1,1.5,6,8}

function least_squares (xx,yy)
 local xsum = 0.0
 local ysum = 0.0
 local xxsum = 0.0
 local yysum = 0.0
 local xysum = 0.0
 local n = #xx
 for i = 1,n do
 local x,y = xx[i], yy[i]
 xsum = xsum + x
 ysum = ysum + y
 xxsum = xxsum + x*x
 yysum = yysum + y*y
 xysum = xysum + x*y
 end
 local m = (xsum*ysum/n - xysum)/(xsum*xsum/n - xxsum)
 local c = (ysum - m*xsum)/n
 return m,c
end

local m,c = least_squares(xx,yy)

function eval (x) return m*x + c end

IUP - Portable User Interface 07-Jan-25

133/496

local plot = create_plot {TITLE = "Simple Data",AXS_YMIN=0,GRID="YES"}

-- the original data
plot:AddSeries(xx,yy,{DS_MODE="MARK",DS_MARKSTYLE="CIRCLE"})

-- the least squares fit
local xmin,xmax = xx[1],xx[#xx]
plot:AddSeries({xmin,xmax},{eval(xmin),eval(xmax)})

create_plot is so useful that I've packaged it as part of the iupx library as iupx.plot. A new pseudo-attribute has been introduced,
AXS_BOUNDS, which is a table of four values {xmin,ymin,xmax,ymax}. This example shows that very different ranges can happily exist on
the same plot:

-- plot5.lua

require "iupx"

plot = iupx.plot {TITLE = "Simple Data", AXS_BOUNDS={0,0,100,100}}

plot:AddSeries ({{0,0},{10,10},{20,30},{30,45}})
plot:AddSeries ({{40,40},{50,55},{60,60},{70,65}})

iupx.show_dialog{plot; title="Easy Plotting",size="QUARTERxQUARTER"}

<

IupLua Advanced Guide

Exchanging "Ihandle*" between C and Lua

Each binding to a version of Lua uses different features of the language in order to implement IUP handles (Ihandle) in Lua. Therefore,
functions have been created to help exchange references between Lua and C.

In C, to push an Ihandle in Lua's stack, use the function:

void iuplua_pushihandle(lua_State *L, Ihandle *ih);

In C, to receive an Ihandle in a C function called from Lua, just use one of the following code:

Ihandle* ih = *(Ihandle**)lua_touserdata(L, pos);

or using parameter checking:

Ihandle* iuplua_checkihandle(lua_State *L, int pos);

In Lua, if the handle is a user data create with the above structure, but not mapped to a Lua object, use the function:

iup.RegisterHandle(handle, classname)

where "classname" is the string returned in IupGetClassName.

In Lua, to access a handle created in C as a Lua object, alternatively use the function:

handle = iup.GetFromC(name)

where "name" is the name of the element previously defined with IupSetHandle.

Error Handling

In C to improve the error report, use the following functions to execute Lua code:

IUP - Portable User Interface 07-Jan-25

134/496

func/iupgetclassname.html

int iuplua_dofile(lua_State *L, const char *filename);
int iuplua_dostring(lua_State *L, const char *string, const char *chunk_name);
int iuplua_dobuffer(lua_State *L, const char *string, int len, const char *chunk_name); (since 3.15)

These functions mimics the implementation in the standalone interpreter for Lua 5, that displays the error message followed by the stack.

If iuplua_dofile fail to open the given file, then it will prepend the contents of the environment variable IUPLUA_DIR to the file name
and tries to open it again. (Since 3.2)

If the these functions are used, the errors will be reported through the "iup._ERRORMESSAGE(msg)" function. By default
_ERRORMESSAGE is defined to show a dialog with the error message. The global attribute "LUA_ERROR_LABEL" if defined will be used
in a label inside the dialog (since 3.17).

Also when using these functions the function that gets the stack during the error can be replaced if "iup._TRACEBACK(msg)" is defined.
By default it is called "debug.traceback(msg)", but you can replace the default to inspect local variables during the error. Notice that
iup._ERRORMESSAGE is called after the error stack is reverted, iup._TRACEBACK is called during the error. (since 3.23)

In Lua, you can also use:

iup.dofile(filename: string) -> (values returned by the chunk)
iup.dostring(str: string) -> (values returned by the chunk)

But instead of returning the error code as in C, they return the values returned by the chunk. And they will still have the same error
processing as the C equivalents. (since 3.17)

OBS: When printing an Ihandle reference the returned string is "IUP(type): address", for example "IUP(dialog): 08C55240".

The Architecture of IupLua 5

There are two important names in IupLua5: "iupHandle" and "iupWidget". (renamed in 3.15)

When you create an IUP element in Lua 5 it is created a table with a metatable called "iupWidget". This metatable has its "__index"
method redefined so when an index is not defined it looks for it in the "parent" table. The table it self represents the class of the control.
And all the classes inherit the implementation of the base class WIDGET. Each control class must implement the "createElement" method
of the class. The WIDGET class also a member called "ihandle" that contains the Ihandle* in Lua. The constructor of the WIDGET class
returns the handle. The purpose of these classes is to help the creation of the smart constructors in Lua, so instead of doing "ih =
iup.Label("some")" we can do "ih = iup.label{title = "some"}". It also helps to define some methods for all elements like "ih:map()",
"ih:show()" and others. The BOX class inherits from WIDGET and implements the construction using elements as parameters, along with
some utilities like "ih:append(child)".

The Ihandle* is represented in Lua as a table with a metatable called "iupHandle". This metable has its "__index", "__newindex" and
"__eq" methods redefined. The index methods are used to implement the set and get attribute facility. The handle knows its class because
it is stored in its "parent" member.

Since the controls creation is done by the "iup.<control>" function, the application does not use the WIDGET class directly. A ll the time
the application only uses the handle.

So, for example the IupLabel constructor works like this:

iup.label calls iup.LABEL:constructor
since iup.LABEL.parent = iup.WIDGET and iup.LABEL:constructor is not implemented
it calls iup.WIDGET:constructor
then iup.WIDGET:constructor calls iup.LABEL:createElement
and finally returns the created handle

Tutorial
Gustavo H. S. de O. Lyrio
Antonio E. Scuri

Index
1. Introduction

2. Hello World

2.1 Initialization

2.1.1 Compiling and Linking

2.2 Creating a Dialog

2.3 Adding Interaction

2.4 Adding Layout Elements

IUP - Portable User Interface 07-Jan-25

135/496

tutorial1.html
tutorial2.html
tutorial2.html#Initialization
tutorial2.html#Compiling_Linking
tutorial2.html#Dialog
tutorial2.html#Interaction
tutorial2.html#Adding_Layout_Elements

2.5 Improving the Layout

3. Simple Notepad

3.1 Main Dialog

3.2 Adding a Menu

3.3 Using Pre-defined Dialogs

3.4 Custom Dialogs

3.5 Adding a Toolbar and a Statusbar

3.6 Defining Hot Keys

3.7 Recent Files Menu and a Configuration File

3.8 Clipboard Support

3.9 More File Management (Drag&Drop, Command Line, ...)

3.10 Dynamic Layout

3.11 External Help

3.12 Final Considerations

4. Simple Paint

4.1 Loading and Saving Images

4.2 Drawing with OpenGL

4.3 Drawing with CD and Printing

4.4 Interactive Zoom and Scrollbars

4.5 Canvas Interaction and a ToolBox

4.6 Image Processing and Final Considerations

4.7 Modern Main Window (Ribbon Like)

5. Advanced Topics

5.1 C++ Encapsulation

5.2 C++ Modularization

5.3 High Resolution Display

5.4 Splash Screen, About and System Information

5.5 Dynamic Libraries

5.6 Using LED for Interface Description

5.7 Using External Images

5.8 Display and Storage of Numeric Values

6. Simple Calc - Under Construction

6.1 Data Matrix

6.2 Plotting Data

6.3 Numbers, Units and Formulas

6.4 Embedded Help

7. Simple Draw - Under Construction

7.1 Hierarchy Tree for Objects

7.2 Embedded Controls in Canvas

7.3 Script Editor for Lua

7.4 Background Processing using Multithread

7.5 UTF-8 Character Encoding

IUP - Portable User Interface 07-Jan-25

136/496

tutorial2.html#Improving_the_Layout
tutorial3.html
tutorial3.html#Main_Dialog
tutorial3.html#Adding_a_Menu
tutorial3.html#Using_Pre_Dialogs
tutorial3.html#Custom_Dialogs
tutorial3.html#Toolbar_Statusbar
tutorial3.html#Hot_Keys
tutorial3.html#Recent_Config
tutorial3.html#Clipboard
tutorial3.html#More_File_Management
tutorial3.html#Dynamic_Layout
tutorial3.html#External_Help
tutorial3.html#Final_Considerations
tutorial4.html
tutorial4.html#Loading_and_Saving_Images
tutorial4.html#Drawing_with_OpenGL
tutorial4.html#Drawing_with_CD
tutorial4.html#Interactive_Zoom
tutorial4.html#Canvas_Interaction
tutorial4.html#Image_Processing
tutorial5.html
tutorial5.html#Encapsulation
tutorial5.html#Modularization
tutorial5.html#High_Resolution_Display
tutorial5.html#Splash_Screen
tutorial5.html#Dynamic_Libraries

7.6 Multilanguage Interface

Examples Folder

Obs: the tutorial samples are shown inside an HTML element called IFRAME. Unfortunately old browsers do not support iframes. We
tested in recent versions of Mozilla Firefox, Google Chrome, Microsoft Internet Explorer and Opera. They all work ok, with some
exceptions. Internet Explorer was not able to switch between C and Lua code. Firefox in Linux will try to download the contents of the
iframe. If you have problems let us know.

1. Introduction
Hello and welcome to the IUP Tutorial. Our goal is to provide a walkthrough guide to develop IUP applications focused in people that
haven't used IUP before. First of all it is necessary to describe what IUP is and how it can help you develop your application. IUP stands
for "Interface com Usuário Portátil" in Portuguese, which translates to "Portable User Interface". It is a multi-platform toolkit for building
graphical user interfaces, offering a simple API in two main languages C/C++ and Lua, and its purpose is to allow the user interface
source code of an application to be compiled in different systems without any modification. Supported systems include: GTK+, Motif and
Windows. As main advantages, IUP offers: high performance since it uses native interface elements, and a fast learning curve due to the
simplicity of its API. Also, IUP uses an abstract layout model based on the boxes-and-glue paradigm from the TeX text editor making the
dialog creation task more flexible and independent from the graphics system resolution.

IUP has 3 concepts that any user has to understand: Elements, Attributes and Callbacks.

Elements are every kind of interface element present in the application. IUP contains several user interface elements. The library's main
characteristic is the use of native elements. This means that the drawing and management of a button or text box is done by the native
interface system, not by IUP. This makes the application's appearance more similar to other applications in that system. On the other
hand, the application's appearance can vary from one system to another. Besides, some additional controls are drawn by IUP, and are
independent from the native system. Dialogs are special elements that represent every window created by IUP. Any application that uses
IUP will be composed by one or more dialogs. Every dialog can contains one or more controls inside.

Attributes are used to change or consult properties of elements. Each element has a set of attributes that affects its behavior or its
appearance. Each attribute may work differently for each elements, but usually attributes with the same name work the same. Attribute
names are always upper case. But attribute values like "YES", "NO", "TOP", are case insensitive, so "Yes", "no", "top", and other variations
will work.

Callbacks are functions which notify the application that some user interface event occurred. Usually callbacks will be called only when
the user interacts with the application elements. If the application register the callback function, then the function will be called every time
the event occurs.

All we have seen until now is a short summary of what is behind the IUP toolkit and concepts that the developer needs to be familiarized
with when programming with IUP. From now on, we are going to present how to build an IUP application from the most simple example
possible to a complex and full of different resources application.

Previous Index Next

2. Hello World

2.1 Initialization

The code bellow will shows how to open an IUP environment and displays a simple message. Each line of code is explained after the
code.

Example Source Code [in C] example2_1.c [in Lua] example2_1.lua

IUP - Portable User Interface 07-Jan-25

137/496

../../examples/tutorial
mailto:iup@tecgraf.puc-rio.br
tutorial.html
tutorial.html
tutorial2.html
../../examples/tutorial/example2_1.c
../../examples/tutorial/example2_1.c
../../examples/tutorial/example2_1.lua
../../examples/tutorial/example2_1.lua

In the first line, we see an include of the C standard library, which is needed by almost all C programs. Next there is an include for the
main IUP library, which is all we need for our first example. Next line is a standard main function declaration. Before running any of the
IUP's functions, the function IupOpen must be called to initialize the toolkit. The next line creates and displays a message to the user
using IupMessage function. This function receives from parameters: title and message. The title will be displayed at the top of the
message window and the message is a text message by itself that will be displayed to the user. Following, we have a IupClose function
call. After running the last IUP function, IupClose must be run so that the toolkit can free internal memory and close the interface
system. Finally the program returns to exit with success.

In Lua instead of includes it is necessary to require the packages we use. The require call replace the IupOpen function called in C. So
IupOpen becomes require"iuplua" and like the includes it is done at the top of the code. This will inform Lua that the program
described in the next lines makes use of the package iuplua. Other important change from C to Lua is the way that IUP functions are
called. The IUP calls in Lua uses the prefix "iup." instead of "Iup" informing Lua to search for the function inside iuplua package. So, in
this example we have: iup.Message instead of IupMessage and iup.Close instead of IupClose. Another important aspect of using IUP
with Lua is the fact that Lua is a interpreted language and a Lua program execute from the first line to the last one. So, there is no need to
create a main function. We just call the iup.Message after the package inclusion. Yet, in the Lua version of our example you will find a call
to iup.MainLoopLevel. It will check if iup.MainLoop was already called to avoid calling it again. This is useful only if your script could
be executed from inside another context, for regular applications there is no need for calling it.

2.1.1 Compiling and Linking

Compiling and Linking a program that uses IUP (as any other third party library that is not installed on the system) demands that you
specify where the include files and the libraries are installed. You also need to link with the iup library. In order to do that in a single
command line for our first example is as follows:

gcc -o example2_1 example2_1.o -liupimglib -liup -L../../../lib/$TEC_UNAME

For programs containing several modules we suggest building a makefile (See here how to build one: makefile tutorial). There are also
many different IDEs (Integrated Development Environments) in Linux and in Windows that can help you develop an application. They all
need the same basic settings to be configured. We also have guides available for the most popular IDEs:

Borland C++ BuilderX
Code Blocks
CodeLite
Dev-C++
Eclipse for C++
Microsoft Visual C++ (Visual Studio 2003)
Microsoft Visual C++ (Visual Studio 2005)
NetBeans
Open Watcom

If you want more details on libraries dependencies for static linking, you can check the Building Applications Guide.

2.2 Creating a Dialog

Let's change the first example a little bit to add our own dialog.

Example Source Code [in C] example2_2.c [in Lua] example2_2.lua

IUP - Portable User Interface 07-Jan-25

138/496

../func/iupopen.html
../dlg/iupmessage.html
../func/iupclose.html
../func/iupclose.html
../func/iupopen.html
../func/iupopen.html
../func/iupmessage.html
../func/iupclose.html
../func/iupmainlooplevel.html
../func/iupmainloop.html
http://mrbook.org/blog/tutorials/make/
../ide_guide/cppbx.html
../ide_guide/codeblocks.html
../ide_guide/codelite.html
../ide_guide/dev-cpp.html
../ide_guide/eclipse.html
../ide_guide/msvc.html
../ide_guide/msvc8.html
../ide_guide/netbeans.html
../ide_guide/owc.html
../guide.html#apl
../../examples/tutorial/example2_2.c
../../examples/tutorial/example2_2.c
../../examples/tutorial/example2_2.lua
../../examples/tutorial/example2_2.lua

Note that we have added a new line in which we declare Ihandles* variables for IUP elements. We also have created two different
variables. One called dlg for our main dialog and another called label, which will hold a label with a hello message. Next, a new line
creates a iup label control and associates it with the label Ihandle that was previously declared. Its only argument is the text that will be
displayed inside the label. Then we reach the line in which we create our main dialog, almost in the same way that we created the button.
The difference goes on the parameter passed to IupDialog function. It receives another function that will create a composition control
called IupVbox. A IupVbox is a control that aligns all controls passed to it vertically. In this example, we are passing just one control
(our label) and a NULL to sign that we are done with our list of elements. Next line presents the way in which IUP changes each control
attributes. By calling the function IupSetAttribute the programmer will inform which control has the attribute that needs to be changed,
which attribute is that and the new value that the attribute will assume. In our sample, we are changing the main dialog's title to "Hello
from IUP Tutorial". The next function is called IupShowXY and tells IUP that we need the main dialog displayed at the center of the
screen horizontally and vertically. Following comes one of the most important function which is called in our program: IupMainLoop.
This function tells iup to wait for events. Otherwise, the program would go on, end and terminate without dealing with any event. Go on,
comment this line, recompile your code and execute your program, and you will see the main dialog blink in the screen and the program
ends just after it. It will be a valuable exercise.

From the most simple hello world to the most complex IUP application, all will have this same code structure.

In Lua we created the controls just after the iuplua package require. The controls construction have a different form in Lua, where the
constructor name is all lower and its parameters are inside a table. Although you can, there is no need to use iup.SetAttribute. In Lua a
control is also a table where the fields are the control attributes and callbacks. In the example all attributes were defined during the control
creation, but we could also do label.title or dlg.title after calling the constructor. In Lua some functions also have a syntax sugar, so
instead of using "iup.ShowXY(dlg, iup.CENTER,iup.CENTER)" we can write "dlg::showxy(iup.CENTER,iup.CENTER)" but both are exactly
the same call.

2.3 Adding Interaction

In the previous section, we saw how to build a basic IUP application, but without any custom interaction with the dialog. In this section,
we will add interaction to our application using a button.

Example Source Code [in C] example2_3.c [in Lua] example2_3.lua

IUP - Portable User Interface 07-Jan-25

139/496

../dlg/iupdialog.html
../elem/iupvbox.html
../elem/iupvbox.html
../func/iupsetattribute.html
../func/iupshowxy.html
../func/iupmainloop.html
../func/iupsetattribute.html
../../examples/tutorial/example2_3.c
../../examples/tutorial/example2_3.c
../../examples/tutorial/example2_3.lua
../../examples/tutorial/example2_3.lua

After the usual includes, we find some new lines. These lines contain a regular function called btn_exit_cb that will be registered as our
button callback, as will be seen next. This function does nothing special, except showing the hello message that we saw in the first
example and also closing the application returning code IUP_CLOSE.

Note that we have added a new handle that will handle our vbox in a clear way. Following is our button declaration. The first parameter is
the title for the label, and the second parameter is a global name for a callback which use is now deprecated, so we simply set to NULL.
The next lines are our vbox, which now is using a variable. That variable is passed as a parameter to the IupDialog function.

As said before, callbacks are special functions defined by the programmer and called by IUP when an event needs to be handled. To
create a callback, the programmer must declare a function and put inside its body anything that he/she wants the application to do when
the event occurs. After that, it is necessary to inform IUP that new function is, in fact, a callback. That is done calling the function
IupSetCallback. This call will inform IUP that our regular function btn_exit_cb is actually a callback that needs to be executed when our
button is pressed. The first parameter is our button Ihandle, followed by the name of the callback and the name of the function to be
called, casted as Icallback. The names of the available callbacks can be found at each control documentation. As attribute names, they are
always written in upper case letters.

When executed, the application's dialog box will show up, and when the user presses the button, it displays a hello message and will close
the application. It seems not a big deal, but with this small sample of code, we have covered the process of creating an IUP application,
declare elements and callbacks, and also handle an event. From now on, we are going to see more from IUP controls and how to improve
our application using different kinds of controls.

In Lua we set the button action callback just like we set an attribute. So, there is no call to IupSetCallback.

2.4 Adding Layout Elements

Up until now we have just positioned our controls inside a vbox which, as told, aligns all controls inside it vertically. This is just a small
sample of the IUP's layout concept. IUP implements an abstract layout, in which the positioning of controls is done relatively instead of
absolutely. For such, composition elements are necessary for composing the interface elements. They are boxes and fills invisible to the
user, but they play an important part. When a dialog size changes, these containers expand or retract to adjust the positioning of the
controls to the new situation allowing the dialog to adapt even if the resolution of the screen changes. That would come in hand if you
port your application to another system with a lower resolution, for example. Main composition elements are vertical boxes (vbox),
horizontal boxes (hbox) and filling (fill), among others. There is also a depth box (zbox), in which layers of elements can be created for
the same dialog, and the elements in each layer are only visible when that given layer is active.

To clarify the way abstract layout works, lets modify our example adding a label to it.

Example Source Code [in C] example2_4.c [in Lua] example2_4.lua

IUP - Portable User Interface 07-Jan-25

140/496

../dlg/iupdialog.html
../func/iupsetcallback.html
../func/iupsetcallback.html
../../examples/tutorial/example2_4.c
../../examples/tutorial/example2_4.c
../../examples/tutorial/example2_4.lua
../../examples/tutorial/example2_4.lua

Note that there is a new label declaration and this new element appears inside our vbox as the top element. That means it will be
displayed above button, and that's all. Our example now has two different elements and is disposed vertically one above the other. An
interesting exercise would be to change the code above and use an hbox to see what happens.

In Lua we used a simpler way to associate a callback, using a Lua syntax sugar "button:exit_cb()". But to use this syntax, the button
element must exist before the callback declaration, so we also moved its code to after the button construction.

2.5 Improving the Layout

Now that you understand the basics of abstract layout, let us present three attributes available to both vboxes and hboxes. They are:
ALIGNMENT, GAP and MARGIN.

ALIGNMENT defines the horizontal or vertical alignment of elements inside the box. If you are using a vbox, it will be an horizontal
alignment, or if you are using an hbox, it will be a vertical alignment. Its values can be "ALEFT", "ACENTER" or "ARIGHT" for horizontal
alignment, and "ATOP", "ACENTER" or "ABOTTOM" for vertical alignment. The default value is "ALEFT" and "ATOP".

GAP defines a space in pixels between every element inside the box. If you are using a vbox, it will be a vertical space, or if you are using
a hbox, it will be a horizontal space. The default value for GAP is 0 (which means no space between elements).

MARGIN defines a margin in pixels. Its value has the format "widthxheight", in which width and height are integer values corresponding
to the horizontal and vertical margins, respectively. Its default value is "0x0" (means no margin).

Let's see how our layout responds to these three attributes.

Notice that the Lua version of our example has only a few changes. We just add a line with the label creation and inserted it into the vbox
a little further.

Example Source Code [in C] example2_5.c [in Lua] example2_5.lua

IUP - Portable User Interface 07-Jan-25

141/496

../../examples/tutorial/example2_5.c
../../examples/tutorial/example2_5.c
../../examples/tutorial/example2_5.lua
../../examples/tutorial/example2_5.lua

After creating the vbox, we have added three lines that set those attributes to values different than the default values. The result is much
pleasanter to see. Although it is still not quite as the first example, which uses a pre-defined dialog. Can you figure out which attributes
we need to set in order to obtain a more closer appearance?

Previous Index Next

3. Simple Notepad

3.1 Main Dialog

Until now we have seen two different controls: labels and buttons. Labels can show text or images to the user but are not designed for
interaction. Buttons allow the user to trigger an event by pressing a mouse button. But none allow the user to insert any data into our
application. To do that,we will use a new control called IupText. It creates an editable text field and has a lot of different attributes
available. We will be interested in one in particular for now: MULTILINE. MULTILINE turns the IupText into an editable text field that
supports many lines, which is mandatory to build a simple notepad.

Our starting code for the simple notepad should be as follows.

Example Source Code [in C] example3_1.c [in Lua] example3_1.lua

IUP - Portable User Interface 07-Jan-25

142/496

../../examples/tutorial/example2_5a.c
tutorial1.html
tutorial.html
tutorial3.html
../elem/iuptext.html
../elem/iuptext.html
../../examples/tutorial/example3_1.c
../../examples/tutorial/example3_1.c
../../examples/tutorial/example3_1.lua
../../examples/tutorial/example3_1.lua

The previous code doesn't show exciting news except by the IupText declaration and the call to IupSetAttribute to set the IupText as
a MULTILINE. The default value is "NO", try to comment this line and see what happens.

Notice that the SIZE attribute of the dialog was also set. Since the IupText is a control that does not fit its size to its contents, we have to
set an initial size for the dialog, or else the result would be a very small dialog. We use a simple size specification that is a quarter of the
screen size in both dimensions. The SIZE attribute will also work as a minimum size, so we reset the USERSIZE attribute, after the dialog
is shown, to avoid this limitation. Try to comment this line and check out how the dialog interactive resize behaves.

With a few lines of code, we build an application where the user can type a huge text. But, if you type a huge text, you probably would
like to save it, and unfortunately our applications offers no such feature. We will handle this in the next sections.

3.2 Adding a Menu

Almost all applications offer a menu where the user can load files, save files, use the clipboard and do a lot of other stuff with his data.
IUP also offers this resource to the applications. Menus are divided into four different interface elements: IupItem, IupMenu,
IupSeparator, IupSubmenu.

IupItem creates a single item of the menu interface element. When selected, it generates an action.

IupSeparator creates a horizontal line that will appear between two menu items. It is normally used to divide and arrange different
groups of menu items.

IupSubmenu creates an item that, when selected, opens another menu.

IupMenu creates the menu element by itself as a list of elements. An IupMenu can include any number of the other 3 types of menu
interface elements: IupItem, IupSubmenu and IupSeparator. Any other type of interface element inserted in a menu will be an error.

Let's add a menu with a few items in our example.

Example Source Code [in C] example3_2.c [in Lua] example3_2.lua

Now our example has a few menu element handlers and declarations. Also, we used our exit callback to be called when the item_exit
menu item is selected. The next line shows the composition of an IupMenu called file_menu. Note that the menu items are passed in
order of appearance, which means that item_open will appear above item_save and so on. There is also an IupSeparator dividing our
file menu in two parts, the first takes items that deal direct with files, like open and save, and the second takes the exit item. It's not
mandatory to have an IupSeparator in your menu. This is used just to keep things more organized. Next line is a little tricky. We
created a submenu to store all of our items. Why not use file_menu directly? We could, but it would be used as main menu and would
end up being the only menu available in our application. It's a good practice to separate menus in submenus and then pass these
submenus as items of the main menu. By doing so, an application could have a file menu, a search menu, a help menu, and others as
items of the main menu, as you can see in the main menu declaration on the next line.

At last, once we are done building the main menu, we must set the MENU attribute of the main dialog as the menu we have just created.

IUP - Portable User Interface 07-Jan-25

143/496

../elem/iuptext.html
../func/iupsetattribute.html
../elem/iuptext.html
../attrib/iup_size.html
../elem/iuptext.html
../elem/iupitem.html
../elem/iupmenu.html
../elem/iupseparator.html
../elem/iupsubmenu.html
../elem/iupitem.html
../elem/iupseparator.html
../elem/iupsubmenu.html
../elem/iupmenu.html
../elem/iupmenu.html
../elem/iupitem.html
../elem/iupsubmenu.html
../elem/iupseparator.html
../../examples/tutorial/example3_2.c
../../examples/tutorial/example3_2.c
../../examples/tutorial/example3_2.lua
../../examples/tutorial/example3_2.lua
../elem/iupmenu.html
../elem/iupseparator.html
../elem/iupseparator.html

But since it is neither a string nor a number, we must use a different function to do this association, which is called
IupSetAttributeHandle.

You should notice that the exit menu item works fine, as we set the Exit menu item action callback, but Open and Save still don't work.
That's because we didn't set any callback for them. Those callbacks will use another IUP feature, which is the subject of our next section.

3.3 Using Pre-defined Dialogs

In the previous section, we added a file open and a file save menu items, but they had no callbacks associated. That's because we will use
new IUP resources to deal with file handling. These resources are called Pre-defined Dialogs.

Some dialogs are commonly found in a lot of different applications like file selection dialogs, font selection dialogs, color selection dialogs,
etc. It would be annoying to have to build the same dialog again every time we need to select a file, or to select a color or a font. So, IUP
provides pre-defined dialogs with all the necessary controls to deal with these common tasks.

We will update our last example to handle file input/output and to make use of these IUP pre-defined dialogs.

Example Source Code [in C] example3_3.c [in Lua] example3_3.lua

We will need to access the multitext control from inside the menu callbacks. There are many ways to do that; the simplest one is to
declare it as a global variable. We will do that to illustrate this example, but this is not recommended. In the next example, we will show
you how to not use a global variable to obtain the same results.

Now we have interesting new functions. First, let's take a look at the new callback called open_cb. This callback will handle the file
opening when the user clicks on the Open menu item. For this we will use a IUP predefined dialog called IupFileDlg. This dialog is a
standard file- handling dialog with all the features that we need to select a file from the file system, and it will also save a lot of work.
Inside the callback we create our IupFileDlg, and set it to be an "open" dialog with attribute DIALOGTYPE. Also we set EXTFILTER
attribute to "Text Files|*.txt|All Files|*.*|", since we want our application to handle text files but we leave the option for listing other files.

Now the program calls IupPopup, which is a function similar to IupShow, but it restricts the user interaction only in the specified dialog.
It is the equivalent of creating a Modal dialog in some toolkits. Its arguments are our file dialog Ihandle followed by x and y coordinates
that we defined as the center of the screen with IUP_CENTER.

Then we have a conditional test in which we get the value of filedlg STATUS with IupGetInt. Why not use IupGetAttribute instead?
That's because IupGetAttribute returns attributes as strings, but we know that STATUS is an integer so we can simplify our status
check using IupGetInt.

Once our file dialog returns a valid status, we are able to recover the name of the selected file using IupGetAttribute to retrieve the
VALUE attribute. Then we read the file using a simple function and fill in its contents on the multitext control by using the
IupSetStrAttribute function to set its VALUE attribute. We can not use the IupSetAttribute function, because our C string returned
by IupGetAttribute is a dynamically allocated pointer. Therefore IupSetStrAttribute will make sure that the string is duplicated
internally and not dependent on the given pointer.

Now we are done with this dialog. You can simply call IupDestroy to remove filedlg from memory, because we will not need it anymore.

Next there is another callback, saveas_cb, which will select a file name for saving the content of a file. It is very similar to open_cb, but
DIALOGTYPE is set to SAVE, so this time it will select a file name for saving. In this case the filename can be also for a new file, if an
existing file then the user will be notified of overwriting so it can cancel and start over. After selecting the filename we are going to save
the multitext contents to the file.

Now comes the font_cb callback that, as you may have already guessed, will call a predefined dialog to select a font. To do that, we use
IupFontDlg instead of IupFileDlg. To set the font, just change the FONT attribute in the multitext control.

The next callback is about_cb, which does nothing special, just calls IupMessage to display a text to the user.

IUP - Portable User Interface 07-Jan-25

144/496

../func/iupsetattributehandle.html
../../examples/tutorial/example3_3.c
../../examples/tutorial/example3_3.c
../../examples/tutorial/example3_3.lua
../../examples/tutorial/example3_3.lua
../dlg/iupfiledlg.html
../dlg/iupfiledlg.html
../dlg/iuppopup.html
../dlg/iupfiledlg.html
../func/iupgetattribute.html
../func/iupgetattribute.html
../func/iupgetattribute.html
../func/iupgetattribute.html
../func/iupgetattribute.html
../func/iupsetattribute.html
../func/iupsetattribute.html
../func/iupgetattribute.html
../func/iupsetattribute.html
../func/iupdestroy.html
../dlg/iupfiledlg.html
../dlg/iupfiledlg.html
../dlg/iupfiledlg.html

The following lines don't show anything new, except for the new callbacks registration. But notice that we added "..." to the text of the
menu items in which a dialog is open. This is not mandatory, but is highly recommended by common User Interface Guidelines.

Finally, we now have a brand new text editor using IUP. But what happens if the dialog that your application needs is not provided by IUP
as a predefined dialog? That will be the subject of our next section.

3.4 Custom Dialogs

We saw in the previous section that IUP provides predefined dialogs that can be used by the applications to save a lot of developing time.
But if the dialog your application needs is not one of IUP's predefined dialogs, then it's time to built your own dialog. The good news is
that you have already made this when building your main dialog. The tricky part here is how to handle more than one dialog at the same
time.

For this we will add two new items to our Edit menu: Find and Go To. Find will search the multitext contents while looking for a string
and highlight it when found. It will search for this string many times, and the search can also be case sensitive. Go To will position the
caret to a specific line in the text.

Example Source Code [in C] example3_4.c [in Lua] example3_4.lua

The first change is the inclusion of two utility functions (str_compare and str_find) that will be used to implement Find, and which are not
the object of this tutorial. If you want to understand what is inside these functions, take a closer look into the code.

You will notice that several functions had their names changed from the previous example code. We did that to illustrate the importance of
function nomenclature in a larger project, so that several callbacks can be easily associated with their respective control. For instance,
open_cb became item_open_action_cb, saveas_cb became item_saveas_action_cb, and so on.

Allow me to make a jump in our code and please refer now to the item_find_action_cb function. This callback, despite being almost at the
end of the code, is responsible for building one of our custom dialogs. In this dialog, we will use some elements that we have already
seen in previous sections: a text field to receive the string that the user wants to find, a button to find the next occurrence of this string, a
button to close our find dialog, and two new IUP elements: IupToggle and IupFill.

IupToggle is a two-state (on/off) button that, when selected, execute a callback. Toggles are normally used to set flags. In this case, we
used it to allow the user to decide if the search will be case sensitive or not.

IupFill is a very peculiar element. It is, as the name says, used to fill blank spaces inside our dialog. In other words, it positions and
aligns IUP elements. The best way to understand IupFill is to think of it as a coil spring. If you put an IupFill inside an IupHbox, it will
expand between the two elements, pushing one to the left and the other to the right. Or if you put it in an IupVbox, above a element, it
will push the element all the way down. But IupFill also has a SIZE attribute, that can be used to control how much space will be taken.
With experience we will find the correct way to define SIZES for IupFill and for other elements as well. In our case, IupFill is being used
to push the buttons Find Next and Close to the right, inside our hbox.

Note that our new dialog has a lot of new parameters set. DIALOGFRAME will remove minbox, maxbox, and it will resize from the corner
of the dialog. This will provide a reduced functionality and a standard dialog box appearance. DEFAULTENTER defines a button to be
activated when the users presses ENTER, in this case it will have the same effect as pressing the next_bt button. DEFAULTESC works the
same way for the ESC key by activating the close_bt button. Next the attribute PARENTALDIALOG sets the dialog that holds item_find
(our main dialog) as the parent of our new dialog, by using IupGetDialog, which returns the handle of the dialog that contains the
element passed as parameter. This will maintain the Find dialog always on top of the main dialog, even if we change the focus to the main
dialog. It will also allow us to set the find dialog position at the center of the parent dialog.

IUP - Portable User Interface 07-Jan-25

145/496

https://www.google.com.br/?gws_rd=ssl#q=User+Interface+Guidelines
../../examples/tutorial/example3_4.c
../../examples/tutorial/example3_4.c
../../examples/tutorial/example3_4.lua
../../examples/tutorial/example3_4.lua
../elem/iuptoggle.html
../elem/iupfill.html
../elem/iuptoggle.html
../elem/iupfill.html
../elem/iupfill.html
../elem/iuphbox.html
../elem/iupvbox.html
../elem/iupfill.html
../elem/iupfill.html
../func/iupgetdialog.html

In the next two lines, we use custom attributes to store application pointers. Each IUP element can hold as many custom attributes as you
want. If your application needs to store some information to be retrieved later, you can just set it as we are doing here. We created a new
attribute called MULTITEXT in the dialog to store the multitext element pointer and make it available to other callbacks. Doing this, we
avoid the global attribute used in the previous example. Also, we created another new attribute called FIND_DIALOG in the element
find_item, so we will be able to reuse this dialog. Everytime this function is called, the dialog is not created again, since it is created only
once.

Next we show our dialog using IupShowXY and pass IUP_CURRENT to it. At first, this will center the dialog according to its parent
(main dialog as we defined above). Next time it will reuse the last position, since the dialog will not be destroyed when closed.

Now that we have built the Find dialog, it is time to write the callbacks that will effectively do the job to find the string inside our
multitext.

Let's turn our attention to the find_next_action_cb callback. This callback is responsible for finding the next occurrence of our string inside
the multitext and it has a lot new function calls. We call to IupGetDialogChild, which is a function that returns the identifier of the child
element that has the NAME attribute in the same dialog hierarchy. We use this to retrieve the multitext handle. This is a more elegant
form to retrieve handles, instead of using a custom attribute or making a global variable, but it only works for the same dialog. Next we
retrieve the text to be found and the case sensitive flag from the respective controls. The search is performed, and if the result is positive,
we will save the last found position in a custom attribute, and call IupSetFocus. When we showed our Find dialog, we moved the focus
from our multitext to the new dialog. This function restors the focus to the multitext. We then select the text on the multitext. Next we
find two calls to IupTextConvertPosToLinCol and IupTextConvertLinColToPos. These are used to compute the position we use to
scroll the multitext, so the selection becomes visible.

Beside next_bt, find dialog also has close_bt, and it also demands a callback. Find_close_action_cb closes the Find dialog. In this callback,
we made a call to IupHide. When a dialog is hidden, it is not destroyed, so you can show it again.

The Go To dialog will work in the same way. If you have understood how to create the Find dialog, you should be able to build the Go To
dialogs.

3.5 Adding a Toolbar and a Statusbar

Now that we saw how to use predefined dialogs or how to build our own dialogs, lets see how to implement two other resources present
in many other applications: toolbars and statusbars.

Toolbars are a set of buttons, usually positioned side by side in the top of the dialog, just bellow the menu. To build our toolbar, we will
use the attribute IMAGE of IupButton. As in predefined dialogs, IUP also offers a series of predefined images to be used with buttons.
These images are part of an additional library called IupImageLib. To use this library, call IupImageLibOpen right after IupOpen.

Statusbars normally appear on the bottom of the dialog and usually show some information about what is happening inside the
application. To build our statusbar, we will use a set of IupLabel controls arranged side by side. In our statusbar, we will be displaying
the caret position in the text, and to achieve this, we will use a IupText callback called CARET_CB, which is called every time the caret
position is changed.

Example Source Code [in C] example3_5.c [in Lua] example3_5.lua

The first change, as told above, is the inclusion of multitext_caret_cb to our callbacks. In this callback, we will make use of the parameter
received by the callback. First we retrieve the handle of IupLabel called lbl_statusbar using IupGetDialogChild, and then passing the
handle that came as a parameter of our callback. Next, we set the label's TITLE by building a string using lin and col parameters, in which
the callback provides the caret line and column position.

From this new callback, we will jump to main function where the next change appears. Just after IupOpen, you will find a call to
IupImageLibOpen. This function will load the image library, so we can use its images in our toolbar.

A few lines after, we will find our lbl_statusbar declaration. This label will play the role of our statusbar. It needs the EXPAND attribute set
to HORIZONTAL, so it will occupy all the horizontal space inside the vbox. Following we will see some button declarations (btn_open,

IUP - Portable User Interface 07-Jan-25

146/496

../func/iupshowxy.html
../func/iupgetdialogchild.html
../func/iupsetfocus.html
../func/iuptextconvertpostolincol.html
../func/iuptextconvertlincoltopos.html
../func/iuphide.html
../elem/iupbutton.html
../iupimagelib.html
../func/iupopen.html
../elem/iuplabel.html
../../examples/tutorial/example3_5.c
../../examples/tutorial/example3_5.c
../../examples/tutorial/example3_5.lua
../../examples/tutorial/example3_5.lua
../elem/iuplabel.html
../func/iupgetdialogchild.html
../iupimglib.html

btn_save and btn_find) and some calls to IupSetAttribute setting each button's image. The images names can be found at the
IupImageLib documentation. We then notice that our toolbar is nothing more than an IupHbox containing those buttons. Note, a few
lines after, that we set the buttons callbacks to the same callbacks set for the respective menu items. This is feasible because the buttons
do exactly the same thing as the items representing a short cut to call open, save or find. We also set the FLAT attribute for the buttons so
their border is removed, and they will look like toolbar buttons. We set the CANFOCUS attribute to No for the buttons so they will not
receive the keyboard focus as toolbar buttons behave.

The final change will be the inclusion of toolbar_hb and lbl_statusbar in the vbox that already had our multitext. The toolbar comes first
because it is a vbox and we want it above the multitext. lbl_statusbar goes after because we want it bellow the multitext. That's all. Our
application now has both a toolbar and a statusbar. In the next section, we will improve it even more by adding hot keys to our menus.

3.6 Defining Hot Keys

Applications that have menus always present hotkeys to its users. IUP also offers this resource. To define a hotkey, you could use
IupDialog callback K_ANY. This is a callback common to a lot of IUP elements and is called when a keyboard event occur. IUP also
offers a simple way that allows you to define a specific callback for the key combination you want to deal with. For example, if you want
to show the file Open selection dialog when the user presses Ctrl+O, you just have to set a callback called "K_cO". Keyboard Codes
shows a complete table with all keyboard codes available in IUP.

Example Source Code [in C] example3_6.c [in Lua] example3_6.lua

This example didn't change much. We just added "\tCtr+?" to each menu item that has a hotkey. Character "\t" will take care of aligning
our hotkey text to the right, and the rest of the string will tell the user which key combinations to press. Note that "?" should be replaced
by the key you want.

A few lines after, we did a few calls to IupSetCallback using key combinations as callback names, as mentioned above, to deal with key
pressed events. That's all we need to change to include hotkeys in our application.

Since we are improving the user keyboard experience, there is another feature that we can use to aid users. Using the ampersand (&)
character in the menu item text, we define a key that can activate the menu item. The next character following the ampersand will be the
key. The main menu is reached using the Alt+key combination, for instance Alt+F will activate the File menu. Once the menu is opened,
use the 'O' key to activate the file Open menu item. Another example is the Alt+F then 'X' key combination to exit the application; many
applications have this key combination enabled.

Finally we add the TIP attribute for the toolbar buttons so they will also show the key combination that activate its feature.

3.7 Recent Files Menu and a Configuration File

Many text editors offer a menu item that holds a list of recent files. We will use an IUP resource called IupConfig to implement this list
and also store other configuration variables. IupConfig implements a group of functions to load, store and save application configuration
variables. For example: the list of Recent Files, the last position and size of a dialog, last used parameters in dialogs, etc. Each variable has
a key name, a value and a group that it belongs to.

Its important to remember that using IupConfig demands the inclusion of header file iup_config.h.

Example Source Code [in C] example3_7.c [in Lua] example3_7.lua

IUP - Portable User Interface 07-Jan-25

147/496

../func/iupsetattribute.html
../iupimagelib.html
../elem/iuphbox.html
../dlg/iupdialog.html
../call/iup_k_any.html
../attrib/key.html
../../examples/tutorial/example3_6.c
../../examples/tutorial/example3_6.c
../../examples/tutorial/example3_6.lua
../../examples/tutorial/example3_6.lua
../func/iupconfig.html
../func/iupconfig.html
../../examples/tutorial/example3_7.c
../../examples/tutorial/example3_7.c
../../examples/tutorial/example3_7.lua
../../examples/tutorial/example3_7.lua

Note that in this new example we have included the iup_config.h header as advised above. We will start this analysis from our main
function. After creating a handle for our config by calling IupConfig, we set the attribute APP_NAME. This attribute defines the name of
our configuration file. In UNIX, the filename will be "<HOME>/.<APP_NAME>", where "<HOME>" is replaced by the "HOME"
environment variable contents, and <APP_NAME> replaced by the APP_NAME attribute value. In Windows, the filename will be
"<HOMEDRIVE><HOMEPATH>\<APP_NAME>.cfg", in which HOMEDRIVE and HOMEPATH are also obtained from environment
variables.

After that comes a call to IupConfigLoad that will load our config file at startup. This function combined with the IupConfigSave
function, which we will see later, will allow our configuration variables to be persistent between different application executions.

Following, a few lines bellow, we create the recent_menu that will hold our recent items inside. You will see that it works as any other
menu creation, except by the fact that we will not add any menu items. They will be provided by a function that we will see soon. We
positioned our recent_menu above the item_exit menu item and bellow the IupSeparator.

After the menu is created, there is call to IupConfigRecentInit. This function is responsible for initializing the recent_menu items from
the configuration file entries. The item_recent_cb callback will be called when the user selects a file in the recent list. This function also
defines the number of recent files that will be stored and displayed. In our example, we choose to store 10 files. Also note that both
item_open_cb and item_saveas_cb should change the recent files list. So a call to IupConfigRecentUpdate is necessary to maintain our
recent files list updated.

Next line shows a call to IupConfigDialogShow that replaces IupShow/IupShowXY. This function will also show the dialog, but it will
try to use the last position and size stored in the configuration file. It can be used for any application dialog, just use different names for
each dialog.

The function IupConfigDialogClosed is used to save the last dialog position and size when the dialog is about to be closed, usually
inside the dialog CLOSE_CB callback, or when the dialog is programmatically hidden. The CLOSE_CB callback is called when the user
clicks on the dialog close button, usually a 'X' at the top right-corner of the dialog. Here our dialog is closed by the item_exit_action_cb
callback, so we decided to also use this function as the CLOSE_CB callback and to call IupConfigDialogClosed. Finally, since this
callback also exists in the application we use to call IupConfigSave, it will save our configuration file. Now that it is saved, we can
destroy its handle using IupDestroy.

That's all for the main function, so let's turn our attention to the item_recent_cb callback. This callback, as said before, is responsible for
handling the selection of a recent file at the menu_recent. Inside it, we recover our config handle from a custom attribute in the dialog,
then we get the file name from the TITLE attribute of item_recent and open it the same way we do in item_open_cb.

3.8 Clipboard Support

Next, we will find some callbacks that handle copy, cut, paste, delete and select all of the new items added to the Edit menu, and a
callback to manage activation and deactivation of these items. All are very short callbacks.

item_copy_action_cb, item_paste_action_cb and item_cut_action_cb use a resource called IupClipboard, which creates an element that
allows access to the clipboard. Each IupClipboard should be destroyed using IupDestroy. You can use only one for the entire
application, because it does not store any data inside, or you can simply create and destroy every time you need to copy or paste, that's
how we did in our notepad. The item_copy_action_cb callback retrieves the SELECTEDTEXT attribute from our multitext and sets the
clipboard TEXT attribute to copy the text selection. item_paste_action_cb retrieves the clipboard TEXT attribute and insert it (paste) in the
multitext, where the cursor is positioned, using the INSERT attribute. item_cut_action_cb is almost the same code as copy, except by the
fact that it sets attribute SELECTEDTEXT to "", removing the selected text from the multitext. item_delete_action_cb does the same as cut,
but without using the clipboard. item_select_all_cb sets the attribute SELECTION to ALL, selecting all the text inside the multitext.

Another callback was created to deal with the initialization of our new menu items. edit_menu_open_cb is associated to the edit_menu
OPEN_CB callback. It will set the cut, paste, copy, and delete items as active or inactive, depending on some conditions. First, it is
necessary to obtain the handles of these items. We use the NAME attribute of each item and the IupGetDialogChild function for this

IUP - Portable User Interface 07-Jan-25

148/496

../func/iupconfig.html
../elem/iupseparator.html
../elem/iupclipboard.html
../elem/iupclipboard.html
../func/iupdestroy.html
../func/iupgetdialogchild.html

propose, just like we did before for the multitext. We then test if there is text available in the clipboard by calling IupGetInt(clipboard,
"TEXTAVAILABLE"). It is a short way to test a boolean return value, without having to compare strings with "YES" or "NO". So, if it
returns 0, it means there is no text in the clipboard, or in other words, there is nothing to paste. Then the Item paste should be disable,
by setting ACTIVE to "NO". Otherwise, the user should be able to paste, and we should set ACTIVE to "YES". The other items follow the
same idea, but this time checking the content of the attribute SELECTEDTEXT. If there is nothing selected, you can disable cut, copy and
delete items. Otherwise, you can enable all items.

Example Source Code [in C] example3_8.c [in Lua] example3_8.lua

3.9 More File Management (Drag&Drop, Command Line, ...)

In this section, we will see a little more of file management. The example will show you how to handle drag and drop support, command
line support, and how to check if the file needs to be saved before taking another action.

First we will find some new auxiliary functions called str_filetitle, new_file, open_file, save_file, saveas_file and save_check.

str_filetitle will be used to append the name of the file opened by the application to the application dialog title. new_file first retrieves
the main dialog and the multitext, then sets the dialog title to "Untitled - Simple Notepad" and multitext attributes FILENAME to NULL,
VALUE to "", and the new attribute DIRTY to "NO". DIRTY is a custom attribute that we created (same way we did with FILENAME) to
check if the multitext has changed and has not been saved. Every time the multitext text is changed, the callback VALUECHANGED_CB,
named multitext_valuechanged_cb, is called to set DIRTY as "YES". This attribute will allow us to identify if the content of the multitext
has changed and needs to be saved. open_file reads the file and sets almost the same attributes as new_file, except by the fact that it
uses str_filetitle to set application title with the filename, and it also sets the file content into multitext VALUE attribute. Notice that, like
new_file, it also sets DIRTY to "NO". Since we have just opened the file, it doesn't need to be saved. Also, open_file calls
IupConfigRecentUpdate to include the file we just opened in the recent files list. save_file calls write_file to save the current file and
sets the DIRTY attribute to "NO" while saveas_file does the same but replacing the current opened file for the new edited one updating
the recent list with the new file. Finally, save_check uses the DIRTY attribute to check if the file needs to be saved. We used IupGetInt
to automatically convert DIRTY from "YES" or "NO" to 1 or 0. If it's 1, we then call a predefined dialog called IupAlarm to warn the user
that the multitext content has changed, and it is not saved. If the user chooses button 1 - "YES", it will call our item_save_action_cb to
save the file. If the user chooses button 2 ("No") save_check will returns 1 without saving and continue with the application operation,
but if user chooses button 3 ("Cancel") save_check will return 0 meaning that no further action should be taken.

We then reach the callbacks section. This time we added several new callbacks. First is dropfiles_cb that will handle what happens when
a file is dropped inside the application. It is a very simple callback, it simply checks if the current multitext needs to be saved with
save_check, and it calls open_file to open the file that came as a parameter. What is important here is to notice that we associated this
callback with two different DROPFILE_CB. One for the multitext and one for the main dialog. The reason is that the user may drop the file
in any place inside the dialog. Every IUP control will call the main dialog DROPFILE_CB , except by the multiline. So, if we want the file to
be opened, when it is dropped inside the multiline, it's necessary to set the multitext DROPFILE_CB callback as well.

The next one is a multitext_valuechanged_cb that, as we mentioned before, is called when the user changes the text inside multiline. It
simply sets the DIRTY attribute as "YES". It is set as the multitext VALUECHANGED_CB callback in main function.

Next comes file_menu_open_cb, which is a function called when the user clicks on the file menu, but before it is displayed to the user. We
will use it to enable or disable the save and the revert items, depending on the DIRTY attribute value.

We have also changed config_recent_cb, that now checks if the current multiline content needs to be saved and calls our new function
open_file. Another new callback is item_new_action_cb that does the same, but calls new_file instead. item_open_action_cb has also
been changed to use save_check and open_file, as well as item_exit_action_cb.

Two more callbacks were created: item_save_action_cb and item_revert_action_cb. item_save_action_cb saves the text in a file using the
current filename we stored in the FILENAME attribute, without displaying the save as dialog. If there is no current filename, it calls

IUP - Portable User Interface 07-Jan-25

149/496

../func/iupgetattributes.html
../../examples/tutorial/example3_8.c
../../examples/tutorial/example3_8.c
../../examples/tutorial/example3_8.lua
../../examples/tutorial/example3_8.lua
../func/iupconfig.h
../func/iupgetattributes.html
../dlg/iupalarm.html

item_saveas_action_cb, so the user can choose a file. item_revert_action_cb reopens the current file, discarding any changes made to the
multiline content.

In the main function, we have new menu items: item_new, item_save, and item_revert. A lso we have new buttons: btn_cut, *btn_copy, i
*btn_paste, and *btn_new. Multiline has the new DIRTY attribute and two new callbacks: VALUECHANGED_CB and DROPFILES_CB. And
we made a call to new_file to initialize the application state, as a new file has just been created. Also the callbacks where rearranged to
appear next to its items to made the code more clear. Finally, in the next line, we use argc and argv to check if the user tried to open a file
from the command line, if so, we call open_file.

That's all for file handling. Let's proceed to the next section, where we will work with IUP dynamic layout.

Example Source Code [in C] example3_9.c [in Lua] example3_9.lua

3.10 Dynamic Layout

Now we would like to be able to hide and show some of the complementary dialog elements, such as the Toolbar and the Statusbar. If
you simply set their VISIBLE attribute to NO, they will be hidden, but their size in the dialog layout will still be reserved, and an empty
space will be displayed instead. To avoid the use of the FLOATING attribute, along with the VISIBLE attribute, they will be hidden, and its
space will be used by the multitext.

To implement this feature, we added a new submenu called "View" at the main menu, with two new items. One for controlling the
Toolbar visibility, and another for controlling the Statusbar visibility. And we use the IupConfig to store this selection to be persistent
between different application executions.

The first change is the inclusion of the function toggle_bar_visibility that handles the changes in visibility in our toolbar and statusbar.
When an item in View menu is pressed, if it was checked or, in other words, the bar is visible, set the bar FLOATING attribute to "YES",
VISIBLE to "NO" and the item value to "OFF", to hide the bar. If it is not visible, do the opposite. After that, it is necessary to call to
IupRefresh to recompute the dialog layout.

Next two new callbacks appear: item_toolbar_action_cb and item_statusbar_action_cb. Both callbacks are responsible for calling
toggle_bar_visibility and calling IupConfigSetVariableStr to store the item state.

The next change will appear only in main function, and it will be the declaration of our new View submenu and its items, and the new
callbacks associations.

Example Source Code [in C] example3_10.c [in Lua] example3_10.lua

IUP - Portable User Interface 07-Jan-25

150/496

../../examples/tutorial/example3_9.c
../../examples/tutorial/example3_9.c
../../examples/tutorial/example3_9.lua
../../examples/tutorial/example3_9.lua
../func/iuprefresh.html
../../examples/tutorial/example3_10.c
../../examples/tutorial/example3_10.c
../../examples/tutorial/example3_10.lua
../../examples/tutorial/example3_10.lua

3.11 External Help

One additional feature that our text editor can have is an external help. IUP shows an external help by simply calling the IupHelp function.
It will show an Internet browser in the given page, so the application can display some documentation to the user. In our example, it is
just a menu item that activates the item_help_action_cb callback that calls the IupHelp function. This function shows the IUP website, but
it can also show a local HTML file. In Windows, that function is even more flexible allowing opening any kind of document provided that it
is associated with an application.

Example Source Code [in C] example3_11.c [in Lua] example3_11.lua

3.12 Final Considerations

That's all for chapter three. If you reached this lines, you are able to build a simple, but fully featured Notepad application using lots of
IUP resources.

During this chapter we went from 30 lines of code to 1100 lines (800 in Lua). Only for our simple notepad with file read and write,
clipboard access, text search, and other features.

For our final simple notepad code, we have just added two missing features: Replace and Find Next using a hot key. Plus some code
organization and comments.

There is still missing features. Any contribution to this code is welcome. Please, send us your comments and suggestions.

Simple Notepad Source Code [in C] simple_notepad.c [in Lua] simple_notepad.lua

If we use IupScintilla instead of IupText there is whole new world of possibilities.

Scintilla Notepad Source Code [in C] scintilla_notepad.c

IUP - Portable User Interface 07-Jan-25

151/496

../func/iuphelp.html
../../examples/tutorial/example3_11.c
../../examples/tutorial/example3_11.c
../../examples/tutorial/example3_11.lua
../../examples/tutorial/example3_11.lua
../../examples/tutorial/simple_notepad.c
../../examples/tutorial/simple_notepad.c
../../examples/tutorial/simple_notepad.lua
../../examples/tutorial/simple_notepad.lua
../ctrl/iup_scintilla.html
../elem/iuptext.html
../../examples/tutorial/scintilla_notepad/scintilla_notepad.c
../../examples/tutorial/scintilla_notepad/scintilla_notepad.c

In our next chapter we will introduce another Tecgraf library used to draw primitives over a canvas element to build a Paint application.

Previous Index Next

4. Simple Paint

4.1 Loading and Saving Images

In the previous chapter, we saw how to build a simple notepad using IUP. In this chapter, we will modify the code presented in the
previous chapter and build an application that draws on an image, most like simple paint programs. To do so, we need a structure that
represents an image and a few functions that allow us to read and save images in known formats. Therefore we will make use of a library
called IM.

IM is a digital images manipulation library. Its main goal is to provide a simple API and abstraction of imaging for scientific applications.
In order to use IM in our application, some new includes a are needed: "im.h" which is the main header of IM; "im_image.h" which deals
with creation, loading, attribute manipulation and images storage; "im_convert.h" which deals with the conversion among different types
of images; and "iup_im.h" which allows the loading and images storing through IUP. Similar to what we did in section 2.1.1 to link IUP's
libraries, we will also need to modify the project's link to include the IM (-lim) library and use a C++ linker, even with C code (because
internally IM uses C++). More details in section Build Applications of Manual da IM. In Lua, you only need to include two new requires:
imlua and iupluaim.

We also added a few functions such as str_fileext which extracts the file extension from the filename; show_error which creates and
exhibits on the screen an error message; and show_file_error which uses show_error to inform the user what kind of error has
happened during the opening of an image file. We also have the set_file_format, which sets in what file format the image must be
saved based on the extension of the selected file, and the select_file which selects a file for reading or saving. The functions related to
text manipulation, and some items from Edit menu such as Cut, Del, Find, Replace, Go To, Select All and Format menu were removed,
because their use in this application does not make much sense.

The functions read_file and write_file now use the IM functions, so as the copy and paste items of the Edit menu. The IM functions
imFileImageLoadBitmap and imFileImageSave are entitled to read and save an image from and to a file, using the imImage
structure. Note that in the reading, besides the error processing, a test is necessary to convert the image to RGB type, in case it is not of
this type yet. This happens because the IM works with several image types and, for the time being and to simplify things, we will adopt
the RGB format for the SimplePaint. In writing, we use the same reading format. This format is obtained through an attribute of the
image, using the imImageGetAttribString function.

In the functions that create a new image, we keep the current image using an IMAGE attribute of canvas, and thus we assign this attribute
with a new image and then we destroy the previous image to free-up memory space. The function set_file_format was created to treat
the format in which the new image must be saved. Usually, we use the same format as the original image. The JPEG format was defined
as default, since it is the most popular one.

Another change happened in the clipboard use. The access is done just like in Simple Notepad, but using the NATIVEIMAGE attribute to
copy and paste images. This attribute requires a specific format, and for that we used the IUP function called
IupGetImageNativeHandle , which generates this format from an imImage and vice-versa. Just after the image is read from a file or
pasted on the clipboard, we need to redraw the canvas, to do so we call the IupUpdate function that will be in charge of calling the
redraw callback. Note also that the image on the clipboard could be of any kind, since it was not necessarily copied from this application.
Since our application works only with RGB, it may be necessary to remove the alpha channel using imImageRemoveAlpha, and convert
the format using imConvertColorSpace.

Yet, as we save a new file, besides the name of the new file, we need to select an image format that will be defined by the file extension.
The set_file_format function was created to recover this extension and establish the format in which the new image must be saved. The
JPEG format was defined as default, since it is the most popular one.

Another interesting novelty was the creation of a select_file function that establishes what type of file dialog treatment must be opened.
Since dialogs for open file and file saving are very similar, we encapsulated their creation in one single function.

In this example, we also present a new pre-defined dialog called IupGetParam, which is used in the File/New to obtain the height and
width dimensions of the new image. After this data is obtained from the user, the imImageCreate function is called, which creates a
new image, with the height and width previously obtained, and of the RGB type, as explained above.

Note that the image drawing is not implemented in this first example, and therefore it will be the object of this tutorial's next item.

In Lua, as mentioned before, the includes are replaced by the imlua and iupluaim requires. As with the IUP, IM is also a Lua package. Its
functions are retrieved by the "im." prefix followed by the name of the function without the im present in C. For example: we have
im.FileImageLoadBitmap instead of imFileImageLoadBitmap. The functions that in C receive an image as parameter (imRemoveAlpha,
imImageDestroy, etc) in Lua are functions of the image itself and are called using ":" (image:RemoveAlpha, image:Destroy, etc),
dismissing the image passing as parameter. While Lua has garbage collection, it is also a good practice to call image:Destroy to free-up
the memory allocated for the images, since in large applications, which work with several images, the memory consumption could

IUP - Portable User Interface 07-Jan-25

152/496

tutorial2.html
tutorial.html
tutorial4.html
http://webserver2.tecgraf.puc-rio.br/iup/en/tutorial/tutorial2.html#Compiling_Linking
http://webserver2.tecgraf.puc-rio.br/im/en/guide.html#buildapp
http://webserver2.tecgraf.puc-rio.br/im

become a problem.

Example Source Code [in C] example4_1.c [in Lua] example4_1.lua

4.2 Drawing with OpenGL

As we saw in the beginning of this tutorial, that IUP is a toolkit for the creation of interface with the user. Although having among its
controls a canvas, it does not have functions for drawing on it. For that it will be necessary to include an external library. Among a few
options, we choose for this example the OpenGL library for its portability, performance and standardization.

In order to use OpenGL with IUP, besides the GL/gl.h, windows.h (in case you are using windows) and iupgl.h includes, we will need to
link with some libraries too. In Windows, opengl32.lib is used, while in Linux the -lGL must be included. The IUP canvas that works with
OpenGL is also an additional control called IupGLCanvas. A call to IupGLCanvasOpen must be included after IupOpen so that this
control is available.

In the code, calls to imImageGetOpenGLData in read_file and in new_file, were included to convert the read/created image in an
OpenGL compatible format. A canvas action callback was also created. This callback is executed whenever the canvas needs to be
redrawn. In this callback, we inform that our GL canvas is the current canvas using IupGLMakeCurrent, we start the OpenGL
configuration by setting the image alignment to 1, and we adjust the OpenGL coordinates transformation, which by default are between 0
and 1, to between 0 and the canvas size, in a relation of 1 to 1 in pixels. We clean the canvas with the background color using
glClearColor and glClear. Next, we obtain, through the GLDATA attribute, the image data in OpenGL format that needs to be drawn.
Then we draw the image in the center of the canvas with glDrawPixels. Note that the glRasterPos2i and glDrawPixels functions do
not accept values outside the screen, thus because of this OpenGL limitation, the image to be shown must be smaller than the canvas, or
it will not be drawn. We can get around this limitation by using the OpenGL textures support. However, its usage is beyond the scope of
this tutorial.

In our example, we are working with double buffer, since we set the BUFFER attribute to DOUBLE in the main function when we created
the canvas. This entails that the drawing will be made outside the screen, on a separate buffer. When we finish calling the drawing
functions, we show the result by displaying this buffer to the user. To show the result, we call the IupGLSwapBuffers function.

In this example, we use another IUP pre-defined dialog called IupColorDlg. The IupColorDlg is displayed for the selection of a new
background color in the View menu. It is a dialog for color selection, and in our example, it changes the canvas background color.

In Lua, to use the OpenGL functions, we use the LuaGL. For this, you only need to require the "luagl" package. To use the IupGLCanvas
you should also require the "iupluagl". The LuaGL functions follow the Lua standard packages and use the "gl." prefix, for example:

IUP - Portable User Interface 07-Jan-25

153/496

../../examples/tutorial/example4_1.c
../../examples/tutorial/example4_1.c
../../examples/tutorial/example4_1.lua
../../examples/tutorial/example4_1.lua

"gl.Func" instead of "glFunc" in C.

Example Source Code [in C] example4_2.c [in Lua] example4_2.lua

4.3 Drawing with CD and Printing

In this section, we present an alternative to the OpenGL library. Although having an excellent performance, the OpenGL library has some
limitations. There is no support for printing, no metafile output, and it also does not provide support to high quality text. Therefore, many
applications need other options. To attend to this other needs, we created the CD library â€“ Canvas Draw. You can find this library on:
www.tecgraf.puc-rio.br/cd, and it was designed to function together with IUP.

To use it, you need to link with the "cd" and "iupcd" libraries. The "cd.h" and "cdiup.h" includes must appear in the code.

Since we are replacing the OpenGL for the CD, we once again work with the IupCanvas control instead of IupGLCanvas. We can also
remove the libs and OpenGL includes added in the previous section.

In the code, the OpenGL functions calls are no longer needed. IupGLMakeCurrent was replaced by cdCanvasActivate, glClearColor
by cdCanvasBackground, glClear by cdCanvasClear, and IupGLSwapBuffers by cdCanvasFlush.

The new MAP_CB e UNMAP_CB callbacks were included. The MAP_CB callback, called canvas_map_cb, is responsible for creating the
CD canvas using the cdCreateCanvas. This is necessary, because to create the CD canvas, the IUP canvas must be mapped beforehand
on the native system. One of the parameters that this function receives is the CD_IUPDBUFFER. This informs the CD that it must work on
Double Buffer, the same way we have been doing in Open GL. Note that there are now two types of canvas in use - the IupCanvas
control and the CD library cdCanvas. Thus in this callback it is also done an association between these two canvas through a call to
IupSetAttribute, so it can be retreived later in the action callback. The UNMAP_CB callback named canvas_unmap_cb retrieves the
CD canvas associated to IupCanvas control and destroys it by calling cdKillCanvas. The callback responsible for drawing the image on
canvas continues to be the canvas_action_cb, the difference is that besides having replaced the OpenGL calls as mentioned before,
several of them were removed and replaced for only imcdCanvasPutImage. This single call draws an IM image on a CD canvas.

Taking advantage that the CD supports printing, we added a few resources to Simple Paint. Other new callbacks are:
item_pagesetup_action_cb which is responsible for obtaining from the user, through IupGetParam, the height and width of the
margin of print preview page; view_fit_rect which adjusts the screen to display the entire image; and item_print_action_cb which
shows the printing dialog.

We also have two new menu items: item_pagesetup e item_print, which call the callbacks with the same name. The print item was

IUP - Portable User Interface 07-Jan-25

154/496

../../examples/tutorial/example4_2.c
../../examples/tutorial/example4_2.c
../../examples/tutorial/example4_2.lua
../../examples/tutorial/example4_2.lua
www.tecgraf.puc-rio.br/cd

associated to a CTRL+P hotkey.

In Lua, the "cdlua" e "iupluacd" requires are necessary. We can remove the "luagl" and "iupluagl" used in the previous example. The CD
call function in Lua use the "cd." prefix, as in cd.CreateCanvas instead of cdCreateCanvas and etc. Note that the imcdCanvasPutImage
function uses the "im." Prefix, since it belongs to the IM library.

Example Source Code [in C] example4_3.c [in Lua] example4_3.lua

4.4 Interactive Zoom and Scrollbars

In this section, we will add an interactive zoom to our application. To do so, we need to draw the image with a bigger or smaller size than
its actual size. This magnification factor needs to be interactively modified by the user through different paths.

Besides that, if the image is bigger than the canvas that we have to draw it, we need a mechanism that allows us to move its visible area.
This mechanism is the scrollbar. To enable the scrollbars, we set the SCROLLBAR=Yes attribute of the IupCanvas. But we have to
configure them every time the magnification factor is modified and when the application window changes its size. Thus, we need to
implement the RESIZE_CB callback of the canvas, so that it calls the scrollbar_update function that calculates the scrollbar parameters.

To change the magnification factor, we created a few mechanisms and also added some controls to the statusbar. They are: an IupVal
which selects a value on a given interval, and three buttons that are responsible for the zoom in, zoom out, and return to original actions.
The same buttons' actions can be made through the View menu using item_zoomin, item_zoomout and item_actualsize. We also created
hot keys that activate these buttons: CTRL+ (zoom in), CTRL- (zoom out) and CTRL0 to return to original size. Finally, we added a
WHEEL_CB callback of the canvas, which is activated through the mouse wheel. In it we used the delta parameter to modify the zoom
factor. You can find these news controls in the create_main_dialog function, in which we used a shortened way to create a control
hierarchy using IupSetCallbacks and IupSetAttributes together. The result is similar to the creation of controls in Lua. The zoom
factor is changed linearly, but its effect is of a power of 2, therefore the controls modify what we call zoom_index between -6 and 6 limits,
and the zoom factor is calculated by doing pow(2, zoom_index), which results in a zoom interval of 1% and 6400%. To use the pow
function, it is necessary to use the math.h include.

The scrollbar_update function performs a very complicated calculation, which is described in the IUP Manual on the SCROLLBAR
attribute documentation. This is necessary because of the AUTOHIDE attribute, which automatically hides the scrollbar. Notice that in this
function, we obtained the canva size in pixels through the RASTERSIZE attribute, and we removed two pixels. This happens because the
IupCanvas has the BORDER attribute set as "YES" by default. Thus it is necessary to remove 1 pixel (size of the edge) for the left edge and
another for the right edge. The same happens to the superior and inferior edges. We only configure the DX and DY parameters of the
scrollbar to equal the visible area of canvas with the magnified zoom. We leave the XMIN, YMIN and XMAX, YMAX parameters with the
default values of 0 and 1, respectively. The POSX e POSY attributes inform the shift that the image drawn with zoom must have in order
to move according to the scrollbar. Since POSX e POSY are between 0 and 1, this shift in pixels is obtained by multiplying the attribute
values for the total size of the image in zoom (view_with e view_height). The scrollbar_update function works together with two new
functions. When the scrollbar is updated, the scroll_calc_center and the scroll_center are necessary to keep the image displayed in
the same position on the screen while changing the scrollbar configuration.

Once we have modified the magnification factor, we need to draw the image. For that, in the action callback of the canvas, we add a new

IUP - Portable User Interface 07-Jan-25

155/496

../../examples/tutorial/example4_3.c
../../examples/tutorial/example4_3.c
../../examples/tutorial/example4_3.lua
../../examples/tutorial/example4_3.lua
../../../../../elem/iupval.html
../../../../../attrib/iup_scrollbar.html

calculation to obtain the position and size of the image to be drawn on canvas. This calculation obtains the zoom factor, resizes the visible
area by multiplying by this factor, and repositions the image on canvas.

Since we had been modifying the action, we also added a border around the image using cdCanvasRect. We did this because when we
include the zoom and scroll, it is usually difficult to locate the image borders, especially if it looks like the background color. Therefore it is
common to include an edge around the image to mark the end of it.

We noticed that in example 4_4, we could improve the application state of control when a new image is created. For that, we created the
set_new_image function that replaces parts of the code in New, Open and Paste. In this function, we encapsulated the change in the
dialog title from the file name, and we verified if the image is RGB as described in section 4.3. We also verified if there is a file format for
the new image, and if we should adopt the default format. Furthermore, we set the DIRTY value, and finally restarted the zoom factor to
normal visualization at 100%.

In Lua, since the mathematical library is already included in the standard parser, there is no need for a new require. Besides the syntax
difference among the languages, there is no particular changes.

Example Source Code [in C] example4_4.c [in Lua] example4_4.lua

4.5 Canvas Interaction and a ToolBox

So now we are going to implement a more complex form of interaction with the canvas. We want to have control over the actions of the
cursor when moved or clicked over the IupCanvas. For that we need two new callbacks: MOTION_CB and BUTTON_CB. Inside these
callbacks there will be all the logic behind the interactions we want to implement for a Paint application. But in order to do that we need
first to define which type of interaction we want.

In a Paint application the interaction is usually defined by a toolbox where the user chooses a tool to interact with the canvas. The toolbox
is a dialog with some special characteristics. In our example code this is done by the create_toolbox function. We are going to reduce the
default font size, and we are going to use the TOOLBOX attribute, since we want a dialog with a small foot print on screen. The first thing
to notice on its internal controls is the use of an IupRadio. A ll the IupToggle inside the radio hierarchy will be mutually exclusive, so
when a tool is selected all the others are not selected. We put all the toggles inside a IupGridBox so they will be automatically aligned in
a rectangular grid with 2 columns. And we are going to need custom images for the tools since they are not available at the
IupImageLib.

We created those images in a very popular application called Paint.NET. It allowed us to save the RGBA files in the PNG format, then we
used the IupView application to convert the files to C source code so we were able to compile them directly inside our application.
Another possibility would be to use the IupLoadImage, but then our example will have to be able to locate the image files during run
time. All the images were processed and its code is pasted at the beginning of the example source code.

After the tools we added a few other controls to support some tools options. Not all tools use all options, so a future enhance to the
example would be to hide and show each option accordingly to the selected tool. But for now we are going to leave all the tools options
visible all the time. You will see that the tools use controls and features we already described in previous examples. So let's focus on the
tools themselves.

IUP - Portable User Interface 07-Jan-25

156/496

../../examples/tutorial/example4_4.c
../../examples/tutorial/example4_4.c
../../examples/tutorial/example4_4.lua
../../examples/tutorial/example4_4.lua
../executables.html

The current tool is saved in a custom attribute called TOOLINDEX. We will also use this approach to save the tools options values, such as
TOOLWIDTH, TOOLCOLOR, TOOLSTYLE, TOOLFILLTOL and TOOLFONT. This will make the use of these values a lot easier.

We created 10 tools that will use 4 different types of interaction. (1st type) Pointer will use click+drag to also scroll the image that is larger
than the visible canvas. (2nd type) Color Picker and Fill Color will just need a click on the canvas. (3rd) Pencil will directly draw over the
image using a click+drag approach. (4th) All the shapes (Line, Rect, Box, Ellipse, Oval and Text) will use click+drag to set flags that
activates an overlay process in the canvas_action_cb callback, so the tool feedback can be done over the image. When it is done, the final
drawing is rendered over the image itself when the button is released. So there were changes to canvas_action_cb, new implementations
in canvas_button_cb and in canvas_motion_cb, all working together to implement each interaction.

All these interactions are done while the mouse is pressed over the canvas or when it is simply clicked (pressed+released). There is
another type of interaction that uses the concept of a graphical object over the image. For example, instead of only drawing the feedback
while the mouse is pressed, the result creates a graphical object that can be lately modified and manipulated. Just like a selection area in
other Paint applications. This implies in a data structure to store the object, and another for the list of created objects. When the mouse is
moved near the object, handlers are shown so the user can click and interact with the graphical object. This technique can be use to create
a Simple Draw application (like Corel Drawâ„¢), instead of a Simple Paint. Where we will be manipulating vector data instead of raster
data, and loading/saving formats like WMF/EMF, SVN, PDF, CGM, DXF, and so on (all supported by the CD library by the way). In terms of
user interface features a Simple Draw is most like the same of a Simple Paint application..

The first thing we had to do to implement the interactions was to get that calculation in the canvas_action_cb to obtain the position and
size of the image on screen and transform it into a function that we called view_zoom_rect. We are going to need those parameter to
convert the coordinates received by the callbacks into coordinates inside the actual image. So in all mouse callbacks, after calling
view_zoom_rect we invert the Y axis, because y is top-bottom oriented in IUP, but bottom-top oriented in CD and IM. Then we check if
the resulting coordinates are inside the image on screen and convert them to the actual image coordinates using view_zoom_offset. So
now (x,y) are inside the image range (0,0)-(image_width-1,image_height-1). In other words we converted screen coordinates into image
coordinates.

To actually draw on the image after the interaction we used the CD_IMAGERGB driver pointing to the image data. So we can draw using
CD primitives but using the image as the canvas medium. In this way the code becomes very simple an easy to understand. But for text to
work properly we must not forget to set the new CD canvas resolution to the same resolution of the screen, so we will obtain a result with
the same size in pixels.

For the Fill Color tool we had to implement a flood fill algorithm. We used a very simple 4 neighbors stack based flood fill. So it is also
very didatic. There are several optimizations possible, can you point any?

We also used the canvas_motion_cb callback to update the current pixel color on the Statusbar. This will be done independently of the
current selected tool.

For better integration of the main dialog with the toolbox dialog we move the toolbox dialog every time the main dialog is also moved.
The MOVE_CB callback of the main dialog is implemented and it will simply offset the toolbox dialog by the same offset the main dialog
was moved.

As we are adding layers to the image visualization, we also added a zoom grid feature. It will display a grid over the image when the
zoom factor is greater than 200% to help the user to identify pixel boundaries.

Example Source Code [in C] example4_5.c [in Lua] example4_5.lua

IUP - Portable User Interface 07-Jan-25

157/496

../../examples/tutorial/example4_5.c
../../examples/tutorial/example4_5.c
../../examples/tutorial/example4_5.lua
../../examples/tutorial/example4_5.lua

4.6 Image Processing and Final Considerations

In our final code for this chapter we are going to add a few image processing functions provided by the IM library. We added a new sub
menu to the main menu called "Image", and there we added items for Resize, Mirror, Flip, Rotate, Negative, and Brightness and Contrast.
Although all these operations are interesting, we would like you to take a look at the Brightness and Contrast operation. We used a
IupGetParam dialog as before, but this time we implemented the PARAM_CB dialog callback that allow us to interactively update the
image while changing the operation parameters in the dialog. So helping the user to find the best combination for those parameters for
the desired result. For this to work we are going to temporarily replace the current image with the processed image, and simply update
the canvas. The result is very effective. IM has lots of other image processing operations that we will let you to explore, to use them we
need to link with the im_process library too. This will also allow us to replace the flood fill and fill with white routines by imProcess
versions.

Since we are adding utilities libraries, let's also include the cdim library that will allow us to replace the CD_IMAGERGB driver by the
CD_IMIMAGE driver, and the imcdCanvasPutImage macro by the cdCanvasPutImImage function. Providing a more elegant code
for our final version.

And we are done for this chapter. We went from 800 lines, almost all based on our previous example, to 2500 lines. Implementing a fully
featured Paint application using IUP and CD resources. Which include loading and saving of image files, drawing and printing of images,
zoom and scroll support, and the most important, how to interact with a canvas and its drawing in several ways.

Still there are always possible enhancements such as using the IM Video Capture features to obtain an image from a camera, Undo/Redo
support using a stack of images, transparency using an alpha component in color, area selection...

The toolbox is also an interface element that can have several approaches. Instead of jut hiding it we could use IupDetachBox to insert
it on the main dialog at the left side of the canvas, so it can has 3 states: hidden, floating as a dialog, and attached just like the toolbar.
And when attached there is also another possibility, we could use an IupExpander so we can dynamically show and hide its contents
leaving a direct affordance in the dialog to do that.

Example Source Code [in C] simple_paint.c [in Lua] simple_paint.lua

IUP - Portable User Interface 07-Jan-25

158/496

../../examples/tutorial/simple_paint.c
../../examples/tutorial/simple_paint.c
../../examples/tutorial/simple_paint.lua
../../examples/tutorial/simple_paint.lua

In our next chapter we will introduce some advanced techniques for IUP applications.

Note: both images used for the screen shots are Copyright © Antonio Scuri, and distributed under the Creative Common License.

Previous Index Next

5. Advanced Topics

5.1 C++ Encapsulation

As you recall from chapter 4, our Simple Paint source code now has 2500 lines. It is a lot to process, specially if you are looking for bugs,
or learning how it works without reading all the previous examples that evolved into the final code. So it is time to use some software
engineering techniques to improve quality and maintenance. We can do that in C too, but modern applications are more and more using
C++, also because the language provides some tools to easy that task. So the first thing we are going to do is to convert the code from C
to C++.

Actually if you simply save the "simple_paint.c" as "simple_paint.cpp", and use a C++ compiler it will fully work. But it is not what we
meant. We would like to isolate parts of the code to reduce the interference of one part in another. This is called encapsulation in software
engeneering. The simplest way to do that in C++ is to use classes for major features in the application. So looking at our code we can see
at least 3 groups of functions: the main dialog, the toolbox dialog, and file management.

So we decided to start with 3 classes: SimplePaint (the main dialog), SimplePaintToolbox (the toolkbox dialog) and
SimplePaintFile (file management). If you compare the C and the C++ codes they are very similar, except that functions are now class
methods. Even IUP callbacks are now methods, but there is a catch here. Class methods can NOT be used as function pointers as the ones
used by IupSetCallback. It order to be able to do that we must implement a static method, use it as the callback, and from inside that
code call a class method. To do that every time for all the callbacks can be very task consuming. So we created a few macros to help
implementing callbacks as class methods.

These macros are available in the "iup_class_cbs.hpp" include file. To use the macros for the callbacks you must call the
IUP_CLASS_INITCALLBACK(ih, class) macro once, usually in the class constructor after the IUP dialog was created. This macro will
register the IUP element so the class object can be retrieved later transparently for the application. The macros however can be called in
any order. So we will use the IUP_CLASS_DECLARECALLBACK_*(class, callback) macros to declare the callbacks as methods. Since we
have several different callbacks because of the different parameters, there are several different macros, one for each callback signature
found in IUP elements. The static method has the same name of the callback used in the macro with a "CB_" prefix. So you can also
directly use its name in IupSetCallback if necessary. To actually set the callback of an element simply call
IUP_CLASS_SETCALLBACK(ih, name, callback) just like you call IupSetCallback. The callback name will be the same you used in
IUP_CLASS_DECLARECALLBACK_*(class, callback), in fact it will simply call IupSetCallback with the static callback using the "CB_"
prefix. So here is a simple class to illustrate this procedure:

class SampleClass
{
 int sample_count;

IUP - Portable User Interface 07-Jan-25

159/496

tutorial3.html
tutorial.html
tutorial5.html

public:
 SampleClass()
 {
 sample_count = 0;

 Ihandle* button = IupButton("Inc", NULL);
 // 2) Associate the callback with the button
 IUP_CLASS_SETCALLBACK(button, "ACTION", ButtonAction);

 Ihandle* dialog = IupDialog(button);
 // 1) Register this object as a callback receiver (only once)
 IUP_CLASS_INITCALLBACK(dialog, SampleClass);

 IupShow(dialog);
 };

protected:
 // 3) Declare the callback as a member function
 IUP_CLASS_DECLARECALLBACK_IFn(SampleClass, ButtonAction);
};

// 4) Define the callback as a member function
int SampleClass::ButtonAction(Ihandle*)
{
 sample_count++;
 return IUP_DEFAULT;
}

Using these macros methods of the same C++ class can be set as callbacks for any element. For clarity we are going to use a single class
to process the callbacks of all elements that are children of the same dialog. So we will need 2 classes for our 2 dialogs. The third class
will handle only the image file management and it will not have callbacks. To be able to isolate the toolbox from the main dialog class we
will need some extra methods that will operate over the toolbox dialog. Apart from that all the methods of both dialog classes are directly
equivalent of a function in our C source code. We also tried to maintain their position in the source code to simplify the comparison
between the two.

Notice that only a few methods are left public in both classes, that is where the encapsulation occurs.

Example Source Code [in C++] simple_paint1.cpp [in C] simple_paint.c

5.2 C++ Modularization

In the previous section we purposely left all classes in the same file so you will be able to compare it with the C source code. But now is
the time to split the code in several modules, one for each class. So instead of a 2500 lines file, we now reduce to 1000 lines for the main
file (where the main dialog is) and the rest distributed in the other files.

But we actually were able to create a total of 6 modules! 3 modules for the classes we already described, and 3 new modules. The 3
modules we already expect are: "simple_paint.cpp/h" (SimplePaint class), "simple_paint_toolbox.cpp/h" (SimplePaintToolbox class)
and "simple_paint_file.cpp/h" (SimplePaintFile class).

The first new module is a very simple one, called "simple_paint_main.cpp". It contains only the "main" function necessary for the
application starting point.

IUP - Portable User Interface 07-Jan-25

160/496

../../examples/tutorial/simple_paint1.cpp
../../examples/tutorial/simple_paint1.cpp
../../examples/tutorial/simple_paint.c
../../examples/tutorial/simple_paint.c

The second new module is to store the utility functions that are not related to any specific classes. It is called "simple_paint_util.cpp/h".

And the third module is a new class that we identified mixed up with our SimplePaint class. Inside the main dialog we have a very
important control that does the most important interface task that is to show the image and do the direct interaction defined by the
toolbox. As you can guess now is the IupCanvas. It has several speciall callbacks and as we said is the essential tool for our paint
interface. So it is a natural candidate for separate class we called SimplePaintCanvas. It will hide the canvas from the main dialog, and
encapsulate all its features, mainly interaction and zoom control. It is called "simple_paint_canvas.cpp/h".

Now it is not just easier to find the part of the code you want to change, but it helps to reduce the interference in other modules of what
you have just changed.

But notice that our modularization is still not perfect. Inside SimplePaintCanvas there are some references to controls that are located
in the Statusbar.

The next stage will be to use Dynamic Dispatch, or in C++, virtual methods and inheritance to implement classes for the interactive tools
to make it easier to add new tools.

Also our classes are instantiated just one time. What about adding support for editing multiple image files simultaneously, but instead of
using the old Windows MDI concept to use a IupTabs to alternate between the files?

In Lua the changes would be very similar, using tables to isolate the code of each module.

So there are plenty of possibilities for improving our object oriented modeling. If you implement some of them, please let us know and
share your code so we can add it to the tutorial.

Example Source Code (Implementation) [C++] simple_paint.cpp simple_paint_canvas.cpp

simple_paint_toolbox.cpp simple_paint_file.cpp simple_paint_util.cpp

simple_paint_main.cpp

Example Source Code (Declaration) [C++] simple_paint.h simple_paint_canvas.h

simple_paint_toolbox.h simple_paint_file.h simple_paint_util.h

IUP - Portable User Interface 07-Jan-25

161/496

../../examples/tutorial/simple_paint2/simple_paint.cpp
../../examples/tutorial/simple_paint2/simple_paint.cpp
../../examples/tutorial/simple_paint2/simple_paint_canvas.cpp
../../examples/tutorial/simple_paint2/simple_paint_canvas.cpp
../../examples/tutorial/simple_paint2/simple_paint_toolbox.cpp
../../examples/tutorial/simple_paint2/simple_paint_toolbox.cpp
../../examples/tutorial/simple_paint2/simple_paint_file.cpp
../../examples/tutorial/simple_paint2/simple_paint_file.cpp
../../examples/tutorial/simple_paint2/simple_paint_util.cpp
../../examples/tutorial/simple_paint2/simple_paint_util.cpp
../../examples/tutorial/simple_paint2/simple_paint_main.cpp
../../examples/tutorial/simple_paint2/simple_paint_main.cpp
../../examples/tutorial/simple_paint2/simple_paint.h
../../examples/tutorial/simple_paint2/simple_paint.h
../../examples/tutorial/simple_paint2/simple_paint_canvas.h
../../examples/tutorial/simple_paint2/simple_paint_canvas.h
../../examples/tutorial/simple_paint2/simple_paint_toolbox.h
../../examples/tutorial/simple_paint2/simple_paint_toolbox.h
../../examples/tutorial/simple_paint2/simple_paint_file.h
../../examples/tutorial/simple_paint2/simple_paint_file.h
../../examples/tutorial/simple_paint2/simple_paint_util.h
../../examples/tutorial/simple_paint2/simple_paint_util.h

5.3 High Resolution Display

During the 90's the 15" monitors with 1024x768 pixels were the most popular graphic resolution was about 85 DPI. But that was a long
time ago. Soon we started to see 19" monitors with 1280x1024 pixels and 92 DPI. Later the most popular are the 20" Full-HD wide screen
monitors (16x9 at the same height as 19" standard 4:3 monitor) with 1920x1080 pixels and a resolution of about 96 DPI. Finally we got
to the 4K wide screen monitors with 3840x2160 pixels. Even for a 24" wide screen monitor, the resolution 3840x2160 pixels is 186 DPI.
It is a lot more than 96 DPI. For instance 16x16 pixels icons are very tiny. Here is an example using a browser page as reference:

To support such high resolution the application should be able to compute its layout using a larger font, and to include image sets for
button when in high resolution. Usually this not occurs. IUP will automatically take care of the layout (considering that the application
used SIZE, CMARGIN and CGAP, instead of RASTERSIZE, MARGIN and GAP), but images are commonly provided in one size only, our
SimplePaint is no different. To compensate that Microsoft used a strategy in Windows that will do a low level resize of the application,
so it can improve its readability in sacrifice of its resolution. So this is how our SimplePaint looks like with the resize strategy:

IUP - Portable User Interface 07-Jan-25

162/496

The IupCanvas will report a size that is actually smaller than the size on screen, because the application will be run as if in a Full-HD
monitor, not using the available resolution. Notice that even the menu text is blurred. To avoid that we added a few lines to the Manifest
file, declaring that we are a dpiAware application. So this was how we obtained the previous screen shoot with the small icons. Now that
we know how to avoid the Microsoft resize strategy it is time to improve our application readability by our own.

We used in SimplePaint two sets of images, one from the IupImageLib stock images, and one created just for SimplePaint which are
only 16x16 pixels. We actually don't have to worry about the stock images, because since IUP 3.16 they are automatically resized
accordingly the screen resolution (to obtain the first screen shot, we also had to disable this feature). But the SimplePaint toolbox images
only have 16x16 pixels. The solution would be to add new images with at 32x32 pixels that can be used in place of the 16x16 if the
resolution is very high, for instance by checking the global attribute SCREENDPI being greater than 150 DPI and selecting 16x16 or 32x32
images. But IUP also provides an automatic resize for images using the same strategy that Microsoft does for the whole application. To do
that we set the IMAGEAUTOSCALE global attribute to the "DPI" value. So all the images will be scaled accordingly. The result is the
following:

Now we have the best of both worlds, high resolution with normal readability.

But the problem with the IMAGEAUTOSCALE global attribute is that it will affect all IUP images (except stock images), including the
images used internally by some controls. To avoid that instead of using the global attribute the application can set the AUTOSCALE
attribute on its own images. Obs: stock images are always automatically resized.

IUP - Portable User Interface 07-Jan-25

163/496

5.4 Splash Screen, About and System Information

Sometimes the application take a long time to start up, maybe it has many things to initialize for instance. One common approach to
distract the user while this initialization occurs is to use a Splash screen. It is a dialog shown while the application initializes that usually
has a decorative purpose only. So many companies use it to show the application logo and/or the company logo as a marketing strategy.
Although we can use a normal dialog to do that, this dialog will have no decorations and no controls inside. We are going to use a single
image as contents, and a trick to show it with a transparent background. The trick is the OPACITYIMAGE attribute of the IupDialog, it
will use the transparency of the image to create a mask for the dialog shape, so the dialog will be shown with a non rectangular area, on
top of what's on the background.

But we would like that to take two moments, first when the logo is shown alone, and a second moment when the logo is shown with our
application on the background, while it initializes. To control the timing we use an IupTimer set initially for 1 second, then hold the
execution, and inside the timer callback restart the timer for another second but now letting the application initializes normally. The splash
dialog will be automatically destroyed at the end of the second moment.

The image we chose is the Tecgraf logo with 317x317 pixel. It is a large image to convert it to a C source code and embed into the
application executable just for the splash screen. So we are going to load it from its file during run time. We could directly use IM
functions to do it, and use CD to draw it, but we don't need much control over the drawing this time, so a simpler way is to use the
IupLoadImage utility function that loads a file and returns an IupImage ready for IUP controls. The problem is that we now have to
distribute our application with the logo file, and in run time locate that file for loading. There are many strategies to do that, we decided
that our logo will be located in the same folder of the executable or in the parent folder, so we use the global attribute "EXEFILENAME"
that contains the executable file name with full path (notice that the main function argument "argv[0]" not always contains the full path).
From it we extract the path where it is located so we can concatenate with the logo file name. If the file is not found the splash is simply
not shown.

Example Source Code [in C++] simple_paint_splash.cpp

IUP - Portable User Interface 07-Jan-25

164/496

../../examples/tutorial/simple_paint2/simple_paint_splash.cpp
../../examples/tutorial/simple_paint2/simple_paint_splash.cpp

So now that we have a handsome logo, why not to improve our About dialog too? The About dialog also has an important job to show
the application version. Until now we didn't have a version number, but our SimplePaint is getting more complex every day, so we must
be able to know which version we are running. If we count from the start, in chapter 4 we should have reached version 1.0. In chapter 5
we moved to C++ but didn't actually added new features, so it was version 1.1. So for our splash screen commemorative edition we will
simply define it as version 1.2.

We also added some company information and a contact e-mail. In the screenshot bellow the sharp eye will notice a caret in front of the
e-mail text. That's because it is not an IupLabel. It is an IupText without borders and with the same background of the dialog. We use
it instead of a label so the user can select the text and copy to the clipboard to paste it somewhere else. Another option would be to use
the IupLink element with the text "mailto:iup@tecgraf.puc-rio.br", this will invoke the system e-mail application when clicked.

Finally there is also a button for System Information that shows a pre-defined dialog called IupGetText with textual information about
the current system that can also be copied to the clipboard for use in error report for instance. Notice that all the system information were
obtained from IUP global attributes.

Here is a sample of the System Information text:

------- System Information -------

IUP - Portable User Interface 07-Jan-25

165/496

mailto:iup@tecgraf.puc-rio.br

IUP 3.15 Copyright (C) 1994-2015 Tecgraf/PUC-Rio.

 System: Win10
 System Version: 10.0.10240 (x64)

 Screen Size: 3840x2080
 Screen Depth: 32

IM 3.9.1 Copyright (C) 1994-2015 Tecgraf/PUC-Rio.

CD 5.8.2 Copyright (C) 1994-2015 Tecgraf/PUC-Rio.

5.5 Dynamic Libraries

Now it is time to distribute our application. There are many installation creation tools for Windows like Microsoft Windows Installer (Free -
defines the MSI package format), Install Shield (Commercial), Nullsoft NSIS Installer (Free - own package format), Inno Setup (Free - own
package format), and WiX toolset (Free - can produce MSI packages). Here is a simple comparison on StackOverflow: Free Install
Wizard Software. In Linux it is very common to distribute only the source code, but this becomes more complex when it involves libraries
that are not installed on the system, like IUP, CD and IM. To build distribution packages for Linux search for rpm and deb package
formats on the Web.

But before creating and installer we need to define which files we will distribute.

When using static libraries to link our application, we simplify the deployment because everything is packed in a single file. But in link
time we have to know all dependencies of all libraries we are using, and still this does not guaranties that some library will have an
external dependecy. Use know we use 3 libraries IUP, CD and IM. The main IM library (im) depends on the Zlib library (zlib1), and must
not forget the IM Image Processing library (im_processes) that contains the functions we use in section 4.6. The CD main library (cd)
depends on the FreeType library (freetype6) which in turn depends also on the Zlib library, finally the CD main library in Windows
depends on the GDI (gdi32) and in Linux depends on the GDK and Cairo libraries. The main IUP library depends on GTK in Linux and
USER (user32), Common Dialogs (comdlg32) and Common Controls (comctl32). To use IUP and CD together we need also the
CD_IUP library (iupcd). To use IUP and IM together we need the IUP-IM Utilities library (iupim). And the IUP Image Library (iupimglib)
for the stock images. So our actual link list will include:

iupimglib iupcd iup cd freetype6 im_process im zlib
plus in Windows: comctl32 comdl32 user32
plus in Linux: gtk-x11-2.0 gdk-x11-2.0 gdk_pixbuf-2.0 pango-1.0 pangox-1.0 gobject-2.0 gmodule-2.0 glib-2.0

The executable takes longer to link and all exported functions of all static libraries must not have a single function with the same name.
And they all must use the same C Run Time Library when compiled, mixing different run times can have unpredictable results and usually
linker errors.

On the other hand, when using dynamic libraries things get more simpler when developing and carefully when distributing. This time
we do not have to know all the dependencies, only the direct dependencies used by our own code. So when linking we will specify only
the following libraries:

iupimglib iupcd iup cd im_process im

The executable will link much faster and there will be much less room for conflicts. If you keep the memory allocation and release isolated
by each library, meaning what allocated in IUP is released by IUP, what's allocated in CD is released by CD, and so on, then there will be
no C Run Time library memory problems, even when using libraries that were linked with different Run Time libraries (standard structures
like FILE* are also non interchangeable). But now we have to include all those libraries and their dependencies in the distribution package.
The fist time you build the distribution package is problematic because you have to make sure that you get everything you will need in a
foreign system. In Windows a very useful application is the Dependency Walker (Free) or the newer Dependencies. It will list all the DLLs
linked to the application and their respective dependencies (don't forget to include the C Run Time DLL too, usually "msvcrXX.dll"). In
Linux you can use the "ldd" application, and in MacOSX the "otool" application, for that purpose, but they are more limited.

In Windows, when running an application that depends on DLL is quite simple, if you copy the DLLs to the same folder of the application
the system will automatically locate the DLLs. There is no need to change the PATH or to copy the DLLs to the Windows/System folder. In
Linux, if you do not copy the .so files to the system folder then you need to at least set an environment variable called
LD_LIBRARY_PATH (DYLD_LIBRARY_PATH in MacOSX) to include the folder were the dynamic libraries are. For example:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/tecgraf/simple_paint

 So we actually moved the problems from one place to another, although it is still more interesting to work with dynamic libraries since
they isolate a library code from another, linker is faster, and individual updates to the dynamic libraries are far more simple to deploy.

Previous Index Next

7GUIs Implementation in IUP
Introduction

The 7GUIs is a set of 7 tasks to be implemented using a GUI proposed by Eugen Kiss in his master's thesis as a way to evaluate GUI
toolkits. By implementing those 7 task one should be able to compare different GUIs in any language with a similar comparison base. See

IUP - Portable User Interface 07-Jan-25

166/496

https://msdn.microsoft.com/pt-br/library/windows/desktop/dd408114(v=vs.85).aspx
http://www.flexerasoftware.com/producer/products/software-installation/installshield-software-installer/
http://nsis.sourceforge.net/Main_Page
http://www.jrsoftware.org/isinfo.php
http://wixtoolset.org/
http://stackoverflow.com/questions/137657/free-install-wizard-software
http://www.dependencywalker.com/
https://github.com/lucasg/Dependencies
tutorial4.html
tutorial.html
tutorial6.html

his web site for more details on the task and on the proposed evaluation: https://eugenkiss.github.io/7guis/.

The tasks will also help beginners to understand simple and complex tasks in GUI programming serving as a common tutorial.

The 7 Tasks

1. Counter

"Challenge: Understanding the basic ideas of a language/toolkit.

The task is to build a frame containing a label or read-only textfield T and a button B. Initially, the value in T is “0” and each click of B
increases the value in T by one."

Counter [in C] counter.c [in Lua] counter.lua

One alternative is to use the SPIN attribute of the IupText control to allow the user to increment and decrement the value.

2. Temperature Converter

"Challenges: bidirectional data flow, user-provided text input.

The task is to build a frame containing two textfields TC and TF representing the temperature in Celsius and Fahrenheit, respectively.
Initially, both TC and TF are empty. When the user enters a numerical value into TC the corresponding value in TF is automatically
updated and vice versa. When the user enters a non-numerical string into TC the value in TF is not updated and vice versa. The formula
for converting a temperature C in Celsius into a temperature F in Fahrenheit is C = (F - 32) * (5/9) and the dual direction is F = C * (9/5)
+ 32."

TempConv [in C] temperature_converter.c [in Lua] temperature_converter.lua

One alternative is to avoid the automatic update because the user is not interested in the intermediate result while typing "32" for instance.
The application can update only when the text box loses its focus for instance, using the KILLFOCUS_CB callback or when the Tab key is
pressed in the K_ANY callback.

3. Flight Booker

"Challenge: Constraints.

The task is to build a frame containing a combobox C with the two options “one-way flight” and “return flight”, two textfields T1 and T2
representing the start and return date, respectively, and a button B for submitting the selected flight. T2 is enabled if C value is “return
flight”. When C has the value “return flight” and T2’s date is strictly before T1’s then B is disabled. When a non-disabled textfield T has an
ill-formatted date then T is colored red and B is disabled. When clicking B a message is displayed informing the user of his selection (e.g.

IUP - Portable User Interface 07-Jan-25

167/496

https://eugenkiss.github.io/7guis/
counter.c
counter.c
counter.lua
counter.lua
temperature_converter.c
temperature_converter.c
temperature_converter.lua
temperature_converter.lua

“You have booked a one-way flight on 04.04.2014.”). Initially, C has the value “one-way flight” and T1 as well as T2 have the same
(arbitrary) date (it is implied that T2 is disabled)."

Book Flight [in C] flight_booker.c [in Lua] flight_booker.lua

One alternative is to use the IupDatePick control for selecting dates, it is more user friendly and more resourceful.

4. Timer

"Challenges: concurrency, competing user/signal interactions, responsiveness.

The task is to build a frame containing a gauge G for the elapsed time e, a label which shows the elapsed time as a numerical value, a
slider S by which the duration d of the timer can be adjusted while the timer is running and a reset button R. Adjusting S must
immediately reflect on d and not only when S is released. It follows that while moving S the filled amount of G will (usually) change
immediately. When e ≥ d is true then the timer stops (and G will be full). If, thereafter, d is increased such that d > e will be true then the
timer restarts to tick until e ≥ d is true again. Clicking R will reset e to zero."

Timer [in C] timer.c [in Lua] timer.lua

In the code we used IupGauge, but IupProgressBar can also be used. One natural enhancement to the sample would be to display the
total duration of the timer, only the position of the valuator is shown.

5. CRUD

"Challenges: separating the domain and presentation logic, managing mutation, building a non-trivial layout.

The task is to build a frame containing the following elements: a textfield Tprefix, a pair of textfields Tname and Tsurname, a listbox L,
buttons BC, BU and BD and the three labels as seen in the screenshot. L presents a view of the data in the database that consists of a list
of names. At most one entry can be selected in L at a time. By entering a string into Tprefix the user can filter the names whose surname
start with the entered prefix—this should happen immediately without having to submit the prefix with enter. Clicking BC will append the
resulting name from concatenating the strings in Tname and Tsurname to L. BU and BD are enabled iff an entry in L is selected. In
contrast to BC, BU will not append the resulting name but instead replace the selected entry with the new name. BD will remove the
selected entry. The layout is to be done like suggested in the screenshot. In particular, L must occupy all the remaining space."

IUP - Portable User Interface 07-Jan-25

168/496

flight_booker.c
flight_booker.c
flight_booker.lua
flight_booker.lua
timer.c
timer.c
timer.lua
timer.lua

CRUD [in C] crud.c [in Lua] crud.lua

<comments>

6. Circle Drawer

"Challenges: undo/redo, custom drawing, dialog control*.

The task is to build a frame containing an undo and redo button as well as a canvas area underneath. Left-clicking inside an empty area
inside the canvas will create an unfilled circle with a fixed diameter whose center is the left-clicked point. The circle nearest to the mouse
pointer such that the distance from its center to the pointer is less than its radius, if it exists, is filled with the color gray. The gray circle is
the selected circle C. Right-clicking C will make a popup menu appear with one entry “Adjust diameter..”. Clicking on this entry will open
another frame with a slider inside that adjusts the diameter of C. Changes are applied immediately. Closing this frame will mark the last
diameter as significant for the undo/redo history. Clicking undo will undo the last significant change (i.e. circle creation or diameter
adjustment). Clicking redo will reapply the last undoed change unless new changes were made by the user in the meantime."

Circle Drawer [in C] circle_drawer.c [in Lua] circle_drawer.lua

All the undo/redo processing is manually implemented in our sample. There are many possible enhancements for the sample, specially
relative to direct manipulation of the circles.

7. Cells

IUP - Portable User Interface 07-Jan-25

169/496

crud.c
crud.c
crud.lua
crud.lua
circle_drawer.c
circle_drawer.c
circle_drawer.lua
circle_drawer.lua

"Challenges: change propagation, widget customization, implementing a more authentic/involved GUI application.

The task is to create a simple but usable spreadsheet application. The spreadsheet should be scrollable. The rows should be numbered
from 0 to 99 and the columns from A to Z. Double-clicking a cell C lets the user change C’s formula. After having finished editing the
formula is parsed and evaluated and its updated value is shown in C. In addition, all cells which depend on C must be reevaluated. This
process repeats until there are no more changes in the values of any cell (change propagation). Note that one should not just recompute
the value of every cell but only of those cells that depend on another cell’s changed value. If there is an already provided spreadsheet
widget it should not be used. Instead, another similar widget (like JTable in Swing) should be customized to become a reusable
spreadsheet widget."

Cells [in C] cells.c [in Lua] cells.lua

In the screnshot cell B0 value is "=sum(B1:C4)". The values can be empty, a number, a string or a formula. Formulas start with "=". But
for simplicity the sample supports only the "=sum(XY:XY)" formula format.

We used a pure IupMatrix control to implement a very simple spreadsheet in this sample. It supports only to sum cell values. Using
IupMatrixEx with formulas the spreadsheet is already available for IUP applications.

System
IUP has several global tables along with some system tools that must be initialized before any dialog is created.

The default system language used by predefined dialogs and messages is English. But it can be changed to Portuguese or Spanish.

System Guide

Initialization

Before running any of IUP’s functions, function IupOpen must be run to initialize the toolkit.

After running the last IUP function, function IupClose must be run so that the toolkit can free internal memory and close the interface
system.

Executing these functions in this order is crucial for the correct functioning of the toolkit.

Between calls to the IupOpen and IupClose functions, the application can create dialogs and display them.

Therefore, usually an application employing IUP will have a code in the main function similar to the following:

int main(int argc, char* argv[])
{
 if (IupOpen(&argc, &argv) == IUP_ERROR)
 {
 fprintf(stderr, "Error Opening IUP.")
 return;
 }

IUP - Portable User Interface 07-Jan-25

170/496

cells.c
cells.c
cells.lua
cells.lua

 ...
 IupMainLoop();
 IupClose();

 return 0;
}

IupOpen
Initializes the IUP toolkit. Must be called before any other IUP function.

Parameters/Return

int IupOpen(int *argc, char ***argv); [in C]
[There is no equivalent in Lua]

argc and argv: are the same as the application "main" function function. Some parameters processed by the driver can be removed so
the address is necessary. They can be NULL. (Since 2.7)

Returns: IUP_OPENED (already opened), IUP_ERROR or IUP_NOERROR. Only in UNIX can fail to open, because X-Windows may be not
initialized.

Notes

In Windows, CoInitializeEx(COINIT_APARTMENTTHREADED) and InitCommonControlsEx(ICC_WIN95_CLASSES) functions
are called.

In Motif, XtOpenApplication function is called.

For a more detailed explanation on the system control, please refer to Guide / System Control.

Environment Variables

The toolkit's initialization depends also on platform-dependent environment variables, see each driver documentation.

QUIET

When this variable is set to NO, IUP will generate a message in console indicating the driver’s version when initializing. Default: YES.

VERSION

When this variable is set to YES, IUP generates a message dialog indicating the driver's version when initializing. Default: NO.

Lua Binding

This function should be called by the host program and before the IupLua initialization function iuplua_open. If not the IupLua
initialization function will call it.

See Also

iuplua_open, IupClose, Guide / System Control

IupClose
Ends the IUP toolkit and releases internal memory. It will also automatically destroy all dialogs and all elements that have names.

Parameters/Return

void IupClose(void); [in C]
iup.Close() [in Lua]

Notes

In Windows, the CoUninitialize function is called.

In Motif, the XtDestroyApplicationContext function is called.

This function is usually called by the application to match the call to IupOpen.

When the Lua binding is used, and IUP is dynamically loaded then you should call iup.Close from Lua. If IUP is statically loaded and
iuplua_open was called, then you should call iuplua_close.

iuplua_close will destroy all dialogs and all elements that have names that where created with the same Lua context before IupClose is

IUP - Portable User Interface 07-Jan-25

171/496

../guide.html#sistema
iuplua_open.html
iupclose.html
../guide.html#sistema

actually called (since 3.31).

See Also

IupOpen, iuplua_open

iuplua_open
Initializes the Lua Binding from C. This function should be called by the host program before running any Lua functions, but it is
important to call it after IupOpen.

It is also allowed to call iuplua_open without calling IupOpen. Then IupOpen will be internally called. This is also valid for all the
additional controls when IUP is dynamically loaded. To call IupClose in this way you must call iuplua_close.

This enable you to dynamically load IUP using Lua 5 "require".

Parameters/Return

int iuplua_open(lua_State *L); [in C]
[There is no equivalent in Lua]

Returns: 0 (the number of elements in the stack).

Notes

For a more detailed explanation on the system control for the Lua Binding, please refer to System Guide.

See Also

IupOpen, Guide / System Control

IupVersion
Returns a string with the IUP version number.

Parameters/Return

char* IupVersion(void); [in C]
iup.Version() -> (version: string) [in Lua]

int IupVersionNumber(void); [in C]
iup.VersionNumber() -> (version: number) [in Lua]

void IupVersionShow(void); [in C]
iup.VersionShow() [in Lua]

Returns: the version number including the bug fix. The defines only includes the major and minor numbers. For example: "2.7.1".

IupVersionShow shows a popup dialog with IUP version information and more. This is a debug dialog with lots of information of
additional libraries too. (since 3.28)

Definitions

[in C]
IUP_NAME "IUP - Portable User Interface"
IUP_COPYRIGHT "Copyright (C) 1994-2011 Tecgraf/PUC-Rio."
IUP_DESCRIPTION "Multi-platform toolkit for building graphical user interfaces."
IUP_VERSION "3.5"
IUP_VERSION_NUMBER 305000
IUP_VERSION_DATE "2011/04/26"

[in Lua]
iup._NAME
iup._DESCRIPTION
iup._COPYRIGHT
iup._VERSION
iup._VERSION_NUMBER
iup._VERSION_DATE

Motif System Driver

IUP - Portable User Interface 07-Jan-25

172/496

iupopen.html
iuplua_open.html
../sys_guide.html
iupopen.html
../guide.html#sistema

Driver for the X-Windows/Motif 2.x environment.

Environment Variables

DEBUG

This variables existence makes the driver operate in synchronous mode with the X server. This slows down all operations, but allows
immediately detecting errors caused by X.

Default Values Resource Files

Some default values used by the driver, such as background color, foreground color and font, can be set by the user by means of a
resource file called "Iup". It must be in the users home or in a directory pointed to by the XAPPLRESDIR environment variable. Below you
can see an example of this files contents:

*background: #ff0000
*foreground: #a0ff00
fontList: -misc-fixed-bold-r-normal--13-*

The values used in the example above are the ones used by IUP if these resources are not defined.

Also a resource file named ".Xdefaults" will also affect the visual appearance of all applications that use Motif and Intrinsics.

Tips

Dynamic Libraries in Linux

When using dynamic libraries in Linux, the "libiup.so" uses the GTK driver for newer systems (Linux26g4). So applications that
dynamically load IUP will always use the "libiup.so", for example Lua using require. To use the IUP Motif dynamic library in Linux you
must rename the "libiupmot.so" to "libiup.so", so the Motif driver will be loaded instead of the GTK driver.

In older systems (<=Linux26 with gcc 3) the "libiup.so" already contains the Motif driver.

During linking in the Solaris environment: Can not find libresolv.so.2

This error occurs if the system does not have an applied patch containing this library.

This library is important for all installations of Solaris 2.5 and 2.5.1 (SunOS 5.5 and 5.5.1, respectively). It is a correction of the DNS
system, involving security.

The web address to get these patches is SunSolves http://sunsolve1.sun.com/sunsolve/pubpatches/patches.html. Select the Solaris version
you wish (2.5 or 2.5.1 for Sparc) and download the patches 103667-09, 102980-17, 103279-03, 103708-02, or more recent for 2.5 (the
number after the - is the patch version, and the more recent number is the patch), or 103663-12, 103594-14, 103680-02 and 103686-02
for 2.5.1. All of them have a README file explaining installation, and groups have to be installed together.

TrueColor canvas

Whenever a canvas is created, one tries to create it with a TrueColor resolution Visual. This is not always possible, since it is subject to
many conditions, such as hardware (graphics board) and the X servers configuration.

The xdpyinfo program informs which Visuals are available in the X server where the display is being made, so that you can see if your X
allows creating a canvas with a TrueColor Visual. In some platforms, however, the X server may not make a TrueColor Visual available,
even though the graphics board is able to display it. In this case, restart the server with parameters that force this. Below is a table with
such parameters to some systems where the IUP library has been tested. If the command does not work, or if it is not possible, then the
graphics library really does not support 24 bpp.

System Execution Command

Linux startx --bpp 24

AIX (not necessary)

IRIX (not necessary)

Solaris (not necessary)

Since color requests are always successful in TrueColor/24bpp windows, we have minimized visualization problems for images that make
use of complex color palettes (when there is a high color demand, not always all colors requested can be obtained). The IUP applications
also coexist more peacefully with other applications and among themselves, since the colors used by TrueColor/24bpp windows do not
use the colormap cells used by all applications.

XtAddCallback failed

When a warning about XtAddCallback appears during the application initialization, and it aborts, this usually means that you are using a
Motif with a different version than the Motif used to build IUP. Reinstall Motif or rebuild IUP using your Motif.

IUP - Portable User Interface 07-Jan-25

173/496

http://sunsolve1.sun.com/sunsolve/pubpatches/patches.html

Indigo Magic look in Sgi

To turn on the Indigo Magic look for an application, simply set the applications sgiMode resource to TRUE. Typically, you should add this
line to the "/usr/lib/X11/app-defaults" file for your application:

appName*sgiMode: TRUE

where appName is the name of your application.

Win32 System Driver
This driver was designed for the modern Microsoft Windows in 32 bits or 64 bits (XP, 2003, Vista, 7, 8, and 10).

DLL

To use the IUP DLL, it is necessary to link the application with the IUP.lib and IUPSTUB.lib libraries (for technical reasons, these libraries
cannot be unified). Note that iup.lib is a library specially generated to work with iup.dll, and is usually distributed in the same directory as
iup.dll. The IUP DLL depends on the Visual Studio C++ Run Time Library, MSVCR[XX].DLL, according to the Visuall C++ that built the
iup.dll.

For the program to work, IUP.dll must be inside a PATH directory. Usually the program does not need to be re-linked when the DLL is
updated.

Tips

Inspecting Native Controls

The Spy++ tool distributed with Microsoft Visual Studio is very useful to inspect windows controls position, size and visibility. It can be
found in the Visual Studio "Tools" menu. In a similar way you can also use the IupLayoutDialog to show IUP controls attributes and
callbacks, in a interactive display of the dialog layout.

Dialog Contents Zoomed by the System

In Windows 8.1, Microsoft introduces a feature to support High DPI screens. If your application does not declares it is DPI aware, and the
user configure the screen resolution for values greater than 100%, Windows will report a resolution of 96 DPI for the application and it
will scale the contents of the dialog accordingly to the scale factor (actual resolution in DPI/ 96). To avoid that include the Manifest file
when building the executable. The "iup.manifest" file in the "iup/etc" folder already contains the necessary changes to declare the
application DPI aware.

Text will look better if a high DPI setting is used. For standard monitors (1280x1024) you can use 120 DPI (125%), for FullHD
(1920x1080) can use 144 DPI (150%), and for 4k (3840x2160) can use 192 DPI (200%). To be able to respond to these resolution
changes the application should avoid using sizes in pixels (like: RASTERSIZE, GAP, MARGIN) use character sizes instead (like: SIZE,
CGAP, CMARGIN).

But there is still a problem with the images. Usually applications use 16x16 images for toolbar buttons, in a 4k resolution this looks very
small, so ideally the application should have at least 3 sets of buttons: 16x16, 24x24 and 32x32. We recommend using 24x24 images for
toolbar buttons when the SCREENDPI (global attribute) is greater than 120 DPI (> 125%), and 32x32 when greater than 144 DPI (>
150%). If that is not possible the global attribute IMAGEAUTOSCALE and the IupImage attribute AUTOSCALE can be used to
automatically scale images. Stock image size is already automatically selected and resized if necessary.

UTF-8

When IUP is built with UNICODE enabled, it is possible to specify strings in UTF-8. But the default is still to use the current locale. To use
UTF-8 strings set the global attribute UTF8MODE to YES.

LINK : warning defaultlib 'LIBCMT' conflicts with use of other libs; use /NODEFAULTLIB:library

This is a message displayed by Visual C++ compilers when one or more libraries included for linking is not using the same C Run Time
Library as the application. In the same Visual C++ compiler there are 4 different libraries resulting from the combination of 2 options:
debug/release x dll/static.

The default configuration when a new project is created uses the C Run Time Library in a DLL, options named "Multi-threaded Debug DLL
(/MDd)" for the Debug configuration and "Multi-threaded DLL (/MD)" for the Release configuration. The IUP package that matches that
configuration is the "dll*" packages.

If you want to use static libraries then use the options "Multi-threaded Debug (/MTd)" for the Debug configuration and "Multi-threaded
(/MT)" for the Release configuration. Then use the IUP packages named "vc*".

The IUP pre-compiled packages do not have debug information, so even selecting the correct dll/static combination, the warning will
also be displayed. In this case the warning is harmless. But if you really want to avoid the warning simply use the same option without the
Debug information for Release and Debug configurations.

Finally one thing that is NOT recommended is to do what the linker warning suggests, to ignore the default libraries using the
/NODEFAULTLIB parameter. Only use that parameter if you really know what you are doing, because using it you can create other linking

IUP - Portable User Interface 07-Jan-25

174/496

../dlg/iuplayoutdialog.html

problems.

COM Initialization

IupOpen calls "CoInitializeEx(NULL, COINIT_APARTMENTTHREADED);", if you need another concurrency model call CoInitializeEx with
other options before calling IupOpen. Be aware that some features in some controls require single-thread apartment, and they will stop
working, this includes: IupFileDLg when selecting a folder, and IupOleControl.

InitCommonCtrlEx Linker Error

On Windows a common error occurs: "Cannot find function InitCommonCtrlEx()" This error occurs if you forgot to add the comctl32.lib
library to be linked with the program. This library is not usually in the libraries list for the Visual C++, you must add it.

Custom IupFileDlg

To use some cursors and the preview area of IupFileDlg you must include the "iup.rc" file into your makefile. Or include the contents of
it into your resource file, you will need also to copy the cursor files.

Windows Native Controls Appearance

By default the Win32 application will look like Windows XP Classic theme, even in Windows 10. To use the new themes in Windows XP
and and newer Windows, the build must enable the Windows Visual Styles. It can be enabled using a manifest file. Uncomment the
manifest file section in "iup.rc" file or copy it to your own resource file (you will need also to copy the manifest file "iup.manifest" or
"iup64.manifest").

When using Visual C++ 8/9/10/... with a manifest file, configure the linker properties of your project to do NOT generate a manifest file
or the Windows Visual Styles from the RC file won't work. Also when using Visual C++ 8/9/10/... you can avoid using the manifest by
using the following pragma on your code:

#pragma comment(linker,"\"/manifestdependency:type = 'win32' \
 name = 'Microsoft.Windows.Common-Controls' \
 version = '6.0.0.0' \
 processorArchitecture = '*' \
 publicKeyToken = '6595b64144ccf1df' \
 language = '*'\"")

If your Windows is using the Windows Classic theme or any other theme, IUP controls appearance will follow the system appearance only
if you are using the manifest. If not using the manifest, then it will always look like Windows Classic.

Help in CHM format fail to open

When you download a CHM file from the Internet Windows blocks your access to the file. You must unblock it manually. Right click the
file in Explorer and select "Unblock" at the bottom of the dialog.

Visual C++ 6

Since 3.0 Visual C++6 is not supported, although we may still provide pre-compiled binaries. To compile the IUP 3 code with VC6 you
will need to download a new Platform SDK, because the one included in the compiler is too old. But it cannot be a too new one also,
because the compiler will report errors in the newest headers.

We recommend you to upgrade your compiler. Visual C++ Express Edition is a free compiler that has everything VC6 had and more.

Control ID (since 3.26)

The attribute CONTROLID can be used to set the Windows control identifier. IUP automatically generates identifiers for controls inside the
dialog starting at 100. When using this attribute start with a very large number to avoid conflicts with the generated idetifiers.

GTK System Driver (since 3.0)
This driver was designed for the GTK+ version 2 and 3. It can be compiled in Windows or UNIX.

Although GTK has layout elements they are not used. IUP fill, vbox, hbox and zbox containers are implemented independent from the
native system.

The oldest GTK version that can be used is 2.4, oldest versions will not compile. But using versions older than 2.12 several features will
not work. Critical features need at least version 2.8.

Currently it is not available for IRIX, AIX and SunOS. But is it available for SunOS10 and it is not available for Linux24.

Tips

Locale

IUP - Portable User Interface 07-Jan-25

175/496

http://windowssdk.msdn.microsoft.com/
http://msdn.microsoft.com/vstudio/express/visualc/

Since 3.28, in IupOpen we call setlocale(LC_NUMERIC, "C") to reset the locale to the default for C applications. Because GTK is changing
the locale in gtk_init to match the system language, and this affects the parse of the decimal separator of floating point numbers in
strings.

Inspecting Native Controls

The GTK+ Inspector tool included in GTK is very useful to inspect GTK controls position, size and visibility. To enable the GTK+
inspector, you can use the Control-Shift-I or Control-Shift-D keyboard shortcuts, or set the GTK_DEBUG=interactive environment variable.
In a similar way you can also use the IupLayoutDialog to show IUP controls attributes and callbacks, in a interactive display of the dialog
layout.

GTK 3.x (since 3.7)

GTK 3.x is supported. But the pre-compiled binaries, up to Linux 3.2, are still built with GTK 2.x. This is because GTK 3 involves a big
change for drawing applications, and most Tecgraf applications are heavily graphics dependent. The main change is that GDK does not
have drawing primitives anymore, and all drawing is performed by Cairo. Cairo does not have support for XOR used by many drawing
applications to perform a selection rubber band. Also Cairo could have a different behavior for some primitives.

Since Linux 3.13 the default is to use GTK 3.

For older Linux to build the driver with GTK 3.x support define USE_GTK3=Yes before calling make in the "iup/src" folder. Just the main
library must be rebuilt. A lso, if CD is used, the CD main library must be rebuilt with the same parameter.

Dependencies

GTK is in fact composed of several libraries. The GTK package contains the GDK library and depends on the ATK, Cairo, Glib and Pango
libraries.

X11 Dependencies (since 3.25)

When using GTK 3, the X11 usage is drastically reduced. It is not necessary at all, although it is still there for backward compatibility. To
completely remove the X11 dependencies define GDK_NULL in "iup/src/config.mak". The GDK_NULL definition can also be used for GTK
2, but there is a limitation, the SCREENSIZE attribute will not correctly exclude the desktop decorations.

UTF-8

GTK uses UTF-8 as its charset for all displayed text, so IUP will automatically convert all strings to (SetAttribute) and from (GetAttribute)
UTF-8. But the default is still to use the current locale. To use UTF-8 strings set the global attribute UTF8MODE to YES.

Windows

The GTK driver can be compiled and used in Windows, but it is not recommended since it is slower and much more memory consuming
than the IUP native Windows driver.

When using DLLs in Windows, the "iup.dll" uses the Win32 driver. So applications that dynamically load IUP will always use the "iup.dll",
for example Lua using require. To use the IUP GTK dll in Windows you must rename the "iupgtk.dll" to "iup.dll", so the GTK driver will be
loaded instead of the Win32 driver.

After installing the GTK binaries, we recommend changing the default theme to the "MS-Windows" theme. Edit the "gtk\etc\gtk-2.0\gtkrc"
file and change its contents to:

gtk-theme-name = "MS-Windows"

Ubuntu Unity

Since Ubuntu version 11, there is a new desktop called Unity. This desktop introduces some changes that affect all applications. Two of
these changes directly affect IUP applications.

First the global menu forces all dialog menus to be displayed in the top of the desktop, like in MacOSX. This affected the size of the IUP
dialog, it is fixed since IUP version 3.6. If you don't like the global menu you can remove it using:

sudo apt-get remove appmenu-gtk3 appmenu-gtk appmenu-qt

You can also control that using "export UBUNTU_MENUPROXY=0". There are other forms to control this feature - see "How to Disable the
AppMenu".

In later Ubuntu versions you can do the command:

gsettings set com.canonical.Unity integrated-menus true

or you can uninstall the "indicator-appmenu" package. See "How do I enable or disable the global application menu?".

IUP - Portable User Interface 07-Jan-25

176/496

../dlg/iuplayoutdialog.html
http://www.webupd8.org/2011/03/disable-appmenu-global-menu-in-ubuntu.html
https://launchpad.net/ubuntu/+source/indicator-appmenu
https://askubuntu.com/questions/10481/how-do-i-enable-or-disable-the-global-application-menu

In some systems when using the appmenu, the application menu items do not get inactive when set.

Second, the scrollbars are reduced to a very tiny line and handlers are displayed only when the mouse moves over the right or bottom
side of the element. All the controls, except the IupCanvas, will work ok with the new scrollbar. But in IupCanvas the SCROLL_CB
callback will receive only the IUP_SBPOSV and IUP_SBPOSH operations codes (fixed in IUP 3.11.1).

You can remove the new scrollbar at the Synaptic Package Manager or at the Ubuntu Software Center searching for "overlay-
scrollbar" and removing the installed packages. You can also control that using "export LIBOVERLAY_SCROLLBAR=0". In later Ubuntu
versions you can do the command:

gsettings set com.canonical.desktop.interface scrollbar-mode normal

MacOSX-Quartz

The GTK driver also compiles in MacOSX with the new GTK port available at http://gtk-osx.sourceforge.net/ using Quartz. But the
IupGLCanvas is not available yet. You must use the GDK base driver of the CD library. Some elements like IupTree are not 100%
functional because of the gtk-osx implementation. The installation of gtk-osx is quite complex because there are no pre-compiled binaries.
Also if the MacOSX theme is used, several controls have problems. We hope that this will improve in the future. Must define GTK_MAC
before compiling to enable this build.

MacOSX-X11

So for now we are distributing binaries that use the X11 version of GTK 2.16. They were installed using Fink. Here is a simple guide to
install fink so the pre-compiled binaries will work (tested in 10.5 and 10.6):

Download latest fink source: fink-0.29.21
tar -xvzf fink-0.29.21.tar.gz
cd fink-0.29.21
./bootstrap
 Use all default answers, except for the second question about 64bits:
 (10.5) => (1) Default (mostly 32bit) [because gcc use 32bit as default]
 (10.6) => (2) 64bit-only [because gcc use 64bit as default]
/sw/bin/pathsetup.sh
fink selfupdate-rsync
fink index -f
fink install gtk+2 gtk+2-dev

It will take some time to download and install everything, so have patience.

After that you should get something like this:

fink --version
 Package manager version: 0.29.10
 Distribution version: selfupdate-rsync Thu Apr 29 11:51:11 2010, 10.6, x86_64 (10.6)
 Distribution version: selfupdate-rsync Thu Apr 29 11:50:49 2010, 10.5, i386 (10.5)

fink list -i gtk+2
 Information about XXXX packages read in X seconds.
 i gtk+2 2.16.6-3 The Gimp Toolkit
 i gtk+2-dev 2.16.6-3 The Gimp Toolkit
 i gtk+2-shlibs 2.16.6-3 The Gimp Toolkit

You can use MacPorts instead of Fink. The installation is very similar, but it seems simpler. A lthough we did not have the opportunity to
test it, some users report that this work ok.

MacPorts have two GTK installations, one for X11 and one for Quartz. This is a lot simpler than trying to install the gtk-osx distribution.
Just keep in mind that if using Quartz, OpenGL with IUP will not be available.

When building IUP or CD in MacOSX, define the following variables in the system before typing "make":

export USE_MACOS_OPENGL=Yes # To use the OpenGL framework
export GTK_BASE=/sw # For Fink
export GTK_BASE=/opt/local # For MacPorts
export GTK_MAC=Yes # For Quartz instead of X11

Native Code

The GTK driver is not pure GTK and GDK code. It uses Win32 and X11 calls in some parts, specifically in "iupgtk_open.c". And it depends
on some Win32 and X11 modules, such as: "iup*_info.c", "iup_glcanvas*.c". A lso the CD library has some native code in the
"cdcaironative_gdk.c" that affects the CD_IUP driver. These are the files that need to be changed for a fully functional MacOSX-Quartz
driver.

Attributes
Attributes are used to change or consult properties of elements. Each element has a set of attributes that affect it, and each attribute can

IUP - Portable User Interface 07-Jan-25

177/496

http://gtk-osx.sourceforge.net/
http://www.finkproject.org/
http://downloads.sourceforge.net/fink/fink-0.29.21.tar.gz
http://www.macports.org/

work differently for each element. Depending on the element, its value can be computed or simply verified. Also it can be internally stored
or not.

Attribute names are always upper case, lower case names will not work. But attribute values like "YES", "NO", "TOP", are case insensitive,
so "Yes", "no", "top", and other variations will work.

If not defined their value can be inherited from the parent container.

Attributes Guide

Using

Attributes are a way to send and obtain information to and from elements. They are used by the application to communicate with the user
interface system, on the other hand callbacks are used by the application to receive notifications from the system that the user or the
system itself has interacted with the user interface of the application.

There are several functions to access attributes, see the documentation of the IupSetAttribute and IupGetAttribute for more options.

When an attribute is modified (Set) it is stored internally at the hash table of the control only if the control class allows it. If the value is
NULL, the attribute will also be removed from the hash table and the default value will be used if there is one defined. Finally the attribute
is updated for the children of the control if they do not have the attribute defined in their own hash table. Here is a pseudo-code:

IupSetAttribute(ih, name, value)
{
 if ih.SetClassAttribute(name, value)==store then
 ih.SetHashTableAttribute(name, value)
 endif

 if (ih.IsInheritable(name))
 -- NotifyChildren
 for each child of ih do
 if not child.GetHashTableAttribute(name) then
 child.SetClassAttribute(name, value)
 child.NotifyChildren(name, value)
 endif
 endfor
 endif
}

When an attribute is retrieved (Get) it will first be checked at the control class. If not defined then it checks in the hash table. If not
defined it checks its parent hash table and so forth, until it reaches the dialog. And finally if still not defined then a default value is
returned (the default value can also be NULL).

value = IupGetAttribute(ih, name)
{
 value = ih.GetClassAttribute(name)

 if not value then
 value = ih.GetHashTableAttribute(name)
 endif

 if not value and ih.isInheritable(name) then
 parent = ih.parent
 while (parent and not value)
 value = parent.GetHashTableAttribute(name)
 parent = parent.parent
 endwhile
 endif

 if not value then
 value = ih.GetDefaultAttribute(name)
 endif
}

Notice that the parent recursion is done only at the parent hash table, the parent control class is not consulted.

The control class can update or retrieve a value even if the control is not mapped. When the control is not mapped and its implementation
can not process the attribute, then the attribute is simply stored in the hash table. After the element is mapped its attributes are re-
processed to be updated in the native system and they can be removed from the hash table at that time.

All this flexibility turns the attribute system very complex with several nuances. If the attribute is checked before the control is mapped
and just after, its value can be completely different. Depending on how the attribute is stored its inheritance can be completely ignored.

Attribute names are always upper case, lower case names will not work. But attribute values like "YES", "NO", "TOP", are case insensitive,
so "Yes", "no", "top", and other variations will work.

Boolean attributes accept the values "1", "YES" or "ON" for true, and "0", "NO" or "OFF" for false. But they will return the value described
in the documentation. You can also use IupSetInt with 1 for true and 0 for false. IupGetInt will return 1 for any of the true values,
and 0 for any of the false values.

IUP - Portable User Interface 07-Jan-25

178/496

func/iupsetattribute.html
func/iupgetattribute.html

Floating point numbers when stored as strings use the application locale for decimal separator. Notice that by default C applications use
the C locale, not the current system locale, in this case decimal separator is ".".

Combination of values in a single attribute is common, but there is no specific definitions on how they can be combined. Although all
attributes that represent sizes using width and height adopt the "WxH" definition, for example "640x480". Position usually adopt "x,y"
definition, range is usually "x1-x2" but can also be "x1:x2", so there are variations that for compatibility reasons were maintained. Cell
specification is always "lin:col".

Color values are in the "R G B A" format. Each component from 0 to 255. Alpha is optional and assumed to be 255 if not specified. But it
is only supported in custom controls drawn by IUP, example IupGauge, IupDial, all IupFlat* controls, and only when using OpenGL, Cairo
or Direct2D draw drivers. Alpha is never supported when using X11, GDI or GDK draw drivers. Color values can also be specified in
hexadecimal notation in the format "#RRGGBBAA".

With IupSetAttribute you can also store application pointers that can be strings or not. This can be very useful, for instance, used inside
callbacks. For example, by storing a C pointer of an application defined structure, the application can retrieve this pointer inside the
callback through function IupGetAttribute. Therefore, even if the callbacks are global functions, the same callback can be used for
several objects, even of different types.

Some controls, like IupList, IupTree, IupTabs and IupMatrix, have ids associated with some attributes so its value will affect only the
respective id item in the control. For example: "TITLE3" will set the TITLE attribute for the item 3. To set that kind of attribute
IupSetAttribute can be used, but IupSetAttributeId can also be used specially if the id is a variable.

There are attributes common to all the elements. In some cases, common attributes behave differently in different elements, but in such
cases, there are comments in the documentation of the element explaining the different behavior.

In LED there is no quotation marks for attributes, names or values. In Lua attribute names can be lower case.

Inheritance

Elements included in other elements can inherit their attributes. There is an inheritance mechanism inside a given child tree.

This means, for example, that if you set the "MARGIN" attribute of a Vbox containing several other elements, including other Vboxes, all
the elements depending on the attribute "MARGIN" will be affected, except for those who the "MARGIN" attribute is already defined.

Please note that not all attributes are inherited. As general rules the following attributes are NON inheritable always:

Essential attributes like VALUE, TITLE, SIZE, RASTERSIZE, X and Y
Id numbered attributes (like "1" or "MARK1:1")
Handle names (like "CURSOR", "IMAGE" and "MENU")
Pointers that are not strings (like WID)
Read-only or write-only attributes
Internal attributes that starts with "_IUP"

Inheritable attributes are stored in the hash table so the IupGet/SetAttribute logic can work, even if the control class store it internally. But
when you change an attribute to NULL, then its value is removed from the hash table and the default value if any is passed to the native
system.

When consulted the attribute is first checked at the control class. If not defined then it checks in the hash table. If not defined in its hash
table, the attribute will be inherited from its parent's hash table and so forth, until it reaches the root child (usually the dialog). But if still
then the attribute is not defined a default value for the element is returned (the default value can also be NULL).

When changed the attribute change is propagated to all children except for those who the attribute is already defined in the hash table.

But some attributes can be marked as non inheritable at the control class. (since 3.0)

Non inheritable attributes at the element are not propagated to its children. If an attribute is not marked as non inheritable at the
element it is propagated as expected, but if marked as non inheritable at a child, that child will ignore the propagated value.

Since Vbox, Hbox, and other containers have only a few registered attributes, by default an unknown attribute is treated as inheritable,
that's why it will be automatically propagated.

An example: the IMAGE attribute of a Label is non inheritable, so when checked at the Label it will return NULL if not defined, and the
Label parent tree will not be consulted. If you change the IMAGE attribute at a Vbox that contains several Labels, the child Labels will not
be affected.

Availability

Although attributes can be changed and retrieved at any time there are exceptions and some rules that must be followed according to the
documentation of the attribute:

read only: the attribute can not be changed. Ignored when set.
write only: the attribute can not be retrieved. Normally used for action attributes. Returns NULL, or eventually some value set
before the element was mapped.
creation only: it will be used only when the element is mapped on the native system. So set it before the element is mapped.
Ignored when set after the element is mapped.

IupLua

IUP - Portable User Interface 07-Jan-25

179/496

Each interface element is created as a Lua table, and its attributes are fields in this table. Some of these attributes are directly transferred
to IUP, so that any changes made to them immediately reflect on the screen. However, not all attributes are transferred to IUP.

Control attributes, such as handle, which stores the handle of the IUP element, and parent, which stores the object immediately above in
the class hierarchy, are not transferred. Attributes that receive strings or numbers as values are immediately transferred to IUP. Other
values (such as functions or objects) are stored in IupLua and might receive special treatment.

For instance, a button can be created as follows (defining a title and the background color):

myButton = iup.button{title = "Ok", bgcolor = "0 255 0"}

Font color can be subsequently changed by modifying the value of attribute fgcolor:

myButton.fgcolor = "255 0 0"

Note that the attribute names in C and in IupLua are the same, but in IupLua they can be written in lower case.

In the creation of an element some parameters are required attributes (such as title in buttons). Their types are checked when the element
is created. The required parameters are exactly the parameters that are necessary for the element to be created in C.

Some interface elements can contain one or more elements, as is the case of dialogs, lists and boxes. In such cases, the object’s element
list is put together as a vector, that is, the elements are placed one after the other, separated by commas. They can be accessed by
indexing the object containing them, as can be seen in this example:

mybox = iup.hbox{bt1, bt2, bt3}
mybox[1].fgcolor = "255 0 0" -- changes bt1 foreground color
mybox[2].fgcolor = caixa[1].fgcolor -- changes bt2 foreground color

While the attributes receiving numbers or strings are directly transferred to IUP, attributes receiving other interface objects are not directly
transferred, because IUP only accepts strings as a value. The method that transfers attributes to IUP verifies if the attribute value is a
handle, that is, if it is an interface element. If the element already has a name, this name is passed to IUP. If not, a new name is created,
associated to the element and passed to IUP as the value of the attribute being defined.

This policy is very useful for associating two interface elements, because you can abstract the fact that IUP uses a string to make
associations and imagine the interface element itself is being used.

For attributes that contains two values combined the use of Lua can help splitting those values, for example:

w,h = string.match(ih.rastersize,"(%d*):(%d*)")

IupSetAttribute
Sets an interface element attribute. See also the Attributes Guide section.

Parameters/Return

void IupSetAttribute(Ihandle *ih, const char *name, const char *value); [in C]
void IupSetStrAttribute(Ihandle *ih, const char *name, const char *value); [in C]
iup.SetAttribute(ih: ihandle, name: string, value: any) [in Lua]

void IupSetAttributeId(Ihandle *ih, const char *name, int id, const char *value); [in C]
void IupSetStrAttributeId(Ihandle *ih, const char *name, int id, const char *value); [in C]
iup.SetAttributeId(ih: ihandle, name: string, id: number, value: any) [in Lua]

void IupSetAttributeId2(Ihandle* ih, const char* name, int lin, int col, const char* value); [in C]
void IupSetStrAttributeId2(Ihandle* ih, const char* name, int lin, int col, const char* value); [in C]
iup.SetAttributeId2(ih: ihandle, name: string, lin, col: number, value: any) [in Lua]

ih: Identifier of the interface element. If NULL will set in the global environment.
name: name of the attribute.
id, lin, col: used when the attribute has additional ids.
value: value of the attribute. If NULL (nil in Lua), the default value will be used.

Utility Functions

These functions can also be used to set attributes from the element:

void IupSetStrf (Ihandle* ih, const char* name, const char* format, ...);
void IupSetStrfV (Ihandle* ih, const char* name, const char* format, va_list arglist);
void IupSetInt (Ihandle* ih, const char* name, int value);
void IupSetFloat (Ihandle* ih, const char* name, float value);
void IupSetDouble(Ihandle* ih, const char* name, double value);
void IupSetRGB (Ihandle *ih, const char* name, unsigned char r, unsigned char g, unsigned char b);
void IupSetRGBA (Ihandle *ih, const char* name, unsigned char r, unsigned char g, unsigned char b, unsigned char a); (since 3.29)

IUP - Portable User Interface 07-Jan-25

180/496

../attrib_guide.html

void IupSetStrfId (Ihandle *ih, const char* name, int id, const char* format, ...);
void IupSetStrfIdV (Ihandle* ih, const char* name, int id, const char* format, va_list arglist);
void IupSetIntId (Ihandle* ih, const char* name, int id, int value);
void IupSetFloatId (Ihandle* ih, const char* name, int id, float value);
void IupSetDoubleId(Ihandle* ih, const char* name, int id, double value);
void IupSetRGBId (Ihandle *ih, const char* name, int id, unsigned char r, unsigned char g, unsigned char b);

void IupSetStrfId2 (Ihandle* ih, const char* name, int lin, int col, const char* format, ...);
void IupSetStrfId2V (Ihandle* ih, const char* name, int lin, int col, const char* format, va_list arglist);
void IupSetIntId2 (Ihandle* ih, const char* name, int lin, int col, int value);
void IupSetFloatId2 (Ihandle* ih, const char* name, int lin, int col, float value);
void IupSetDoubleId2(Ihandle* ih, const char* name, int lin, int col, double value);
void IupSetRGBId2 (Ihandle *ih, const char* name, int lin, int col, unsigned char r, unsigned char g, unsigned char b);

[There is no equivalent in Lua]

IupSetStrf* functions (old IupSetfAttribute) uses the same format specification as the sprintf function in C. This function is very
useful when several values must be combined into one string. When passing float values, it uses the format "%.9g" to maximize precision.
When passing double values, it uses the format "%.18g" to maximize precision.

All the utility functions use the IupSetStrAttribute* functions internally.

Notes

See the Attributes Guide for more details.

IupSetAttribute can store only constant strings (like "Title", "30", etc) or application pointers. The given value is not duplicated as a
string, only a reference is stored. Therefore, you can store application custom attributes, such as a context structure to be used in a
callback.

IupSetStrAttribute (old IupStoreAttribute) can only store strings. The given string value will be duplicated internally.

Id based attributes are always non inheritable, so all IupSet*Id functions will not propagate the attribute to the children. Ids are usually
non negative values (id >= 0), with a few exceptions.

Examples

A very common mistake when using IupSetAttribute is to use local string arrays to set attributes. For ex:

char value[30];
sprintf(value, "CODE - %d", i);
IupSetAttribute(dlg, "BADEXAMPLE", value) // WRONG (value pointer will be internally stored,
 // but its memory will be released at the end of this scope)
 // a common bad practice is to declare value as static
 // Use IupSetStrAttribute in this case

char *value = malloc(30);
sprintf(value, "%d", i);
IupSetAttribute(dlg, "EXAMPLE", value) // correct (but to avoid memory leaks you should free the pointer
 after the dialog has been destroyed)

IupSetAttribute(dlg, "VISIBLE", "YES") // correct (constant values still exists after this scope)
IupSetAttribute(text, "VALUE", "Hello!");
IupSetAttribute(indicator, "VALUE", "ON");

char attrib[30];
sprintf(attrib, "MY ITEM (%d)", i);
IupSetAttribute(dlg, attrib, "Test") // correct (attribute names are always internally duplicated)

struct{
 int x;
 int y;
} myData;

IupSetAttribute(text, "myData", (char*)&myData); // WRONG, will work only if myData is a global variable.

struct myData* mydata = malloc(sizeof(struct myData));
IupSetAttribute(dlg, "MYDATA", (char*)mydata); // correct (unknown attributes will be stored as pointers)

Defines a radioâ€™s initial value:

Ihandle *portrait = IupToggle("Portrait" , NULL);
Ihandle *landscape = IupToggle("landscape" , NULL);
Ihandle *box = IupVbox(portrait, IupFill(),landscape, NULL);
Ihandle *mode = IupRadio(box);

IUP - Portable User Interface 07-Jan-25

181/496

../attrib_guide.html

IupSetHandle("landscape", landscape); /* associates a name to initialize the radio */
IupSetAttribute(mode, "VALUE", "landscape"); /* defines the radio’s initial value */

See Also

IupGetAttribute, IupSetAttributes, IupGetAttributes, IupSetGlobal, IupGetGlobal

IupSetAttributes
Sets several attributes of an interface element.

Parameters/Return

Ihandle *IupSetAttributes(Ihandle *ih, const char *str); [in C]
iup.SetAttributes(ih: ihandle, str: string) -> ih: ihandle [in Lua]

ih: Identifier of the interface element.
str: string with the attributes in the format "v1=a1, v2=a2,..." where vi is the name of an attribute and ai is its value.

Returns: the same ih.

Examples

This function returns the same Ihandle it receives. This way, it is a lot easier to create dialogs in C. See also IupSetCallbacks.

dialog = IupSetAttributes(IupDialog(
 IupSetAttributes(IupHBox(
 canvas = IupSetAttributes(IupCanvas(NULL), "BORDER=NO, RASTERSIZE=100x100"),
 NULL), "MARGIN=10x10"),
 "TITLE=Test");

Creates a list with country names and defines Japan as the selected option.

Ihandle *list = IupList (NULL);
IupSetAttributes(list,"VALUE=3,1=Brazil,2=USA,3=Japan,4=France");

To set values that have spaces or that may interfere with the string parse, use double quotes around the value with the backslash for
C/Lua syntax. For instance:

IupSetAttributes(list,"1=Brazil,2=\"United States\",3=Japan,4=\"Dominican Republic\"");

See Also

IupGetAttribute, IupSetAttribute, IupGetAttributes, IupSetAtt

IupResetAttribute (Since 3.2)
Removes an attribute from the hash table of the element, and its children if the attribute is inheritable. It is useful to reset the state of
inheritable attributes in a tree of elements.

Parameters/Return

void IupResetAttribute(Ihandle *ih, const char *name); [in C]
iup.ResetAttribute(ih: ihandle, name: string) [in Lua]

ih: Identifier of the interface element. If NULL will set in the global environment.
name: name of the attribute.

See Also

IupGetAttribute, IupSetAttribute

IupSetAtt
Sets several attributes of an interface element and optionally sets its name.

Parameters/Return

IUP - Portable User Interface 07-Jan-25

182/496

iupgetattribute.html
iupsetattributes.html
iupgetattributes.html
iupsetglobal.html
iupgetglobal.html
iupsetcallbacks.html
iupgetattribute.html
iupsetattribute.html
iupgetattributes.html
iupsetatt.html
iupgetattribute.html
iupsetattribute.html

Ihandle* IupSetAtt(const char* handle_name, Ihandle* ih, const char* name, ...); [in C]
Ihandle* IupSetAttV(const char* handle_name, Ihandle* ih, const char* name, va_list arglist); [in C]
[There is no equivalent in Lua]

handle_name: optional handle name. IupSetHandle will be called internally. can be NULL.
ih: Identifier of the interface element.
name: name of the first attribute.
...: after name a value must be set, then a sequence of name and value pairs can follow until a NULL name is found. It must be a
constant string because IupSetAttribute will be used internally.

Returns: ih

Examples

This function returns the same Ihandle it receives. This way, it is a lot easier to create dialogs in C. See also IupSetCallbacks.

dialog = IupSetAtt("MainDialog", IupDialog(
 IupSetAtt(NULL, IupHBox(
 IupSetAtt("MainCanvas", IupCanvas(NULL), "BORDER", "NO", "RASTERSIZE", "100x100", NULL),
 NULL), "MARGIN", "10x10", NULL),
 "TITLE", "Test", NULL);

Creates a list with country names and defines Japan as the selected option.

Ihandle *list = IupList(NULL);
IupSetAtt(NULL, list, "VALUE", "3", "1", "Brazil", "2", "USA", "3", "Japan", "4", "France", NULL);

See Also

IupGetAttribute, IupSetAttribute, IupGetAttributes, IupSetAttributes

IupSetAttributeHandle
Instead of using IupSetHandle and IupSetAttribute with a new creative name, this function automatically creates a non conflict name
and associates the name with the attribute.

It is very useful for associating images and menus.

Parameters/Return

void IupSetAttributeHandle(Ihandle *ih, const char *name, Ihandle *ih_named); [in C]
void IupSetAttributeHandleId(Ihandle *ih, const char *name, int id, Ihandle *ih_named); [in C]
void IupSetAttributeHandleId2(Ihandle *ih, const char *name, int lin, int col, Ihandle *ih_named); [in C]
[There is no equivalent in Lua]

ih: identifier of the interface element.
name: name of the attribute.
id, lin, col: used when the attribute has additional ids. (since 3.21)
ih_named: element to associate using a name

The function will not check for inheritance since all the attributes that associate handles are not inheritable.

Notes

This work is automatically done in Lua when an attribute that is an element name is set to an element handle. In other words, in Lua you
can set a string or a handle as the attribute value, when a handle is used a name is automatically created just as the
IupSetAttributeHandle.

See Also

IupGetAttributeHandle, IupSetAttribute, IupSetAttributes, IupSetHandle

IupGetAttribute
Returns the name of an interface element attribute. See also the Attributes Guide section.

Parameters/Return

char *IupGetAttribute(Ihandle *ih, const char *name); [in C]
iup.GetAttribute(ih: ihandle, name: string) -> value: string, ihandle or userdata [in Lua]

IUP - Portable User Interface 07-Jan-25

183/496

iupsetcallbacks.html
iupgetattribute.html
iupsetattribute.html
iupgetattributes.html
iupsetattributes.html
iupgetattributehandle.html
iupsetattribute.html
iupsetattributes.html
iupsethandle.html
../attrib_guide.html

char *IupGetAttributeId(Ihandle *ih, const char *name, int id); [in C]
iup.GetAttributeId(ih: ihandle, name: string, id: number) -> value: string, ihandle or userdata [in Lua]

char* IupGetAttributeId2(Ihandle* ih, const char* name, int lin, int col); [in C]
iup.GetAttributeId2(ih: ihandle, name: string, lin, col: number) -> value: string, ihandle or userdata [in Lua]

ih: Identifier of the interface element. If NULL will retrieve from the global environment.
name: name of the attribute.
id, lin, col: used when the attribute has additional ids.

Returns: the attribute value or NULL (nil in Lua) if the attribute is not set or does not exist.

Utility Functions

These functions can also be used to get attributes from the element:

int IupGetInt (Ihandle* ih, const char* name);
int IupGetIntInt(Ihandle* ih, const char* name, int *i1, int *i2);
int IupGetInt2 (Ihandle* ih, const char* name);
float IupGetFloat (Ihandle* ih, const char* name);
double IupGetDouble(Ihandle* ih, const char* name);
void IupGetRGB (Ihandle *ih, const char* name, unsigned char *r, unsigned char *g, unsigned char *b);
void IupGetRGBA (Ihandle *ih, const char* name, unsigned char *r, unsigned char *g, unsigned char *b, unsigned char *

int IupGetIntId (Ihandle* ih, const char* name, int id);
float IupGetFloatId (Ihandle* ih, const char* name, int id);
double IupGetDoubleId(Ihandle* ih, const char* name, int id);
void IupGetRGBId (Ihandle *ih, const char* name, int id, unsigned char *r, unsigned char *g, unsigned char *b);

int IupGetIntId2 (Ihandle* ih, const char* name, int lin, int col);
float IupGetFloatId2 (Ihandle* ih, const char* name, int lin, int col);
double IupGetDoubleId2(Ihandle* ih, const char* name, int lin, int col);
void IupGetRGBId2 (Ihandle *ih, const char* name, int lin, int col, unsigned char *r, unsigned char *g, unsigned char *

[There is no equivalent in Lua]

IupGetIntInt retrieves two integers separated by 'x', ':' or ',' and returns the number of returned values (0, 1 or 2). IupGetInt2 returns
just the second value.

Notes

See the Attributes Guide for more details.

The returned value is not necessarily the same pointer used by the application to define the attribute value. The pointers of internal IUP
attributes returned by IupGetAttribute should never be freed or changed, except when it is a custom application pointer that was
stored using IupSetAttribute and allocated by the application.

 The returned pointer can be used safely even if IupGetGlobal or IupGetAttribute are called several times. But not too many times,
because it is an internal buffer and after IUP may reuse it after around 50 calls.

IupLua

In IupLua, only known internal pointer attributes are returned as user data or as an ihandle, all other attributes are returned as strings.
To access attribute data always as user data use iup.GetAttributeData:

iup.GetAttributeData(ih: ihandle) -> value: userdata [in Lua]

Examples

Browse for Example Files

See Also

IupSetAttribute, IupSetAttributes, IupGetHandle, IupSetGlobal, IupGetGlobal

IupGetAllAttributes (Since 3.0)
Returns the names of all attributes of an element that are set in its internal hash table only.

Parameters/Return

int IupGetAllAttributes(Ihandle* ih, char** names, int max_n); [in C]
iup.GetAllAttributes(ih: ihandle[, max_n: number]) -> (names: table, n: number) [in Lua]

IUP - Portable User Interface 07-Jan-25

184/496

../attrib_guide.html
../../examples/
iupsetattribute.html
iupsetattributes.html
iupgethandle.html
iupsetglobal.html
iupgetglobal.html

ih: identifier of the interface element.
names: table receiving the names. Only the list of names need to be allocated. Each name will point to an internal string.
max_n: maximum number of names the table can receive. Can be omitted in Lua.

Returns: the actual number of names loaded to the table. If names==NULL or max_n==0 or -1 then returns the maximum number of
names.

See Also

IupGetAttribute, IupSetAttribute, IupSetAttributes

IupGetAttributes
Returns all attributes of a given element that are set in the internal hash table. The known attributes that are pointers (not strings) are
returned as integers.

The internal attributes are not returned (attributes prefixed with "_IUP").

Before calling this function the application must ensure that there is no pointer attributes set for that element, although all known pointers
attributes are handled.

This function should be avoided. Use IupGetAllAttributes instead.

Parameters/Return

char* IupGetAttributes (Ihandle *ih); [in C]
iup.GetAttributes(ih: ihandle) -> (ret: string) [in Lua]

ih: Identifier of the interface element.

Returns: a string with all attributes in the format: "NAME=VALUE, NAME="VALUE", ...".

See Also

IupGetAttribute, IupGetAllAttributes, IupSetAttribute, IupSetAttributes

IupCopyAttributes (since 3.26)
Copies all hash table attributes from one element to another.

Internal attributes or non string attributes are not copied.

Parameters/Return

void IupCopyAttributes(Ihandle* src_ih, Ihandle* dst_ih); [in C]
iup.CopyAttributes(src_ih, dst_ih: ihandle) [in Lua]

src_ih: identifier of the source element.
dst_ih: identifier of the destiny element.

See Also

IupGetClassAttributes, IupGetClassName, IupGetClassType, IupGetAllAttributes, IupCopyClassAttributes

IupGetAttributeHandle
Instead of using IupGetAttribute and IupGetHandle, this function directly returns the associated handle.

Parameters/Return

Ihandle* IupGetAttributeHandle(Ihandle *ih, const char *name); [in C]
Ihandle* IupGetAttributeHandleId(Ihandle *ih, const char *name, int id); [in C]
Ihandle* IupGetAttributeHandleId2(Ihandle *ih, const char *name, int lin, int col); [in C]
iup.GetAttributeHandleHandle(name: string) -> ih: ihandle [in Lua] (since 3.25)

ih: identifier of the interface element.
name: name of the attribute.
id, lin, col: used when the attribute has additional ids. (since 3.21)

Returns: the element with the associated name. The function will not check for inheritance since all the attributes that associate handles
are not inheritable.

IUP - Portable User Interface 07-Jan-25

185/496

iupgetattribute.html
iupsetattribute.html
iupsetattributes.html
iupgetattribute.html
iupgetallattributes.html
iupsetattribute.html
iupsetattributes.html
iupgetclassattributes.html
iupgetclassname.html
iupgetclasstype.html
iupgetallattributes.html
iupcopyclassattributes.html

See Also

IupSetAttributeHandle, IupSetAttribute, IupSetAttributes, IupSetHandle

IupSetGlobal
Sets an attribute in the global environment. If the driver process the attribute then it will not be stored internally.

Parameters/Return

void IupSetGlobal(const char *name, const char *value); [in C]
void IupSetStrGlobal(const char *name, const char *value); [in C]
iup.SetGlobal(name: string, value: string) [in Lua]

name: name of the attribute.
value: value of the attribute. If it equals NULL (nil in IupLua), the attribute will be removed.

Notes

IupSetGlobal can store only constant strings (like "Title", "30", etc) or application pointers. The given value is not duplicated as a string,
only a reference is stored. Therefore, you can store application custom attributes, such as a context structure to be used in a callback.

IupSetStrGlobal (old IupStoreGlobal) can only store strings. The given string value will be duplicated internally.

IupSetAttribute functions can also be used to set global attributes, just set the element to NULL.

See Also

IupGetGlobal, Global Attributes

IupGetGlobal
Returns an attribute value from the global environment. The value can be returned from the driver or from the internal storage.

Parameters/Return

char *IupGetGlobal(const char *name); [in C]
iup.GetGlobal(name: string) -> value: string [in Lua]

name: name of the attribute.

Returns: the attribute value. If the attribute does not exist, NULL (nil in Lua) is returned.

Notes

This function’s return value is not necessarily the same one used by the application to set the attribute’s value.

The returned value is not necessarily the same pointer used by the application to define the attribute value. The pointers of internal IUP
attributes returned by IupGetGlobal should never be freed or changed, except when it is a custom application pointer that was stored
using IupSetGlobal and allocated by the application.

 The returned pointer can be used safely even if IupGetGlobal or IupGetAttribute are called several times. But not too many times,
because it is an internal buffer and after IUP may reuse it after around 50 calls.

IupGetAttribute can also be used to get global attributes, just set the element to NULL.

See Also

 IupSetGlobal, Global Attributes

IupStringCompare (since 3.17)
Utility function to compare strings lexicographically. Used internally in IupMatrixEx when sorting, but available in the main library.

This means that numbers and text in the string are sorted separately (for ex: A1 A2 A11 A30 B1). Also natural alphabetic order is used:
123...aAáÁ...bBcC... The comparison will work only for Latin-1 characters, even if UTF8MODE is Yes.

Parameters/Return

int IupStringCompare(const char* str1, const char* str2, int casesensitive, int lexicographic); [in C]

IUP - Portable User Interface 07-Jan-25

186/496

iupsetattributehandle.html
iupsetattribute.html
iupsetattributes.html
iupsethandle.html
iupsetattribute.html
iupgetglobal.html
../attrib/iup_globals.html
iupgetattribute.html
iupsetglobal.html
../attrib/iup_globals.html

iup.StringCompare(str1, str2: string[, casesensitive, lexicographic: number]) -> ret: integer [in Lua]

str1 and str2: strings to be compared.
casesensitive: flag to enable case sensitive compare. Can be 0 (disable) or 1 (enable). In Lua the default value is 0.
lexicographic: flag to enable lexicographic compare. Can be 0 (disable) or 1 (enable). When disabled the compare will only return if the
strings are equal (0) or different (1). In Lua the default value is 1.

Returns: 0 if str1 == str2, -1 if str1<str2, 1 if str1 > str2 (same return values of the strcmp function).

Notes

The Alphanum Algorithm is discussed at http://www.DaveKoelle.com/alphanum.html.

This implementation is Copyright (c) 2008 Dirk Jagdmann <doj@cubic.org>. It is a cleanroom implementation of the algorithm and not
derived by other's works. In contrast to the versions written by Dave Koelle this source code is distributed with the libpng/zlib license.

The IUP implementation is based on the "alphanum.hpp" code downloaded from the Dave Koelle page and implemented by Dirk
Jagdmann. It was modified to the C language and simplified to IUP needs.

See Also

IupMatrixEx

ACTIVE
Activates or inhibits user interaction.

Value

"YES" (active), "NO" (inactive).

Default: "YES"

Notes

An interface element is only active if its native parent is also active.

ACTIVE can also be set for controls that do not have user interaction because they may have a visual feedback to indicate the inactive
state.

In GTK and Motif the inactive dialogs will still be able to move, resize and change their Z-order. Although their contents will be inactive,
keyboard will be disabled, and they can not be closed from the close box.

Affects

All controls that have visual representation.

BGCOLOR
Element’s background color.

Value

The RGB or RGBA components, in the format "R G B A".

Values should be between 0 and 255, separated by a blank space. For example "255 0 128", red=255 blue=0 green=128.

Alpha is optional and assumed to be 255 if not specified. But it is only supported in custom controls drawn by IUP, example IupGauge,
IupDial, all IupFlat* controls, and only when using OpenGL, Cairo or Direct2D draw drivers. It is never supported when using X11, GDI or
GDK draw drivers.

Default: It is the value of the DLGBGCOLOR or TXTBGCOLOR global attributes. TXTBGCOLOR is used on IupText, IupList, IupTree and
IupScintilla (Usually is "255 255 255" - white.). On some controls if not defined will inherit the background of the native parent.

Hexadecimal notation in the format "#RRGGBB" is also accepted in all color attributes. For example, "255 0 128" can also be written as
"#FF0080".

Affects

All controls that have visual representation, but with some restrictions.

Several controls have transparent parts that are not affected by the BGCOLOR.

See also the screenshots of the sample.c results with normal background, changing the dialog BACKGROUND, the dialog BGCOLOR and

IUP - Portable User Interface 07-Jan-25

187/496

http://www.davekoelle.com/alphanum.html
mailto:doj@cubic.org
../ctrl/iupmatrixex.html
../../examples/C/sample.c
../sample_results.html
../sample_results_background.html
../sample_results_bgcolor.html

the children BGCOLOR.

See Also

FGCOLOR, DLGBGCOLOR

FGCOLOR
Element’s foreground color. Usually it is the color of the associated text.

Value

The RGB or RGBA components, in the format "R G B A".

Values should be between 0 and 255, separated by a blank space. For example "255 0 128", red=255 blue=0 green=128.

Alpha is optional and assumed to be 255 if not specified. But it is only supported in custom controls drawn by IUP, example IupGauge,
IupDial, all IupFlat* controls, and only when using OpenGL, Cairo or Direct2D draw drivers. It is never supported when using X11, GDI or
GDK draw drivers.

Default: It is the value of the DLGFGCOLOR or TXTFGCOLOR global attribute. TXTFGCOLOR is used on IupText, IupList, IupTree and
IupScintilla. Usually is "0 0 0" - black.

Hexadecimal notation in the format "#RRGGBB" is also accepted in all color attributes. For example, "255 0 128" can also be written as
"#FF0080".

Affects

All controls that have visual representation.

See Also

BGCOLOR

FONT
Character font of the text shown in the element. Although it is an inheritable attribute, it is defined only on elements that have a native
representation, but other elements are affected because it affects the SIZE attribute.

Value

Font description containing typeface, style and size. Default: the global attribute DEFAULTFONT.

The common format definition is similar to the the Pango library Font Description, used by GTK+. It is defined as having 3 parts: ", ".

Font face is the font face name, and can be any name. Although only names recognized by the system will be actually used. The names
Helvetica, Courier and Times are always accepted in all systems.

The supported font style is a combination of: Bold, Italic, Underline and Strikeout. The Pango format include many other definitions
not supported by the common format, they are supported only by the GTK driver. Unsupported values are simply ignored. The names
must be in the same case describe here.

Font size is in points (1/72 inch) or in pixels (using negative values).

Returned values will be the same value when changing the attribute, except for the old font names that will be converted to the new
common format definition.

Windows

The DEFAULTFONT is retrieved from the System Settings (see below), if this failed then "Tahoma, 10" for Windows XP, or "Segoe UI, 9"
since Windows Vista, is assumed.

The native handle can be obtained using the "HFONT" attribute.

In "Control Panel", open the "Display Properties" then click on "Advanced" and select "Message Box" and change its Font to affect the
default font for applications. In Vista go to "Window Color and Appearance", then "Open Classic Appearance", then Advanced.

Motif

The DEFAULTFONT is retrieved from the user resource file (see below), if failed then "Fixed, 11" is assumed.

The X-Windows Logical Font Description format (XLFD) is also supported.

IUP - Portable User Interface 07-Jan-25

188/496

../sample_results_bgcolor_indiv.html
iup_fgcolor.html
iup_globals.html#DLGBGCOLOR
iup_bgcolor.html
iup_size.html
http://www.pango.org/

The native handle can be obtained using the "XMFONTLIST" and "XFONTSTRUCT" attributes. The selected X Logical Font Description
string can be obtained from the attribute "XLFD".

You can use the xfontsel program to obtain a string in the X-Windows Logical Font Description format (XLFD). Noticed that the first size
entry of the X-Windows font string format (pxlsz) is in pixels and the next one (ptSz) is in deci-points (multiply the value in points by
10).

Be aware that the resource files ".Xdefaults" and "Iup" in the user home folder can affect the default font and many others visual
appearance features in Motif.

GTK

The DEFAULTFONT is retrieved from the style defined by GNOME (see below), if failed "Sans, 10" is assumed.

The X-Windows Logical Font Description format (XLFD) is also supported.

The native handle can be obtained using the "PANGOFONTDESC" attribute.

Font face can be a list of fonts face names in GTK. For example "Arial,Helvetica, 12". Not accepted in the other drivers.

Style can also be a combination of: Small-Caps, [Ultra-Light|Light|Medium|Semi-Bold|Bold|Ultra-Bold|Heavy], [Ultra-Condensed|Extra-
Condensed|Condensed|Semi-Condensed|Semi-Expanded|Expanded|Extra-Expanded|Ultra-Expanded]. Those values can be used only
when the string is a full Pango compliant font, i.e. no underline, no strikeout and size>0.

In GNOME, go to the "Appearance Preferences" tool, then in the Fonts tab change the Applications Font to affect the default font.

Examples:

"Times, Bold 18"
"Arial, 24" (no style)
"Courier New, Italic Underline -30" (size in pixels)

Affects

All elements, since the SIZE attribute depends on the FONT attribute, except for menus.

Notes

When FONT is changed and SIZE is set, then RASTERSIZE is also updated.

Since font face names are not a standard between Windows, Motif and GTK, a few names are specially handled to improve application
portability. If you want to use names that work for all systems we recommend using: Courier, Times and Helvetica (same as Motif). Those
names always have a native system name equivalent. If you use those names IUP will automatically map to the native system equivalent.
See the table below:

Recommended/Motif Windows GTK Description

Helvetica Arial Sans without serif, variable spacing

Courier Courier New Monospace with serif, fixed spacing

Times Times New Roman Serif with serif, variable spacing

Auxiliary Attributes

They will change the FONT attribute, and depends on it. They are used only to set partial FONT parameters of style and size. To do that
the FONT attribute is parsed, changed and updated to the new value in the common format definition. This means that if the attribute was
set in X-Windows format or in the old Windows and IUP formats, the previous value will be replaced by a new value in the common
format definition. Pango additional styles will also be removed.

FONTSTYLE (non inheritable)

Replaces or returns the style of the current FONT attribute. Since font styles are case sensitive, this attribute is also case sensitive.

FONTSIZE (non inheritable)

Replaces or returns the size of the current FONT attribute.

FONTFACE (non inheritable)

Replaces or returns the face name of the current FONT attribute.

CHARSIZE (read-only, non inheritable)

IUP - Portable User Interface 07-Jan-25

189/496

iup_size.html
iup_rastersize.html

Returns the average character size of the current FONT attribute. This is the factor used by the SIZE attribute to convert its units to pixels.

FOUNDRY [Motif Only] (non inheritable)

Allows to select a foundry for the FONT being selected. Must be set before setting the FONT attribute.

Encoding

The number that represents each character is dependent on the encoding used. For example, in ASCII encoding the letter A has code 65,
but codes above 128 can be very different according to the encoding. An encoding is defined by a charset.

IUP uses the default locale in ANSI-C. This means that it does not adopts a specific charset, and so the results can be different if the
developer charset is different than the run time charset where the user is running the application. For example, if the developer is using a
charset, and its user is also using the same encoding, then everything will work fine without the need of text encoding conversions. The
advantage is that any charset can be used, and localization is usually done in that way.

Since version 3.9, IUP supports also the UTF-8 (ISO10646-1) encoding in the GTK and Windows drivers. To specify a string in UTF-8
encoding set the global attribute "UTF8MODE" to "Yes".

ISO8859-1 and Windows-1252 Displayable Characters

The Latin-1 charset (ISO8859-1) defines an encoding for all of the characters used in Western languages. It is the most common
encoding, besides UTF-8.

The first half of Latin-1 is standard ASCII (128 characters), while the second half (with the highest bit set) contains accented characters
needed for Western languages other than English. In Windows, the ISO8859-1 charset was changed, and some control characters were
replaced to include more display characters, this new charset is named Windows-1252 (these characters are marked in the table below
with thick borders).

32

!

33

"

34

#

35

$

36

%

37

&

38

'

39

(

40

)

41

*

42

+

43

,

44

-

45

.

46

/

47

0

48

1

49

2

50

3

51

4

52

5

53

6

54

7

55

8

56

9

57

:

58

;

59

<

60

=

61

>

62

?

63

@

64

A

65

B

66

C

67

D

68

E

69

F

70

G

71

H

72

I

73

J

74

K

75

L

76

M

77

N

78

O

79

P

80

Q

81

R

82

S

83

T

84

U

85

V

86

W

87

X

88

Y

89

Z

90

[

91

\

92

]

93

^

94

_

95

`

96

a

97

b

98

c

99

d

100

e

101

f

102

g

103

h

104

i

105

j

106

k

107

l

108

m

109

n

110

o

111

p

112

q

113

r

114

s

115

t

116

u

117

v

118

w

119

x

120

y

121

z

122

{

123

|

124

}

125

~

126 127

€

128

129

‚

130

ƒ

131

„

132

…

133

†

134

‡

135

ˆ

136

‰

137

Š

138

‹

139

Œ

140

141

Ž

142

143

144

‘

145

’

146

“

147

”

148

•

149

–

150

—

151

˜

152

™

153

š

154

›

155

œ

156

157

ž

158

Ÿ

159

160

¡

161

¢

162

£

163

¤

164

¥

165

¦

166

§

167

¨

168

©

169

ª

170

«

171

¬

172 173

®

174

¯

175

°

176

±

177

²

178

³

179

´

180

µ

181

¶

182

·

183

¸

184

¹

185

º

186

»

187

¼

188

½

189

¾

190

¿

191

À

192

Á

193

Â

194

Ã

195

Ä

196

Å

197

Æ

198

Ç

199

È

200

É

201

Ê

202

Ë

203

Ì

204

Í

205

Î

206

Ï

207

Ð

208

Ñ

209

Ò

210

Ó

211

Ô

212

Õ

213

Ö

214

×

215

Ø

216

Ù

217

Ú

218

Û

219

Ü

220

Ý

221

Þ

222

ß

223

à

224

á

225

â

226

ã

227

ä

228

å

229

æ

230

ç

231

è

232

é

233

ê

234

ë

235

ì

236

í

237

î

238

ï

239

ð

240

ñ

241

ò

242

ó

243

ô

244

õ

245

ö

246

÷

247

ø

248

ù

249

ú

250

û

251

ü

252

ý

253

þ

254

ÿ

255

 Punctuation and Symbols

IUP - Portable User Interface 07-Jan-25

190/496

iup_globals.html#UTF8MODE

 Numbers

 Letters

 Accented

Adapted from http://en.wikipedia.org/wiki/Windows-1252.

UTF-8

"Universal character set Transformation Format - 8 bits" is part of the Unicode standard that is used in most modern Web applications and
it is becoming widely used in desktop applications too.

It allows the application to use a regular "char*" for strings, but it is a variable width encoding, meaning that a single character may have
up to four bytes in sequence. And the code "\0" is still used as a string terminator (NULL). So all the regular strstr, strcmp, strlen,
strcpy and strcat functions will work normally, except strchr because it will search only for 1 byte characters. Notice that strlen will
return the number of bytes, not the number of multi-byte charcters. And strcmp will compare byte encodings.

The first 128 characters of Unicode, which correspond one-to-one with ASCII, are encoded using a single octet with the same binary value
as ASCII, making valid ASCII text valid UTF-8-encoded Unicode as well. If the highest bit is 1 then one to three more bytes will follow to
the define the actual character encoding. The number of bytes following is determined by the number of bits set to 1 after the highest bit.

The next 1920 characters need two bytes to encode. This covers the remainder of almost all Latin-derived alphabets, and also
Greek, Cyrillic, Coptic, Armenian, Hebrew, Arabic, Syriac and Tāna alphabets, as well as Combining Diacritical Marks. Three bytes are
needed for characters in the rest of the Basic Multilingual Plane (which contains virtually all characters in common use[11]). Four bytes are
needed for characters in the other planes of Unicode, which include less common CJK characters and various historic scripts and
mathematical symbols.

The bytes 0xFE and 0xFF do not appear, so a valid UTF-8 string can cannot be confused with an UTF-16 sequence.

The second half (128-255) of the Latin-1 charset characters found in the previous table, are called "Latin-1 Supplement" in the Unicode
standard. They all have two bytes, except some of the additional Windows 1252 characters. And they have the following encoding in UTF-
8 (codes in hexadecimal):

€

E2 82
AC

 ‚

E2 80
9A

ƒ

C6 92

„

E2 80
9E

…

E2 80
A6

†

E2 80
A0

‡

E2 80
A1

ˆ

CB
86

‰

E2 80
B0

Š

C5
A0

‹

E2 80
B9

Œ

C5
92

Ž

C5
BD

‘

E2 80
98

’

E2 80
99

“

E2 80
9C

”

E2 80
9D

•

E2 80
A2

–

E2 80
93

—

E2 80
94

˜

CB
9C

™

E2 84
A2

š

C5
A1

›

E2 80
BA

œ

C5
93

ž

C5
BE

Ÿ

C5
B8

C2 A0

¡

C2 A1

¢

C2 A2

£

C2 A3

¤

C2 A4

¥

C2 A5

¦

C2 A6

§

C2 A7

¨

C2
A8

©

C2 A9

ª

C2
AA

«

C2 AB

¬

C2
AC

C2
AD

®

C2
AE

¯

C2
AF

°

C2 B0

±

C2 B1

²

C2 B2

³

C2 B3

´

C2 B4

µ

C2 B5

¶

C2 B6

·

C2 B7

¸

C2
B8

¹

C2 B9

º

C2
BA

»

C2 BB

¼

C2
BC

½

C2
BD

¾

C2
BE

¿

C2
BF

À

C3 80

Á

C3 81

Â

C3 82

Ã

C3 83

Ä

C3 84

Å

C3 85

Æ

C3 86

Ç

C3 87

È

C3
88

É

C3 89

Ê

C3
8A

Ë

C3 8B

Ì

C3
8C

Í

C3
8D

Î

C3
8E

Ï

C3
8F

Ð

C3 90

Ñ

C3 91

Ò

C3 92

Ó

C3 93

Ô

C3 94

Õ

C3 95

Ö

C3 96

×

C3 97

Ø

C3
98

Ù

C3 99

Ú

C3
9A

Û

C3 9B

Ü

C3
9C

Ý

C3
9D

Þ

C3
9E

ß

C3
9F

à

C3 A0

á

C3 A1

â

C3 A2

ã

C3 A3

ä

C3 A4

å

C3 A5

æ

C3 A6

ç

C3 A7

è

C3
A8

é

C3 A9

ê

C3
AA

ë

C3 AB

ì

C3
AC

í

C3
AD

î

C3
AE

ï

C3
AF

ð

C3 B0

ñ

C3 B1

ò

C3 B2

ó

C3 B3

ô

C3 B4

õ

C3 B5

ö

C3 B6

÷

C3 B7

ø

C3
B8

ù

C3 B9

ú

C3
BA

û

C3 BB

ü

C3
BC

ý

C3
BD

þ

C3
BE

ÿ

C3
BF

Adapted from http://en.wikipedia.org/wiki/UTF-8

THEME/NTHEME (since 3.26)

IUP - Portable User Interface 07-Jan-25

191/496

http://en.wikipedia.org/wiki/Windows-1252
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Latin-derived_alphabet
http://en.wikipedia.org/wiki/Greek_alphabet
http://en.wikipedia.org/wiki/Cyrillic_script
http://en.wikipedia.org/wiki/Coptic_alphabet
http://en.wikipedia.org/wiki/Armenian_alphabet
http://en.wikipedia.org/wiki/Hebrew_alphabet
http://en.wikipedia.org/wiki/Arabic_alphabet
http://en.wikipedia.org/wiki/Syriac_alphabet
http://en.wikipedia.org/wiki/T?na
http://en.wikipedia.org/wiki/Combining_Diacritical_Marks
http://en.wikipedia.org/wiki/Mapping_of_Unicode_character_planes
http://en.wikipedia.org/wiki/UTF-8#cite_note-unicode-ch02-bmp-11
http://en.wikipedia.org/wiki/Mapping_of_Unicode_characters
http://en.wikipedia.org/wiki/CJK_characters
http://en.wikipedia.org/wiki/UTF-8

Applies a set of attributes to a control. The THEME attribute in inheritable and the NTHEME attribute is NOT inheritable.

Value

Name of an IupUser element that contains the attributes. The name is associated in C using IupSetHandle. The name association must be
done before setting the attribute.

Notes

All attributes in the theme must be strings.

Only attributes that are registered in the element will receive its theme value.

Attributes that are registered as not being strings, read-only, write-only or callbacks will NOT be applied.

The theme can contain an specialized sub-theme for the element class. The element class name will be used with a "IUP" prefix to identify
the sub-theme. For instance, if the element is a label, then an attribute called "IUPLABEL" can point to anohter theme name to be applied
at the element additionally to the already applied attributes.

The global attribute DEFAULTTHEME can be applied to all elements during creation.

Affects

All controls.

See Also

IupUser

VISIBLE
Shows or hides the element.

Value

"YES" (visible), "NO" (hidden).

Default: "YES"

Notes

An interface element is only visible if its native parent is also visible.

Affects

All controls that have visual representation, except menus.

CLIENTSIZE (read-only*) (non inheritable) (since 3.0)
Returns the client area size of a container. It is the space available for positioning and sizing children, see the Layout Guide. It is the
container Current size excluding the decorations (if any).

Value

"widthxheight", where width and height are integer values corresponding to the horizontal and vertical size, respectively, in pixels. If both
values are 0 then "0x0" is returned.

Affects

All elements that are containers, except menus.

Notes

(*) For IupDialog is NOT read-only, and it will re-define RASTERSIZE by adding the decorations to the given Client size. (Since 3.3)

For IupHbox, IupVbox and IupGridBox it consider the MARGIN attribute as a decoration.

For IupSplit returns the total area available for the two children.

See Also

IUP - Portable User Interface 07-Jan-25

192/496

../func/iupsethandle.html
iup_globals.html#DEFAULTTHEME
../elem/iupuser.html
../layout_guide.html

SIZE, RASTERSIZE, CLIENTOFFSET

CLIENTOFFSET (read-only) (non inheritable) (since 3.3)
Returns the native container internal offset to the Client area, see the Layout Guide. Useful for IupFrame, IupTabs and IupDialog that
have decorations. Can also be consulted in other containers, it will simply return "0x0".

This attribute can be used in conjunction with the POSITION attribute of a child so the coordinates of a child relative to the native parent
top-left corner can be obtained.

Value

"dxxdy", where dx and dy are integer values corresponding to the horizontal and vertical offsets, respectively, in pixels.

Affects

All elements that are containers, except menus.

Notes

In GTK and Motif, for the IupDialog, the dy value is negative when there is a menu. This occurs because in those systems the menu is
placed inside the Client Area and all children must be placed below the menu. In Windows it will return 0x0, except when
CUSTOMFRAMEDRAW is used.

In Windows, for the IupFrame, the value is always "0x0" the position of the child is still relative to the top-left corner of the frame. This
is automatically compensated in calculation of the POSITION attribute.

See Also

SIZE, RASTERSIZE, CLIENTSIZE, POSITION

EXPAND (non inheritable*)
Allows the element to expand, fulfilling empty spaces inside its container.

It is a non inheritable attribute, but a container inherit its parents EXPAND attribute. In other words, although EXPAND is non inheritable,
it is inheritable for containers. So if you set it at a container it will not affect its children, except for those who are containers.

The expansion is done equally for all expandable elements in the same container.

For a container, the actual EXPAND value will be always a combination of its own value and the value of its children. In the sense that a
container can only expand if its children can expand too in the same direction.

The HORIZONTALFREE and VERTICALFREE values will not behave as normal expansion. These values will NOT affect the expansion of
the container when set at its children, the children will simply expand to the available free space at the container. (Since 3.11)

See the Layout Guide for more details on sizes.

Value

"YES" (both directions), "HORIZONTAL", "VERTICAL", "HORIZONTALFREE", "VERTICALFREE" or "NO".

Default: "NO". For containers the default is "YES".

Affects

All elements, except menus.

MAXSIZE (non inheritable) (since 3.0)
Specifies the element maximum size in pixels during the layout process.

See the Layout Guide for more details on sizes.

Value

"widthxheight", where width and height are integer values corresponding to the horizontal and vertical size, respectively, in pixels.

You can also set only one of the parameters by removing the other one and maintaining the separator "x", but this is equivalent of setting
the other value to 65535. For example: "x40" (height only = "65535x40") or "40x" (width only = "40x65535").

Default: 65535x65535

IUP - Portable User Interface 07-Jan-25

193/496

iup_size.html
iup_rastersize.html
iup_clientoffset.html
../layout_guide.html
iup_size.html
iup_rastersize.html
iup_clientsize.html
iup_position.html
../layout_guide.html
../layout_guide.html

Affects

All, except menus.

Notes

The limits are applied during the layout computation. It will limit the Natural size and the Current size.

If the element can be expanded, then its empty space will NOT be occupied by other controls although its size will be limited.

In the IupDialog will also limit the interactive resize of the dialog.

See the Layout Guide for mode details on sizes.

See Also

RASTERSIZE, MINSIZE

MINSIZE (non inheritable) (since 3.0)
Specifies the element minimum size in pixels during the layout process.

See the Layout Guide for more details on sizes.

Value

"widthxheight", where width and height are integer values corresponding to the horizontal and vertical size, respectively, in pixels.

You can also set only one of the parameters by removing the other one and maintaining the separator "x", but this is equivalent of setting
the other value to 0. For example: "x40" (height only = "0x40") or "40x" (width only = "40x0").

Default: 0x0

Affects

All, except menus.

Notes

The limits are applied during the layout computation. It will limit the Natural size and the Current size.

If the element can be expanded, then its empty space will NOT be occupied by other controls although its size will be limited.

In the IupDialog will also limit the interactive resize of the dialog.

See the Layout Guide for mode details on sizes.

See Also

RASTERSIZE, MAXSIZE

NATURALSIZE (non inheritable, read-only)
Returns the element last computed Natural size in pixels. If both values are 0 then NULL is returned.

See the Layout Guide for more details on sizes.

Value

"widthxheight", where width and height are integer values corresponding to the horizontal and vertical size, respectively, in pixels.

See Also

SIZE, RASTERSIZE

RASTERSIZE (non inheritable)
Specifies the element User size, and returns the Current size, in pixels.

See the Layout Guide for more details on sizes.

Value

IUP - Portable User Interface 07-Jan-25

194/496

../layout_guide.html
iup_rastersize.html
iup_minsize.html
../layout_guide.html
../layout_guide.html
iup_rastersize.html
iup_maxsize.html
../layout_guide.html
iup_size.html
iup_rastersize.html
../layout_guide.html

"widthxheight", where width and height are integer values corresponding to the horizontal and vertical size, respectively, in pixels.

You can also set only one of the parameters by removing the other one and maintaining the separator "x", but this is equivalent of setting
the other value to 0. For example: "x40" (height only = "0x40") or "40x" (width only = "40x0").

When this attribute is consulted the Current size of the control is returned. If both values are 0 then NULL is returned.

Affects

All, except menus.

Notes

When this attribute is set, it resets the SIZE attribute. So changes to the FONT attribute will not affect the User size of the element.

To obtain the last computed Natural size of the control in pixels, use the read-only attribute NATURALSIZE. (Since 3.6)

To obtain the User size of the element in pixels after it is mapped, use the attribute USERSIZE. (Since 3.12)

A User size of "0x0" can be set, it can also be set using NULL. If both values are 0 then NULL is returned.

If you wish to use the User size only as an initial size, change this attribute to NULL after the control is mapped, the returned size in
IupGetAttribute will still be the Current size.

The element is NOT immediately repositioned. Call IupRefresh to update the dialog layout.

IupMap also updates the dialog layout even if it is already mapped, so calling it or calling IupShow, IupShowXY or IupPopup (they
all call IupMap) will also update the dialog layout.

See the Layout Guide for mode details on sizes.

See Also

SIZE, FONT

SIZE (non inheritable)
Specifies the element User size, and returns the Current size, in units proportional to the size of a character.

See the Layout Guide for more details on sizes.

Value

"widthxheight", where width and height are integer values corresponding to the horizontal and vertical size, respectively, in characters
fraction unit (see Notes below).

You can also set only one of the parameters by removing the other one and maintaining the separator "x", but this is equivalent of setting
the other value to 0. For example: "x40" (height only = "0x40") or "40x" (width only = "40x0").

When this attribute is consulted the Current size of the control is returned. If both values are 0 then NULL is returned.

Notes

The size units observes the following heuristics:

Width in 1/4's of the average width of a character for the current FONT of each control.
Height in 1/8's of the average height of a character for the current FONT of each control.

So, a SIZE="4x8" means 1 character width and 1 character height.

Notice that this is the average character size, the space occupied by a specific string is always different than its number of character times
its average character size, except when using a monospaced font like Courier. Usually for common strings this size is smaller than the
actual size, so it is a good practice to leave more room than expected if you use the SIZE attribute. For smaller font sizes this difference is
more noticeable than for larger font sizes.

When this attribute is changed, the RASTERSIZE attribute is automatically updated.

SIZE depends on FONT, so when FONT is changed and SIZE is set, then RASTERSIZE is also updated.

The average character size of the current FONT can be obtained from the CHARSIZE attribute.

To obtain the last computed Natural size of the element in pixels, use the read-only attribute NATURALSIZE. (Since 3.6)

To obtain the User size of the element in pixels after it is mapped, use the attribute USERSIZE. (Since 3.12)

IUP - Portable User Interface 07-Jan-25

195/496

iup_size.html
iup_font.html
iup_naturalsize.html
../layout_guide.html
iup_size.html
iup_font.html
../layout_guide.html
iup_rastersize.html
iup_font.html
iup_font.html#CHARSIZE
iup_naturalsize.html

A User size of "0x0" can be set, it can also be set using NULL. If both values are 0 then NULL is returned.

If you wish to use the User size only as an initial size, change this attribute to NULL after the control is mapped, the returned size in
IupGetAttribute will still be the Current size.

The element is NOT immediately repositioned. Call IupRefresh to update the dialog layout.

IupMap also updates the dialog layout even if it is already mapped, so calling it or calling IupShow, IupShowXY or IupPopup (they
all call IupMap) will also update the dialog layout.

See the Layout Guide for mode details on sizes.

Affects

All, except menus.

See Also

FONT, RASTERSIZE, IupRefresh

FLOATING (non inheritable) (since 3.0)
If an element has FLOATING=YES then its size and position will be ignored by the layout processing in IupVbox, IupHbox and
IupZbox. But the element size and position will still be updated in the native system allowing the usage of SIZE/RASTERSIZE and
POSITION to manually position and size the element. And must ensure that the element will be on top of other using ZORDER, if there is
overlap.

This is useful when you do not want that an invisible element to be computed in the box size.

If the value IGNORE is used then it will behave as YES, but also it will not update the the size and position in the native system. (since
3.3)

Value

"YES", "IGNORE" (since 3.3) or "NO".

Default: "NO".

Affects

All elements, except menus.

See Also

IupZbox, IupVBox, IupHBox

POSITION (non inheritable)
The position of the element relative to the origin of the Client area of the native parent. If you add the CLIENTOFFSET attribute of the
native parent, you can obtain the coordinates relative to the Window area of the native parent. See the Layout Guide.

It will be changed during the layout computation, except when FLOATING=YES or when used inside a concrete layout container.

Value

"x,y", where x and y are integer values corresponding to the horizontal and vertical position, respectively, in pixels.

Affects

All, except menus.

See Also

SIZE, RASTERSIZE, FLOATING, CLIENTOFFSET

SCREENPOSITION/X/Y (read-only) (non inheritable) (since 3.4)
Returns the absolute horizontal and/or vertical position of the top-left corner of the client area relative to the origin of the main screen in
pixels. It is similar to POSITION but relative to the origin of the main screen, instead of the origin of the client area. The origin of the
main screen is at the top-left corner, in Windows it is affected by the position of the Start Menu when it is at the top or left side of the
screen.

IUP - Portable User Interface 07-Jan-25

196/496

../layout_guide.html
iup_font.html
iup_rastersize.html
../func/iuprefresh.html
iup_size.html
iup_rastersize.html
iup_position.html
iup_zorder.html
../elem/iupzbox.html
../elem/iupvbox.html
../elem/iuphbox.html
../layout_guide.html
iup_size.html
iup_rastersize.html
iup_floating.html
iup_clientoffset.html

IMPORTANT: For the dialog, it is the position of the top-left corner of the window, NOT the client area. It is the same position used
in IupShowXY and IupPopup. In GTK, if the dialog is hidden the values can be outdated.

Value

"x,y", where x and y are integer values corresponding to the horizontal and vertical position, respectively, in pixels. When X or Y are used
a single value is returned.

Affects

All controls that have visual representation.

See Also

POSITION

NAME (non inheritable) (since 3.0)
Name of the control inside the dialog. Not releated to IupSetHandle.

Value

Text.

Notes

The NAME value will be used by IupGetDialogChild to find a child inside a dialog.

Affects

All controls.

See Also

IupGetDialogChild

TIP (non inheritable)
Text to be shown when the mouse lies over the element.

Value

Text.

Additional Tip Attributes (since 3.0)

These attributes affect the TIP display.

TIPBALLOON [Windows Only]: The tip window will have the appearance of a cartoon "balloon" with rounded corners and a stem
pointing to the item. Default: NO.

TIPBALLOONTITLE [Windows Only]: When using the balloon format, the tip can also has a title in a separate area.

TIPBALLOONTITLEICON [Windows Only]: When using the balloon format, the tip can also has a pre-defined icon in the title area.
Values can be:

"0" - No icon (default)
"1" - Info icon
"2" - Warning icon
"3" - Error Icon

TIPBGCOLOR [Windows and Motif Only]: The tip background color. Default: "255 255 225" (Light Yellow)

TIPDELAY [Windows and Motif Only]: Time the tip will remain visible. Default: "5000". In Windows the maximum value is 32767
milliseconds.

TIPFGCOLOR [Windows and Motif Only]: The tip text color. Default: "0 0 0" (Black)

TIPFONT [Windows and Motif Only]: The font for the tip text. If not defined the font used for the text is the same as the FONT attribute
for the element. If the value is SYSTEM then, no font is selected and the default system font for the tip will be used.

TIPICON [GTK only]: name of an image to be displayed in the TIP. See IupImage. (GTK 2.12)

IUP - Portable User Interface 07-Jan-25

197/496

../func/iupshowxy.html
../func/iuppopup.html
iup_position.html
../func/iupsethandle.html
../func/iupgetdialogchild.html
../func/iupgetdialogchild.html
../elem/iupimage.html

TIPMARKUP [GTK only]: allows the tip string to contains Pango markup commands. Can be "YES" or "NO". Default: "NO". Must be set
before setting the TIP attribute. (GTK 2.12)

TIPRECT (non inheritable): Specifies a rectangle inside the element where the tip will be activated. Format: "%d %d %d %d"="x1 y1 x2
y2". Default: all the element area. (GTK 2.12)

TIPVISIBLE: Shows or hides the tip under the mouse cursor. Use values "YES" or "NO". Returns the current visible state. (GTK 2.12)
(since 3.5)

Additional Tip Callbacks (since 3.5)

TIPS_CB: Action before a tip is displayed.

int funcion(Ihandle* ih, int x, int y); [in C]
elem:action(x, y: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
x, y: cursor position relative to the top-left corner of the element

Affects

All controls that have visual representation, except menus.

TITLE (non inheritable)
Element’s title. It is often used to modify some static text of the element (which cannot be changed by the user).

Value

Text.

Default: ""

Notes

The '\n' character usually is accepted for line change (except for menus).

The "&" character can be used to define a MNEMONIC, use "&&" to show the "&" character instead on defining a mnemonic.

If a mnemonic is defined then the character relative to it is underlined and a key is associated so that when pressed together with the Alt
key activates the control.

In GTk, if you define a mnemonic using "&" and the string has an underscore, then make sure that the mnemonic comes before the
underscore.

In GTK, if the MARKUP attribute is defined then the title string can contains pango markup commands. Works only if a mnemonic is NOT
defined in the title. Not valid for menus.

Affects

All elements with an associated text.

See Also

FONT

VALUE (non inheritable)
Affects several elements differently - that is, its behavior is element dependent. It is often used to change the control's main value, such as
the text of a IupText.

For the IupRadio and IupZbox, elements, which are categorized as composition elements, this attribute represents the element "selected"
among the others in the designed composition. To change this attribute in such cases, different mechanisms are necessary according to
the programming environment used. When the elements taking part in a composition were created in C, this attribute's contents is a name
that must be defined by the IupSetHandle function. When the elements were created in Lua, this attribute's contents is the name of a
variable - more precisely, the one receiving the return from the function that created the element you wish to select. In LED it is not
possible to dynamically change the value of any attribute, so the elements created in this environment must be identified and manipulated
in C by means of their identifying name.

WID (read-only) (non inheritable)
Element identifier in the native interface system.

IUP - Portable User Interface 07-Jan-25

198/496

iup_font.html
../elem/iuptext.html
../elem/iupradio.html
../elem/iupzbox.html
../func/iupsethandle.html

Value

In Motif, returns the Widget handle.

In Windows, returns the HWND handle.

In GTK, return the GtkWidget* handle.

Notes

Verification-only attribute, available after the control is mapped.

For elements that do not have a native representation, NULL is returned.

Affects

All.

ZORDER (write-only) (non inheritable)
Change the ZORDER of a dialog or control. It is commonly used for dialogs, but it can be used to control the z-order of controls in a
dialog.

Value

Can be "TOP" or "BOTTOM".

Affects

All controls that have visual representation.

DRAG & DROP (since 3.6)
When enabled allow the use of callbacks for controlling the drag and drop handling.

The user starts a drag and drop transfer by pressing the mouse button over the data (Windows and GTK: left button; Motif: middle
button) which is referred to as the drag source. The data can be dropped in any location that has been registered as a drop target. The
drop occurs when the user releases the mouse button. This can be done inside a control, from one control to another in the same dialog,
in different dialogs of the same application, or between different applications (the other application does NOT need to be implemented
with IUP).

In IUP, a drag and drop transfer can result in the data being moved or copied. A copy operation is enabled with the CTRL key pressed. A
move operation is enabled with the SHIFT key pressed. A move operation will be possible only if the attribute DRAGSOURCEMOVE is
Yes. When no key is pressed the default operation is copy when DRAGSOURCEMOVE=No and move when DRAGSOURCEMOVE=Yes.
The user can cancel a drag at any time by pressing the ESCAPE key.

Steps to use the Drag & Drop support in an IUP application:

AT SOURCE:
Enable the element as source using the attribute DRAGSOURCE=YES;
Define the data types supported by the element for the drag operation using the DRAGTYPES attribute;
Register the required callbacks DRAGBEGIN_CB, DRAGDATASIZE_CB and DRAGDATA_CB for drag handling.
DRAGEND_CB is the only optional drag callback, all other callbacks and attributes must be set.

AT TARGET:
Enable the element as target using the attribute DROPTARGET=YES;
Define the data types supported by the element for the drop using the DROPTYPES attribute;
Register the required callback DROPDATA_CB for handling the data received. This callback and all the drop target
attributes must be set too. DROPMOTION_CB is the only optional drop callback.

Affects

IupLabel, IupText, IupList, IupTree, IupCanvas and IupDialog.

Attributes at Drag Source

DRAGCURSOR (non inheritable): name of an image to be used as cursor during drag. Use IupSetHandle or IupSetAttributeHandle to
associate an image to a name. See also IupImage. (since 3.11)

DRAGSOURCE (non inheritable): Set up a control as a source for drag operations. Default: NO.

DRAGTYPES (non inheritable): A list of data types that are supported by the source. Accepts a string with one or more names
separated by commas. See Notes bellow for a list of known names. Must be set.

DRAGSOURCEMOVE (non inheritable): Enables the move action. Default: NO (only copy is enabled).

IUP - Portable User Interface 07-Jan-25

199/496

../elem/iuplabel.html
../elem/iuptext.html
../elem/iuplist.html
../elem/iuptree.html
../elem/iupcanvas.html
../dlg/iupdialog.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html

Attributes at Drop Target

DROPTARGET (non inheritable): Set up a control as a destination for drop operations. Default: NO.

DROPTYPES (non inheritable): A list of data types that are supported by the target. Accepts a string with one or more names
separated by commas. See Notes bellow for a list of known names. Must be set.

Callbacks at Drag Source (Must be set when DRAGSOURCE=Yes)

DRAGBEGIN_CB: notifies source that drag started. It is called when the mouse starts a drag operation.

int function(Ihandle* ih, int x, int y) [in C]
elem:dragbegin_cb(x, y: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
x, y: cursor position relative to the top-left corner of the element.

Returns: If IUP_IGNORE is returned the drag is aborted.

DRAGDATASIZE_CB: request for size of drag data from source. It is called when the data is dropped, before the DRAGDATA_CB
callback.

int function(Ihandle* ih, char* type) [in C]
elem:dragdatasize_cb(type: string) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
type: type of the data. It is one of the registered types in DRAGTYPES.

Returns: the size in bytes for the data. It will be used to allocate the buffer size for the data in transfer.

DRAGDATA_CB: request for drag data from source. It is called when the data is dropped.

int function(Ihandle* ih, char* type, void* data, int size) [in C]
elem:dragdata_cb(type: string, data: userdata size: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
type: type of the data. It is one of the registered types in DRAGTYPES.
data: buffer to be filled by the application. In Lua is a light userdata. If your data is a string you can use
iup.CopyString2UserData(str, data, size) to copy the string into the user data (since 3.27).
size: buffer size in bytes. The same value returned by DRAGDATASIZE_CB.

DRAGEND_CB: notifies source that drag is done. The only drag callback that is optional. It is called after the data has been dropped.

int function(Ihandle* ih, int action) [in C]
elem:dragend_cb(action: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
action: action performed by the operation (1 = move, 0 = copy, -1 = drag failed or aborted)

If action is 1 it is responsibility of the application to remove the data from source.

Callbacks at Drop Target (Must be set when DROPTARGET=Yes)

DROPDATA_CB: source has sent target the requested data. It is called when the data is dropped. If both drag and drop would be in the
same application it would be called after the DRAGDATA_CB callback.

int function(Ihandle* ih, char* type, void* data, int size, int x, int y) [in C]
elem:dropdata_cb(type: string, data: userdata, size, x, y: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
type: type of the data. It is one of the registered types in DROPTYPES.
data: content data received in the drop operation. In Lua is a light userdata. If your data is a string you can use "str =
iup.CopyUserData2String(data, size)" to copy the user data into a string (since 3.27).
size: data size in bytes.
x, y: cursor position relative to the top-left corner of the element.

DROPMOTION_CB: notifies destination about drag pointer motion. The only drop callback that is optional. It is called when the mouse
moves over any valid drop site.

int function(Ihandle *ih, int x, int y, char *status); [in C]
elem:dropmotion_cb(x, y: number, status: string) -> (ret: number) [in Lua]

IUP - Portable User Interface 07-Jan-25

200/496

ih: identifier of the element that activated the event.
x, y: position in the canvas where the event has occurred, in pixels.
status: status of mouse buttons and certain keyboard keys at the moment the event was generated. The same macros used for
BUTTON_CB can be used for this status.

Notes

Drag and Drop support can be set independently. A control can have drop without drag support and vice-versa.

Here are some common Drag&Drop types defined by existing applications:

"TEXT" used for regular text without formatting. Automatically translated to CF_TEXT in Windows.
content MIME types, like "text/uri-list", "text/html", "image/png", "image/jpeg", "image/bmp" and "image/gif".
"UTF8_STRING" in GTK and "UNICODETEXT" in Windows.
"COMPOUND_TEXT" in GTK and "Rich Text Format" in Windows.
"BITMAP" and "DIB" in Windows. Automatically translated to CF_BITMAP and CF_DIB.

Examples

list2.c

Global Attributes
Global attributes are not associated with any particular element. They represent and affect the global behavior of the toolkit.

To access global attributes use the IupGetGlobal and IupSetGlobal functions. In Lua global attributes can only be accessed trough those
functions. In C, the functions IupGetAttribute and IupSetAttribute can also be used if you set the element handle to NULL.

General

LANGUAGE

The language used by some pre-defined dialogs.

Can have the values ENGLISH, SPANISH (since 3.22) and PORTUGUESE. Default: ENGLISH. Can also be set by IupSetLanguage.

VERSION (read-only)

Returns the name of IUP's version.

The value follows the "major.minor.micro" format, major referring to broader changes, minor referring to smaller changes, and micro
referring to corrections only. Ex.: "1.7.2".

COPYRIGHT (read-only)

Returns the IUP's copyright.

 Ex: "Copyright (C) 1994-2014 Tecgraf/PUC-Rio".

DRIVER (read-only)

Informs the current driver being used.

Two drivers are available now, one for each platform: "GTK", "Motif" and "Win32".

System Control

LOCKLOOP

When the last visible dialog is closed the IupExitLoop function is called. To avoid that set LOCKLOOP=YES before hiding the last dialog.
Possible values: "YES" or "NO". Default: "NO".

EXITLOOP (since 3.23)

Disable the IupExitLoop function when IupMainLoopLevel is 1. Used when the application runs secondary dialogs that behave as full
applications but sharing the same IUP environment, like in "iupluascripter". Possible values: "YES" or "NO". Default: "YES".

CUSTOMQUITMESSAGE [Windows Only] (since 3.28)

Enable a custom quit message instead of using WM_QUIT.

IUP - Portable User Interface 07-Jan-25

201/496

../call/iup_button_cb.html
../../examples/C/list2.c
../func/iupgetglobal.html
../func/iupsetglobal.html
../func/iupgetattribute.html
../func/iupsetattribute.html
../func/iupsetlanguage.html

LASTERROR [Windows Only] (read-only) (since 3.6)

If an error is found, returns a string with the system error description.

UTF8MODE [Windows and GTK Only]

By default IUP uses strings in the current locale (See FONT attribute). To use UTF-8 strings set this attribute to Yes. Default: NO.

UTF8MODE_FILE [Windows Only]

By default IUP uses file names in the current locale, even when UTF8MODE=Yes. To use UTF-8 file names in Windows set this attribute to
Yes. Default: NO.

The main places affected by this attribute is IupFileDlg attributes, such as VALUE, FILE and DIRECTORY, and the DROPFILES_CB
callback.

Notice that IUP, CD and IM libraries use the fopen based functions to read and write files. In Windows fopen expects the filename string
in the ANSI encoding by default. If your filename, including the path, has characters that can not be converted to ANSI, fopen will fail to
open the file. In Windows we could use _wfopen combined with UTF-8, but this is a Microsoft only function and most of fopen usage in
these libraries are in portable modules. This is an IUP limitation in Windows.

The simple workaround is to not use special characters in folders or files name in Windows... Legacy applications will also have the same
problem.

Another option is to call:

 setlocale(LC_ALL, ".UTF8");

But it will work for fopen only in Visual Studio 2017 or newer Microsoft compilers (setlocale will return NULL on other compilers).
fopen will successfully open the file if the filename is an UTF-8 string with special characters. So you will be able to set both UTF8MODE
and UTF8MODE_FILE to YES.

If you decide to use this feature, another interesting option is to set the console code page to UTF-8 executing "chcp 65001" on the
command line. This will allow your printf output to be properly displayed when using UTF-8 strings. This feature actually works for all
Microsoft compilers in Windows, and for MingW, even when setlocale returns NULL. Notice that some font packages must be installed
for this to fully work for all characters (for instance Chinese, Japanese and Korean, along with some symbols too).

As a complement, from fopen documentation in MSDN: "You can use either forward slashes (/) or backslashes (\) as the directory
separators in a path.".

DEFAULTPRECISION (since 3.11.2)

The default number of decimal places used in floating point output by some controls (IupMatrixEx and IupGetParam). Local attributes
may overwrite the default. Default: 2.

DEFAULTDECIMALSYMBOL (since 3.13)

Symbol used for decimal separator in numeric values used in floating point output by some controls (IupMatrixEx, IupGetParam and
IupPlot). Can be "." or "," only. Default uses the one defined by the system locale.

SB_BGCOLOR [GTK and Motif Only] (since 3.25)

By default the scrollbars will not be affected by the BGCOLOR in native controls. If set to Yes, the system will try to render scrollbars in
the same color of the BGCOLOR, but notice that this may affect scrollbars visibility. Up to version 3.24, IUP by default changed the
background color of the scrollbars in GTK and Motif. This affects IupCanvas, IupList, IupText and IupTree.

SHOWMENUIMAGES [GTK Only] (since 3.5)

Force the display of images in menus. Default: Yes

OVERLAYSCROLLBAR [GTK Only] (since 3.19)

Allow the overlay scrollbar in IupCanvas to use a minimum space. By default IUP will use a regular scrollbar space even when overlay
scrollbar is enabled in the system.

GLOBALMENU [GTK Only] (since 3.6)

Flag indicating that GTK is using a global menu instead of a per window menu. See more information at the GTK driver documentation.

GLOBALLAYOUTDLGKEY (since 3.17)

IUP - Portable User Interface 07-Jan-25

202/496

iup_font.html#Encoding
../drv/gtk.html

Flag to enable the global keys Alt+Ctrl+Shft+L to display the IupLayoutDialog.

GLOBALLAYOUTRESIZEKEY(since 3.17)

Flag to enable the global keys Ctrl+'+' and Ctrl+'-' that change the FONTSIZE and refresh the layout of the dialog. If element sizes are
NOT set using RASTERSIZE their sizes will be automatically increased and decreased. Images are not changed.

IMAGEAUTOSCALE (since 3.16)

If defined automatically scale all images, except stock images, by a given real factor. If "DPI" value is used then the factor will be
automatically calculated from the ratio between screen resolution and IMAGESDPI. The minimum resulted size when automatically resized
is 24 pixels height (since 3.29).

IMAGESDPI (since 3.16)

Defines the resolution of the images of the application. Common values are 96, 144, 192, and 288 DPI. Default: 96. Used when
IMAGEAUTOSCALE=DPI.

IMAGESTOCKAUTOSCALE (since 3.25)

Stock images are automatically scaled by default. Default: Yes.

IMAGESTOCKSIZE (since 3.16)

Force a size for stock images by controlling the image height. If that image size is not available the stock image is resized to match the
given size. By default the size will be automatically calculated from the screen resolution: if res <= 144 DPI size = 24, if 192 DPI size =
32, else size = 48. The minimum resulted size when automatically resized is 24 pixels height (since 3.29).

PROCESSWINDOWSGHOSTING [Windows Only] (since 3.28)

If set to NO will disable the window ghosting feature for the duration of the process, can not be enabled again. When disabled the
application dialogs can not be moved or resize while application that is not responding, also the "Not Responding" display at the
application tittle bar will not be done anymore.

IUPLUA_THREADED (since 3.6)

If defined allow IUP to be used inside coroutines in Lua.

SINGLEINSTANCE [Windows Only] (since 3.2)

Restricts the number of instances of the application by using a name to identify it. The value must also be a partial match to the title of a
dialog that will receive the COPYDATA_CB callback with the command line of the second instance. When consulted returns NULL if inside
the second instance. So usually in the application initialization after IupOpen, set SINGLEINSTANCE and then consult its value, if NULL
abort the second instance by calling IupClose and returning from main.

System Mouse and Keyboard

CURSORPOS

Controls and returns the cursor position in absolute coordinates relative to the origin of the main screen. The origin of the main screen is
at the top-left corner, in Windows it is affected by the position of the Start Menu when it is at the top or left side of the screen. Accept
values in the format "XxY" (in C "%dx%d), example "200x200". In GTK and Motif also generates mouse motion messages. (since GTK
2.8)

MOUSEBUTTON (write-only) (since 3.3)

Simulates a mouse button press, release or motion at the given coordinates. The position is in absolute coordinates relative to the top-left
corner of the screen. Accept values in the format "XxY button state" (in C "%dx%d %c %d"), example "200x200 1 1". button can be one
of the IUP_BUTTON1,... definitions. state can be 2=double click, 1=pressed, 0=released, or -1=motion. The cursor position is always
updated. In Windows button can be 'W' and state=delta, so a wheel button scroll is simulated.

IMPORTANT: not fully working. In Windows and GTK, menu items are not activated. Although submenus open, menu items even in the
menu bar are not activated. In Windows, inside the IupFileDlg dialog, clicks in the folder navigation list are not correctly interpreted. In
Motif click and drag operations are not performed.

SHIFTKEY (read-only) (since 3.0)

Returns the state of the Shift keys (left and right). Possible values: "ON" or "OFF".

CONTROLKEY (read-only) (since 3.0)

IUP - Portable User Interface 07-Jan-25

203/496

Returns the state of the Control keys (left and right). Possible values: "ON" or "OFF".

MODKEYSTATE (read-only) (since 3.0)

Returns the state of the keyboard modifier keys: Shift, Ctrl, A lt and sYs(Win/Apple). In the format of 4 characters: "SCAY". When not
pressed the respective letter is replaced by a space " ".

KEYPRESS (write-only) (since 3.0)

Sends a key press message to the element with the focus. The value is a key code. See the Keyboard Codes table for a list of the possible
values.

KEYRELEASE (write-only) (since 3.0)

Sends a key release message to the element with the focus. The value is a key code. See the Keyboard Codes table for a list of the
possible values.

KEY (write-only) (since 3.0)

Sends a key press and a key release messages to the element with the focus. The value is a key code. See the Keyboard Codes table for a
list of the possible values.

AUTOREPEAT [Motif Only]

Turns on/off ("YES" or "NO") the auto-repeat of keyboard keys in the whole system. May be used as an optimization in high performance
applications.

INPUTCALLBACKS (since 3.4)

Turns on/off ("YES" or "NO") the global callbacks used to intercept global mouse and keyboard events. The callbacks must be set using
the IupSetFunction function using the following names: GLOBALKEYPRESS_CB, GLOBALMOTION_CB, GLOBALBUTTON_CB and
GLOBALWHEEL_CB (Windows Only). Their parameters are the same as the standard callbacks, but without the Ihandle* parameter.

In Lua use the iup.SetGlobalCallback(name, func) function. (since 3.7)

System Information

SYSTEM (read-only)

Informs the current operating system. On UNIX, it is equivalent to the command "uname -s" (sysname). On Windows, it identifies if you
are on Windows 2000, Windows XP or Windows Vista. Some known names:

"MacOS"
"FreeBSD"
"Linux"
"SunOS"
"Solaris"
"IRIX"
"AIX"
"HP-UX"
"Win2K"
"WinXP"
"Vista"
"Win7"
"Win8"

Notice that "Windows 8.1" will normally be detected as "Windows 8", unless a special Manifest is used. See MSDN for more
information.

SYSTEMVERSION (read-only)

Informs the current operating system version number.

On UNIX, it is equivalent to the command "uname -r" (release). On Windows, it identifies the system version number and service pack
version. On MacOSX is system version.

SYSTEMLANGUAGE (read-only)

Returns a text with a description of the system language.

SYSTEMLOCALE (read-only) (since 3.4)

IUP - Portable User Interface 07-Jan-25

204/496

key.html
key.html
key.html
../func/iupsetfunction.html
../call/iup_keypress_cb.html
../call/iup_motion_cb.html
../call/iup_button_cb.html
../call/iup_wheel_cb.html
http://msdn.microsoft.com/EN-US/library/windows/desktop/dn481241(v=vs.85).aspx

Returns a text with a description of the system locale.

SCROLLBARSIZE (read-only) (since 3.9)

Returns the width of the vertical scrollbar (the same as the height of the horizontal scrollbar).

COMCTL32VER6 (read-only) [Windows Only] (since 3.11.1)

Returns Yes or No if the Windows common controls are using Visual Styles or not.

GTKVERSION (read-only) [GTK Only]

Returns the run time version of the GTK toolkit. This is the version being used at the time of the IupOpen function was called by the
application.

GTKDEVVERSION (read-only) [GTK Only]

Returns the development version of the GTK toolkit. This is the version at the time the IUP library was compiled.

MOTIFVERSION (read-only) [Motif Only]

Returns the version of the run time Motif.

MOTIFNUMBER (read-only) [Motif Only]

Returns the number of the Motif Version if full form, e.x: 2.2.3 = "2203".

COMPUTERNAME (read-only)

Returns the hostname.

TOUCHREADY (read-only) [Windows Only] (since 3.31)

Informs if touch is supported by the current user interface.

USERNAME (read-only)

Returns the user logged in.

EXEFILENAME (read-only)

Returns the filename of the executable with full path. Depending on how the program is executed the argv[0] not always has the full
executable path.

GL_VERSION (read-only) (since 3.16)

Returns the OpenGL version. Available only after the first call to IupGLMakeCurrent.

GL_VENDOR (read-only) (since 3.16)

Returns the OpenGL vendor information. Available only after the first call to IupGLMakeCurrent.

GL_RENDERER (read-only) (since 3.16)

Returns the OpenGL renderer information. Available only after the first call to IupGLMakeCurrent.

XSERVERVENDOR (read-only) [GTK and Motif Only] (since 3.0)

X-Windows Server Vendor string.

XVENDORRELEASE (read-only) [GTK and Motif Only] (since 3.0)

X-Windows Server Vendor release number.

Screen Information

FULLSIZE (read-only)

IUP - Portable User Interface 07-Jan-25

205/496

../ctrl/iupglcanvas.html#Auxiliary_Functions
../ctrl/iupglcanvas.html#Auxiliary_Functions
../ctrl/iupglcanvas.html#Auxiliary_Functions

Returns the full screen size in pixels.

String in the "widthxheight" format.

SCREENSIZE (read-only)

Returns the screen size in pixels available for dialogs, i.e. not including menu bars, task bars, etc. In Motif has the same value as the
FULLSIZE attribute. The main screen size does not include additional monitors.

String in the "widthxheight" format.

SCREENDEPTH (read-only)

Returns the screen depth in bits per pixel.

SCREENDPI (read-only)

Returns a real value with the screen resolution in pixels per inch (same as dots per inch - DPI).

TRUECOLORCANVAS (read-only)

Indicates if the display allows creating TrueColor (> 8bpp) IupCanvas controls, even if PseudoColor is the default, i.e. even if
SCREENDEPTH<=8 . Returns "YES" or "NO". Usefull in Motif.

DWM_COMPOSITION (read-only) [Windows Only] (since 3.10)

Returns the Desktop Window Manager Composition flag. Returns "YES" or "NO". Works only in Windows Vista and newer. Returns NULL if
not supported.

VIRTUALSCREEN (read-only) [Windows and GTK Only] (since 3.0)

Returns the virtual screen position and size in pixels. It is the virtual space defined by all monitors in the system.

String in the "x y width height" format.

MONITORSCOUNT (read-only) [Windows and GTK Only] (since 3.17)

Returns the number of monitors.

MONITORSINFO (read-only) [Windows and GTK Only] (since 3.0)

Returns the position and size in pixels of all monitors. Each monitor information is terminated by a "\n" character.

String in the "x y width height\nx y width height\n..." format.

System Data

HINSTANCE (read-only) [Windows Only]

Returns a handle (HINSTANCE) that identifies the application in the native system.

DLL_HINSTANCE [Windows Only] (since 3.0)

Changes and returns a handle (HINSTANCE) that identifies the DLL where resources are stored.

APPSHELL (read-only) [Motif Only] (since 3.0)

Returns the shell Widget created by XtOpenApplication.

XDISPLAY (read-only) [GTK and Motif Only] (since 3.0)

Returns the X-Windows Display.

XSCREEN (read-only) [GTK and Motif Only] (since 3.0)

Returns the X-Windows Screen.

Default Attributes

IUP - Portable User Interface 07-Jan-25

206/496

DLGBGCOLOR

The default background color for all elements that have the background similar of the dialog.

DLGFGCOLOR (since 3.0)

The default foreground color for all elements that have text over the background of the dialog or similar. Usually is "0 0 0" - black.

MENUBGCOLOR [Windows Only] (since 3.0)

The default menu background color. Usually is "255 255 255" - white.

MENUFGCOLOR [Windows Only] (since 3.0)

The system default menu foreground color. Usually is "0 0 0" - black.

TXTBGCOLOR (since 3.0)

The default background color for editable text, also used by lists and tree. Usually is "255 255 255" - white.

TXTFGCOLOR (since 3.0)

The default foreground color for editable text, also used by lists and tree. Usually is "0 0 0" - black.

TXTHLCOLOR (since 3.16)

The default highlight color for editable text, also used by lists and tree. The highlight color is used when the text is selected. Usually is "0
0 0" in Motif, and "51 153 255" in Windows. Can be changed only in IupTree, and only in Windows and Motif. But it can be used for
drawing selected areas in custom controls.

LINKFGCOLOR (since 3.8)

The default foreground color for linked text. In GTK and Motif is "0 0 238".

DEFAULTFONT

The default font used by all elements, except for menus.

DEFAULTFONTFACE (since 3.13)

Auxiliary attribute to retrieve and set the default font face used by all elements. It retrieves the typeface from DEFAULTFONT. When
changed will actually change the DEFAULTFONT.

DEFAULTFONTSIZE (since 3.0)

Auxiliary attribute to retrieve and set the default font size used by all elements. It retrieves the size from DEFAULTFONT. When changed
will actually change the DEFAULTFONT.

DEFAULTFONTSTYLE (since 3.11)

Auxiliary attribute to retrieve and set the default font style used by all elements. It retrieves the style from DEFAULTFONT. When changed
will actually change the DEFAULTFONT.

DEFAULTBUTTONPADDING (since 3.16)

Default button padding used in pre-defined dialogs. Default: 12x4".

DEFAULTTHEME (since 3.26)

Applies a default theme for all controls. See THEME attribute for more information.

Events and Callbacks
IUP is a graphics interface library, so most of the time it waits for an event to occur, such as a button click or a mouse leaving a window.
The application can inform IUP which callback to be called, informing that an event has taken place. Hence events are handled through
callbacks, which are just functions that the application register in IUP.

The events are processed only when IUP has the control of the application. After the application creates and shows a dialog it must return

IUP - Portable User Interface 07-Jan-25

207/496

iup_theme.html

the control to IUP so it can process incoming events. This is done in the IUP main event loop. And it is usually done once at the
application "main" function. One exception is the display of modal dialogs. These dialogs will have their own event loop and the previous
shown dialogs will stop receiving events until the modal dialog returns.

Events and Callbacks Guide

Using

Callbacks are used by the application to receive notifications from the system that the user or the system itself has interacted with the user
interface of the application. On the other hand attributes are used by the application to communicate with the user interface system.

Even though callbacks have different purposes from attributes, they are also associated to an element by means of an name.

The OLD method to associate a function to a callback, the application must employ the IupSetAttribute function, linking the action to a
name (passed as a string). From this point on, this name will refer to a callback. By means of function IupSetFunction, the user
connects this name to the callback. For example:

int myButton_action(Ihandle* self);
...
IupSetAttribute(myButton, "ACTION", "my_button_action");
IupSetFunction("my_button_action", (Icallback)myButton_action);

In LED, callback are only assigned by their names. It will be still necessary to associate the name with the corresponding function in C
using IupSetFunction. For example:

In LED, is equivalent to the IupSetAttribute command in the previous example.
bt = button("Title", my_button_action)

In the NEW method, the application does not needs a global name, it directly sets the callback using the attribute name using
IupSetCallback. For example:

int myButton_action(Ihandle* self);
...
IupSetCallback(myButton, "ACTION", (Icallback)myButton_action);

The new method is more efficient and more secure, because there is no risk of a name conflict. If the application uses LED, just ignore the
name in the LED, and replace IupSetFunction by IupSetCallback.

A lthough enabled in old versions, callbacks do NOT have inheritance like attributes.

All callbacks receive at least the element which activated the action as a parameter (self).

The callbacks implemented in C by the application must return one of the following values:

IUP_DEFAULT: Proceeds normally with user interaction. In case other return values do not apply, the callback should return this
value.
IUP_CLOSE: Call IupExitLoop after return. Depending on the state of the application it will close all windows and exit the
application. Applies only to some actions.
IUP_IGNORE: Makes the native system ignore that callback action. Applies only to some actions.
IUP_CONTINUE: Makes the element to ignore the callback and pass the treatment of the execution to the parent element. Applies
only to some actions.

Only some callbacks support the last 3 return values. Check each callback documentation. When nothing is documented then only
IUP_DEFAULT is supported.

An important detail when using callbacks is that they are only called when the user actually executes an action over an element. A callback
is not called when the programmer sets a value via IupSetAttribute. For instance: when the programmer changes a selected item on a
list, no callback is called.

The order of callback calling is system dependent. For instance, the RESIZE_CB and the SHOW_CB are called in different order in Win32
and in X-Windows when the dialog is shown for the first time.

To help the definition of callbacks in C, the header "iupcbs.h" can be used, there are typedefs for all the callbacks.

Main Loop

IUP is an event-oriented interface system, so it will keep a loop “waiting” for the user to interact with the application. For this loop to
occur, the application must call the IupMainLoop function, which is generally used right before IupClose.

When the application is closed by returning IUP_CLOSE in a callback, calling IupExitLoop or by hiding the last visible dialog, the function
IupMainLoop will return.

The IupLoopStep and the IupFlush functions force the processing of incoming events while inside an application callback.

IupLua

IUP - Portable User Interface 07-Jan-25

208/496

Callbacks in Lua have the same names and receive the same parameters as callbacks in C, in the same order. In Lua the callbacks they can
either return a value or not, the IupLua binding will automatically return IUP_DEFAULT if no value is returned. In Lua callbacks can be
Lua functions or strings with Lua code.

The callbacks can also be implemented as methods, using the language’s resources for object orientation. Thus, the element is implicitly
passed as the self parameter.

The following example shows the definition of an action for a button.

function myButton:action ()
 local aux = self.fgcolor
 self.fgcolor = self.bgcolor
 self.bgcolor = aux
end

Or you can do

function myButton_action(self)
 ...
end
myButton.action = myButton_action

Or also

myButton.action = function (self)
 ...
end

Or, as a string

myButton.action = "local aux = self.fgcolor;
 self.fgcolor = self.bgcolor;
 self.bgcolor = aux"

Altough some callbacks exists only in specific controls, all the callbacks can be set for all the controls. This is usefull to set a callback for a
box, so it will be inherited by all the elements inside that box which implements that callback.

IupMainLoop
Executes the user interaction until a callback returns IUP_CLOSE, IupExitLoop is called, or hiding the last visible dialog.

Parameters/Return

int IupMainLoop(void); [in C]
iup.MainLoop() -> ret: number [in Lua]

Returns: IUP_NOERROR always.

Notes

When this function is called, it will interrupt the program execution until a callback returns IUP_CLOSE, IupExitLoop is called, or there
are no visible dialogs.

If you cascade many calls to IupMainLoop there must be a "return IUP_CLOSE" or IupExitLoop call for each cascade level, hiddinh all
dialogs will close only one level. Call IupMainLoopLevel to obtain the current level.

If IupMainLoop is called without any visible dialogs and no active timers, the application will hang and will not be possible to close the
main loop. The process will have to be interrupted by the system.

When the last visible dialog is hidden the IupExitLoop function is automatically called, causing the IupMainLoop to return. To avoid
that set LOCKLOOP=YES before hiding the last dialog.

See Also

IupOpen, IupClose, IupLoopStep, IupExitLoop, Guide/System Control, IDLE_ACTION, LOCKLOOP.

IupMainLoopLevel (since 3.0)
Returns the current cascade level of IupMainLoop. When no calls were done, return value is 0.

Parameters/Return

IUP - Portable User Interface 07-Jan-25

209/496

iupmainlooplevel.html
iupopen.html
iupclose.html
iuploopstep.html
iupexitloop.html
../guide.html#sistema
../call/iup_idle_action.html
../attrib/iup_globals.html#lockloop

int IupMainLoopLevel(void); [in C]
iup.MainLoopLevel() -> ret: number [in Lua]

Returns: the cascade level.

Notes

You can use this function to check if IupMainLoop was already called and avoid calling it again.

A call to IupPopup will increase one level.

See Also

IupOpen, IupClose, IupLoopStep, Guide/System Control, IDLE_ACTION, LOCKLOOP.

IupLoopStep
Runs one iteration of the message loop.

Parameters/Return

int IupLoopStep(void); [in C]
int IupLoopStepWait(void); [in C]

iup.LoopStep() -> ret: number [in Lua]
iup.LoopStepWait() -> ret: number [in Lua]

Returns: IUP_CLOSE or IUP_DEFAULT.

Notes

This function is useful for allowing a second message loop to be managed by the application itself. This means that messages can be
intercepted and callbacks can be processed inside an application loop.

IupLoopStep returns immediately after processing any messages or if there are no messages to process. IupLoopStepWait put the
system in idle until a message is processed (since 3.0).

If IUP_CLOSE is returned the IupMainLoop will not end because the return code was already processed. If you want to end
IupMainLoop when IUP_CLOSE is returned by IupLoopStep then call IupExitLoop after IupLoopStep returns.

An example of how to use this function is a counter that can be stopped by the user. For such, the user has to interact with the system,
which is possible by calling the function periodically.

This way, this function replaces old mechanisms implemented using the Idle callback.

Note that this function does not replace IupMainLoop.

See Also

IupOpen, IupClose, IupMainLoop, IupExitLoop, IDLE_ACTION, Guide / System Control

IupExitLoop
Terminates the current message loop. It has the same effect of a callback returning IUP_CLOSE.

Parameters/Return

void IupExitLoop(void); [in C]
iup.ExitLoop() [in Lua]

IupPostMessage (since 3.28)
Sends data to an element, that will be received by a callback when the main loop regain control.

It is expected to be thread safe.

Parameters/Return

void IupPostMessage(Ihandle* ih, const char* s, int i, double d, void* p); [in C]
iup.PostMessage(ih: ihandle, s: string i, d: number, p: lightuserdata) [in Lua]

IUP - Portable User Interface 07-Jan-25

210/496

iupopen.html
iupclose.html
iuploopstep.html
../guide.html#sistema
../call/iup_idle_action.html
../attrib/iup_globals.html#lockloop
iupopen.html
iupclose.html
iupmainloop.html
iupexitloop.html
../call/iup_idle_action.html
../guide.html#sistema

ih: identifier of the interface element.
s: string. Can be NULL. It will be internally duplicated if not NULL.
i: integer number.
d: floating point number.
p: generic pointer.

POSTMESSAGE_CB Callback

int function(Ihandle *ih, const char* s, int i, double d, void* p); [in C]
ih:postmessage_cb(s: string i, d: number, p: userdata) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
s: string.
i: integer number.
d: floating point number.
p: generic pointer.

Notes

The variables are stored when the function is called, to be later passed to the callback. It will work even for non native elements.

If IupPostMessage is called, the callback must be defined or there will be a memory leak.

Affects

All controls.

IupFlush
Processes all pending messages in the message queue.

Parameters/Return

void IupFlush(void); [in C]
iup.Flush() [in Lua]

Notes

When you change an attribute of a certain element, the change may not take place immediately. For this update to occur faster than usual,
call IupFlush after the attribute is changed.

Important: A call to this function may cause other callbacks to be processed before it returns.

In Motif, if the X server sent an event which is not yet in the event queue, after a call to IupFlush the queue might not be empty.

IupGetCallback
Returns the callback associated to an event.

Parameters/Return

Icallback IupGetCallback(Ihandle* ih, const char *name); [in C]
[There is no equivalent in Lua]

ih: identifier of the interface element.
name: attribute name of the callback.

Returns: the callback or NULL if there is none.

Notes

This function replaces the deprecated combination:

IupGetFunction(IupGetAttribute(ih, name))

If an event is associated using IupSetFunction and IupSetAttribute, the IupGetCallback also returns the correct callback. So old
applications work normally.

See Also

IUP - Portable User Interface 07-Jan-25

211/496

IupSetCallback, IupGetFunction

IupSetCallback
Associates a callback to an event.

Parameters/Return

Icallback IupSetCallback(Ihandle* ih, const char *name, Icallback func); [in C]
[There is no equivalent in Lua]

ih: identifier of the interface element.
name: name of the callback.
func: address of a C function. If NULL removes the association.

Returns: the address of the previous function associated to the action.

Notes

This function replaces the deprecated combination:

IupSetFunction(global_name, func);
IupSetAttribute(ih, name, global_name);

So it eliminates the need for a global name.

Callbacks set using IupSetCallback can not be retrieved using IupGetFunction.

In Lua, callbacks are associated by simply setting a function as the value of the callback name, for example:

button = iup.button{...

button.action = function(... OR
function button:action(...

See Also

IupGetCallback, IupSetFunction

IupSetCallbacks
Associates several callbacks to an event.

Parameters/Return

Ihandle* IupSetCallbacks(Ihandle* ih, const char *name, Icallback func, ...); [in C]
Ihandle* IupSetCallbacksV(Ihandle* ih, const char *name, Icallback func, va_list arglist); [in C]
[There is no equivalent in Lua]

ih: identifier of the interface element.
name: name of the callback.
func: address of a C function. If NULL removes the association.

Returns: the same ih handle.

Notes

It is useful for setting many callbacks at once while in the creation of an hierarchy of elements, just like IupSetAttributes.

See Also

IupSetCallback, IupSetAttributes

IupGetFunction
Returns the function associated to an action only when they were set by IupSetFunction. It will not work if IupSetCallback were used.

Parameters/Return

IUP - Portable User Interface 07-Jan-25

212/496

iupsetcallback.html
iupgetfunction.html
iupgetcallback.html
iupsetfunction.html
iupsetcallback.html
iupsetattributes.html
iupsetfunction.html
IupSetCallback.html

Icallback IupGetFunction(const char *name); [in C]
[There is no equivalent in Lua]

name: name of the action.

Returns: the callback or NULL if not found.

See Also

IupSetFunction, IupGetCallback

IupSetFunction
Associates a function to an action as a global callback.

This function should not be used by new applications, use it only for global callbacks. For regular elements use IupSetCallback
instead.

Notice that the application or libraries may set the same name for two different functions by mistake. IupSetCallback does not depends
on global names.

Parameters/Return

Icallback IupSetFunction(const char *name, Icallback func); [in C]
[There is no equivalent in Lua]

name: name of an action.
func: address of a C function. If NULL removes the association.

Returns: the address of the previous function associated to the action.

See Also

IupGetFunction, IupSetCallback,

IupRecordInput
Records all mouse and keyboard input in a file for later reproduction.

Parameters/Return

int IupRecordInput(const char *filename, int mode); [in C]
iup.RecordInput(filename: string, mode: number) -> ret: number [in Lua]

filename: name of the file to be saved. NULL will stop recording.
mode: flag for controlling the file generation. Can be: IUP_RECBINARY or IUP_RECTEXT.

Returns: IUP_NOERROR if successful, IUP_ERROR if failed to open the file for writing.

Notes

Any existing file will be replaced.

Must stop recording before exiting the application.

It uses the global callbacks enabled by the INPUTCALLBACKS global attribute.

Mouse position is relative to the top left corner of the screen and it is independent from the controls and dialogs being manipulated.

The generated file can be used by IupPlayInput to reproduce the same events.

See Also

INPUTCALLBACKS, IupPlayInput

IupPlayInput
Reproduces all mouse and keyboard input from a given file.

IUP - Portable User Interface 07-Jan-25

213/496

iupsetfunction.html
IupGetCallback.html
IupSetCallback.html
iupgetfunction.html
IupSetCallback.html
../attrib/iup_globals.html#INPUTCALLBACKS
iupplayinput.html

Parameters/Return

int IupPlayInput(const char *filename); [in C]
iup.PlayInput(filename: string) -> ret: number [in Lua]

filename: name of the file to be played. NULL will stop playing. "" will pause and restart a file already being played.

Returns: IUP_NOERROR if successful, IUP_ERROR if failed to open the file for writing. If already playing

Notes

The file must had been saved using the IupRecordInput function. Record mode will be automatically detected.

This function will start the play and return the control to the application. If the file ends all internal memory used to play the file will be
automatically released.

It uses the MOUSEBUTTON global attribute to reproduce the events. IMPORTANT: See the documentation of the MOUSEBUTTON
attribute for further details and current limitations.

The file must had been generated in the same operating system. Screen size differences can exist, but if different themes are used then
mouse precision will be affected.

See Also

MOUSEBUTTON, IupRecordInput

IDLE_ACTION
Predefined IUP action, generated when there are no events or messages to be processed. Often used to perform background operations.

Callback

int function(void); [in C]

Returns: if IUP_CLOSE is returned the current loop will be closed and the callback will be removed. If IUP_IGNORE is returned the
callback is removed and normal processing continues.

Notes

The Idle callback will be called whenever there are no messages left to be processed. But this occurs more frequent than expected, for
example if you move the mouse over the application the idle callback will be called many times because the mouse move message is
processed so fast that the Idle will be called before another mouse move message is schedule to processing.

So this callback changes the message loop to a more CPU consuming one. It is important that you set it to NULL when not using it. Or the
application will be consuming CPU even if the callback is doing nothing.

It can only be set using IupSetFunction(name, func).

Lua Binding

To modify this action use the function iup.SetIdle(func) in Lua. Using nil as a parameter to remove the association.

Long Time Operations

If you create a loop or an operation that takes a long time to complete inside a callback of your application then the user interface
message loop processing is interrupted until the callback returns, so the user can not click on any control of the application. But there are
ways to handle that:

call IupLoopStep or IupFlush inside the application callback when it is performing long time operations. This will allow the user
to click on a cancel button for instance, because the user interface message loop will be processed.
split the operation in several parts that are processed by the Idle function when no messages are left to be processed for the user
interface message loop. This will make a heavy use of the CPU, even if the callback is doing nothing.
split the operation in several parts but use a Timer to process each part.

If you just want to do something simple as a background redraw of an IupCanvas, then a better idea is to handle the "idle" state
yourself. For example, register a timer for a small time like 500ms, and reset the timer in all the mouse and keyboard callbacks of the
IupCanvas. If the timer is trigged then you are in idle state. If the IupCanvas loses its focus then stop the timer.

Examples

Browse for Example Files

IUP - Portable User Interface 07-Jan-25

214/496

../attrib/iup_globals.html#MOUSEBUTTON
../attrib/iup_globals.html#MOUSEBUTTON
iuprecordinput.html
../../examples/

See Also

IupSetFunction, IupTimer.

GLOBALCTRLFUNC_CB (since 3.20)
Global callback for a restricted set of keys. Called only when the Ctrl+F? key combinations are pressed. It was designed to be used for
internal application debugging porpoises only. Do not use it for release code.

Callback

void function(int c); [in C]

c: identifier of typed key. Please refer to the Keyboard Codes table for a list of possible values.

Notes

It can only be set using IupSetFunction(name, func).

Lua Binding

To modify this action use the iup.SetGlobalCallback(name, func) function.

See Also

IupSetFunction

ENTRY_POINT (since 3.28)
Global callback for an entry point. Used when main is not possible, such as in iOS and Android systems.

It is called only once, when the main loop is processed, but after IupOpen. For regular systems is called right before the actual event
loop is started.

Callback

void function(void); [in C]

Notes

It can only be set using IupSetFunction(name, func).

Lua Binding

To modify this action use the iup.SetGlobalCallback(name, func) function.

See Also

IupSetFunction, EXIT_CB, IupMainLoopLevel

EXIT_CB (since 3.28)
Global callback for an exit. Used when main is not possible, such as in iOS and Android systems.

It is called every time the last main loop is ended. For regular systems is called right after the actual event loop is ended, every time when
the main loop level returns to 0.

Callback

void function(void); [in C]

Notes

It can only be set using IupSetFunction(name, func).

Lua Binding

IUP - Portable User Interface 07-Jan-25

215/496

../func/iupsetfunction.html
../elem/iuptimer.html
../attrib/key.html
../func/iupsetfunction.html
../func/iupsetfunction.html
iup_exit_cb.html
../func/iupmainlooplevel.html

To modify this action use the iup.SetGlobalCallback(name, func) function.

See Also

IupSetFunction, ENTRY_POINT,

MAP_CB
Called right after an element is mapped and its attributes updated in IupMap.

When the element is a dialog, it is called after the layout is updated. For all other elements is called before the layout is updated, so the
element current size will still be 0x0 during MAP_CB (since 3.14).

Callback

int function(Ihandle *ih); [in C]
ih:map_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

Affects

All that have a native representation.

UNMAP_CB
Called right before an element is unmapped in IupUnmap.

Callback

int function(Ihandle *ih); [in C]
ih:unmap_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

Affects

All that have a native representation.

DESTROY_CB
Called right before an element is destroyed.

Callback

int function(Ihandle *ih); [in C]
ih:destroy_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

Notes

If the dialog is visible then it is hidden before it is destroyed. The callback will be called right after it is hidden.

The callback will be called before all other destroy procedures.

For instance, if the element has children then it is called before the children are destroyed. If the element is mapped, it is called before
the element is unmapped, so before UNMAP_CB.

For language binding implementations use the callback LDESTROY_CB.

Affects

All.

LDESTROY_CB
Called at the end of the destroy process, after all children were destroyed and the element was detached and unmapped. (since 3.31)

IUP - Portable User Interface 07-Jan-25

216/496

../func/iupsetfunction.html
iup_entry_point.html
../func/iupmap.html
../func/iupunmap.html
iup_ldestroy_cb.html

Callback

int function(Ihandle *ih); [in C]
[Not available in Lua]

ih: identifier of the element that activated the event.

Notes

Used for language binding implementations to release memory allocated by the binding for the element.

Affects

All.

GETFOCUS_CB
Action generated when an element is given keyboard focus. This callback is called after the KILLFOCUS_CB of the element that lost the
focus. The IupGetFocus function during the callback returns the element that lost the focus.

Callback

int function(Ihandle *ih); [in C]
ih:getfocus_cb() -> (ret: number) [in Lua]

ih: identifier of the element that received keyboard focus.

Affects

All elements with user interaction, except menus.

See Also

KILLFOCUS_CB, IupGetFocus, IupSetFocus

KILLFOCUS_CB
Action generated when an element loses keyboard focus. This callback is called before the GETFOCUS_CB of the element that gets the
focus.

Callback

int function(Ihandle *ih); [in C]
ih:killfocus_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

Affects

All elements with user interaction, except menus.

In Windows, there are restrictions when using this callback. From MSDN on WM_KILLFOCUS: "“While processing this message, do not
make any function calls that display or activate a window. This causes the thread to yield control and can cause the application to stop
responding to messages.”

See Also

GETFOCUS_CB, IupGetFocus, IupSetFocus

ENTERWINDOW_CB
Action generated when the mouse enters the native element.

Callback

int function(Ihandle *ih); [in C]
ih:enterwindow_cb() -> (ret: number) [in Lua]

IUP - Portable User Interface 07-Jan-25

217/496

iup_killfocus_cb.html
../func/iupgetfocus.html
../func/iupsetfocus.html
iup_getfocus_cb.html
../func/iupgetfocus.html
../func/iupsetfocus.html

ih: identifier of the element that activated the event.

Notes

When the cursor is moved from one element to another, the call order in all platforms will be first the LEAVEWINDOW_CB callback of the
old control followed by the ENTERWINDOW_CB callback of the new control. (since 3.14)

If the mouse button is hold pressed and the cursor moves outside the element the behavior is system dependent. In Windows the
LEAVEWINDOW_CB/ENTERWINDOW_CB callbacks are NOT called, in GTK the callbacks are called.

Affects

All controls with user interaction.

See Also

LEAVEWINDOW_CB

LEAVEWINDOW_CB
Action generated when the mouse leaves the native element.

Callback

int function(Ihandle *ih); [in C]
ih:leavewindow_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

Notes

When the cursor is moved from one element to another, the call order in all platforms will be first the LEAVEWINDOW_CB callback of the
old control followed by the ENTERWINDOW_CB callback of the new control. (since 3.14)

If the mouse button is hold pressed and the cursor moves outside the element the behavior is system dependent. In Windows the
LEAVEWINDOW_CB/ENTERWINDOW_CB callbacks are NOT called, in GTK the callbacks are called.

Affects

All controls with user interaction.

See Also

ENTERWINDOW_CB

K_ANY
Action generated when a keyboard event occurs.

Callback

int function(Ihandle *ih, int c); [in C]
ih:k_any(c: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
c: identifier of typed key. Please refer to the Keyboard Codes table for a list of possible values.

Returns: If IUP_IGNORE is returned the key is ignored and not processed by the control and not propagated. If returns IUP_CONTINUE,
the key will be processed and the event will be propagated to the parent of the element receiving it, this is the default behavior. If returns
IUP_DEFAULT the key is processed but it is not propagated. IUP_CLOSE will be processed.

Notes

Keyboard callbacks depend on the keyboard usage of the control with the focus. So if you return IUP_IGNORE the control will usually not
process the key. But be aware that sometimes the control process the key in another event so even returning IUP_IGNORE the key can get
processed. Although it will not be propagated.

IMPORTANT: The callbacks "K_*" of the dialog or native containers depend on the IUP_CONTINUE return value to work while the control
is in focus.

IUP - Portable User Interface 07-Jan-25

218/496

iup_leavewindow_cb.html
iup_enterwindow_cb.html
../attrib/key.html

If the callback does not exists it is automatically propagated to the parent of the element.

K_* callbacks

All defined keys are also callbacks of any element, called when the respective key is activated. For example: "K_cC" is also a callback
activated when the user press Ctrl+C, when the focus is at the element or at a children with focus. This is the way an application can
create shortcut keys, also called hot keys. These callbacks are not available in IupLua.

Affects

All elements with keyboard interaction.

HELP_CB
Action generated when the user press F1 at a control. In Motif is also activated by the Help button in some workstations keyboard.

Callback

void function(Ihandle *ih); [in C]
ih:help_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

Returns: IUP_CLOSE will be processed.

Affects

All elements with user interaction.

ACTION
Action generated when the element is activated. Affects each element differently.

Callback

int function(Ihandle *ih); [in C]
ih:action() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

In some elements, this callback may receive more parameters, apart from ih. Please refer to each element's documentation.

Affects

IupButton, IupItem, IupList, IupText, IupCanvas, IupMultiline, IupToggle

Dialogs
In IUP you can create your own dialogs or use one of the predefined dialogs. To create your own dialogs you will have to create all the
controls of the dialog before the creation of the dialog. All the controls must be composed in a hierarchical structure so the root will be
used as a parameter to the dialog creation.

When a control is created, its parent is not known. After the dialog is created all elements receive a parent. This mechanism is quite
different from that of native systems, who first create the dialog and then the element are inserted, using the dialog as a parent. This
feature creates some limitations for IUP, usually related to the insertion and removal of controls.

Since the controls are created in a different order from the native system, native controls can only be created after the dialog. This will
happen automatically when the application call the IupShow function to show the dialog. But we often need the native controls to be
created so we can use some other functionality of those before they are visible to the user. For that purpose, the IupMap function was
created. It forces IUP to map the controls to their native system controls. The IupShow function internally uses IupMap before showing
the dialog on the screen. IupShow can be called many times, but the map process will occur only once.

IupShow can be replaced by IupPopup. In this case the result will be a modal dialog and all the other previously shown dialogs will be
unavailable to the user. Also the program will interrupt in the function call until the application return IUP_CLOSE or IupExitLoop is
called.

All dialogs are automatically destroyed in IupClose.

IUP - Portable User Interface 07-Jan-25

219/496

../elem/iupbutton.html
../elem/iupitem.html
../elem/iuplist.html
../elem/iuptext.html
../elem/iupcanvas.html
../elem/iupmultiline.html
../elem/iuptoggle.html

IupDialog
Creates a dialog element. It manages user interaction with the interface elements. For any interface element to be shown, it must be
encapsulated in a dialog.

Creation

Ihandle* IupDialog(Ihandle *child); [in C]
iup.dialog{child: ihandle} -> (elem: ihandle) [in Lua]
dialog(child) [in LED]

child: Identifier of an interface element. The dialog has only one child. It can be NULL (nil in Lua), or empty in LED.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

Common

BACKGROUND (non inheritable): Dialog background color or image. Can be a non inheritable alternative to BGCOLOR or can be the
name of an image to be tiled on the background. See also the screenshots of the sample.c results with normal background, changing the
dialog BACKGROUND, the dialog BGCOLOR and the children BGCOLOR. Not working in GTK 3. (since 3.0)

BORDER (non inheritable) (creation only): Shows a resize border around the dialog. Default: "YES". BORDER=NO is useful only when
RESIZE=NO, MAXBOX=NO, MINBOX=NO, MENUBOX=NO and TITLE=NULL, if any of these are defined there will be always some
border.

BORDERSIZE (non inheritable) (read only): returns the border size. (since 3.18)

CHILDOFFSET: A llow to specify a position offset for the child. Available for native containers only. It will not affect the natural size, and
allows to position controls outside the client area. Format "dxxdy", where dx and dy are integer values corresponding to the horizontal and
vertical offsets, respectively, in pixels. Default: 0x0. (since 3.14)

CURSOR (non inheritable): Defines a cursor for the dialog.

EXPAND (non inheritable): The default value is "YES".

NACTIVE (non inheritable): same as ACTIVE but does not affects the controls inside the dialog. (since 3.13)

SIZE (non inheritable): Dialog’s size. Additionally the following values can also be defined for width and/or height:

"FULL": Defines the dialog’s width (or height) equal to the screen's width (or height)
"HALF": Defines the dialog’s width (or height) equal to half the screen's width (or height)
"THIRD": Defines the dialog’s width (or height) equal to 1/3 the screen's width (or height)
"QUARTER": Defines the dialog’s width (or height) equal to 1/4 of the screen's width (or height)
"EIGHTH": Defines the dialog’s width (or height) equal to 1/8 of the screen's width (or height)

The dialog Natural size is only considered when the User size is not defined or when it is bigger than the Current size. This
behavior is different from a control that goes inside the dialog. Because of that, when SIZE or RASTERSIZE are set (changing the
User size), the Current size is internally reset to 0x0, so the the Natural size can be considered when re-computing the Current
size of the dialog.

Values set at SIZE or RASTERSIZE attributes of a dialog are always accepted, regardless of the minimum size required by its children.
For a dialog to have the minimum necessary size to fit all elements contained in it, simply define SIZE or RASTERSIZE to NULL. Also
if you set SIZE or RASTERSIZE to be used as the initial size of the dialog, its contents will be limited to this size as the minimum size,
if you do not want that, then after showing the dialog reset this size to NULL so the dialog can be resized to smaller values. But notice
that its contents will still be limited by the Natural size, to also remove that limitation set SHRINK=YES. To only change the User
size in pixels, without resetting the Current size, set the USERSIZE attribute (since 3.12).

Notice that the dialog size includes its decoration (it is the Window size), the area available for controls are returned by the dialog
CLIENTSIZE. For more information see Layout Guide.

SIMULATEMODAL (write-only): disable all other visible dialogs, just like when the dialog is made modal. (since 3.21)

TITLE (non inheritable): Dialog’s title. Default: NULL. If you want to remove the title bar you must also set MENUBOX=NO, MAXBOX=NO
and MINBOX=NO, before map. But in Motif and GTK it will hide it only if RESIZE=NO also.

VISIBLE: Simply call IupShow or IupHide for the dialog.

ACTIVE, BGCOLOR, FONT, EXPAND, SCREENPOSITION, WID, TIP, CLIENTOFFSET, CLIENTSIZE, RASTERSIZE, ZORDER: also accepted.
Note that ACTIVE, BGCOLOR and FONT will also affect all the controls inside the dialog.

Drag & Drop attributes and callbacks are supported.

Exclusive

IUP - Portable User Interface 07-Jan-25

220/496

../../examples/C/sample.c
../sample_results.html
../sample_results_background.html
../sample_results_bgcolor.html
../sample_results_bgcolor_indiv.html
../attrib/iup_cursor.html
../attrib/iup_expand.html
../attrib/iup_active.html
../attrib/iup_size.html
../attrib/iup_clientsize.html
../layout_guide.html
../attrib/iup_title.html
../attrib/iup_visible.html
../attrib/iup_active.html
../attrib/iup_bgcolor.html
../attrib/iup_font.html
../attrib/iup_expand.html
../attrib/iup_screenposition.html
../attrib/iup_wid.html
../attrib/iup_tip.html
../attrib/iup_clientoffset.html
../attrib/iup_clientsize.html
../attrib/iup_rastersize.html
../attrib/iup_zorder.html
../attrib/iup_dragdrop.html

CUSTOMFRAMESIMULATE: allows the application to customize the dialog frame elements (the title and its buttons) by using IUP
controls for its elements like caption, minimize button, maximize button, and close buttons. The custom frame support is entirely
simulated by IUP, no native support for custom frame is used (this seems to have less drawbacks on the application behavior). The
application is responsible for leaving space for the borders. One drawback is that menu bars will not work. For the dialog to be able to be
moved an IupLabel, or a IupFlatLabel or an IupCanvas must be at the top of the dialog and must have the NAME attribute set to
CUSTOMFRAMECAPTION. See the Custom Frame notes bellow. (since 3.28)

By setting this attribute the following attributes will be set:

RESIZE=NO
MENUBOX=NO
MAXBOX=NO
MINBOX=NO
BORDER=NO
TITLE=NULL
MENU=NULL
TASKBARBUTTON=SHOW

The BUTTON_CB and MOTION_CB callbacks of the dialog will be set too, so the dialog can be resized. The BUTTON_CB and
MOTION_CB callbacks of the element with NAME=CUSTOMFRAMECAPTION will also be changed so the dialog can be moved and
maximized with double click. Its the application responsibility to implement the minimize, maximize and close buttons.

DEFAULTENTER: Name of the button activated when the user press Enter when focus is in another control of the dialog. Use
IupSetHandle or IupSetAttributeHandle to associate a button to a name.

DEFAULTESC: Name of the button activated when the user press Esc when focus is in another control of the dialog. Use IupSetHandle or
IupSetAttributeHandle to associate a button to a name.

DIALOGFRAME: Set the common decorations for modal dialogs. This means RESIZE=NO, MINBOX=NO and MAXBOX=NO. In
Windows, if the PARENTDIALOG is defined then the MENUBOX is also removed, but the Close button remains.

ICON: Dialog’s icon. The Windows SDK recommends that cursors and icons should be implemented as resources rather than created at
run time.

FULLSCREEN: Makes the dialog occupy the whole screen over any system bars in the main monitor. A ll dialog details, such as title bar,
borders, maximize button, etc, are removed. Possible values: YES, NO. In Motif you may have to click in the dialog to set its focus. In
Motif if set to YES when the dialog is hidden, then it can not be changed after it is visible.

MAXBOX (creation only): Requires a maximize button from the window manager. If RESIZE=NO then MAXBOX will be set to NO.
Default: YES. In Motif the decorations are controlled by the Window Manager and may not be possible to be changed from IUP. In
Windows MAXBOX is hidden only if MINBOX is hidden as well, or else it will be just disabled.

MAXSIZE: Maximum size for the dialog in raster units (pixels). The windowing system will not be able to change the size beyond this
limit. Default: 65535x65535. (since 3.0)

MENU: Name of a menu. Associates a menu to the dialog as a menu bar. The previous menu, if any, is unmapped. Use IupSetHandle or
IupSetAttributeHandle to associate a menu to a name. See also IupMenu.

MENUBOX (creation only): Requires a system menu box from the window manager. If hidden will also remove the Close button. Default:
YES. In Motif the decorations are controlled by the Window Manager and may not be possible to be changed from IUP. In Windows if
hidden will hide also MAXBOX and MINBOX.

MINBOX (creation only): Requires a minimize button from the window manager. Default: YES. In Motif the decorations are controlled by
the Window Manager and may not be possible to be changed from IUP. In Windows MINBOX is hidden only if MAXBOX is hidden as well,
or else it will be just disabled.

MINSIZE: Minimum size for the dialog in raster units (pixels). The windowing system will not be able to change the size beyond this
limit. Default: 1x1. Some systems define a very minimum size greater than this, for instance in Windows the horizontal minimum size
includes the window decoration buttons. (since 3.0)

MODAL (read-only): Returns the popup state. It is "YES" if the dialog was shown using IupPopup. It is "NO" if IupShow was used or it
is not visible. At the first time the dialog is shown, MODAL is not set yet when SHOW_CB is called. (since 3.0)

NATIVEPARENT (creation only): Native handle of a dialog to be used as parent. Used only if PARENTDIALOG is not defined.

PARENTDIALOG (creation only): Name of a dialog to be used as parent.

PLACEMENT: Changes how the dialog will be shown. Values: "FULL", "MAXIMIZED", "MINIMIZED" and "NORMAL". Default: NORMAL.
After IupShow/IupPopup the attribute is set back to "NORMAL". FULL is similar to FULLSCREEN but only the dialog client area covers
the screen area, menu and decorations will be there but out of the screen. In UNIX there is a chance that the placement won't work
correctly, that depends on the Window Manager. In Windows, the SHOWNOACTIVATE attribute can be set to Yes to prevent the window
from being activated (since 3.15). In Windows, the SHOWMINIMIZENEXT attribute can be set to Yes to activate the next top-level window
in the Z order when minimizing (since 3.15).

RESIZE (creation only): Allows interactively changing the dialog’s size. Default: YES. If RESIZE=NO then MAXBOX will be set to NO. In
Motif the decorations are controlled by the Window Manager and may not be possible to be changed from IUP.

SHRINK: Allows changing the elements’ distribution when the dialog is smaller than the minimum size. Default: NO.

STARTFOCUS: Name of the element that must receive the focus right after the dialog is shown using IupShow or IupPopup. If not

IUP - Portable User Interface 07-Jan-25

221/496

../func/iupsethandle.html
../func/iupsetattributehandle.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../attrib/iup_icon.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupmenu.html
../attrib/iup_parentdialog.html
../attrib/iup_shrink.html

defined then the first control than can receive the focus is selected (same effect of calling IupNextField for the dialog). Updated after
SHOW_CB is called and only if the focus was not changed during the callback.

SHOWNOFOCUS: do not set focus after show. (since 3.30)

Exclusive [System Dependent]

HWND [Windows Only] (non inheritable, read-only): Returns the Windows Window handle. Available in the Windows driver or in the GTK
driver in Windows.

SAVEUNDER [Windows and Motif Only] (creation only): When this attribute is true (YES), the dialog stores the original image of the
desktop region it occupies (if the system has enough memory to store the image). In this case, when the dialog is closed or moved, a
redrawing event is not generated for the windows that were shadowed by it. Its default value is YES if the dialog has a parent dialog
(since 3.24). To save memory disable it for your main dialog. Not available in GTK.

XWINDOW [UNIX Only] (non inheritable, read-only): Returns the X-Windows Window (Drawable). Available in the Motif driver or in the
GTK driver in UNIX.

Exclusive [Windows and GTK Only]

ACTIVEWINDOW [Windows and GTK Only] (read-only): informs if the dialog is the active window (the window with focus). Can be Yes
or No. (since 3.4)

CUSTOMFRAME [Windows and GTK Only] (non inheritable): allows the application to customize the dialog frame elements (the title and
its buttons) by using IUP controls for its elements like caption, minimize button, maximize button, and close buttons. The custom frame
support uses the native system support for custom frames. The application is responsible for leaving space for the borders. One drawback
is that menu bars will not work. For the dialog to be able to be moved an IupLabel or an IupCanvas must be at the top of the dialog
and must have the NAME attribute set to CUSTOMFRAMECAPTION (since 3.22). Native custom frames are supported only in Windows
and in GTK version 3.10, so for older GTK versions we have to simulate the support using CUSTOMFRAMESIMULATE. (since 3.18)
(renamed in 3.22) (GTK support since 3.22) See the Custom Frame notes bellow.

DROPFILESTARGET [Windows and GTK Only] (non inheritable): Enable or disable the drop of files. Default: NO, but if DROPFILES_CB
is defined when the element is mapped then it will be automatically enabled.

MAXIMIZED [Windows and GTK Only] (read-only): indicates if the dialog is maximized. Can be YES or NO. (since 3.12)

MINIMIZED [Windows and GTK Only] (read-only): indicates if the dialog is minimized. Can be YES or NO. (since 3.15)

OPACITY [Windows and GTK Only]: sets the dialog transparency alpha value. Valid values range from 0 (completely transparent) to 255
(opaque). In Windows must be set before map so the native window would be properly initialized when mapped (since 3.16). (GTK 2.12)

OPACITYIMAGE [Windows Only]: sets an RGBA image as the dialog background so it is possible to create a non rectangle window with
transparency, but it can not have children. Used usually for splash screens. It must be set before map so the native window would be
properly initialized when mapped. Works also for GTK but as the SHAPEIMAGE attribute. (since 3.16)

SHAPEIMAGE [Windows and GTK Only]: sets a RGBA image as the dialog shape so it is possible to create a non rectangle window with
children. (GTK 2.12) Only the fully transparent pixels will be transparent. The pixels colors will be ignored, only the alpha channel is used.
(since 3.26)

TOPMOST [Windows and GTK Only]: puts the dialog always in front of all other dialogs in all applications. Default: NO.

Exclusive [Windows Only]

BRINGFRONT [Windows Only] (write-only): makes the dialog the foreground window. Use "YES" to activate it. Useful for multithreaded
applications.

COMPOSITED [Windows Only] (creation only): controls if the window will have an automatic double buffer for all children. Default is
"NO". In Windows Vista it is NOT working as expected. It is NOT compatible with IupCanvas and all derived IUP controls such as
IupFlat*, IupGL*, IupPlot and IupMatrix, because IupCanvas uses CS_OWNDC in the window class.

CONTROL [Windows Only] (creation only): Embeds the dialog inside another window.

CUSTOMFRAMEDRAW [Windows Only] (non inheritable): allows the application to customize the dialog frame elements (the title and
its buttons) by drawing them with the CUSTOMFRAMEDRAW_CB callback. Can be Yes or No. The Window client area is expanded to
include the whole window. Notice that the dialog attributes like BORDER, RESIZE, MAXBOX, MINBOX and TITLE must still be defined. But
maximize, minimize and close buttons must be manually implemented in the BUTTON_CB callback. One drawback is that menu bars will
not work. (since 3.18) (renamed in 3.22)

CUSTOMFRAMECAPTIONHEIGHT [Windows Only] (non inheritable): height of the caption area. If not defined it will use the system
size. (since 3.18) (renamed in 3.22)

CUSTOMFRAMECAPTIONLIMITS [Windows Only] (non inheritable): limits of the caption area at left and at right. The caption area is
always expanded inside the limits when the dialog is resized. Format is "left:right" or in C "%d:%d". Default: "0:0". This will allow the
dialog to be moved by the system when the user click and drag the caption area. If not defined but CUSTOMFRAMECAPTION is defined,
then it will use the caption element horizontal position and size for the limits (since 3.22). (since 3.18)

IUP - Portable User Interface 07-Jan-25

222/496

../func/iupnextfield.html
../attrib/iup_control.html

HELPBUTTON [Windows Only] (creation only): Inserts a help button in the same place of the maximize button. It can only be used for
dialogs without the minimize and maximize buttons, and with the menu box. For the next interaction of the user with a control in the
dialog, the callback HELP_CB will be called instead of the control defined ACTION callback. Possible values: YES, NO. Default: NO.

MAXIMIZEATPARENT [Windows Only]: when using multiple monitors, maximize the dialog in the same monitor that the parent dialog
is. (since 3.28)

TOOLBOX [Windows Only] (creation only): makes the dialog look like a toolbox with a smaller title bar. It is only valid if the
PARENTDIALOG or NATIVEPARENT attribute is also defined. Default: NO.

Exclusive [GTK Only]

DIALOGHINT [GTK Only] (creation-only): if enabled sets the window type hint to a dialog hint.

HIDETITLEBAR [GTK Only] (non inheritable): hides the title bar with al its elements. (since 3.20) (GTK 3.10)

Exclusive Taskbar and Tray/Status Area [Windows and GTK Only]

HIDETASKBAR [Windows and GTK Only] (write-only): Action attribute that when set to "YES", hides the dialog, but does not decrement
the visible dialog count, does not call SHOW_CB and does not mark the dialog as hidden inside IUP. It is usually used to hide the dialog
and keep the tray icon working without closing the main loop. It has the same effect as setting LOCKLOOP=Yes and normally hiding the
dialog. IMPORTANT: when you hide using HIDETASKBAR, you must show using HIDETASKBAR also. Possible values: YES, NO.

TASKBARPROGRESS [Windows Only] (write-only): this functionality enables the use of progress bar on a taskbar button (Windows 7
or earlier version) (Available only for Visual C++ 10 and above). Default: NO (since 3.10).

TASKBARPROGRESSSTATE [Windows Only] (write-only): sets the type and state of the progress indicator displayed on a taskbar
button. Possible values: NORMAL (a green bar), PAUSED (a yellow bar), ERROR (a red bar), INDETERMINATE (a green marquee) and
NOPROGRESS (no bar). Default: NORMAL (since 3.10).

TASKBARPROGRESSVALUE [Windows Only] (write-only): updates a progress bar hosted in a taskbar button to show the specific
percentage completed of the full operation. The value must be between 0 and 100 (since 3.10).

TASKBARBUTTON [Windows Only]: If set to SHOW force the application button to be shown on the taskbar even if the dialog does not
have decorations. If set to HIDE force the application button to be hidden from the taskbar, but also in this case the system menu, the
maximize and minimize buttons will be hidden. (since 3.28)

TRAY [Windows and GTK Only]: When set to "YES", displays an icon on the system tray. (GTK 2.10 and GTK < 3.14)

TRAYIMAGE [Windows and GTK Only]: Name of a IUP image to be used as the tray icon. The Windows SDK recommends that cursors
and icons should be implemented as resources rather than created at run time. (GTK 2.10 and GTK < 3.14)

TRAYTIP [Windows and GTK Only]: Tray icon's tooltip text. (GTK 2.10 and GTK < 3.14)

TRAYTIPMARKUP [GTK Only]: allows the tip string to contains Pango markup commands. Can be "YES" or "NO". Default: "NO". Must
be set before setting the TRAYTIP attribute. (GTK 2.16) (since 3.6)

TRAYTIPBALLOON [Windows Only]: The tip window will have the appearance of a cartoon "balloon" with rounded corners and a stem
pointing to the item. Default: NO. Must be set before setting the TRAYTIP attribute. (since 3.6)

TRAYTIPBALLOONDELAY [Windows Only]: Time the tip will remain visible. Default is system dependent. The minimum and maximum
values are 10000 and 30000 milliseconds. Must be set before setting the TRAYTIP attribute. (since 3.6)

TRAYTIPBALLOONTITLE [Windows Only]: When using the balloon format, the tip can also has a title in a separate area. Must be set
before setting the TRAYTIP attribute. (since 3.6)

TRAYTIPBALLOONTITLEICON [Windows Only]: When using the balloon format, the tip can also has a pre-defined icon in the title
area. Must be set before setting the TRAYTIP attribute. (since 3.6)

Values can be:
"0" - No icon (default)
"1" - Info icon
"2" - Warning icon
"3" - Error Icon

Exclusive MDI [Windows Only]

--- For the MDI Frame ---

MDIFRAME (creation only) [Windows Only] (non inheritable): Configure this dialog as a MDI frame. Can be YES or NO. Default: NO.

MDIACTIVE [Windows Only] (read-only): Returns the name of the current active MDI child. Use IupGetAttributeHandle to directly
retrieve the child handle.

MDIACTIVATE [Windows Only] (write-only): Name of a MDI child window to be activated. If value is "NEXT" will activate the next
window after the current active window. If value is "PREVIOUS" will activate the previous one.

MDIARRANGE [Windows Only] (write-only): Action to arrange MDI child windows. Possible values: TILEHORIZONTAL, TILEVERTICAL,

IUP - Portable User Interface 07-Jan-25

223/496

../call/iup_help_cb.html

CASCADE and ICON (arrange the minimized icons).

MDICLOSEALL [Windows Only] (write-only): Action to close and destroy all MDI child windows. The CLOSE_CB callback will be called
for each child.

IMPORTANT: When a MDI child window is closed it is automatically destroyed. The application can override this returning
IUP_IGNORE in CLOSE_CB.

MDINEXT [Windows Only] (read-only): Returns the name of the next available MDI child. Use IupGetAttributeHandle to directly retrieve
the child handle. Must use MDIACTIVE to retrieve the first child. If the application is going to destroy the child retrieve the next child
before destroying the current.

--- For the MDI Client (a IupCanvas) ---

MDICLIENT (creation only) [Windows Only] (non inheritable): Configure the canvas as a MDI client. Can be YES or NO. No callbacks will
be called. This canvas will be used internally only by the MDI Frame and its MDI Children. The MDI frame must have one and only one
MDI client. Default: NO.

MDIMENU (creation only) [Windows Only]: Name of a IupMenu to be used as the Window list of a MDI frame. The system will
automatically add the list of MDI child windows there.

--- For the MDI Children ---

MDICHILD (creation only) [Windows Only]: Configure this dialog to be a MDI child. Can be YES or NO. The PARENTDIALOG attribute
must also be defined. Each MDI child is automatically named if it does not have one. Default: NO.

Callbacks

CLOSE_CB: Called right before the dialog is closed.

COPYDATA_CB [Windows Only]: Called at the first instance, when a second instance is running. Must set the global attribute
SINGLEINSTANCE to be called. (since 3.2)

int function(Ihandle *ih, char* cmdLine, int size); [in C]
elem:copydata_cb(cmdLine: string, size: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
cmdLine: command line of the second instance.
size: size of the command line string including the null character.

DROPFILES_CB [Windows and GTK Only]: Action generated when one or more files are dropped in the dialog.

CUSTOMFRAME_CB [Windows Only]: Called when the dialog must be redraw. Although it is designed for drawing the frame elements,
all the dialog must be painted. Works only when CUSTOMFRAME or CUSTOMFRAMEEX is defined. The dialog can be used just like an
IupCanvas to draw its elements, the HDC_WMPAINT and CLIPRECT attributes are defined during the callback. For mouse callbacks use
the same callbacks as IupCanvas, such as BUTTON_CB and MOTION_CB. (since 3.18)

int function(Ihandle *ih); [in C]
elem:customframe_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

CUSTOMFRAMEACTIVATE_CB [Windows Only]: Called when the dialog active state is changed (for instance the user Alt+Tab to
another application, or clicked in another window). Works only when CUSTOMFRAME or CUSTOMFRAMEEX is defined. (since 3.23)

int function(Ihandle *ih, int active); [in C]
ih:customframeactivate_cb(active: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
active: is non zero if the dialog is active or zero if it is inactive.

FOCUS_CB: Called when the dialog or any of its children gets the focus, or when another dialog or any control in another dialog gets the
focus. It is called after the common callbacks GETFOCUS_CB and KILL_FOCUS_CB. (since 3.21)

int function(Ihandle *ih, int focus); [in C]
ih:focus_cb(focus: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
focus: is non zero if the dialog or any of its children is getting the focus, is zero if it is loosing the focus.

MDIACTIVATE_CB [Windows Only]: Called when a MDI child window is activated. Only the MDI child receive this message. It is not
called when the child is shown for the first time.

int function(Ihandle *ih); [in C]
elem:mdiactivate_cb() -> (ret: number) [in Lua]

IUP - Portable User Interface 07-Jan-25

224/496

../call/iup_close_cb.html
../call/iup_dropfiles_cb.html
../call/iup_button_cb.html
../call/iup_motion_cb.html

ih: identifier of the element that activated the event.

MOVE_CB [Windows and GTK Only]: Called after the dialog was moved on screen. The coordinates are the same as the
SCREENPOSITION attribute. (since 3.0)

int function(Ihandle *ih, int x, int y); [in C]
elem:move_cb(x, y: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
x, y: coordinates of the new position.

RESIZE_CB: Action generated when the dialog size is changed. If returns IUP_IGNORE the dialog layout is NOT recalculated. (since 3.0)

SHOW_CB: Called right after the dialog is showed, hidden, maximized, minimized or restored from minimized/maximized.

TRAYCLICK_CB [Windows and GTK Only]: Called right after the mouse button is pressed or released over the tray icon. (GTK 2.10)

int function(Ihandle *ih, int but, int pressed, int dclick); [in C]
elem:trayclick_cb(but, pressed, dclick: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
but: identifies the activated mouse button. Can be: 1, 2 or 3. Note that this is different from the BUTTON_CB canvas callback
definition. GTK does not get button=2 messages.
pressed: indicates the state of the button. Always 1 in GTK.
dclick: indicates a double click. In GTK double click is simulated.

Returns: IUP_CLOSE will be processed.

MAP_CB, UNMAP_CB, DESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB, K_ANY, HELP_CB: All
common callbacks are supported.

Drag & Drop attributes and callbacks are supported.

Notes

Do not associate an IupDialog with the native "dialog" nomenclature in Windows, GTK or Motif. IupDialog use native standard windows
in all drivers.

Except for the menu, all other elements must be inside a dialog to interact with the user. Therefore, an interface element will only be
visible if its dialog is also visible.

The order of callback calling is system dependent. For instance, the RESIZE_CB and the SHOW_CB are called in a different order in Win32
and in X-Windows when the dialog is shown for the first time.

In Windows, when all decorations are removed the window icon is not displayed on the task bar, when minimized a small rectangular
window will be positioned above the task bar on the bottom-left corner of the desktop.

In GTK uses a GtkWindow, in Windows uses a custom windows class called "IupDialog", and in Motif uses topLevelShellWidgetClass.

Windows MDI

The MDI support is composed of 3 components: the MDI frame window (IupDialog), the MDI client window (IupCanvas) and the MDI
children (IupDialog). Although the MDI client is a IupCanvas it is not used directly by the application, but it must be created and included
in the dialog that will be the MDI frame, other controls can also be available in the same dialog, like buttons and other canvases
composing toolbars and status area. The following picture illustrates the e components:

IUP - Portable User Interface 07-Jan-25

225/496

../attrib/iup_screenposition.html
../call/iup_resize_cb.html
../call/iup_show_cb.html
../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_getfocus_cb.html
../call/iup_killfocus_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
../call/iup_k_any.html
../call/iup_help_cb.html
../attrib/iup_dragdrop.html

Custom Frame

The use of custom frame is very popular nowadays. But the system support is very poor, in Windows and in GTK. So use it carefully and
consciously of its glitches.

In GTK is easier to understand because the frame is managed by the Window Manager. So depending on the system it may be provided
by the Windows Manager or it is simulated by IUP removing the window decoration.

In Windows, there is no function or attribute to activate this feature in the Win32 API (maybe in WPF there is, but we are stuck with the
old API). It is a combination of message handling with returned values in the WindowProc. So sometimes the result is not what was
expected. For instance, if the application is not responding the old title bar interface is drawn over the top of the dialog just to show the
"Not Responding" at the window caption, even if the window does not have a caption. We don't know how to avoid that. A lso the internal
double buffer processing for the dialog is some how affected and a sequential of full redraw of the dialog has more flicker than usual.

The CUSTOMFRAMESIMULATE attribute is a workaround that tries to solve the double buffer problem and has more control over the
custom frame behavior in general.

Examples

Very simple dialog with a label and a button. The application is closed when the button is pressed.

#include <iup.h>

int quit_cb(void)
{
 return IUP_CLOSE;
}

int main(int argc, char* argv[])
{
 Ihandle *dialog, *quit_bt, *vbox;

 IupOpen(&argc, &argv);

 /* Creating the button */
 quit_bt = IupButton("Quit", 0);
 IupSetCallback(quit_bt, "ACTION", (Icallback)quit_cb);

 /* the container with a label and the button */
 vbox = IupVbox(
 IupSetAttributes(IupLabel("Very Long Text Label"), "EXPAND=YES, ALIGNMENT=ACENTER"),
 quit_bt,
 0);
 IupSetAttribute(vbox, "MARGIN", "10x10");
 IupSetAttribute(vbox, "GAP", "5");

 /* Creating the dialog */
 dialog = IupDialog(vbox);
 IupSetAttribute(dialog, "TITLE", "Dialog Title");
 IupSetAttributeHandle(dialog, "DEFAULTESC", quit_bt);

 IupShow(dialog);

 IupMainLoop();

 IupDestroy(dialog);
 IupClose();

IUP - Portable User Interface 07-Jan-25

226/496

 return 0;
}

Browse for Example Files

See Also

IupFileDlg, IupMessageDlg, IupDestroy, IupShowXY, IupShow, IupPopup

CURSOR (non inheritable)
Defines the element's cursor.

Value

Name of a cursor.

It will check first for the following predefined names:

Name

 "NONE" or "NULL"

--- "APPSTARTING" (Windows Only)

"ARROW"

"BUSY"

"CROSS"

"HAND"

"HELP"

"MOVE"

--- "NO" (Windows Only)

"PEN" (*)

"RESIZE_N"

"RESIZE_S"

"RESIZE_NS"

"RESIZE_W"

"RESIZE_E"

"RESIZE_WE"

"RESIZE_NE"

"RESIZE_SW"

"RESIZE_NW"

"RESIZE_SE"

"SPLITTER_HORIZ"

"SPLITTER_VERT"

"TEXT"

IUP - Portable User Interface 07-Jan-25

227/496

../../examples/
../dlg/iupfiledlg.html
../dlg/iupmessagedlg.html
../func/iupdestroy.html
../func/iupshowxy.html
../func/iupshow.html
../func/iuppopup.html

"UPARROW"

Default: "ARROW"

(*) To use this cursor on Windows, the iup.rc file, provided with IUP, must be linked with the application (except when using the IUP
DLL).

The Windows SDK recommends that cursors and icons should be implemented as resources rather than created at run time.

The GTK cursors have the same appearance of the X-Windows cursors. Althought GTK cursors can have more than 2 colors depending on
the X-Server.

If it is not a pre-defined name, then will check for other system cursors. In Windows the value will be used to load a cursor form the
application resources. In Motif the value will be used as a X-Windows cursor number, see definitions in the X11 header "cursorfont.h". In
GTK the value will be used as a cursor name, see the GDK documentation on Cursors.

If no system cursors were found then the value will be used to try to find an IUP image with the same name. Use IupSetHandle to
define a name for an IupImage. But the image will need an extra attribute and some specific characteristics, see notes below.

Notes

For an image to represent a cursor, it should has the attribute "HOTSPOT" to define the cursor hotspot (place where the mouse click is
actually effective). The default value is "0:0".

Usually only color indices 0, 1 and 2 can be used in a cursor, where 0 will be transparent (must be "BGCOLOR"). The RGB colors
corresponding to indices 1 and 2 are defined just as in regular images. In Windows and GTK the cursor can have more than 2 colors.
Cursor sizes are usually less than or equal to 32x32.

The cursor will only change when the interface system regains control or when IupFlush is called.

The Windows SDK recommends that cursors and icons should be implemented as resources rather than created at run time.

When the cursor image is no longer necessary, it must be destroyed through function IupDestroy. Attention: the cursor cannot be in use
when it is destroyed.

Affects

IupDialog, IupCanvas

See Also

IupImage

ICON
Dialog's icon. This icon will be used when the dialog is minimized among other places by the native system.

Value

Name of a IUP image.

Default: NULL

Notes

Icon sizes are usually less than or equal to 32x32.

The Windows SDK recommends that cursors and icons should be implemented as resources rather than created at run time. We suggest
using an icon with at least 3 images: 16x16 32bpp, 32x32 32 bpp and 48x48 32 bpp.

On Motif, it only works with some window managers, like mwm and gnome. Icon colors can have the BGCOLOR values, but it works
better if it is at index 0.

Use IupSetHandle or IupSetAttributeHandle to associate an image to a name.

Affects

IupDialog

See Also

IupImage

IUP - Portable User Interface 07-Jan-25

228/496

../func/iupdestroy.html
../dlg/iupdialog.html
../elem/iupcanvas.html
../elem/iupimage.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../dlg/iupdialog.html
../elem/iupimage.html

PARENTDIALOG
The parent dialog of a dialog.

Value

Name of a dialog to be used as parent.

Default: NULL.

Notes

This dialog will be always in front of the parent dialog. If the parent is minimized, this dialog is automatically minimized. The parent
dialog must be mapped before mapping the child dialog.

If PARENTDIALOG is not defined then the NATIVEPARENT attribute is consulted. This one must be a native handle of an existing dialog.

Can be changed after the dialog is mapped, but only if already set before map. (since 3.21)

Use IupSetHandle or IupSetAttributeHandle to associate a dialog to a name.

IMPORTANT: When the parent is destroyed the child dialog is also destroyed, BUT the CLOSE_CB callback of the child dialog is NOT
called. The application must take care of destroying the child dialogs before destroying the parent. This is usually done when CLOSE_CB
of the parent dialog is called.

Affects

IupDialog

SHRINK
If this attribute is defined, the elements inside the dialog will try to adjust their sizes even when the dialog's size is smaller than its natural
size.

See the Layout Guide for more details on sizes.

Value

"YES" or "NO".

Default: "NO".

Notes

When the user changes the size of the dialog, the elements are automatically re-distributed inside the dialog. Some elements even have
their size changed if the EXPAND attribute is active. When this size is smaller than a minimum limit in which all elements still fit the dialog,
the elements' distribution is no longer modified. Actually, the virtual size of the dialog remains larger than its actual size on the screen,
and some elements to the right and bottom are hidden by the borders of the dialog.

The SHRINK attribute offers an alternative to this behavior. It makes the elements continue to rearrange, even if they must overlapi

The results of this new rearrangement may vary according to the elements' distribution on the dialog.

Shrink will be effective only for containers. For regular elements the current size will be set for a smaller value only if EXPAND is set.

See the Layout Guide for more details on sizes.

Affects

IupDialog

CONTROL
Windows only. Whether the dialog is embedded inside the parent window or has a window of its own.

Value

YES or NO. If the value is YES, the dialog will appear embedded inside its parent window (you must set a parent, either with
PARENTDIALOG or NATIVEPARENT, or this setting will be ignored). If the value is NO, the dialog will have its own window.

Notes

This is useful for implementing ActiveX controls, with the help of the LuaCOM library. ActiveX controls run embedded inside another

IUP - Portable User Interface 07-Jan-25

229/496

../func/iupsethandle.html
../func/iupsetattributehandle.html
../dlg/iupdialog.html
../layout_guide.html
../layout_guide.html
../dlg/iupdialog.html
http://www.tecgraf.puc-rio.br/~rcerq/luacom/

window. LuaCOM will send a window creation event the the control, passing a handle to the parent window and the size of the control.
You can use this to set the dialog's NATIVEPARENT and RASTERSIZE attributes. See the LuaCOM documentation for more information.

Affects

IupDialog

See Also

NATIVEPARENT , PARENTDIALOG, RASTERSIZE

CLOSE_CB
Called just before a dialog is closed when the user clicks the close button of the title bar or an equivalent action.

Callback

int function(Ihandle *ih); [in C]
ih:close_cb() -> (ret: number) [in Lua]

ih: identifies the element that activated the event.

Returns: if IUP_IGNORE, it prevents the dialog from being closed. If you destroy the dialog in this callback, you must return
IUP_IGNORE. IUP_CLOSE will be processed.

Affects

IupDialog

DROPFILES_CB
Action called when a file is "dropped" into the control. When several files are dropped at once, the callback is called several times, once for
each file.

If defined after the element is mapped then the attribute DROPFILESTARGET must be set to YES.

[Windows and GTK Only] (GTK 2.6)

Callback

int function(Ihandle *ih, const char* filename, int num, int x, int y); [in C]
ih:dropfiles_cb(filename: string; num, x, y: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
filename: Name of the dropped file.
num: Number index of the dropped file. If several files are dropped, num is the index of the dropped file starting from "total-1" to "0".
x: X coordinate of the point where the user released the mouse button.
y: Y coordinate of the point where the user released the mouse button.

Returns: If IUP_IGNORE is returned the callback will NOT be called for the next dropped files, and the processing of dropped files will be
interrupted.

Affects

IupDialog, IupCanvas, IupGLCanvas, IupText, IupList

RESIZE_CB
Action generated when the canvas or dialog size is changed.

Callback

int function(Ihandle *ih, int width, int height); [in C]
ih:resize_cb(width, height: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
width: the width of the internal element size in pixels not considering the decorations (client size)
height: the height of the internal element size in pixels not considering the decorations (client size)

IUP - Portable User Interface 07-Jan-25

230/496

http://www.tecgraf.puc-rio.br/~rcerq/luacom/
../dlg/iupdialog.html#Attributes
../dlg/iupdialog.html#Attributes
iup_rastersize.html
../dlg/iupdialog.html
../dlg/iupdialog.html
../elem/iupcanvas.html
../ctrl/iupglcanvas.html
../elem/iuptext.html
../elem/iuplist.html

Notes

For the dialog, this action is also generated when the dialog is mapped, after the map and before the show.

When XAUTOHIDE=Yes or YAUTOHIDE=Yes, if the canvas scrollbar is hidden/shown after changing the DX or DY attributes from inside
the callback, the size of the drawing area will immediately change, so the parameters with and height will be invalid. To update the
parameters consult the DRAWSIZE attribute. Also activate the drawing toolkit only after updating the DX or DY attributes.

Affects

IupCanvas, IupGLCanvas, IupDialog

SHOW_CB
Called right after the dialog is showed, hidden, maximized, minimized or restored from minimized/maximized. This callback is called
when those actions were performed by the user or programmatically by the application.

Callback

int function(Ihandle *ih, int state); [in C]
ih:show_cb(state: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
state: indicates which of the following situations generated the event:

IUP_HIDE (since 3.0)
IUP_SHOW
IUP_RESTORE (was minimized or maximized)
IUP_MINIMIZE
IUP_MAXIMIZE (since 3.0) (not received in Motif when activated from the maximize button)

Returns: IUP_CLOSE will be processed.

Affects

IupDialog

IupPopup
Shows a dialog or menu and restricts user interaction only to the specified element. It is equivalent of creating a Modal dialog is some
toolkits.

If another dialog is shown after IupPopup using IupShow, then its interaction will not be inhibited. Every IupPopup call creates a new
popup level that inhibits all previous dialogs interactions, but does not disable new ones (even if they were disabled by the Popup, calling
IupShow will re-enable the dialog because it will change its popup level). IMPORTANT: The popup levels must be closed in the reverse
order they were created or unpredictable results will occur.

For a dialog this function will only return the control to the application after a callback returns IUP_CLOSE, IupExitLoop is called, or
when the popup dialog is hidden, for example using IupHide. For a menu it returns automatically after a menu item is selected.
IMPORTANT: If a menu item callback returns IUP_CLOSE, it will also ends the current popup level dialog.

Parameters/Return

int IupPopup(Ihandle *ih, int x, int y); [in C]
iup.Popup(ih: ihandle[, x, y: number]) -> (ret: number) [in Lua]
or ih:popup([x, y: number]) -> (ret: number) [in Lua]

ih: Identifier of a dialog or a menu.
x: horizontal position of the top-left corner of the window or menu, relative to the origin of the main screen. The following definitions can
also be used:

IUP_LEFT: Positions the element on the left border of the main screen
IUP_CENTER: Centers the element on the main screen
IUP_RIGHT: Positions the element on the right border of the main screen
IUP_MOUSEPOS: Positions the element on the mouse cursor
IUP_CENTERPARENT: Horizontally centralizes the dialog relative to its parent. Not valid for menus. (Since 3.0)
IUP_CURRENT: use the current position of the dialog. This is the default value in Lua if the parameter is not defined. Not valid for
menus. (Since 3.0)
IUP_LEFTPARENT: Positions the element on the left border of its parent. Not valid for menus. (Since 3.29)
IUP_RIGHTPARENT: Positions the element on the right border of its parent. Not valid for menus. (Since 3.29)

y: vertical position of the top-left corner of the window or menu, relative to the origin of the main screen. The following definitions can
also be used:

IUP - Portable User Interface 07-Jan-25

231/496

../elem/iupcanvas.html
../ctrl/iupglcanvas.html
../dlg/iupdialog.html
../dlg/iupdialog.html

IUP_TOP: Positions the element on the top borderoffthe main screenthe main screen
IUP_CENTER: Vertically centers the element on the main screen
IUP_BOTTOM: Positions the element on the bottom border of the main screen
IUP_MOUSEPOS: Positions the element on the mouse cursor
IUP_CENTERPARENT: Vertically centralizes the dialog relative to its parent. Not valid for menus. (Since 3.0)
IUP_CURRENT: use the current position of the dialog. This is the default value in Lua if the parameter is not defined. Not valid for
menus. (Since 3.0)
IUP_TOPPARENT: Positions the element on the top border of its parent. Not valid for menus. (Since 3.29)
IUP_BOTTOMPARENT: Positions the element on the bottom border of its parent. Not valid for menus. (Since 3.29)

Returns: IUP_NOERROR if successful. Returns IUP_INVALID if not a dialog or menu. If there was an error returns IUP_ERROR..

Notes

It will call IupMap for the element.

The x and y values are the same as returned by the SCREENPOSITION attribute.

IUP_MOUSEPOS position is the same as returned by the CURSORPOS global attribute.

See the PLACEMENT attribute for other position and show options.

When IUP_CENTERPARENT is used but PARENTDIALOG is not defined then it is replaced by IUP_CENTER.

When IUP_CURRENT is used at the first time the dialog is shown then it will be replaced by IUP_CENTERPARENT.

The main screen area does not include additional monitors.

IupPopup works just like IupShowXY, but it inhibits interaction with other dialogs that are visible and interrupts the processing until
IUP_CLOSE is returned in a callback, IupExitLoop is called, or the popup dialog is hidden. This is now a modal dialog. Although it
interrupts the processing, it does not destroy the dialog when it ends. To destroy the dialog, IupDestroy must be called.

The MODAL attribute of the dialog will be changed internally to return Yes.

In GTK and Motif the inactive dialogs will still be moveable, resizable and changeable their Z-order. Although their contents will be
inactive, keyboard will be disabled, and they can not be closed from the close box.

When called for an already visible dialog (modal or not) it will update its position and PLACEMENT. If the already visible dialog is not
modal then it will became modal and processing will be interrupted as a regular IupPopup (since 3.16). If the already visible dialog is
modal then the function returns and it will NOT interrupt processing, the dialog still will remains MODAL. In other words, calling
IupPopup a second time will just update the dialog position and it will not interrupt processing, and calling IupPopup for a dialog
shown with IupShowXY will turn it a modal dialog.

See Also

IupShowXY, IupShow, IupHide, IupMap, IupDialog

IupShow
Displays a dialog in the current position, or changes a control VISIBLE attribute.

Parameters/Return

int IupShow(Ihandle *ih); [in C]
iup.Show(ih: ihandle) -> (ret: number) [in Lua]
or ih:show() -> (ret: number) [in IupLua]

ih: identifier of the interface element.

Returns: IUP_NOERROR if successful. If there was an error returns IUP_ERROR.

Notes

For dialogs it is equivalent to call IupShowXY using IUP_CURRENT. See IupShowXY for more details.

For other controls, to call IupShow is the same as setting VISIBLE=YES.

See Also

IupShowXY, IupHide, IupPopup, IupMap

IupShowXY
Displays a dialog in a given position on the screen.

IUP - Portable User Interface 07-Jan-25

232/496

../attrib/iup_screenposition.html
../attrib/iup_globals.html#cursorpos
../dlg/iupdialog.html#PLACEMENT
../dlg/iupdialog.html#PLACEMENT
iupshowxy.html
iupshow.html
iuphide.html
iupmap.html
../dlg/iupdialog.html
iupshowxy.html
iupshowxy.html
iuphide.html
iuppopup.html
iupmap.html

Parameters/Return

int IupShowXY(Ihandle *ih, int x, int y); [in C]
iup.ShowXY(ih: ihandle[, x, y: number]) -> (ret: number) [in Lua]
or ih:showxy([x, y: number]) -> (ret: number) [in Lua]

ih: identifier of the dialog.
x: horizontal position of the top-left corner of the window, relative to the origin of the main screen. The following definitions can also be
used:

IUP_LEFT: Positions the dialog on the left border of the main screen
IUP_CENTER: Horizontally centralizes the dialog on the main screen
IUP_RIGHT: Positions the dialog on the right border of the main screen
IUP_MOUSEPOS: Positions the dialog on the mouse position
IUP_CENTERPARENT: Horizontally centralizes the dialog relative to its parent (Since 3.0)
IUP_CURRENT: use the current position of the dialog. This is the default value in Lua if the parameter is not defined. (Since 3.0)
IUP_LEFTPARENT: Positions the element on the left border of its parent. Not valid for menus. (Since 3.29)
IUP_RIGHTPARENT: Positions the element on the right border of its parent. Not valid for menus. (Since 3.29)

y: vertical position of the top-left corner of the window, relative to the origin of the main screen. The following definitions can also be
used:

IUP_TOP: Positions the dialog on the top border of the main screen
IUP_CENTER: Vertically centralizes the dialog on the main screen
IUP_BOTTOM: Positions the dialog on the bottom border of the main screen
IUP_MOUSEPOS: Positions the dialog on the mouse position
IUP_CENTERPARENT: Vertically centralizes the dialog relative to its parent (Since 3.0)
IUP_CURRENT: use the current position of the dialog. This is the default value in Lua if the parameter is not defined.(Since 3.0)
IUP_TOPPARENT: Positions the element on the top border of its parent. Not valid for menus. (Since 3.29)
IUP_BOTTOMPARENT: Positions the element on the bottom border of its parent. Not valid for menus. (Since 3.29)

Returns: IUP_NOERROR if successful. Returns IUP_INVALID if not a dialog. If there was an error returns IUP_ERROR.

Notes

Will call IupMap for the element.

x and y positions are the same as returned by the SCREENPOSITION attribute.

IUP_MOUSEPOS position is the same as returned by the CURSORPOS global attribute.

See the PLACEMENT attribute for other position and show options.

When IUP_CENTERPARENT is used but PARENTDIALOG is not defined then it is replaced by IUP_CENTER.

When IUP_CURRENT is used at the first time the dialog is shown then it will be replaced by IUP_CENTERPARENT.

The main screen area does not include additional monitors.

When called for an already visible dialog (MODAL or not) it will update its position and PLACEMENT. If the already visible dialog is not
modal but it was disabled by one (a call to IupPopup for another dialog after this one was shown) then it will be now enabled for
interaction.

See Also

IupShow, IupHide, IupPopup, IupMap, IupDialog

IupHide
Hides an interface element. This function has the same effect as attributing value "NO" to the interface element’s VISIBLE attribute.

Parameters/Return

int IupHide(Ihandle *ih); [in C]
iup.Hide(ih: ihandle) -> (ret: number) [in Lua]
or ih:hide() -> (ret: number) [in Lua]

ih: Identifier of the interface element.

Returns: IUP_NOERROR always.

Notes

Once a dialog is hidden, either by means of IupHide or by changing the VISIBLE attribute or by means of a click in the window close
button, the elements inside this dialog are not destroyed, so that you can show the dialog again. To destroy dialogs, the IupDestroy

IUP - Portable User Interface 07-Jan-25

233/496

../attrib/iup_screenposition.html
../attrib/iup_globals.html#cursorpos
../dlg/iupdialog.html#PLACEMENT
../dlg/iupdialog.html#PLACEMENT
iupshow.html
iuphide.html
iuppopup.html
iupmap.html
../dlg/iupdialog.html

function must be called.

See Also

IupShowXY, IupShow, IupPopup, IupDestroy.

Browse for Example Files

See Also

IupMessage, IupScanf, IupListDialog, IupAlarm, IupGetFile, IupPopup

IupNewFileDlg [Windows only] (since 3.26)
In Windows, starting in Windows Vista, there is new file selection interface. But it is available for the regular Windows API only when used
with restrictions, in particular the Hook procedure that enables the FILE_CB callback and dialog positioning. So if you don't use these
features the regular IupFileDlg in Windows will show the newest interface. To address that restrictions we implemented a separate library
that uses a new Windows API to show the file selection interface. This library is internally implemented in C++ and it will need a C++
linker if statically linked.

Notice that this library exists only on Windows, and it is only available for Visual C++ compilers when statically linking.

Initialization and usage

The IupNewFileDlgOpen function must be called after a IupOpen, so that the regular IupFileDlg will be replaced by the new versions.
The iupfiledlg.h file must also be included in the source code. The program must be linked to the library (iupfiledlg).

To make the control available in Lua use require"iupluafiledlg" or manually call the initialization function in C, iupfiledlglua_open, after
calling iuplua_open. When manually calling the function the iupluafiledlg.h file must also be included in the source code, and the
program must be linked to the lua control library (iupluafiledlg).

Creation

The creation and all Attributes and callbacks are the same as the regular IupFileDlg view a few exceptions.

Attributes

NOPLACESBAR: NOT supported. (There is no Places Bar)

SHOWEDITBOX: NOT supported. (Already has an edit box shown)

SHOWPREVIEW: only shows the preview area provided for Windows Shell Extensions Handlers. It does NOT have support for the
internal preview.

Callbacks

FILE_CB: "PAINT" status is NOT supported.

The preview canvas callbacks are not supported here, only when implemented a Windows Shell Extension Preview Handler.

Examples

OLD Explorer Interface

IUP - Portable User Interface 07-Jan-25

234/496

iupshowxy.html
iupshow.html
iuppopup.html
iupdestroy.html
../../examples/
iupmessage.html
iupscanf.html
iuplistdialog.html
iupalarm.html
iupgetfile.html
../func/iuppopup.html
iupfiledlg.html
../shell_extensions.html

New Explorer Interface

See Also

IupMessage, IupScanf, IupListDialog, IupAlarm, IupGetFile, IupPopup

See Also

IupMessageDlg, IupFileDlg, IupPopup

See Also

IupMessageDlg, IupFileDlg, IupPopup

See Also

IupProgressBar, IupDialog

IUP - Portable User Interface 07-Jan-25

235/496

iupmessage.html
iupscanf.html
iuplistdialog.html
iupalarm.html
iupgetfile.html
../func/iuppopup.html
iupmessagedlg.html
iupgetfiledlg.html
../func/iuppopup.html
iupmessagedlg.html
iupgetfiledlg.html
../func/iuppopup.html
../elem/iupprogressbar.html
iupdialog.html

See Also

IupScintilla, IupDialog

Console Tab & Debugger Tabs Modules (since 3.25)

The Console Tab and the Debugger Tabs can be used as independent modules in another application dialog. The library must be
initialized in the same way by calling IupLuaScripterDlgOpen in C or by calling require"iupluascripterdlg" in Lua. After that the module are
ready to be used.

The Console module is used by calling iup.ConsoleCreate(panelTabs) to create the console tab. panelTabs is a IupZbox, IupTabs or
IupFlatTabs where the console will be inserted.

The Debugger Tabs module is used by calling iup.DebugCreate(panelTabs, multitextTabs) to create the breakpoints tab, the
locals/stack tab and the watch tab. multitextTabs is a IupZbox, IupTabs or IupFlatTabs where each IupScintilla that contains a source file
is located. The panelTabs and the multitextTabs must already be inserted in the application dialog. Additionally the application can also
call iup.DebuggerAddToolbarButtons(toolbar) to add toolbar buttons for debugging, call
iup.DebuggerAddMenuItems(lua_menu) to add menu items for debugging, and call iup.DebuggerAddHotKeys(ih) to add the
debugging hot keys, all the same as in the IupLuaScripterDlg.

But the Debug Tabs module has a few constrains:

- There must be a container (IupTabs, IupFlatTabs or IupZbox) with several IupScintilla controls as children to contains the source codes
being debugged. Margins 2, 3 and 4 are used for debugging. Each IupScintilla should have its file name in the FILENAME attribute if it is
associated with a file.

- The list of global variables to be watched and the list of breakpoints are stored by the application. After preparing the list with the
FILENAMEi and LINEi attributes, call the iup.DebuggerInitBreakpointsList() function to initialize the list. The process for the the
globals are similar but involves more calls to Lua, additionally to the call to iup.DebuggerInitGlobalsTree() at the end. See the
"iupluascripterdlg.c" for more details. In the IupLuaScripterDlg the lists and parameters are stored in a IupConfig configuration file, but
both modules are independent of the configuration file, so the application is responsible for saving and restoring the lists.

- Some features are dependent on IupScintillaDlg attributes. These attributes are isolated in several functions in "debugger.lua", to remove
the IupScintillaDlg dependency these functions must be re-defined in Lua. Such as: iup.DebuggerNewFile, iup.DebuggerOpenFile,
iup.DebuggerForceCloseFile, iup.DebuggerUpdateTitle, iup.DebuggerSaveFile and iup.DebuggerToggleMarker.

Other functions of both modules are available directly in Lua. Take a look of the IupLuaScripterDlg code in the folder
"iup/srclua5/scripter", more specifically the "console.lua" and "debugger.lua" modules.

See Also

IupScintilla, IupDialog, IupScintillaDlg

IupAlarm
Shows a modal dialog containing a message and up to three buttons.

Creation and Show

int IupAlarm(const char *t, const char *m, const char *b1, const char *b2, const char *b3); [in C]
iup.Alarm(t, m, b1[, b2, b3]: string) -> (button: number) [in Lua]

t: Dialog’s title
m: Message
b1: Text of the first button
b2: Text of the second button (optional)
b3: Text of the third button (optional)

Returns: the number of the button selected by the user (1, 2 or 3) , or 0 if failed. It fails only if b1 is not defined.

Notes

This function shows a dialog centralized on the screen, with the message and the buttons. The ‘\n’ character can be added to the message
to indicate line change.

A button is not shown if its parameter is NULL. This is valid only for b2 and b3.

Button 1 is set as the "DEFAULTENTER" and "DEFAULTESC". If Button 2 exists it is set as the "DEFAULTESC". If Button 3 exists it is set as
the "DEFAULTESC".

The dialog uses a global attribute called "PARENTDIALOG" as the parent dialog if it is defined. It also uses a global attribute called "ICON"
as the dialog icon if it is defined.

IUP - Portable User Interface 07-Jan-25

236/496

../ctrl/iup_scintilla.html
iupdialog.html
../ctrl/iup_scintilla.html
iupdialog.html
iupscintilladlg.html

Examples

Browse for Example Files

See Also

IupMessage, IupScanf, IupListDialog, IupGetFile.

IupGetFile
Shows a modal dialog of the native interface system to select a filename. Uses the IupFileDlg element.

Creation and Show

int IupGetFile(char *filename); [in C]
iup.GetFile(filename: string) -> (filename: string, status: number) [in Lua]

filename: This parameter is used as an input value to define the default filter and directory. Example: "../docs/*.txt". As an output value,
it is used to contain the filename entered by the user.

Returns: a status code, whose values can be:

"1": New file.
"0": Normal, existing file.
"-1": Operation cancelled.

Notes

The function does not allocate memory space to store the complete filename entered by the user. Therefore, the filename parameter must
be large enough to contain the directory and file names. The string is limited to 4096 characters.

The function will reuse the directory from one call to another, so in the next call will open in the directory of the last selected file.

The dialog uses a global attribute called "PARENTDIALOG" as the parent dialog if it is defined. It also uses a global attribute called "ICON"
as the dialog icon if it is defined.

For a more controlled dialog use directly the IupFileDlg element.

Examples

Browse for Example Files

See Also

IupFileDlg, IupMessage, IupScanf, IupListDialog, IupAlarm, IupSetLanguage.

IupGetColor
Shows a modal dialog which allows the user to select a color. Based on IupColorDlg.

Creation and Show

int IupGetColor(int x, int y, unsigned char *r, unsigned char *g, unsigned char *b); [in C]
iup.GetColor(x, y[, r, g, b: number]) -> (r, g, b: number) [in Lua]

x, y: x, y values of the IupPopup function.
r, g, b: Pointers to variables that will receive the color selected by the user if the OK button is pressed. The value in the variables at the
moment the function is called defines the color being selected when the dialog is shown. If the OK button is not pressed, the r, g and b
values are not changed. These values cannot be NULL in C, in Lua they are optional and used for initialization only.

Returns: in C a code 1 if the OK button is pressed, or 0 otherwise. In Lua the code is not returned, instead the r,g,b values are returned or

IUP - Portable User Interface 07-Jan-25

237/496

../../examples/
iupmessage.html
iupscanf.html
iuplistdialog.html
iupgetfile.html
iupfiledlg.html
../../examples/
iupfiledlg.html
iupmessage.html
iupscanf.html
iuplistdialog.html
iupalarm.html
../func/iupsetlanguage.html
iupcolordlg.html

nil otherwise.

Notes

The dialog uses a global attribute called "PARENTDIALOG" as the parent dialog if it is defined. It also uses a global attribute called "ICON"
as the dialog icon if it is defined.

Examples

Browse for Example Files

See Also

IupMessage, IupScanf, IupListDialog, IupAlarm, IupGetFile.

IupGetParam
Shows a modal dialog for capturing parameter values using several types of controls. The dialog uses the IupParam and IupParamBox
controls internally.

Creation and Show

int IupGetParam(const char* title, Iparamcb action, void* user_data, const char* format,...); [in C]
int IupGetParamV(const char* title, Iparamcb action, void* user_data, const char* format, va_list arglist); [in C]
int IupGetParamv(const char* title, Iparamcb action, void* user_data, const char* format, int param_count, int param_extra
iup.GetParam(title: string, action: function, format: string,...) -> (status: boolean, ...) [in Lua]

title: dialog title.
action: user callback to be called whenever a parameter value was changed, and when the user pressed the OK button. It can be NULL. It
is the same callback defined in IupParamBox.
user_data: user pointer passed to the user callback.
format: string describing all the parameters. It is a sequence of format strings for each parameter, see IupParam.
...: list of variables address with initial values for the parameters. The number of lines in the format string (number of '\n') will determine
the number of required parameters. But separators will not count as parameters. There is no maximum number of parameters (since
3.13).
param_count: number of regular parameters in the array.
param_extra: number of extra parameters in the array (separator lines and button names).
param_data: array of variables address with initial values for the parameters.

Returns: a status code 1 if the button 1 was pressed, 0 if the button 2 was pressed or if an error occurred.

The function will abort if there are errors in the format string as in the number of the expected parameters. In Lua, the values are
returned by the function in the same order they were passed. The Lua type of each parameter is the equivalent C type (boolean is
integer), except for the status code that it is a boolean.

Notes

The dialog is resizable if it contains a string, a multiline string or a number with a valuator. A ll the multiline strings will increase size
equally in both directions.

The dialog uses a global attribute called "PARENTDIALOG" as the parent dialog if it is defined. It also uses a global attribute called
"ICON" as the dialog icon if it is defined.

The function does not allocate memory space to store strings entered by the user. Therefore, the string value parameter must be large
enough to receive the user input. If you want to set a maximum size for the string you can set the param attribute MAXSTR, inside the
callback when param_index=IUP_GETPARAM_INIT (since 3.6).

Examples

Browse for Example Files

Here is an example showing many of the possible parameters. We show only one for each type, but you can have as many parameters of
the same type you want.

 int pboolean = 1;
 int pinteger = 3456;
 float preal = 3.543f;
 int pinteger2 = 192;
 float preal2 = 0.5f;
 float pangle = 90;
 char pstring[100] = "string text";
 char pfont[100] = "Courier, 24";
 char pcolor[100] = "255 0 128";
 int plist = 2, poptions = 1;

IUP - Portable User Interface 07-Jan-25

238/496

../../examples/
iupmessage.html
iupscanf.html
iuplistdialog.html
iupalarm.html
iupgetfile.html
../elem/iupparam.html
../elem/iupparambox.html
../elem/iupparambox.html#Callbacks
../elem/iupparam.html#Notes
../../examples/

 char pstring2[200] = "second text\nsecond line";
 char file_name[500] = "test.jpg";

 if (!IupGetParam("Title", param_action, 0,
 "Bt %u[, MyCancel, Help!]\n"
 "Boolean: %b[No,Yes]\n"
 "Integer: %i\n"
 "Real 1: %r\n"
 "Sep1 %t\n"
 "Integer: %i[0,255]\n"
 "Real 2: %r[-1.5,1.5,0.05]\n"
 "Sep2 %t\n"
 "Angle: %a[0,360]\n"
 "String: %s\n"
 "Options: %o|item0|item1|item2|\n"
 "List: %l|item0|item1|item2|item3|item4|item5|item6|\n"
 "File: %f[OPEN|*.bmp;*.jpg|CURRENT|NO|NO]\n"
 "Color: %c{Color Tip}\n"
 "Font: %n\n"
 "Sep3 %t\n"
 "Multiline: %m\n",
 &pboolean, &pinteger, &preal, &pinteger2, &preal2, &pangle, pstring,
 &poptions, &plist, file_name, pcolor, pfont, pstring2, NULL))
 return;

IUP - Portable User Interface 07-Jan-25

239/496

See Also

IupScanf, IupColorDlg, IupFontDlg, IupVal, IupDial, IupList, IupFileDlg.

IupParam (since 3.19)
Construction element used only in IupParamBox. It is not mapped in the native system, but it will exist while its IupParamBox container
exists.

Creation

Ihandle* IupParam(const char* format); [in C]
iup.param{format = format: string} -> (ih: ihandle) [in Lua]
param(format) [in LED]

format: string that describes the parameter. See Notes bellow.

Returns: the identifier of the created element, or NULL if an error occurs.

IUP - Portable User Interface 07-Jan-25

240/496

iupscanf.html
iupcolordlg.html
iupfontdlg.html
../elem/iupval.html
../ctrl/iupdial.html
../elem/iuplist.html
iupfiledlg.html
iupparambox.html

Attributes

LABEL [read-only]: returns an IUP Ihandle*, the label associated with the parameter. Valid only after the IupParamBox is created.

CONTROL [read-only]: returns an IUP Ihandle*, the real control associated with the parameter. Valid only after the IupParamBox is
created.

AUXCONTROL [read-only]: returns an IUP Ihandle*, the auxiliary control associated with the parameter (for instance Valuators). Valid
only after the IupParamBox is created.

INDEX [read-only]: returns an integer value associated with the parameter index. IupGetInt can also be used. Valid only after the
IupParamBox is created.

VALUE - the value of the parameter. IupGetFloat and IupGetInt can also be used. For the current parameter inside the callback
contains the new value that will be applied to the control, to get the old value use the VALUE attribute for the CONTROL returned
Ihandle*.

Attributes set during creation, obtained from the format string

TITLE: text of the parameter, used as label. For all parameters.

INDENT: number of indentation levels. For all parameters when '\t' is used inside the title area.

TYPE: can be BOOLEAN ('b'), LIST ('l'), OPTIONS ('o'), REAL ('A ', 'a', 'R', 'r'), STRING ('m', 's'), INTEGER ('i'), DATE ('d'), FILE ('f'),
COLOR ('c'), SEPARATOR ('t'), BUTTONNAMES ('u'), PARAMBOX ('x') and HANDLE ('h'). And describe the type of the parameter. For all
parameters.

DATATYPE: can be INT [int] ('b', 'l', 'o', 'i'), FLOAT [float] ('a', 'r'), DOUBLE [double] ('A ', 'R'), STRING [char*] ('m', 's', 'd', 'f', 'n', 'c'),
HANDLE [Ihandle*] ('h') or NONE ('u', 't', 'x'). And describe the C data type that must be passed to IupGetParam to initialize and receive
parameter values. For all parameters.

MULTILINE: can be Yes or No. Defines if the edit box can have more than one line. For 'm' parameter.

MAXSTR: maximum size for the string. Its default value is 10240 for multiline strings, 4096 for file names, and 512 for other strings. For
'm', 's', 'd', 'f', 'n' and 'c' parameters.

ANGLE: can be Yes or No. defines if the REAL type is an angle. For 'a' or 'A ' parameters.

TRUE, FALSE: boolean names. For 'b' parameter.

INTERVAL (Yes/No), MIN, MAX, STEP, PARTIAL (Yes/No): optional limits for integer and real types. For 'a', 'A ', 'i', 'R', and 'r'
parameters.

PRECISION: numeric precision for real value display. For 'a', 'A ', 'r', and 'R' parameters.

VISIBLECOLUMNS: number of visible columns for horizontally expandable text elements. If set the control will not expand anymore. For
's' parameter.

DIALOGTYPE, FILTER, DIRECTORY, NOCHANGEDIR, NOOVERWRITEPROMPT: used for the FILE parameter dialog. See
IupFileDlg. For 'f' parameter.

BUTTON1, BUTTON2, BUTTON3: button titles. Default is "OK/Cancel/Help" for regular IupGetParam, and "Apply/Reset/Help" when
IupParamBox is directly used. For 'u' parameter.

0, 1, 2, 3, ... : list items. For 'l' and 'o' parameters.

MASK: mask for the edit box input. For 's' and 'm' parameters.

TIP: text of the tip. For all parameters.

NOFRAME: do not include the IupFrame around the parameters list. For 'x' parameter. (since 3.19)

Notes

The format string must have the following format, notice the "\n" at the end

"text%x[extra]{tip}\n", where:

text is a descriptive text, to be placed to the left of the entry field in a label. It can contains any string, but to contain a '%' must use two
characters "%%" to avoid conflict with the type separator (since 3.6). If it is preceded by n '\t' characters then the parameter will be
indented by the same number (since 3.13).

x is the type of the parameter. The valid options are:

b = boolean (shows a True/False toggle, use "int" in C)
i = integer (shows a integer number filtered text box, use "int" in C)
r = real (shows a real number filtered text box, use "float" in C)
R = same as r but using "double" in C (since 3.11.1)

IUP - Portable User Interface 07-Jan-25

241/496

../dlg/iupfiledlg.html

a = angle in degrees (shows a real number filtered text box and a dial [if IupControlsOpen were called], use "float" in C)
A = same as a but using "double" in C (since 3.11.1)
s = string (shows a text box, use "char*" in C, it must have room enough for your string)
m = multiline string (shows a multiline text box, use "char*" in C, it must have room enough for your string)
l = list (shows a dropdown list box, use "int" in C for the zero based item index selected)
o = list (shows a list of toggles inside a radio, use "int" in C for the zero based item index selected) (since 3.3)
t = separator (shows a horizontal line separator label, in this case text can be an empty string, not included in parameter count)
d = string, but the interface uses a IupDatePick element to select a date (since 3.17)
f = string (same as s, but also show a button to open a file selection dialog box)
c = string (same as s, but also show a color button to open a color selection dialog box)
n = string (same as s, but also show a font button to open a font selection dialog box) (since 3.3)
h = Ihandle* (a control handle that will be managed by the application, it will be placed after the parameters and before the buttons.)
(since 3.9)
x = attributes for the IupParamBox in the extra options. (since 3.19)
u = buttons titles (allow to redefine the default button titles (OK and Cancel), and to add a third button, use [button1,button2,button3]
as extra data, can omit one of them, it will use the default name, not included in parameter count) (since 3.1)

extra is one or more additional options for the given type

[min,max,step] are optional limits for integer and real types. The max and step values can be omitted. When min and max are
specified a valuator will also be added to change the value. To specify step, max must be also specified. step is the size of the
increment.
[false,true] are optional strings for boolean types to be displayed after the toggle. The strings can not have commas ',', nor brackets
'[' or ']'.
mask is an optional mask for the string and multiline types. The dialog uses the MASK attribute internally. In this case we do no use
the brackets '[' and ']' to avoid conflict with the specified mask.
|item0|item1|item2,...| are the items of the list. At least one item must exist. Again the brackets are not used to increase the
possibilities for the strings, instead you must use '|'. Items index are zero based start.
[dialogtype|filter|directory|nochangedir|nooverwriteprompt] are the respective attribute values passed to the IupFileDlg
control when activated. All '|' must exist, but you can let empty values to use the default values. No mask can be set.

tip is a string that is displayed in a TIP for the main control of the parameter. (since 3.0)

Since the tip string can not contain a '\n' because of the param terminator, the '\r' character can be used to break lines in the TIP. It will
be internally converted to '\n' before actually setting the TIP. (since 3.17)

A integer parameter always has a spin attached to the text to increment and decrement the value. A real parameter only has a spin if a full
interval is defined (min and max), in this case the default step is (max-min)/100 (since 3.31). When the callback is called because a spin
was activated then the attribute "SPINNING" of the element will be defined to a non NULL and non zero value.

The default precision for real value display is given by the global attribute DEFAULTPRECISION. But inside the callback the application can
set the param attribute "PRECISION" to use another value. It will work only during interactive changes. The decimal symbol will used the
DEFAULTDECIMALSYMBOL global attribute. (since 3.13)

There is no extra parameters for the color string. The mask is automatically set to capture 3 or 4 unsigned integers from 0 to 255 (R G B)
or (R G B A) (alpha is optional).

The date extra parameters are simply IupDatePick attributes in a single string for IupSetAttributes usage. (since 3.17)

When the "s" type is used the size can be controlled using the VISIBLECOLUMNS attribute at the param element. (since 3.16)

Utilities in Lua

In Lua, to retrieve a parameter control, auxiliary control or button you must use the following function:

iup.GetParamHandle(param: ihandle, name: string)-> (control: ihandle) [in Lua] (since 3.16)
param:GetParamHandle(name: string)-> (control: ihandle) (since 3.19)

param: Identifier of the parameter.
name: name of the parameter.

See Also

IupGetParam, IupParamBox

IupParamBox (since 3.19)
Creates a void container for composing elements created using a list of IupParam elements. Each param is used to create several lines of
controls internally arranged in a vertical composition.

It does not have a native representation.

Creation

Ihandle* IupParamBox(Ihandle *param, ...); [in C]

IUP - Portable User Interface 07-Jan-25

242/496

iupdatepick.html
../attrib/iup_mask.html
../dlg/iupfiledlg.html
../attrib/iup_globals.html#DEFAULTPRECISION
../attrib/iup_globals.html#DEFAULTDECIMALSYMBOL
iupdatepick.html
../dlg/iupgetparam.html
iupparambox.html
iupparam.html

Ihandle* IupParamBoxV(Ihandle* param, va_list arglist); [in C]
Ihandle* IupParamBoxv(Ihandle **param_array); [in C]
iup.parambox{param, ...: ihandle} -> (ih: ihandle) [in Lua]
parambox(param, ...) [in LED]

param, ... : List of the IupParam identifiers that will be used to create the internal controls. NULL must be used to define the end of the
list in C. It can NOT be empty. The list of params can NOT be changed after the box is created.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

BUTTON1, BUTTON2, BUTTON3 [read-only]: returns an IUP Ihandle* of the respective button in the button box.

PARAMn [read-only]: returns an IUP Ihandle* representing the nth parameter, indexed by the declaration order, not counting separators
or button names. n starts at 0.

PARAMCOUNT [read-only]: returns the number of parameters not counting separators and button names.

STATUS [read-only]: set to 1 when button1 is activated, and set to 0 when button2 is activated or the IupGetParam dialog close button is
clicked.

LABELALIGN: controls the alignment of all labels. Can be ALEFT or ARIGHT. Default: ALEFT. (since 3.20)

MODIFIABLE: controls the active state of all controls but when disabled allows the text boxes to be read-only and selectable instead of
inactive. Default: Yes. (since 3.20)

SPINNING: defined only during the callback to indicate that the spin was activated.

USERDATA: will hold the user data passed to the callback.

EXPAND (non inheritable*): The default value is "YES". See the documentation of the attribute for EXPAND inheritance.

WID (read-only): returns -1 if mapped.

FONT, CLIENTSIZE, CLIENTOFFSET, POSITION, MINSIZE, MAXSIZE, THEME: also accepted.

Callbacks

int PARAM_CB(Ihandle* ih, int param_index, void* user_data); [in C]
ih:param_cb(param_index: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
param_index: current parameter being changed. Can have negative values to indicate specific situations:
 IUP_GETPARAM_BUTTON1 (-1) = if the user pressed the button 1;
 IUP_GETPARAM_INIT (-2) = after the IupGetParam dialog is mapped and just before it is shown. Not called when IupParamBox
is directly used;
 IUP_GETPARAM_BUTTON2 (-3) = if the user pressed the button 2;
 IUP_GETPARAM_BUTTON3 (-4) = if the user pressed the button 3, if any;
 IUP_GETPARAM_CLOSE (-5) = if the user clicked on the IupGetParam dialog close button. Not called when IupParamBox is
directly used; (since 3.13)
 IUP_GETPARAM_MAP (-5) = before the IupGetParam dialog is mapped. Not called when IupParamBox is directly used; (since
3.21)
user_data: a user pointer that is passed in the function call.

Returns: You can reject the change or the button action by returning 0 in the callback, otherwise you must return 1. By default buttons 1
and 2 will return IUP_CLOSE and close any modal dialog. To change that behavior return 0 in the callback.

You should not programmatically change the current parameter value during the callback. On the other hand you can freely change the
value of other parameters.

Use the attribute "PARAMn" to get the parameter "Ihandle*", where "n" is the parameter index in the order they are specified starting at 0,
but separators and button names are not counted. Notice that this is not the actual control, use the parameter attribute "CONTROL" to get
the actual control. For example:

Ihandle* param2 = (Ihandle*)IupGetAttribute(ih, "PARAM2");
int value2 = IupGetInt(param2, IUP_VALUE);

Ihandle* param5 = (Ihandle*)IupGetAttribute(ih, "PARAM5");
Ihandle* ctrl5 = (Ihandle*)IupGetAttribute(param5, "CONTROL");

if (value2 == 0)
{
 IupSetAttribute(param5, IUP_VALUE, "New Value");
 IupSetAttribute(ctrl5, IUP_VALUE, "New Value");
}

IUP - Portable User Interface 07-Jan-25

243/496

../attrib/iup_expand.html
../attrib/iup_font.html
../attrib/iup_clientsize.html
../attrib/iup_clientoffset.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_theme.html

Since parameters are user controls and not real controls, you must update the control value and the parameter value.

Be aware that programmatically changes are not filtered. The valuator, when available, can be retrieved using the parameter attribute
"AUXCONTROL". The valuator is not automatically updated when the text box is changed programmatically. The parameter label is also
available using the parameter attribute "LABEL".

Utilities in Lua

In Lua, to retrieve a parameter you must use the following function:

iup.GetParamParam(ih: ihandle, index: number)-> (param: ihandle) [in Lua]
ih:GetParamParam(index: number)-> (param: ihandle) (since 3.19)

ih: Identifier of the element.
index: parameter to be retrieved.

Notes

The box can NOT be dynamically filled using IupAppend or IupInsert.

See Also

IupGetParam, IupParam

IupGetText
Shows a modal dialog to edit a multiline text.

Creation and Show

int IupGetText(const char* title, char *text, int maxsize); [in C]
iup.GetText(title, text: string[, maxsize: number]) -> (text: string) [in Lua]

title: the dialog title.
text: the initial value of the text and the returned text.
maxsize: maximum size for the edited string. In Lua the default maxsize is 10240. If set to 0 will be the current length of text, if set to
-1 the dialog will be read-only and only the OK button is displayed (since 3.29). (since 3.17)

Returns: a non zero value if successful. In Lua returns the text or nil if the user canceled.

Notes

The function does not allocate memory space to store the text entered by the user. Therefore, the text parameter must be large enough to
contain the user input.

The dialog uses a global attribute called "PARENTDIALOG" as the parent dialog if it is defined. It also uses a global attribute called "ICON"
as the dialog icon if it is defined.

Examples

See Also

IupMessage, IupScanf, IupListDialog, IupAlarm, IupSetLanguage.

IUP - Portable User Interface 07-Jan-25

244/496

../func/iupappend.html
../func/iupinsert.html
../dlg/iupgetparam.html
iupparam.html
iupmessage.html
iupscanf.html
iuplistdialog.html
iupalarm.html
../func/iupsetlanguage.html

IupListDialog
Shows a modal dialog to select items from a simple or multiple selection list.

Creation and Show

int IupListDialog(int type, const char *title, int size, const char** list, int op, int max_col, int max_lin, int* marks
iup.ListDialog(type: number, title: string, size: number, list: table of strings, op: number, max_col: number, max_lin: number,

type: 1=simple selection; 2=multiple selection
title: Text for the dialog’s title
size: Number of options
list: List of options. Must have size elements
op: Initial selected item when type=1. starts at 1 (note that this index is different from the return value, kept for compatibility reasons)
max_col: number of visible columns in the list
max_lin: number of visible lines in the list
marks: List of the items selection state, used only when type=2. Can be NULL when type=1. When type=2 must have size elements

Returns: When type=1, the function returns the number of the selected option (starts at 0), or -1 if the user cancels the operation.
 When type=2, the function returns -1 when the user cancels the operation. If the user does not cancel the operation the function
returns 1 and the marks parameter will have value 1 for the options selected by the user and value 0 for non-selected options. In Lua,
the input table mark is changed.

Notes

The dialog uses a global attribute called "PARENTDIALOG" as the parent dialog if it is defined. It also uses a global attribute called "ICON"
as the dialog icon if it is defined.

Examples

Browse for Example Files

See Also

IupMessage, IupScanf, IupGetFile, IupAlarm

IupMessage
Shows a modal dialog containing a message. It simply creates and popup a IupMessageDlg.

Creation and Show

void IupMessage(const char *title, const char *message); [in C]
void IupMessagef(const char *title, const char *format, ...); [in C]
void IupMessageV(const char *title, const char *format, va_list arglist); [in C]
iup.Message(title: string, message: string) [in Lua]

title: dialog title
message: text message contents
format: same format as the C sprintf function

Notes

The IupMessage function shows a dialog centralized on the screen, showing the message and the “OK” button. The ‘\n’ character can be
added to the message to indicate line change.

The dialog uses a global attribute called "PARENTDIALOG" as the parent dialog if it is defined. It also uses a global attribute called "ICON"
as the dialog icon if it is defined (used only in Motif, in Windows MessageBox does not have an icon in the title bar).

Examples

IUP - Portable User Interface 07-Jan-25

245/496

../../examples/
iupmessage.html
iupscanf.html
iupgetfile.html
iupalarm.html

Browse for Example Files

See Also

IupGetFile, IupScanf, IupListDialog, IupAlarm, IupMessageDlg

IupMessageError (since 3.22)
Shows a modal dialog containing an error message. It simply creates and popup a IupMessageDlg with DIALOGTYPE=ERROR.

Creation and Show

void IupMessageError(Ihandle* parent, const char *message); [in C]
iup.MessageError(parent: ihandle, message: string) [in Lua]

parent: parent dialog, can be NULL.
message: text message contents. It can be a language pre-defined string without the "_@" prefix.

Notes

If parent is NULL the title defaults to "Error!" and tries the global attribute "PARENTDIALOG" as the parent dialog.

The dialog title will be the same title of the parent dialog.

The dialog is shown centered relative to its parent.

Examples

Browse for Example Files

See Also

IupGetFile, IupScanf, IupListDialog, IupAlarm, IupMessage, IupMessageDlg

IupMessageAlarm (since 3.22)
Shows a modal dialog containing a question message, similar to IupAlarm. It simply creates and popup a IupMessageDlg with
DIALOGTYPE=QUESTION.

Creation and Show

void IupMessageAlarm(Ihandle* parent, const char *title, const char *message, const char* buttons); [in C]
iup.MessageAlarm(parent: ihandle, title, message, buttons: string) [in Lua]

parent: parent dialog, can be NULL.
title: dialog’s title, can be NULL. It can be a language pre-defined string without the "_@" prefix.
message: text message contents. It can be a language pre-defined string without the "_@" prefix.
buttons: list of buttons. Can have values: "OK", "OKCANCEL", "RETRYCANCEL", "YESNO", or "YESNOCANCEL".

Returns: the number of the button selected by the user (1, 2 or 3).

Notes

If parent is NULL the title defaults to "Attention!" and tries the global attribute "PARENTDIALOG" as the parent dialog.

The dialog is shown centered relative to its parent.

Examples

Browse for Example Files

See Also

IupGetFile, IupScanf, IupListDialog, IupAlarm, IupMessage, IupMessageDlg

IupScanf
Shows a modal dialog for capturing values with a format similar to the scanf function in the C stdio library.

It is recommended that new applications use the IupGetParam dialog instead.

IUP - Portable User Interface 07-Jan-25

246/496

../../examples/
iupgetfile.html
iupscanf.html
iuplistdialog.html
iupalarm.html
iupmessagedlg.html
../../examples/
iupgetfile.html
iupscanf.html
iuplistdialog.html
iupalarm.html
iupmessage.html
iupmessagedlg.html
../../examples/
iupgetfile.html
iupscanf.html
iuplistdialog.html
iupalarm.html
iupmessage.html
iupmessagedlg.html
iupgetparam.html

Creation and Show

int IupScanf(const char *format, ...); [in C]
iup.Scanf(format: string, ...) -> (...) [in Lua]

format: Reading format
...: List of variables

Returns: In C the number of successfully read fields, or -1 when the user has canceled the operation. In Lua, the code is not returned, the
values are returned by the function in the same order they were passed, or nil when the user has canceled the operation.

Notes

The fmt format must include a title and the descriptions of the variable fields to be read, using the following syntax:

- First line: Window title followed by '\n'

- Following lines: Must be specified for each variable to be read, in the following format:

"text%t.v%f\n", where:

text is a descriptive text, to be placed to the left of the text field in a label.
t is the maximum number of characters allowed
v is the number of visible characters in the text field
f is the type (char, float, etc), in the C format for I/O services (d,i,o,u,x,X,e,f,g,E,G,s, and the modifiers l,h)

All the fields use a text box for input. If you need better control of what characters the user enters, you should use IupGetParam. This
other dialog also has many other resources not available in IupScanf.

The dialog uses a global attribute called "PARENTDIALOG" as the parent dialog if it is defined. It also uses a global attribute called "ICON"
as the dialog icon if it is defined.

Examples

Captures an integer number, a floating-point value and a character string.

Browse for Example Files

See Also

IupGetFile, IupMessage, IupListDialog, IupAlarm, IupGetParam

See Also

IupDialog, IupShow, IupShowXY, IupPopup

See Also

IupDialog, IupShow, IupShowXY, IupPopup, IupLayoutDialog

See Also

IupDialog, IupShow, IupShowXY, IupPopup, IupLayoutDialog

See Also

IupDialog, IupShow, IupShowXY, IupPopup, IupLayoutDialog

Layout Composition

IUP - Portable User Interface 07-Jan-25

247/496

iupgetparam.html
../../examples/
iupgetfile.html
iupmessage.html
iuplistdialog.html
iupalarm.html
iupgetparam.html
iupdialog.html
../func/iupshow.html
../func/iupshowxy.html
../func/iuppopup.html
iupdialog.html
../func/iupshow.html
../func/iupshowxy.html
../func/iuppopup.html
iuplayoutdialog.html
iupdialog.html
../func/iupshow.html
../func/iupshowxy.html
../func/iuppopup.html
iuplayoutdialog.html
iupdialog.html
../func/iupshow.html
../func/iupshowxy.html
../func/iuppopup.html
iuplayoutdialog.html

Abstract Layout

Most interface toolkits employ the concrete layout model, that is, control positioning in the dialog is absolute in coordinates relative to the
top-left corner of the dialog’s client area. This makes it easy to position the controls on it by using an interactive tool usually provided with
the system. It is also easy to dimension them. Of course, this positioning intrinsically depends on the graphics system’s resolution.
Moreover, when the dialog size is altered, the elements remain on the same place, thus generating an empty area below and to the right
of the elements. Besides, if the graphics system’s resolution changes, the dialog inevitably will look larger or smaller according to the
resolution increase or decrease.

IUP implements an abstract layout concept, in which the positioning of controls is done relatively instead of absolutely. For such,
composition elements are necessary for composing the interface elements. They are boxes and fillings invisible to the user, but that play
an important part. When the dialog size changes, these containers expand or retract to adjust the positioning of the controls to the new
situation.

Watch the codes below. The first one refers to the creation of a dialog for the Microsoft Windows environment using its own resource API.
The second uses IUP. Note that, apart from providing the specification greater flexibility, the IUP specification is simpler, though a little
larger. In fact, creating a dialog on IUP with several elements will force you to plan your dialog more carefully – on the other hand, this
will actually make its implementation easier.

 Moreover, this IUP dialog has an indirect advantage: if the user changes its size, the elements (due to being positioned on an abstract
layout) are automatically re-positioned horizontally.

The composition elements includes vertical boxes (vbox), horizontal boxes (hbox) and filling (fill). There is also a depth box (zbox) in
which layers of elements can be created for the same dialog, and the elements in each layer are only visible when that given layer is
active.

in Windows in IupLua

dialog DIALOG 0, 0, 117, 32
STYLE WS_MINIMIZEBOX | WS_MAXIMIZEBOX |
 WS_CAPTION | WS_SYSMENU |
 WS_THICKFRAME
CAPTION "Title"
BEGIN
 PUSHBUTTON "Ok",IDOK,17,9,33,15
 PUSHBUTTON "Cancel",IDCANCEL,66,9,33,15
END

dialog = iup.dialog
{
 iup.hbox
 {
 iup.fill{},
 iup.button{title="Ok",size="40"},
 iup.button{title="Cancel",size="40"},
 iup.fill{}
 ;margin="15x15", gap="10"
 }
 ;title="Title"
}

Now see the same dialog in LED and in C:

in LED in C

dialog = DIALOG[TITLE="Title"]
(
 HBOX[MARGIN="15x15", GAP="10"]
 (
 FILL(),
 BUTTON[SIZE="40"]("Ok",do_nothing),
 BUTTON[SIZE="40"]("Cancel",do_nothing),
 FILL()
)
)

dialog = IupSetAttributes(IupDialog
(
 IupSetAttributes(IupHbox
 (
 IupFill(),
 IupSetAttributes(IupButton("Ok", NULL), "SIZE=40"),
 IupSetAttributes(IupButton("Cancel", NULL), "SIZE=40"),
 IupFill(),
 NULL
), "MARGIN=15x15, GAP=10")),
), "TITLE=Title")

Following, the abstract layout representation of this dialog:

Layout Hierarchy Layout Visualization

Dialog
 HBox
 Fill

IUP - Portable User Interface 07-Jan-25

248/496

 Button
 Button
 Fill

Layout Guide

Native Sizes (Window and Client)

Because of the dynamic nature of the abstract layout IUP elements have implicit many types of size. But the native elements have only two
types of size: Window and Client. The Window size reflects the bounding rectangle of the element. The Client size reflects the inner
size of the window that excludes the decorations and margins. For many elements these two sizes are equal, but for many containers they
are quite different. See some examples below.

The IUP sizes (User, Natural and Current) described below are all related to the Window size.

The native Client size is used only internally to reposition the elements in the abstract layout, but it is available using the CLIENTSIZE
attribute.

IUP Sizes

Natural Size

IUP does not require that the application specifies the size of any element. The sizes are automatically calculated so the contents of each
element is fully displayed. This size is called Natural size. The Natural size is calculated just before the element is mapped to the native
system and every time IupMap is called, even if the element is already mapped.

The Natural size of a container is the size that allows all the elements inside the container to be fully displayed. Then the Natural size is
calculated from the inner element to the outer element (the dialog). Important: even if the element is invisible its size will be included in
the size of its containers, except when FLOATING=Yes.

So consider the following code and its result. Each button size is large enough to display their respective text. If the dialog size is
increased or reduced by the size handlers in the dialog borders the buttons do not move or change their sizes.

But notice that some controls do not have contents that can provide a Natural size. In this case they usually have SIZE or RASTERSIZE
pre-set.

To obtain the last computed Natural size of the control in pixels, use the read-only attribute NATURALSIZE (since 3.6).

dlg = iup.dialog
{
 iup.vbox
 {
 iup.button{title="Button Very Long Text"},
 iup.button{title="short"},
 iup.button{title="Mid Button"}
 }
 ;title="IupDialog", font="Helvetica, Bold 14"
}
dlg:show()

User Size

When the application defines the SIZE or RASTERSIZE attributes, it changes the User size in IUP. The initial internal value is "0x0". When
set to NULL the User size is internally set to "0x0". If the element is not mapped then the returned value by SIZE or RASTERSIZE is the
User size, if the element is mapped then the returned value is the Current size. To obtain the User size after the element is mapped use
the USERSIZE attribute (since 3.12).

By default the layout computation uses the Natural size of the element to compose the layout of the dialog, but if the User size is

IUP - Portable User Interface 07-Jan-25

249/496

attrib/iup_clientsize.html
attrib/iup_naturalsize.html
attrib/iup_size.html
attrib/iup_rastersize.html

defined then it is used instead of the Natural size. In this case the Natural size is not even computed. But there are two exceptions.

If the element is a container (not including the dialog) the User size will be used instead of the Natural size only if bigger than the
Natural size. So for containers the User size will also act as a minimum value for Natural size.

For the dialog, if the User size is defined then it is used instead of the Natural size, but the Natural size of the dialog is always
computed. And if the User size is not defined, the Natural size is used only if bigger than the Current size, so in this case the dialog will
always increase its size to fit all its contents. In other words, in this case the dialog will not shrink its Current size unless the User size is
defined. See the SHRINK attribute guide bellow for an alternative.

When the user is interactively changing the dialog size the Current size is updated. But the dialog contents will always occupy the Natural
size available, being smaller or bigger than the dialog Current size.

When SIZE or RASTERSIZE attributes are set for the dialog (changing the User size) the Current size is also reset to "0x0". Allowing the
application to force an update of its Window size. To only change the User size in pixels, without resetting the Current size, set the
USERSIZE attribute (since 3.12).

Current Size

After the Natural size is calculated for all the elements in the dialog, the the Current size is set based on the available space in the
dialog. So the Current size is set from the outer element (the dialog) to the inner element, in opposite of what it is done for the Natural
size.

After all the elements have their Current size updated, the elements positions are calculated, and finally, after the element is mapped, the
Window size and position are set for the native elements. The Window size is set exactly to the Current size.

After the element is mapped the returned value for SIZE or RASTERSIZE is the Current size. It actually returns the native Window size
of the element. Before mapping, the returned value is the User size.

Defining the SIZE attribute of the buttons in the example we can make all have the same size. (In the following example the dialog size
was changed after it was displayed on screen)

dlg = iup.dialog
{
 iup.vbox
 {
 iup.button{title="Button Very Long Text", size="50x"},
 iup.button{title="short", size="50x"},
 iup.button{title="Mid Button", size="50x"}
 }
 ;title="IupDialog", font="Helvetica, Bold 14"
}
dlg:show()

So when EXPAND=NO (see below) for elements that are not containers if User size is defined then the Natural size is ignored.

If you want to adjust sizes in the dialog do it after the layout size and positioning are done, i.e. after the dialog is mapped or after
IupRefresh is called.

EXPAND

Another way to increase the size of elements is to use the EXPAND attribute. When there is room in the container to expand an element,
the container layout will expand the elements that have the EXPAND attribute set to YES, HORIZONTAL or VERTICAL accordingly, even if
they have the User size defined.

The default is EXPAND=NO, but for containers is EXPAND=YES.

Using EXPAND in the example, we obtain the following result:

dlg = iup.dialog
{
 iup.vbox
 {
 iup.button{title="Button Very Long Text"},
 iup.button{title="short", expand="HORIZONTAL"},
 iup.button{title="Mid Button", expand="HORIZONTAL"}
 }
 ;title="IupDialog", font="Helvetica, Bold 14"
}
dlg:show()

So for elements that are NOT containers, when EXPAND is enabled the Natural size and the User size are ignored.

For containers the default behavior is to always expand or if expand is disabled they are limited to the Natural size. As a consequence (if

IUP - Portable User Interface 07-Jan-25

250/496

the User size is not defined in all the elements) the dialog contents can only expand and its minimum size is the Natural size, even if
EXPAND is enabled for its elements. In fact the actual dialog size can be smaller, but its contents will stop to follow the resize and they will
be clipped at right and bottom.

If the expansion is in the same direction of the box, for instance expand="VERTICAL" in the Vbox of the previous example, then the
expandable elements will receive equal spaces to expand according to the remaining empty space in the box. This is why elements in
different boxes does not align perfectly when EXPAND is set.

SHRINK

To reduce the size of the dialog and its containers to a size smaller than the Natural size the SHRINK attribute of the dialog can be used.
If set to YES all the containers of the dialog will be able to reduce its size. But be aware that elements may overlap and the layout result
could be visually bad if the dialog size is smaller than its Natural size.

Notice that in the example the dialog initial size will be 0x0 because it is not defined. The picture shown was captured after manually
resizing the dialog. So when using SHRINK usually you will also need to set the dialog initial size.

dlg = iup.dialog
{
 iup.vbox
 {
 iup.button{title="Button Very Long Text"},
 iup.button{title="short", expand="HORIZONTAL"},
 iup.button{title="Mid Button", expand="HORIZONTAL"}
 }
 ;title="IupDialog", shrink="yes", font="Helvetica, Bold 14"
}
dlg:show()

Layout Hierarchy

The layout of the elements of a dialog in IUP has a natural hierarchy because of the way they are composed together.

To create a node simply call one of the pre-defined constructors like IupLabel, IupButton, IupCanvas, and so on. To create a branch
just call the constructors of containers like IupDialog, IupFrame, IupVBox, and so on. Internally they all call IupCreate to create
branches or nodes. To destroy a node or branch call IupDestroy.

Some of the constructors already append children to its branch, but you can add other children using IupAppend or IupInsert. To remove
from the tree call IupDetach.

For the element to be visible IupMap must be called so it can be associated with a native control. IupShow, IupShowXY or IupPopup
will automatically call IupMap before showing a dialog. To remove this association call IupUnmap.

But there is a call order to be able to call theses functions that depends on the state of the element. As you can see from these functions
there are 3 states: created, appended and mapped. From created to mapped it is performed one step at a time. Even when the
constructor receives the children as a parameter IupAppend is called internally. When you detach an element it will be automatically
unmapped if necessary. When you destroy an element it will be automatically detached if necessary. So explicitly or implicitly, there
will be always a call to:

IupCreate -> IupAppend -> IupMap
IupDestroy <- IupDetach <- IupUnmap

A more simple and fast way to move an element from one position in the hierarchy to another is using IupReparent.

The dialog is the root of the hierarchy tree. To retrieve the dialog of any element you can simply call IupGetDialog, but there are other
ways to navigate in the hierarchy tree.

To get all the children of a container call IupGetChild or IupGetNextChild. To get just the next control with the same parent use
IupGetBrother. To get the parent of a control call IupGetParent.

In Lua, if the container was created in Lua and children specified during the creating, you can access any child of the element using the
notation "elem[n]", where n is the index of the child. For example:

dlg = iup.dialog

IUP - Portable User Interface 07-Jan-25

251/496

func/iupcreate.html
func/iupdestroy.html
func/iupappend.html
func/iupinsert.html
func/iupdetach.html
func/iupmap.html
func/iupumap.html
func/iupreparent.html
func/iupgetdialog.html
func/iupgetchild.html
func/iupgetnextchild.html
func/iupgetbrother.html
func/iupgetparent.html

{
 iup.hbox
 {
 iup.button{title="Ok"},
 iup.button{title="Cancel"},
 }
}
cancel_button = dlg[1][2]

But this will not work for dynamically modified containers, for instance when iup.Append or iup.Deatch are used to add or remove
elements from the container. For those containers use the API functions like iup.GetChild.

Layout Display

The layout size and positioning is automatically updated by IupMap. IupMap also updates the dialog layout even if it is already mapped,
so using it or using IupShow, IupShowXY or IupPopup (they all call IupMap) will also update the dialog layout. The layout size and
positioning can be manually updated using IupRefresh, even if the dialog is not mapped.

After changing containers attributes or element sizes that affect the layout the elements are NOT immediately repositioned. Call
IupRefresh for an element inside the dialog to update the dialog layout.

The Layout update is done in two phases. First the layout is computed, this can be done without the dialog being mapped. Second is the
native elements update from the computed values.

The Layout computation is done in 3 steps: Natural size computation, update the Current size and update the position.

The Natural size computation is done from the inner elements up to the dialog (first for the children then the element). User size
(set by RASTERSIZE or SIZE) is used as the Natural size if defined, if not usually the contents of the element are used to
calculate the Natural size.
Then the Current size is computed starting at the dialog down to the inner elements on the layout hierarchy (first the element
then the children). Children Current size is computed according to layout distribution and containers decoration. At the children if
EXPAND is set, then the size specified by the parent is used, else the natural size is used.
Finally the position is computed starting at the dialog down to the inner elements on the layout hierarchy, after all sizes are
computed.

Element Update

Usually IUP automatically updates everything for the application, for instance there is no need to force a display update after an attribute
is changed. But there are some situations where you need to force an update. Here is a summary of the functions that can be used to
update an element state:

IupUpdate - update the element look by letting the system to schedule a redraw.

IupRedraw - has the same effect of IupUpdate but forces the element to redraw now.

IupRefresh - if the application changed some attribute that affects the natural size, for instance SIZE or RASTERSIZE among others, the
actual element size is NOT immediately updated. That's because it can affect the size and position of other elements in the dialog.
IupRefresh will force an update in the layout of the whole dialog, and of course if an element has its size changed its appearance will be
automatically updated.

IupFlush - process all events that are waiting to be processed. When you set an attribute, a system event is generated, but it will wait until
is processed by the event loop. Sometimes the application needs an immediate result, so calling IupFlush will process that event but it
will also process every other event that was waiting to be processed, so other callbacks could be trigger during IupFlush call.

IupAppend
Inserts an interface element at the end of the container, after the last element of the container. Valid for any element that contains other
elements like dialog, frame, hbox, vbox, zbox or menu.

Parameters/Return

Ihandle* IupAppend(Ihandle* ih, Ihandle* new_child); [in C]
iup.Append(ih, new_child: ihandle) -> (parent: ihandle) [in Lua]
or ih:append(new_child: ihandle) -> (parent: ihandle) [in Lua]

ih: Identifier of a container like hbox, vbox, zbox and menu.
new_child: Identifier of the element to be inserted.

Returns: the actual parent if the interface element was successfully inserted. Otherwise returns NULL (nil in Lua). Notice that the desired
parent can contains a set of elements and containers where the child will be actually attached so the function returns the actual parent of
the element.

Notes

This function can be used when elements that will compose a container are not known a priori and should be dynamically constructed.

IUP - Portable User Interface 07-Jan-25

252/496

func/iuprefresh.html
func/iupupdate.html
func/iupredraw.html
func/iuprefresh.html
func/iupflush.html

The new child can NOT be mapped. It will NOT map the new child into the native system. If the parent is already mapped you must
explicitly call IupMap for the appended child.

If the actual parent is a layout box (IupVbox, IupHbox or IupZbox) and you try to append a child that it is already at the parent child
list, then the child is moved to the last child position.

The elements are NOT immediately repositioned. Call IupRefresh for the container (or any other element in the dialog) to update the
dialog layout.

See Also

IupDetach, IupInsert, IupHbox, IupVbox, IupZbox, IupMenu, IupMap, IupUnmap, IupRefresh

IupDetach
Detaches an interface element from its parent.

Parameters/Return

void IupDetach(Ihandle *child); [in C]
iup.Detach(child: ihandle) [in Lua]
or child:detach() [in Lua]

child: Identifier of the interface element to be detached.

Notes

It will automatically call IupUnmap to unmap the element if necessary, and then detach the element.

If left detached it is still necessary to call IupDestroy to destroy the IUP element.

The elements are NOT immediately repositioned. Call IupRefresh for the container (or any other element in the dialog) to update the
dialog layout.

When the element is mapped some attributes are stored only in the native system. If the element is unmaped those attributes are lost.
Use the function IupSaveClassAttributes when you want to unmap the element and keep its attributes.

See Also

IupAppend, IupInsert, IupRefresh, IupUnmap, IupCreate, IupDestroy

IupInsert (Since 3.0)
Inserts an interface element before another child of the container. Valid for any element that contains other elements like dialog, frame,
hbox, vbox, zbox, menu, etc.

Parameters/Return

Ihandle* IupInsert(Ihandle* ih, Ihandle* ref_child, Ihandle* new_child); [in C]
iup.Insert(ih, ref_child, new_child: ihandle) -> (parent: ihandle) [in Lua]
or ih:insert(ref_child, new_child: ihandle) -> (parent: ihandle) [in Lua]

ih: Identifier of a container like hbox, vbox, zbox and menu.
ref_child: Identifier of the element to be used as reference. Can be NULL to insert as the first element.
new_child: Identifier of the element to be inserted before the reference.

Returns: the actual parent if the interface element was successfully inserted. Otherwise returns NULL (nil in Lua). Notice that the desired
parent can contains a set of elements and containers where the child will be actually attached so the function returns the actual parent of
the element.

Notes

This function can be used when elements that will compose a container are not known a priori and should be dynamically constructed.

The new child can NOT be mapped. It will NOT map the new child into the native system. If the parent is already mapped you must
explicitly call IupMap for the appended child.

If the actual parent is a layout box (IupVbox, IupHbox or IupZbox) and you try to insert a child that it is already at the parent child list,
then the child is moved to the insert position.

The elements are NOT immediately repositioned. Call IupRefresh for the container* to update the dialog layout (* or any other element
in the dialog).

IUP - Portable User Interface 07-Jan-25

253/496

iupdetach.html
iupinsert.html
../elem/iuphbox.html
../elem/iupvbox.html
../elem/iupzbox.html
../elem/iupmenu.html
iupmap.html
iupunmap.html
iuprefresh.html
iupsaveclassattributes.html
iupappend.html
iupinsert.html
iuprefresh.html
iupunmap.html
iupcreate.html
iupdestroy.html

See Also

IupAppend, IupDetach, IupHbox, IupVbox, IupZbox, IupMenu, IupMap, IupUnmap, IupRefresh

IupReparent (Since 3.0)
Moves an interface element from one position in the hierarchy tree to another.

Both new_parent and child must be mapped or unmapped at the same time.

If ref_child is NULL, then it will append the child to the new_parent. If ref_child is NOT NULL then it will insert child before
ref_child inside the new_parent.

Parameters/Return

int IupReparent(Ihandle* child, Ihandle* new_parent, Ihandle* ref_child); [in C]
iup.Reparent(child, new_parent, ref_child: ihandle) -> error: number [in Lua]

child: Identifier of the element to be moved.
new_parent: Identifier of the new parent.
ref_child: Identifier of the element to be used as reference, where the child will be inserted before it. Can be NULL. (since 3.3)

Returns: IUP_NOERROR if successfully, IUP_ERROR if failed.

Notes

This function is faster and easier than doing the sequence unmap, detach, append/insert and map.

The elements are NOT immediately repositioned. Call IupRefresh for the container (or any other element in the dialog) to update the
dialog layout.

Motif does not support the re-parent function, but we simulate a re-parent doing a unmap/map sequence. But some attributes may be
lost during the operation, mostly attributes that are id dependent.

See Also

IupAppend, IupInsert, IupDetach, IupMap, IupUnmap, IupRefresh

IupGetParent
Returns the parent of a control.

Parameters/Return

Ihandle* IupGetParent(Ihandle *ih); [in C]
iup.GetParent(ih: ihandle) -> parent: ihandle [in Lua]

ih: identifier of the interface element.

Returns: the handle of the parent or NULL if does not have a parent.

See Also

IupGetChild, IupGetNextChild, IupGetBrother

IupGetChild
Returns the a child of the control given its position.

Parameters/Return

Ihandle *IupGetChild(Ihandle* ih, int pos); [in C]
iup.GetChild(ih: ihandle, pos: number) -> child: ihandle [in Lua]

ih: identifier of the interface element.
pos: position of the desire child starting at 0.

Returns: the child or NULL if there is none.

Notes

IUP - Portable User Interface 07-Jan-25

254/496

iupappend.html
iupdetach.html
../elem/iuphbox.html
../elem/iupvbox.html
../elem/iupzbox.html
../elem/iupmenu.html
iupmap.html
iupunmap.html
iuprefresh.html
iupappend.html
iupinsert.html
iupdetach.html
iupmap.html
iupunmap.html
iuprefresh.html
iupgetchild.html
iupgetnextchild.html
iupgetbrother.html

This function will return the children of the control in the exact same order in which they were assigned.

See Also

IupGetChildPos, IupGetNextChild, IupGetBrother, IupGetParent

IupGetChildPos (since 3.0)
Returns the position of a child of the given control.

Parameters/Return

int IupGetChildPos(Ihandle* ih, Ihandle* child); [in C]
iup.GetChildPos(ih, child: ihandle) -> pos: number [in Lua]

ih: identifier of the interface element.

Returns: the position of the desire child starting at 0, or -1 if child not found.

Notes

This function will return the children of the control in the exact same order in which they were assigned.

See Also

IupGetChild, IupGetChildCount, IupGetNextChild, IupGetBrother, IupGetParent

IupGetChildCount(since 3.0)
Returns the number of children of the given control.

Parameters/Return

int IupGetChildCount(Ihandle* ih); [in C]
iup.GetChildCount(ih: ihandle) -> pos: number [in Lua]

ih: identifier of the interface element.

Returns: the number of children.

See Also

IupGetChildPos, IupGetChild, IupGetNextChild, IupGetBrother, IupGetParent

IupGetNextChild
Returns the a child of the given control given its brother.

Parameters/Return

Ihandle *IupGetNextChild(Ihandle* ih, Ihandle* child); [in C]
iup.GetNextChild(ih, child: ihandle) -> next_child: ihandle [in Lua]

ih: identifier of the interface element. Can be NULL if child not NULL.
child: Identifier of the child brother to be used as reference. To get the first child use NULL.

Returns: the handle of the child or NULL.

Notes

This function will return the children of the control in the exact same order in which they were assigned. If child in not NULL then it
returns exactly the same result as IupGetBrother.

Example

/* Lists all children of a IupVbox */

#include <stdio.h>

IUP - Portable User Interface 07-Jan-25

255/496

iupgetchildpos.html
iupgetnextchild.html
iupgetbrother.html
iupgetparent.html
iupgetchild.html
iupgetchildcount.html
iupgetnextchild.html
iupgetbrother.html
iupgetparent.html
iupgetchildpos.html
iupgetchild.html
iupgetnextchild.html
iupgetbrother.html
iupgetparent.html
iupgetbrother.html

#include "iup.h"

int main(int argc, char* argv[])
{
 Ihandle *dialog, *bt, *lb, *vbox, *child;

 IupOpen(&argc, &argv);

 bt = IupButton("Button", NULL);
 lb = IupLabel("Label");

 vbox = IupVbox(bt, lb, NULL);

 dialog = IupDialog(vbox);
 IupShow(dialog);

 child = IupGetNextChild(vbox, NULL);

 while(child)
 {
 printf("vbox has a child of type %s\n", IupGetClassName(child));
 child = IupGetNextChild(NULL, child);
 }

 IupMainLoop();
 IupClose();

 return 0;
}

See Also

IupGetBrother, IupGetParent, IupGetChild

IupGetBrother
Returns the brother of an element.

Parameters/Return

Ihandle* IupGetBrother(Ihandle* ih); [in C]
iup.GetBrother(ih: ihandle) -> brother: ihandle [in Lua]

ih: identifier of the interface element.

Returns: the brother or NULL if there is none.

See Also

IupGetChild, IupGetNextChild, IupGetParent

IupGetDialog
Returns the handle of the dialog that contains that interface element. Works also for children of a menu that is associated with a dialog.

Parameters/Return

Ihandle* IupGetDialog(Ihandle *ih); [in C]
iup.GetDialog(ih: ihandle) -> (ih: ihandle) [in Lua]

ih: Identifier of an interface element.

Returns: the handle of the dialog or NULL if not found.

IupGetDialogChild (since 3.0)
Returns the identifier of the child element that has the NAME attribute equals to the given value on the same dialog hierarchy. Works also
for children of a menu that is associated with a dialog.

Parameters/Return

Ihandle* IupGetDialogChild(Ihandle *ih, const char* name); [in C]
iup.GetDialogChild(ih: ihandle, name: string) -> (ih: ihandle) [in Lua]

IUP - Portable User Interface 07-Jan-25

256/496

iupgetbrother.html
iupgetparent.html
iupgetchild.html
iupgetchild.html
iupgetnextchild.html
iupgetparent.html

ih: Identifier of an interface element that belongs to the hierarchy.
name: name of the control to be found

Returns: NULL if not found.

Notes

This function will only found the child if the NAME attribute is set at the control.

Before the dialog is mapped the function searches the hierarchy, even if the hierarchy does not belongs to a dialog yet, but after the child
is mapped the result is immediate (the hierarchy is not searched).

See Also

NAME

IupRefresh
Updates the size and layout of all controls in the same dialog.

To be used after changing size attributes, or attributes that affect the size of the control. Can be used for any element inside a dialog, but
the layout of the dialog and all controls will be updated. It can change the layout of all the controls inside the dialog because of the
dynamic layout positioning.

Parameters/Return

void IupRefresh(Ihandle *ih); [in C]
iup.Refresh(ih: ihandle) [in Lua]

ih: identifier of the interface element.

Notes

Can be used for any control, but it will always affect the whole dialog. Can be called even if the dialog is not mapped.

To refresh the layout of only a subset of the dialog use IupRefreshChildren.

After the layout is computed, the position and size attributes are all updated. If the elements are mapped then they are immediately
repositioned, if the dialog is visible then the change will be immediately reflected on the display.

This function will NOT change the size of the dialog, except if the SIZE or RASTERSIZE attributes of the dialog where changed before
the call. For instance, if you also want to change the size of the dialog then you can do:

IupSetAttribute(dialog, "SIZE", ...);
IupRefresh(dialog);

So the dialog will be resized for the new User size, if the new size is NULL the dialog will be resized to the Natural size that include all
the elements.

Changing the size of elements without changing the dialog size may position some controls outside the dialog area at the left or bottom
borders (the elements will be cropped at the dialog borders by the native system).

IupMap also updates the dialog layout, but only when called for the dialog itself, even if the dialog is already mapped. Since IupShow,
IupShowXY and IupPopup call IupMap, then they all will always update the dialog layout before showing it, even also if the dialog is
already visible.

See Also

SIZE, IupMap, IupRefreshChildren

IupRefreshChildren (Since 3.3)
Updates the size and layout of controls after changing size attributes, or attributes that affect the size of the control. Can be used for any
element inside a dialog, only its children will be updated. It can change the layout of all the controls inside the given element because of
the dynamic layout positioning.

Parameters/Return

void IupRefreshChildren(Ihandle *ih); [in C]
iup.RefreshChildren(ih: ihandle) [in Lua]

ih: identifier of the interface element.

IUP - Portable User Interface 07-Jan-25

257/496

../attrib/iup_name.html
iuprefreshchildren.html
../attrib/iup_size.html
iupmap.html
iuprefreshchildren.html

Notes

The given element must be a container. It must be inside a dialog hierarchy. It can NOT be a dialog, for dialogs use IupRefresh.

The children are immediately repositioned, if the dialog is visible then the change will be immediately reflected on the display.

This function will NOT change the size of the given element, even if the natural size of its children would increase its natural size.

If your dialog has too many controls and you want to hide or destroy some, then add some other in the same place, so you actually know
that the dialog layout would not change, this is a much faster function than IupRefresh.

See Also

IupRefresh

Controls
IUP contains several user interface controls. The library’s main characteristic is the use of native elements. This means that the drawing
and management of a button or text box is done by the native interface system, not by IUP. This makes the application’s appearance more
similar to other applications in that system. On the other hand, the application’s appearance can vary from one system to another.

But this is valid only for the standard controls, many additional controls are drawn by IUP. Composition controls are not visible, so they
are independent from the native system.

Each control has an unique creation function, and all of its management is done by means of attributes and callbacks, using functions
common to all the controls. This simple but powerful approach is one of the advantages of using IUP.

Controls are automatically destroyed when the dialog is destroyed.

IupFill
Creates void element, which dynamically occupies empty spaces always trying to expand itself. Its parent should be an IupHbox, an
IupVbox or a IupGridBox, or else this type of expansion will not work. If an EXPAND is set on at least one of the other children of the
box, then the fill expansion is ignored.

It does not have a native representation.

Creation

Ihandle* IupFill(void); [in C]
iup.fill{} -> ih: ihandle [in Lua]
fill() [in LED]

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

EXPAND (non inheritable)(read-only): If User size is not defined, then when inside a IupHbox/IupGridBox EXPAND is HORIZONTAL,
when inside a IupVbox EXPAND is VERTICAL. If User size is defined then EXPAND is NO.

SIZE / RASTERSIZE (non inheritable): Defines the width, if inside a IupHbox, or the height, if it is inside a IupVbox. The standard
format "wxh" can also be used, but width will be ignored if inside a IupVbox and height will be ignored if inside a IupHbox (since 3.3).
When consulted behaves as the standard SIZE/RASTERSIZE attributes.

WID (read-only): returns -1 if mapped.

FONT, POSITION, MINSIZE, MAXSIZE, THEME: also accepted.

Examples

Browse for Example Files

See Also

IupHbox, IupVbox.

IupSpace (since 3.25)
Creates void element, which occupies an empty space.

It does not have a native representation.

IUP - Portable User Interface 07-Jan-25

258/496

iuprefresh.html
../attrib/iup_expand.html
../attrib/iup_size.html
../attrib/iup_rastersize.html
../attrib/iup_font.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_theme.html
../../examples/
iuphbox.html
iupvbox.html

Creation

Ihandle* IupSpace(void); [in C]
iup.space{} -> ih: ihandle [in Lua]
space() [in LED]

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

WID (read-only): returns -1 if mapped.

SIZE, RASTERSIZE, EXPAND, FONT, POSITION, MINSIZE, MAXSIZE, THEME: also accepted.

Notes

When an IupFill is inside a IupVbox or IupHbox it will affect the expansion of the box because it is always expandable. Even when you
set its size to a given value, it will still affect the layout, because it is always marked as an expandable element.

IupSpace will simply occupy a space in the layout. It does not have a natural size, it is 0x0 by default. It can be expandable or not,
EXPAND will work as a regular element. The attributes SIZE and RASTERSIZE can be normally set.

Examples

Browse for Example Files

See Also

IupHbox, IupVbox.

child, ... : List of the identifiers that will be placed in the box. NULL must be used to define the end of the list in C. It can be empty, but
in C must have at least the NULL terminator..

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

EXPAND (non inheritable): The default value is "YES".

SIZE / RASTERSIZE (non inheritable): Must be defined for each child. If not defined for the box, then it will be the bounding box that
includes all children in their position.

WID (read-only): returns -1 if mapped.

FONT, CLIENTSIZE, CLIENTOFFSET, POSITION, MINSIZE, MAXSIZE, THEME: also accepted.

Attributes (at Children)

CX, CY (non inheritable) (at children only): Position in pixels of the child relative to the top-left corner of the box. Must be set for each
child inside the box.

Notes

The box can be created with no elements and be dynamic filled using IupAppend or IupInsert.

Examples

Browse for Example Files

See Also

IupVbox, IupHbox

See Also

IupVbox, IupHbox

See Also

IUP - Portable User Interface 07-Jan-25

259/496

../attrib/iup_size.html
../attrib/iup_rastersize.html
../attrib/iup_expand.html
../attrib/iup_font.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_theme.html
../../examples/
iuphbox.html
iupvbox.html
../attrib/iup_expand.html
../attrib/iup_size.html
../attrib/iup_rastersize.html
../attrib/iup_font.html
../attrib/iup_clientsize.html
../attrib/iup_clientoffset.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_theme.html
../func/iupappend.html
../func/iupinsert.html
../../examples/
iupvbox.html
iuphbox.html
iupvbox.html
iuphbox.html

IupGridBoxIupVbox, IupHbox

See Also

IupZbox, IupVBox

See Also

IupZbox, IupHbox

IupZbox
Creates a void container for composing elements in hidden layers with only one layer visible. It is a box that piles up the children it
contains, only the one child is visible.

It does not have a native representation.

Zbox works by changing the VISIBLE attribute of its children, so if any of the grand children has its VISIBLE attribute directly defined then
Zbox will NOT change its state.

Creation

Ihandle* IupZbox (Ihandle *child, ...); [in C]
Ihandle* IupZboxV(Ihandle* child, va_list arglist); [in C]
Ihandle* IupZboxv (Ihandle **children); [in C]
iup.zbox{child, ... : ihandle} -> (ih: ihandle) [in Lua]
zbox(child, ...) [in LED]

child, ... : List of the elements that will be placed in the box. NULL must be used to define the end of the list in C. It can be empty, but in
C must have at least the NULL terminator..

IMPORTANT: in C, each element must have a name defined by IupSetHandle. In Lua a name is always automatically created,
but you can change it later.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

ALIGNMENT (non inheritable): Defines the alignment of the visible child. Possible values:

"NORTH", "SOUTH", "WEST", "EAST",
"NE", "SE", "NW", "SW",
"ACENTER".

Default: "NW".

CHILDSIZEALL (non inheritable): compute the natural size using all children. If set to NO will compute using only the visible child.
Default: Yes. (since 3.27)

EXPAND (non inheritable): The default value is "YES".

VALUE (non inheritable): The visible child accessed by its name. The value passed must be the name of one of the children contained in
the zbox. Use IupSetHandle or IupSetAttributeHandle to associate a child to a name. In Lua you can also use the element reference
directly. When the value is changed the selected child is made visible and all other children are made invisible, regardless their previous
visible state.

VALUE_HANDLE (non inheritable): The visible child accessed by its handle. The value passed must be the handle of a child contained in
the zbox. When the zbox is created, the first element inserted is set as the visible child. (since 3.0)

VALUEPOS (non inheritable): The visible child accessed by its position. The value passed must be the index of a child contained in the
zbox, starting at 0. When the zbox is created, the first element inserted is set as the visible child. (since 3.0)

SIZE / RASTERSIZE (non inheritable): The default size is the smallest size that fits its largest child. All child elements are considered even
invisible ones, except when FLOATING=YES in a child.

WID (read-only): returns -1 if mapped.

FONT, CLIENTSIZE, CLIENTOFFSET, POSITION, MINSIZE, MAXSIZE, THEME: also accepted.

Attributes (at Children)

FLOATING (non inheritable) (at children only): If a child has FLOATING=YES then its size and position will be ignored by the layout
processing. Default: "NO". (since 3.0)

IUP - Portable User Interface 07-Jan-25

260/496

iupgridbox.html
iupvbox.html
iuphbox.html
iupzbox.html
iupvbox.html
iupzbox.html
iuphbox.html
../func/iupsethandle.html
../attrib/iup_expand.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../attrib/iup_size.html
../attrib/iup_rastersize.html
../attrib/iup_font.html
../attrib/iup_clientsize.html
../attrib/iup_clientoffset.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_theme.html
../attrib/iup_floating.html

Notes

The box can be created with no elements and be dynamic filled using IupAppend or IupInsert.

Its children automatically receives a name when the child is appended or inserted into the tabs. (since 3.16)

The ZBOX relies on the VISIBLE attribute. If a child that is hidden by the zbox has its VISIBLE attribute changed then it can be made
visible regardless of the zbox configuration. For the zbox behave as a IupTabs use native containers as immediate children of the zbox,
like IupScrollBox, IupTabs, IupFrame or IupBackgroundBox.

Examples

Browse for Example Files

See Also

IupHbox, IupVBox

IupRadio
Creates a void container for grouping mutual exclusive toggles. Only one of its descendent toggles will be active at a time. The toggles
can be at any composition.

It does not have a native representation.

Creation

Ihandle* IupRadio(Ihandle *child); [in C]
iup.radio{child: ihandle} -> (ih: ihandle) [in Lua]
radio(child) [in LED]

child: Identifier of an interface element. Usually it is a vbox or an hbox containing the toggles associated to the radio. It can be NULL (nil
in Lua), or empty in LED.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

EXPAND (non inheritable): The default value is "YES".

VALUE (non inheritable): name identifier of the active toggle. The name is set by means of IupSetHandle. In Lua you can also use the
element reference directly. When consulted if the toggles are not mapped into the native system the return value may be NULL or invalid.

VALUE_HANDLE (non inheritable): Changes the active toggle. The value passed must be the handle of a child contained in the radio.
When consulted if the toggles are not mapped into the native system the return value may be NULL or invalid. (since 3.0)

WID (read-only): returns -1 if mapped.

FONT, CLIENTSIZE, CLIENTOFFSET, POSITION, MINSIZE, MAXSIZE, VISIBLE, THEME: also accepted.

Notes

The radio can be created with no elements and be dynamic filled using IupAppend or IupInsert.

A toggle that is a child of an IupRadio automatically receives a name when its is mapped into the native system. (since 3.16)

Currently IupFlatButton with TOGGLE=YES, IupToggle, and IupGLToggle are affected when inside a IupRadio.

The IGNORERADIO can be used in any of these children types to disable this functionally. (since 3.21)

Examples

Browse for Example Files

See Also

IupToggle

IupNormalizer (since 3.0)
Creates a void container that does not affect the dialog layout. It acts by normalizing all the controls in a list so their natural size becomes
the biggest natural size amongst them. All natural widths will be set to the biggest width, and all natural heights will be set to the biggest

IUP - Portable User Interface 07-Jan-25

261/496

../func/iupappend.html
../func/iupinsert.html
../../examples/
iuphbox.html
iupvbox.html
../attrib/iup_expand.html
../func/iupsethandle.html
../attrib/iup_font.html
../attrib/iup_clientsize.html
../attrib/iup_clientoffset.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_visible.html
../attrib/iup_theme.html
../func/iupappend.html
../func/iupinsert.html
../../examples/
iuptoggle.html

height. The controls of the list must be inside a valid container in the dialog.

Creation

Ihandle* IupNormalizer(Ihandle *ih_first, ...); [in C]
Ihandle* IupNormalizerV(Ihandle* ih_first, va_list arglist); [in C]
Ihandle* IupNormalizerv(Ihandle **ih_list); [in C]
iup.normalizer{ih_first, ...: ihandle} -> (ih: ihandle) [in Lua]
normalizer(ih_first, ...) [in LED]

ih_first, ... : List of the identifiers that will be normalized. NULL must be used to define the end of the list in C. It can be empty, but in C
must have at least the NULL terminator..

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

NORMALIZE (non inheritable): normalization direction. Can be HORIZONTAL, VERTICAL or BOTH. These are the same values of the
NORMALIZESIZE attribute. Default: HORIZONTAL.

ADDCONTROL (non inheritable, write-only): Adds a control to the normalizer. The value passed must be the name of an element. Use
IupSetHandle or IupSetAttributeHandle to associate an element to a name. In Lua you can also use the element reference directly.

ADDCONTROL_HANDLE (non inheritable, write-only): Adds a control to the normalizer. The value passed must be a handle of an
element.

DELCONTROL (non inheritable, write-only): Removes a control from the normalizer. The value passed must be the name of an element.
Use IupSetHandle or IupSetAttributeHandle to associate an element to a name. In Lua you can also use the element reference directly.
(since 3.17)

DELCONTROL_HANDLE (non inheritable, write-only): Removes a control from the normalizer. The value passed must be a handle of an
element. (since 3.17)

Attributes (at any Control)

FLOATING (non inheritable) (at children only): If a child of a container has FLOATING=YES then its size and position will be ignored
by the layout processing. Default: "NO".

NORMALIZERGROUP (non inheritable) (at controls only): name of a normalizer element to which to automatically add the control. If
an element with that name does not exists then one is created. In Lua you can also use the element reference directly. The normalizer can
later be retrieved using IupGetHandle.

Notes

A normalizer the same effect as the NORMALIZESIZE attribute of the IupVbox and IupHbox controls, but it can be used for elements
with different parents, it changes the User size of the elements.

It is NOT necessary to add the normalizer to a dialog hierarchy. Every time the NORMALIZE attribute is set, a normalization occurs. But if
the normalizer is added to a dialog hierarchy, then whenever the Natural size is calculated a normalization occurs, so add it to the
hierarchy before the elements you want to normalize or its normalization will be late during the layout computation.

The elements do NOT need to be children of the same parent, do NOT need to be mapped, and do NOT need to be in a complete
hierarchy of a dialog.

The elements are NOT children of the normalizer, so IupAppend, IupInsert and IupDetach can not be used. To add or remove
elements use the ADDCONTROL and DELCONTROL attributes.

Notice that the NORMALIZERGROUP attribute can simplify a lot of the process of creating a normalizer, so you do not need to list several
elements from different parts of the dialog.

Examples

Here IupNormalizer is used to normalize the horizontal size of several labels that are in different containers. Since it needs to be done
once only the IupNormalizer is destroyed just after it is initialized.

IupDestroy(IupSetAttributes(IupNormalizer(IupGetChild(hsi_vb, 0), /* Hue Label */
 IupGetChild(hsi_vb, 1), /* Saturation Label */
 IupGetChild(hsi_vb, 2), /* Intensity Label */
 IupGetChild(clr_vb, 0), /* Opacity Label */
 IupGetChild(clr_vb, 1), /* Hexa Label */
 NULL), "NORMALIZE=HORIZONTAL"));

The following case use the internal normalizer in an Hbox:

IUP - Portable User Interface 07-Jan-25

262/496

../func/iupsethandle.html
../func/iupsetattributehandle.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../attrib/iup_floating.html

button_box = IupHbox(
 IupFill(),
 button_ok,
 button_cancel,
 button_help,
 NULL);
IupSetAttribute(button_box, "NORMALIZESIZE", "HORIZONTAL");

See Also

IupHbox, IupVbox, IupGridBox

IupFlatFrame (since 3.20)
Creates a native container, which draws a frame with a title around its child. The decorations are manually drawn. The control inherits
from IupBackgroundBox.

Creation

Ihandle* IupFlatFrame(Ihandle *child); [in C]
iup.flatframe{child: ihandle} -> (ih: ihandle) [in Lua]
flatframe(child) [in LED]

child: Identifier of an interface element which will receive the frame around. It can be NULL (nil in Lua), or empty in LED.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

Inherits all attributes and callbacks of the IupBackgroundBox, but redefines a few attributes.

DECORATION [read-only] (non inheritable): return Yes.

DECOROFFSET and DECORSIZE [read-only] (non inheritable): are calculated according FRAME, FRAMEWIDTH, FRAMESPACE and the
title area.

BGCOLOR: background color of the child area. If not defined it will use the background color of the native parent.

FRAME (non inheritable): enables the frame line. Default: Yes. If value is CROSSTITLE the the frame at top crosses the title, like
traditional frames in native systems (since 3.25). When CROSSTITLE is used TITLELINE and TITLEALIGNMENT are ignored, the title line
is never drawn and alignment is always left.

FRAMECOLOR (non inheritable): frame line color. Default: "160 160 160" (changed in 3.28).

FRAMEWIDTH (non inheritable): frame line width. Default: 1.

FRAMESPACE (non inheritable): spacing between frame line and child area. Used only when FRAME=Yes. Default: 2.

TITLE (non inheritable): Text the user will see at the top of the frame.

TITLECOLOR (non inheritable): title text color. Default: the global attribute DLGFGCOLOR.

TITLEBGCOLOR (non inheritable): background color of the title area. If not defined BGCOLOR will be used (since 3.25).

TITLELINE (non inheritable): enables the title line. Horizontal line that separates the title area from the child area. Default: Yes.

TITLELINECOLOR (non inheritable): title line color. Default: the global attribute DLGFGCOLOR.

TITLELINEWIDTH (non inheritable): title line width. Default: 1.

TITLEIMAGE (non inheritable): image name to be used in title. Use IupSetHandle or IupSetAttributeHandle to associate an image to a
name. See also IupImage.

TITLEIMAGEINACTIVE (non inheritable): image used in title when inactive. If it is not defined then the TITLEIMAGE is used and its
colors will be replaced by a modified version creating the disabled effect. (since 3.22)

TITLEIMAGEPOSITION (non inheritable): position of the image relative to the text when both are displayed. Can be: LEFT, RIGHT,
TOP, BOTTOM. Default: LEFT.

TITLEIMAGESPACING (non inheritable): spacing between the image and the text. Default: "2".

TITLEALIGNMENT (non inheritable): horizontal alignment. Possible values: "ALEFT", "ACENTER" and "ARIGHT". Default: "ACENTER".
Alignment does not includes the padding area.

TITLETEXTALIGNMENT (non inheritable): horizontal text alignment for multiple lines. Can be: ALEFT, ARIGHT or ACENTER. Default:
ALEFT. (since 3.22)

IUP - Portable User Interface 07-Jan-25

263/496

../elem/iuphbox.html
../elem/iupvbox.html
../elem/iupgridbox.html
iupbackgroundbox.html
iupbackgroundbox.html
../attrib/iup_title.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html

TITLETEXTWRAP (non inheritable): For single line texts if the text is larger than its box the line will be automatically broken in multiple
lines. Notice that this is done internally by the system, the element natural size will still use only a single line. For the remaining lines to be
visible the element should use EXPAND=VERTICAL or set a SIZE/RASTERSIZE with enough height for the wrapped lines. (since 3.25)

TITLETEXTELLIPSIS (non inheritable): If the text is larger that its box, an ellipsis ("...") will be placed near the last visible part of the
text and replace the invisible part. It will be ignored when TEXTWRAP=Yes. (since 3.25)

TITLETEXTORIENTATION (non inheritable): text angle in degrees and counterclockwise. The text size will adapt to include the rotated
space. (since 3.25)

TITLEPADDING (non inheritable): title internal margin. Alignment does not includes the padding area. Default value: "0x0".

Notes

To replace a IupFrame by a IupFlatFrame you must set TITLELINE=No, TITLEALIGNMENT=ALEFT and FRAMECOLOR="160 160
160" (or a lighter version of the DLGFGCOLOR). But the line can not be positioned in the middle of the text like in IupFrame.

Examples

Browse for Example Files

 frame1 = IupFlatFrame
 (
 IupVbox
 (
 IupLabel("Label1"),
 IupSetAttributes(IupLabel("Label2"), "SIZE=70x"),
 IupLabel("Label3"),
 NULL
)
);

 frame2 = IupFlatFrame
 (
 IupVbox
 (
 IupSetAttributes(IupLabel("Label4"), "EXPAND=HORIZONTAL"),
 IupLabel("Label5"),
 IupLabel("Label6"),
 NULL
)
);

 frame3 = IupFlatFrame
 (
 IupVbox
 (
 IupLabel("Label7"),
 IupSetAttributes(IupLabel("Label8"), "SIZE=70x"),
 IupLabel("Label9"),
 NULL
)
);

 IupSetAttribute(frame1, "TITLE", "Title Text");
 IupSetAttribute(frame1, "BGCOLOR", "64 192 255");
 IupSetAttribute(frame1, "FRAMECOLOR", "255 255 255");
 IupSetAttribute(frame1, "TITLELINECOLOR", "255 255 255");
 IupSetAttribute(frame1, "TITLEBGCOLOR", "64 128 255");
 IupSetAttribute(frame1, "TITLECOLOR", "255 255 255");
 IupSetAttribute(frame1, "TITLELINEWIDTH", "2");
 IupSetAttribute(frame1, "FRAMEWIDTH", "2");
 IupSetAttribute(frame1, "FRAMESPACE", "5");

 IupSetAttribute(frame2, "BGCOLOR", "0 128 0");
 IupSetAttribute(frame2, "FRAMEWIDTH", "5");
 IupSetAttribute(frame2, "FRAMESPACE", "20");
 IupSetAttribute(frame2, "FGCOLOR", "255 128 128"); /* recursive set for labels */
 IupSetAttribute(frame2, "FONTSTYLE", "Bold");
 IupSetAttribute(frame2, "FONTSIZE", "14");

 IupSetAttribute(frame3, "FRAME", "No");
 IupSetAttribute(frame3, "TITLE", "Title Text");
 IupSetAttribute(frame3, "TITLELINE", "No");
 IupSetAttribute(frame3, "TITLEBGCOLOR", "64 128 255");

IUP - Portable User Interface 07-Jan-25

264/496

../../examples/

See Also

IupImage, IupFrame

ih: identifier of the element that activated the event.
pos: the tab position

MAP_CB, UNMAP_CB, DESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB, K_ANY, HELP_CB: All
common callbacks are supported.

Notes

The Tabs can be created with no children and be dynamic filled using IupAppend.

The ENTERWINDOW_CB and LEAVEWINDOW_CB callbacks are called only when the mouse enter or leaves the tabs buttons area.

Its children automatically receives a name when the child is appended or inserted into the tabs.

Differently from IupZbox, IupTabs does NOT depends on the VISIBLE attribute.

In GTK, when the tabs buttons are scrolled, the current tab is also changed.

When you change the current tab the focus is usually not changed. If you want to control the focus behavior call IupSetFocus in the
TABCHANGE_CB callback. Unfortunately this does not works in GTK and in Motif, because in both systems the focus will be set by the
system after the callback is called.

Notice that there is no attribute to disable a single tab. This is a design decision of all native toolkits, not a IUP decision. It is so because a
disabled tab is a confusing interface situation.

In Windows, when an IupVal is inside an IupTabs, the tabs disappear when the mouse moves over it after being used in the valuator. A
workaround is to put the valuator inside an IupFrame and then inside the IupTabs, so the problem does not occur.

In GTK uses GtkNotebook, in Windows uses WC_TABCONTROL, and in Motif uses xmNotebook.

Utility Functions

These functions can be used to set and get attributes from the element:

void IupSetAttributeId(Ihandle *ih, const char* name, int id, const char* value);
char* IupGetAttributeId(Ihandle *ih, const char* name, int id);
int IupGetIntId(Ihandle *ih, const char* name, int id);
float IupGetFloatId(Ihandle *ih, const char* name, int id);
void IupSetfAttributeId(Ihandle ih, const char* name, int id, const char* format, ...);
void IupSetIntId(Ihandle* ih, const char* name, int id, int value);
void IupSetFloatId(Ihandle* ih, const char* name, int id, float value);

They work just like the respective traditional set and get functions. But the attribute string is complemented with the id value. For ex:

IupSetAttributeId(ih, "TABTITLE", 3, value) == IupSetAttribute(ih, "TABTITLE3", value)

But these functions are faster than the traditional functions because they do not need to parse the attribute name string and the application
does not need to concatenate the attribute name with the id.

Examples

Browse for Example Files

In Windows, the Visual Styles work only when TABTYPE is TOP.

Windows
Classic

Windows
w/ Styles

IUP - Portable User Interface 07-Jan-25

265/496

iupimage.html
iupframe.html
../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_getfocus_cb.html
../call/iup_killfocus_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
../call/iup_k_any.html
../call/iup_help_cb.html
../func/iupappend.html
../../examples/

GTK is the only one that supports vertical text in the TOP configuration, but does not supports multiple lines of tab buttons.

GTK

Motif does not supports vertical text.

Motif

IUP - Portable User Interface 07-Jan-25

266/496

ih: identifier of the element that activated the event.
pos: the tab position

EXTRABUTTON_CB: Action generated when any mouse button is pressed or released. (since 3.22)

int function(Ihandle* ih, int button, int pressed); [in C]
ih:extrabutton_cb(button, pressed: number) -> (ret: number) [in Lua]

ih: identifies the element that activated the event.
button: identifies the extra button. Can be 1, 2, 3, 4, and so on. (this is not the same as BUTTON_CB)
pressed: indicates the state of the button (1=pressed, 0=released)

MAP_CB, UNMAP_CB, DESTROY_CB, ENTERWINDOW_CB, K_ANY, HELP_CB: All common callbacks are supported.

Notes

The Tabs can be created with no children and be dynamic filled using IupAppend.

Its children automatically receives a name when the child is appended or inserted into the tabs.

IMPORTANT: Similar to IupZbox, IupFlatTabs does depends on the VISIBLE attribute. To proper functioning we strongly recommend
using a IupBackgroundBox for each child.

When you change the current tab the focus is usually not changed. If you want to control the focus behavior call IupSetFocus in the
TABCHANGE_CB callback.

When flattabs has the focus, the current tab can be changed using the left and right arrow keys. (since 3.25)

Main differences from IupTabs:

Appearance can be controlled for global features and for individual tabs.
Child focus can be controlled without native problems.
Tabs can be individually disabled using TABACTIVEid attribute.
Tab change can be controlled by the callbacks and ignored.
MULTILINE is NOT supported.
Mnemonics are NOT supported.

Utility Functions

These functions can be used to set and get attributes from the element:

void IupSetAttributeId(Ihandle *ih, const char* name, int id, const char* value);
char* IupGetAttributeId(Ihandle *ih, const char* name, int id);
int IupGetIntId(Ihandle *ih, const char* name, int id);
float IupGetFloatId(Ihandle *ih, const char* name, int id);
void IupSetfAttributeId(Ihandle *ih, const char* name, int id, const char* format, ...);
void IupSetIntId(Ihandle* ih, const char* name, int id, int value);
void IupSetFloatId(Ihandle* ih, const char* name, int id, float value);

They work just like the respective traditional set and get functions. But the attribute string is complemented with the id value. For ex:

IupSetAttributeId(ih, "TABTITLE", 3, value) == IupSetAttribute(ih, "TABTITLE3", value)

IUP - Portable User Interface 07-Jan-25

267/496

../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_enterwindow_cb.html
../call/iup_k_any.html
../call/iup_help_cb.html
../func/iupappend.html
iupbackgroundbox.html
iuptabs.html

But these functions are faster than the traditional functions because they do not need to parse the attribute name string and the application
does not need to concatenate the attribute name with the id.

Examples

Browse for Example Files

 IupSetAttribute(ih, "TABVISIBLE2", "NO");
IupSetAttribute(ih, "TABACTIVE3", "NO");
IupSetAttribute(ih, "SHOWCLOSE", "Yes");
IupSetAttribute(ih, "TABFONTSTYLE4", "Bold");

 IupSetAttribute(ih, "FORECOLOR", "192 0 0");
IupSetAttribute(ih, "TABSBACKCOLOR", "192 0 0");
IupSetAttribute(ih, "HIGHCOLOR", "255 128 128");
IupSetAttribute(ih, "CLOSEHIGHCOLOR", "255 128 128");
IupSetAttribute(ih, "TABSFORECOLOR", "255 255 255");
IupSetAttribute(ih, "SHOWLINES", "NO");
IupSetAttribute(ih, "SHOWCLOSE", "NO");
IupSetAttribute(ih, "EXPANDBUTTON", "Yes");

FLATSCROLLBAR (since 3.22)
Complementary attributes when a flat scrollbar is used (a drawn scrollbar).

Used in IupFlatScrollBox, IupFlatList, IupFlatTree and in IupMatrix when FLATSCROLLBAR=Yes is defined.

Attributes (non inheritable)

SB_BACKCOLOR (non inheritable): color used as background for the scrollbar. By default it will inherit from BGCOLOR.

SB_FORECOLOR (non inheritable): handler and arrow color. Default: "220 220 220". Used instead of FGCOLOR to avoid inheritance
problems.

SB_HIGHCOLOR (non inheritable): handler and arrow color when highlight. Default: "132 132 132".

IUP - Portable User Interface 07-Jan-25

268/496

../../examples/
../elem/iupflatscrollbox.html
../elem/iupflatlist.html
../elem/iupflattree.html
../ctrl/iupmatrix.html

SB_PRESSCOLOR (non inheritable): handler and arrow color when pressed. Default: "96 96 96".

SCROLLBARSIZE (non inheritable): The width of the vertical scrollbar or the height of the horizontal scrollbar. Default: 15.

SHOWARROWS (non inheritable): Allow to show or hide the arrows. Default: Yes.

SHOWFLOATING (non inheritable): the scrollbar is shown only when used, over the space it occupied. Move the mouse over the
scrollbar area to show the scrollbars. They are automatically hidden after not being used by the time defined in FLOATINGDELAY.

SHOWTRANSPARENT (non inheritable): This makes the flat scrollbar semi transparent and only interactive trough its handler. It
implies in SHOWARROWS=NO and SHOWFLATING=Yes. (since 3.26)

FLOATINGDELAY (non inheritable): time to hide the scrollbar when SHOWFLOATING=Yes in milliseconds. Default: 2000.

ARROWIMAGES (non inheritable): replace the drawn arrows by the following images.

SB_IMAGELEFT, SB_IMAGERIGHT, SB_IMAGETOP, SB_IMAGEBOTTOM (non inheritable): Arrow image name (the attribute is
relative to where the arrow is pointing). Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See also IupImage.
IMPORTANT = all images must be square with side equals to SCROLLBARSIZE.

SB_IMAGE*HIGHLIGHT (non inheritable): Arrow image name of the element in highlight state. If it is not defined then the IMAGE* is
used.

SB_IMAGE*INACTIVE (non inheritable): Arrow image name of the element when inactive. If it is not defined then the IMAGE* is used
and its colors will be replaced by a modified version creating the disabled effect.

SB_IMAGE*PRESS (non inheritable): Arrow image name of the element in pressed state. If it is not defined then the IMAGE* is used.

Affects

IupFlatScrollBox, IupMatrix

Notes

When SHOWFLOATING=Yes the natural size of the IupMatrix is reduced because it will not include the scrollbars area. But notice that
when vertically scrolling the last column or horizontally scrolling the last line the visibility or the cells are reduced because the scrollbar is
show above the cells.

The flat scrollbar does not support the XMIN nor YMIN attributes. They are considered to be 0 always. The XAUTOHIDE and YAUTOHIDE
are considered to be YES always.

Also, all numeric attributes are integer numbers.

See Also

SCROLLBAR, POSX, XMAX, DX, POSY, YMAX, DY

IupAnimatedLabel (since 3.17)
Creates an animated label interface element, which displays an image that is changed periodically.

It uses an animation that is simply an IupUser with several IupImage as children.

It inherits from IupLabel.

Creation

Ihandle* IupAnimatedLabel(Ihandle* animation); [in C]
iup.animatedlabel{animation: ihandle} -> (ih: ihandle) [in Lua]
animatedlabel(animation) [in LED]

animation: element that contains the list of images. It can be NULL.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

All IupLabel attributes. The IMAGE attribute is periodically changed by a timer.

Additionally it defines the following non-inheritable attributes.

START (write-only): starts the animation. The value is ignored. By default the animation is stopped.

STOP (write-only): stops the animation. The value is ignored.

IUP - Portable User Interface 07-Jan-25

269/496

../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../elem/iupflatscrollbox.html
../ctrl/iupmatrix.html
iup_scrollbar.html
iup_posx.html
iup_xmax.html
iup_dx.html
iup_posy.html
iup_ymax.html
iup_dy.html
iuplabel.html

STOPWHENHIDDEN: automatically stops the animation when the label is hidden. Default: Yes. (since 3.18)

RUNNING (read-only): return YES if the animation is running.

FRAMETIME: The time between each frame. If the IupUser element has a FRAMETIME attribute it will be used to set the
IupAnimatedLabel FRAMETIME attribute, but it can be overwritten later on.

FRAMECOUNT (read-only): number of frames in the animation. It is simply IupGetChildCount of the given IupUser element.

ANIMATION: the name of the element that contains the list of images. The value passed must be the name of an IupUser element with
several IupImage as children. Use IupSetHandle or IupSetAttributeHandle to associate a child to a name. In Lua you can also use the
element reference directly.

ANIMATION_HANDLE: same as ANIMATION but directly using the Ihandle* of the element.

Callbacks

All IupLabel callbacks. No label callbacks are used internally.

Notes

The IupImageLib contains a simple animation to show an indefinite progress called "IUP_CircleProgressAnimation".

The IUP-IM functions has two functions that can create an animation from image files called IupLoadAnimation and
IupLoadAnimationFrames.

Examples

 label = IupAnimatedLabel(NULL);
IupSetAttribute(label, "ANIMATION", "IUP_CircleProgressAnimation");
IupSetAttribute(label, "START", "Yes");

Browse for Example Files

See Also

IupLabel, IupUser, IupImage, IupImageLib, IUP-IM.

IupButton
Creates an interface element that is a button. When selected, this element activates a function in the application. Its visual presentation can
contain a text and/or an image.

Creation

Ihandle* IupButton(const char *title, const char *action); [in C]
iup.button{[title = title: string]} -> ih: ihandle [in Lua]
button(title, action) [in LED]

title: Text to be shown to the user. It can be NULL. It will set the TITLE attribute.
action: Name of the action generated when the button is selected. It can be NULL.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

ALIGNMENT (non inheritable): horizontal and vertical alignment. Possible values: "ALEFT", "ACENTER" and "ARIGHT", combined to
"ATOP", "ACENTER" and "ABOTTOM". Default: "ACENTER:ACENTER". Partial values are also accepted, like "ARIGHT" or ":ATOP", the
other value will be obtained from the default value. In Motif, vertical alignment is restricted to "ACENTER". In GTK, horizontal alignment
for multiple lines will align only the text block. (since 3.0)

BGCOLOR: Background color. If text and image are not defined, the button is configured to simply show a color, in this case set the
button size because the natural size will be very small. In Windows and in GTK 3, the BGCOLOR attribute is ignored if text or image is
defined. Default: the global attribute DLGBGCOLOR. BGCOLOR is ignored when FLAT=YES because it will be used the background from
the native parent.

CANFOCUS (creation only) (non inheritable): enables the focus traversal of the control. In Windows the button will respect CANFOCUS
differently to some other controls. Default: YES. (since 3.0)

PROPAGATEFOCUS(non inheritable): enables the focus callback forwarding to the next native parent with FOCUS_CB defined. Default:
NO. (since 3.23)

FLAT (creation only): Hides the button borders until the mouse cursor enters the button area. The border space is always there. Can be

IUP - Portable User Interface 07-Jan-25

270/496

../func/iupsethandle.html
../func/iupsetattributehandle.html
../../examples/
iuplabel.html
iupuser.html
iupimage.html
../iupimglib.html
../iupim.html
../attrib/iup_bgcolor.html

YES or NO. Default: NO.

FGCOLOR: Text color. Default: the global attribute DLGFGCOLOR.

IMAGE (non inheritable): Image name. If set before map defines the behavior of the button to contain an image. The natural size will be
size of the image in pixels, plus the button borders. Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See also
IupImage. If TITLE is also defined and not empty both will be shown (except in Motif). (GTK 2.6)

IMINACTIVE (non inheritable): Image name of the element when inactive. If it is not defined then the IMAGE is used and the colors will
be replaced by a modified version of the background color creating the disabled effect. GTK will also change the inactive image to look like
other inactive objects. (GTK 2.6)

IMPRESS (non inheritable): Image name of the pressed button. If IMPRESS and IMAGE are defined, the button borders are not shown
and not computed in natural size. When the button is clicked the pressed image does not offset. In Motif the button will lose its focus
feedback also. (GTK 2.6)

IMPRESSBORDER (non inheritable): if enabled the button borders will be shown and computed even if IMPRESS is defined. Can be
"YES" or "NO". Default: "NO".

IMAGEPOSITION (non inheritable): Position of the image relative to the text when both are displayed. Can be: LEFT, RIGHT, TOP,
BOTTOM. Default: LEFT. (since 3.0) (GTK 2.10)

MARKUP [GTK only]: allows the title string to contains pango markup commands. Works only if a mnemonic is NOT defined in the title.
Can be "YES" or "NO". Default: "NO".

PADDING: internal margin. Works just like the MARGIN attribute of the IupHbox and IupVbox containers, but uses a different name to
avoid inheritance problems. Default value: "0x0". Value can be DEFAULTBUTTONPADDING, so the global attribute of this name will be
used instead (since 3.29). (since 3.0)

CPADDING: same as PADDING but using the units of the SIZE attribute. It will actually set the PADDING attribute. (since 3.29)

SPACING (creation only): defines the spacing between the image associated and the button's text. Default: "2".

CSPACING: same as SPACING but using the units of the vertical part of the SIZE attribute. It will actually set the SPACING attribute.
(since 3.29)

TITLE (non inheritable): Button's text. If IMAGE is not defined before map, then the default behavior is to contain only a text. The button
behavior can not be changed after map. The natural size will be larger enough to include all the text in the selected font, even using
multiple lines, plus the button borders. The '\n' character is accepted for line change. The "&" character can be used to define a
mnemonic, the next character will be used as key. Use "&&" to show the "&" character instead on defining a mnemonic. The button can be
activated from any control in the dialog using the "Alt+key" combination. In old Motif versions (2.1) using a '\n' causes an invalid memory
access inside Motif. (mnemonic support since 3.0)

ACTIVE, FONT, EXPAND, SCREENPOSITION, POSITION, MINSIZE, MAXSIZE, WID, TIP, SIZE, RASTERSIZE, ZORDER, VISIBLE, THEME:
also accepted.

Callbacks

ACTION: Action generated when the button 1 (usually left) is selected. This callback is called only after the mouse is released and when it
is released inside the button area.

int function(Ihandle* ih); [in C]
ih:action() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

Returns: IUP_CLOSE will be processed.

BUTTON_CB: Action generated when any mouse button is pressed and when it is released. Both calls occur before the ACTION callback
when button 1 is being used.

MAP_CB, UNMAP_CB, DESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB, K_ANY, HELP_CB: All
common callbacks are supported.

Notes

Buttons with images and/or texts can not change its behavior after mapped. This is a creation dependency. But after creation the image
can be changed for another image, and the text for another text.

Buttons are activated using Enter or Space keys.

Buttons are not activated if the user clicks inside the button but moves the cursor and releases outside the button area. Also in Windows
the highlight feedback when that happens is different if the button has CANFOCUS enabled or not.

Buttons always have borders, except when IMAGE and IMPRESS are both defined and IMPRESSBORDER=NO. In this case in Windows
TITLE can also be defined.

IUP - Portable User Interface 07-Jan-25

271/496

../attrib/iup_fgcolor.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
iupimage.html
../attrib/iup_title.html
../attrib/iup_active.html
../attrib/iup_font.html
../attrib/iup_expand.html
../attrib/iup_screenposition.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_wid.html
../attrib/iup_tip.html
../attrib/iup_size.html
../attrib/iup_rastersize.html
../attrib/iup_zorder.html
../attrib/iup_visible.html
../attrib/iup_theme.html
../call/iup_action.html
../call/iup_button_cb.html
../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_getfocus_cb.html
../call/iup_killfocus_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
../call/iup_k_any.html
../call/iup_help_cb.html

Usually toolbar buttons have FLAT=Yes and CANFOCUS=NO.

In GTK uses GtkButton/GtkImage, in Windows uses WC_BUTTON, and in Motif uses xmPushButton.

Examples

Browse for Example Files

The buttons with image and text simultaneous have PADDING=5x5, the other buttons have no padding. The buttons with no text and
BGCOLOR defined have their RASTERSIZE set.

Motif Windows
Classic

Windows
w/ Styles GTK

See Also

IupImage, IupToggle, IupLabel

IupFlatButton (since 3.15)
Creates an interface element that is a button, but it does not have native decorations. When selected, this element activates a function in
the application. Its visual presentation can contain a text and/or an image.

It behaves just like an IupButton, but since it is not a native control it has more flexibility for additional options. It can also behave like
an IupToggle (without the checkmark).

It inherits from IupCanvas.

Creation

Ihandle* IupFlatButton(const char *title); [in C]
iup.flatbutton{[title = title: string]} -> ih: ihandle [in Lua]
flatbutton(title) [in LED]

title: Text to be shown to the user. It can be NULL. It will set the TITLE attribute.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

Inherits all attributes and callbacks of the IupCanvas, but redefines a few attributes.

ALIGNMENT (non inheritable): horizontal and vertical alignment of the set image+text. Possible values: "ALEFT", "ACENTER" and
"ARIGHT", combined to "ATOP", "ACENTER" and "ABOTTOM". Default: "ACENTER:ACENTER". Partial values are also accepted, like
"ARIGHT" or ":ATOP", the other value will be obtained from the default value. Alignment does not includes the padding area.

BACKIMAGE (non inheritable): image name to be used as background. Use IupSetHandle or IupSetAttributeHandle to associate an
image to a name. See also IupImage.

BACKIMAGEHIGHLIGHT (non inheritable): background image name of the element in highlight state. If it is not defined then the
BACKIMAGE is used.

BACKIMAGEINACTIVE (non inheritable): background image name of the element when inactive. If it is not defined then the
BACKIMAGE is used and its colors will be replaced by a modified version creating the disabled effect.

BACKIMAGEPRESS (non inheritable): background image name of the element in pressed state. If it is not defined then the BACKIMAGE
is used.

BACKIMAGEZOOM (non inheritable): if set the back image will be zoomed to occupy the full background. Aspect ratio is NOT
preserved. Can be Yes or No. Default: No. (since 3.25)

BGCOLOR: Background color. If text and image are not defined, the button is configured to simply show a color, in this case set the
button size because the natural size will be very small. If not defined it will use the background color of the native parent.

IUP - Portable User Interface 07-Jan-25

272/496

../../examples/
iupimage.html
iuptoggle.html
iuplabel.html
iupbutton.html
iuptoggle.html
../elem/iupcanvas.html
../elem/iupcanvas.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../attrib/iup_bgcolor.html

HLCOLOR: background color used to indicate a highlight state. Pre-defined to "200 225 245". Can be set to NULL. If NULL BGCOLOR will
be used instead.

PSCOLOR: background color used to indicate a press state. Pre-defined to "150 200 235". Can be set to NULL. If NULL BGCOLOR will be
used instead.

BORDER (creation only): the default value is "NO". This is the IupCanvas border.

BORDERCOLOR: color used for borders. Default: "50 150 255". This is for the IupFlatButton drawn border.

BORDERPSCOLOR: color used for borders when pressed or selected. Default use BORDERCOLOR. (since 3.19)

BORDERHLCOLOR: color used for borders when highlighted. Default use BORDERCOLOR. (since 3.19)

BORDERWIDTH: line width used for borders. Default: "1". Any borders can be hidden by simply setting this value to 0. This is for the
IupFlatButton drawn border.

SHOWBORDER: by default borders are drawn only when the button is highlighted, if SHOWBORDER=Yes borders are always show.
When SHOWBORDER=Yes and BGCOLOR is not defined, the actual BGCOLOR will be a darker version of the background color of the
native parent. (since 3.25)

CANFOCUS (creation only) (non inheritable): enables the focus traversal of the control. Default: YES.

FOCUSFEEDBACK (non inheritable): draw the focus feedback. Can be Yes or No. Default: Yes. (since 3.26)

PROPAGATEFOCUS (non inheritable): enables the focus callback forwarding to the next native parent with FOCUS_CB defined. Default:
NO. (since 3.23)

EXPAND (non inheritable): The default value is "NO".

FGCOLOR: Text color. Default: the global attribute DLGFGCOLOR.

TEXTHLCOLOR: text color used to indicate a highlight state. If not defined FGCOLOR will be used instead. (since 3.26)

TEXTPSCOLOR: text color used to indicate a press state. If not defined FGCOLOR will be used instead. (since 3.26)

FITTOBACKIMAGE (non inheritable): enable the natural size to be computed from the BACKIMAGE. If BACKIMAGE is not defined will
be ignored. Can be Yes or No. Default: No.

FRONTIMAGE (non inheritable): image name to be used as foreground. The foreground image is drawn in the same position as the
background, but it is drawn at last. Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See also IupImage.

FRONTIMAGEHIGHLIGHT (non inheritable): foreground image name of the element in highlight state. If it is not defined then the
FRONTIMAGE is used.

FRONTIMAGEINACTIVE (non inheritable): foreground image name of the element when inactive. If it is not defined then the
FRONTIMAGE is used and its colors will be replaced by a modified version creating the disabled effect.

FRONTIMAGEPRESS (non inheritable): foreground image name of the element in pressed state. If it is not defined then the
FRONTIMAGE is used.

HASFOCUS (read-only): returns the button state if has focus. Can be Yes or No. (since 3.21)

HIGHLIGHTED (read-only): returns the button state if highlighted. Can be Yes or No. (since 3.21)

IMAGE (non inheritable): Image name. Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See also IupImage.

IMAGEHIGHLIGHT (non inheritable): Image name of the element in highlight state. If it is not defined then the IMAGE is used.

IMAGEINACTIVE (non inheritable): Image name of the element when inactive. If it is not defined then the IMAGE is used and its colors
will be replaced by a modified version creating the disabled effect.

IMAGEPRESS (non inheritable): Image name of the element in pressed state. If it is not defined then the IMAGE is used.

IMAGEPOSITION (non inheritable): Position of the image relative to the text when both are displayed. Can be: LEFT, RIGHT, TOP,
BOTTOM. Default: LEFT.

PADDING: internal margin. Works just like the MARGIN attribute of the IupHbox and IupVbox containers, but uses a different name to
avoid inheritance problems. Alignment does not includes the padding area. Default value: "0x0". Value can be
DEFAULTBUTTONPADDING, so the global attribute of this name will be used instead (since 3.29).

CPADDING: same as PADDING but using the units of the SIZE attribute. It will actually set the PADDING attribute. (since 3.29)

PRESSED (read-only): returns the button state if pressed. Can be Yes or No. (since 3.21)

RADIO (read-only): returns if the toggle is inside a radio. Can be "YES" or "NO". Valid only after the element is mapped and
TOGGLE=Yes, before returns NULL.

IGNORERADIO (non inheritable): when set the toggle will not behave as a radio when inside an IupRadio hierarchy. (since 3.21)

SPACING (non inheritable): spacing between the image and the text. Default: "2".

IUP - Portable User Interface 07-Jan-25

273/496

../attrib/iup_expand.html
../attrib/iup_fgcolor.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html

CSPACING: same as SPACING but using the units of the vertical part of the SIZE attribute. It will actually set the SPACING attribute.
(since 3.29)

TITLE (non inheritable): Label's text. The '\n' character is accepted for line change.

TOGGLE: enabled the toggle behavior. Default: NO.

TEXTALIGNMENT (non inheritable): Horizontal text alignment for multiple lines. Can be: ALEFT, ARIGHT or ACENTER. Default: ALEFT.
(since 3.22)

TEXTWRAP (non inheritable): For single line texts if the text is larger than its box the line will be automatically broken in multiple lines.
Notice that this is done internally by the system, the element natural size will still use only a single line. For the remaining lines to be
visible the element should use EXPAND=VERTICAL or set a SIZE/RASTERSIZE with enough height for the wrapped lines. (since 3.25)

TEXTELLIPSIS (non inheritable): If the text is larger that its box, an ellipsis ("...") will be placed near the last visible part of the text and
replace the invisible part. It will be ignored when TEXTWRAP=Yes. (since 3.25)

TEXTORIENTATION (non inheritable): text angle in degrees and counterclockwise. The text size will adapt to include the rotated space.
(since 3.25)

VALUE (non inheritable): Toggle's state. Values can be "ON", "OFF" or "TOGGLE". Default: "OFF". The TOGGLE option will invert the
current state. Valid only when TOGGLE=Yes. Can only be set to ON for a toggle inside a radio, it will automatically set to OFF the
previous toggle that was ON.

SELECTED (non inheritable): Same as VALUE but ignore the TOGGLE attribute. Directly sets the selected state but does not depends on a
TOGGLE behavior. (since 3.31)

ACTIVE, FONT, EXPAND, SCREENPOSITION, POSITION, MINSIZE, MAXSIZE, WID, TIP, SIZE, RASTERSIZE, ZORDER, VISIBLE, THEME:
also accepted.

Callbacks

Inherits all callbacks of the IupCanvas, but redefines a few of them. Including ACTION, BUTTON_CB, MOTION_CB, FOCUS_CB,
LEAVEWINDOW_CB, and ENTERWINDOW_CB. To allow the application to use those callbacks the same callbacks are exported with the
"FLAT_" prefix using the same parameters, except the FLAT_ACTION callback that now mimics the IupButton ACTION. They are all
called before the internal callbacks and if they return IUP_IGNORE the internal callbacks are not processed.

FLAT_ACTION: Action generated when the button 1 (usually left) is selected. This callback is called only after the mouse is released and
when it is released inside the button area.

int function(Ihandle* ih); [in C]
ih:action() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

Returns: IUP_CLOSE will be processed.

VALUECHANGED_CB: Called after the value was interactively changed by the user. Called only when TOGGLE=Yes. Called after the
ACTION callback, but under the same context.

int function(Ihandle *ih); [in C]
ih:valuechanged_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

MAP_CB, UNMAP_CB, DESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB, K_ANY, HELP_CB: All
common callbacks are supported.

Notes

The IupFlatButton can contain text and image simultaneously.

The natural size will be a combination of the size of the image and the title, if any, plus PADDING and SPACING (if both image and title
are present).

Borders are drawn only when the button is highlighted reproducing the behavior of the IupButton when FLAT=Yes.

Buttons are activated using Enter or Space keys.

When TOGGLE=Yes, to build a set of mutual exclusive toggles, insert them in a IupRadio container. Only the IupFlatButton controls
inside the radio will be part of the exclusive group.

When TOGGLE=Yes, the button that is a child of an IupRadio automatically receives a name when its is mapped into the native system.
(since 3.16)

IUP - Portable User Interface 07-Jan-25

274/496

../attrib/iup_title.html
../attrib/iup_active.html
../attrib/iup_font.html
../attrib/iup_expand.html
../attrib/iup_screenposition.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_wid.html
../attrib/iup_tip.html
../attrib/iup_size.html
../attrib/iup_rastersize.html
../attrib/iup_zorder.html
../attrib/iup_visible.html
../attrib/iup_theme.html
../elem/iupcanvas.html
../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_getfocus_cb.html
../call/iup_killfocus_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
../call/iup_k_any.html
../call/iup_help_cb.html

To replace a IupButton by a IupFlatButton you must change the function call (IupFlatButton does not includes the action callback in
the constructor) and change the ACTION callback name to FLAT_ACTION.

To replace a IupToggle by a IupFlatButton you must do the same, and set TOGGLE=Yes. But notice that there will be no check box
nor radio button.

Finally notice that the name of the secondary image attributes are different (for instance IMINACTIVE is IMAGEINACTIVE, IMPRESS is
IMAGEPRESS, and so on). To define a button that only shows a color, do the same as in IupButton and don't define TITLE nor IMAGE,
but instead of BGCOLOR use FGCOLOR to set the color of the button.

When the IupFlatButton displays only a text it will look like a label, use SHOWBORDER=Yes to force the display of the borders all the
time.

Examples

Browse for Example Files

The sample buttons have PADDING=5x5.

Normal Highlight Press Focus

See Also

IupImage, IupButton, IupToggle, IupLabel

IupDropButton (since 3.25)
Creates an interface element that is a button with a drop down arrow. It can function as a button and as a dropdown. Its visual
presentation can contain a text and/or an image.

When dropped displays a child inside a dialog with no decorations, so it can simulate the initial function of a dropdown list, but it can
display any layout of IUP elements inside the dropped dialog. When the user click outside the dialog, it is automatically closed.

It inherits from IupCanvas.

Creation

Ihandle* IupDropButton(Ihandle* dropchild); [in C]
iup.dropbutton{[dropchild: ihandle]} -> ih: ihandle [in Lua]
dropbutton(dropchild) [in LED]

child: Identifier of an interface element to be displayed when the dropdown is activated. It can be NULL (nil in Lua), or empty in LED. It
is not a regular child of the dropbutton. It will be displayed inside a dialog with no decorations.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

Inherits all attributes and callbacks of the IupCanvas, but redefines a few attributes.

ALIGNMENT (non inheritable): horizontal and vertical alignment of the set image+text. Possible values: "ALEFT", "ACENTER" and
"ARIGHT", combined to "ATOP", "ACENTER" and "ABOTTOM". Default: "ALEFT:ACENTER". Partial values are also accepted, like
"ARIGHT" or ":ATOP", the other value will be obtained from the default value. Alignment does not includes the padding area.

ARROWACTIVE (non inheritable): the arrow can be disabled when the button is enabled. If there is no drop child the arrow will be
automatically disabled.

ARROWALIGN (non inheritable): vertical arrow alignment. Can be: TOP, CENTER or BOTTOM. Default: CENTER. (since 3.27)

ARROWCOLOR: color used for the arrow. Default use FGCOLOR.

ARROWIMAGES (non inheritable): replace the drawn arrows by the following images. Make sure their sizes are equal or smaller than
ARROWSIZE. Default: No.

ARROWIMAGE (non inheritable): Arrow image name. Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See
also IupImage.

ARROWIMAGEHIGHLIGHT (non inheritable): Arrow image name of the element in highlight state. If it is not defined then the
ARROWIMAGE is used.

ARROWIMAGEINACTIVE (non inheritable): Arrow image name of the element when inactive. If it is not defined then the
ARROWIMAGE is used and its colors will be replaced by a modified version creating the disabled effect.

IUP - Portable User Interface 07-Jan-25

275/496

../../examples/
iupimage.html
iupbutton.html
iuptoggle.html
iuplabel.html
../elem/iupcanvas.html
../elem/iupcanvas.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html

ARROWIMAGEPRESS (non inheritable): Arrow image name of the element in pressed state. If it is not defined then the ARROWIMAGE
is used.

ARROWPADDING (non inheritable): internal margin for the arrow. It is inside ARROWSIZE. Default: 5.

ARROWSIZE (non inheritable): size of the area occupied by the arrow, even when using images. Default: 24

BACKIMAGE (non inheritable): image name to be used as background. Use IupSetHandle or IupSetAttributeHandle to associate an
image to a name. See also IupImage.

BACKIMAGEHIGHLIGHT (non inheritable): background image name of the element in highlight state. If it is not defined then the
BACKIMAGE is used.

BACKIMAGEINACTIVE (non inheritable): background image name of the element when inactive. If it is not defined then the
BACKIMAGE is used and its colors will be replaced by a modified version creating the disabled effect.

BACKIMAGEPRESS (non inheritable): background image name of the element in pressed state. If it is not defined then the BACKIMAGE
is used.

BACKIMAGEZOOM (non inheritable): if set the back image will be zoomed to occupy the full background. Aspect ratio is NOT
preserved. Can be Yes or No. Default: No. (since 3.25)

BGCOLOR: Background color. If text and image are not defined, the button is configured to simply show a color, in this case set the
button size because the natural size will be very small. If not defined it will use the background color of the native parent.

HLCOLOR: background color used to indicate a highlight state. Pre-defined to "200 225 245". Can be set to NULL. If NULL BGCOLOR will
be used instead.

PSCOLOR: background color used to indicate a press state. Pre-defined to "150 200 235". Can be set to NULL. If NULL BGCOLOR will be
used instead.

BORDER (creation only): the default value is "NO". This is the IupCanvas border.

BORDERCOLOR: color used for borders. Default: "50 150 255". This is for the IupDropButton drawn border.

BORDERPSCOLOR: color used for borders when pressed or selected. Default use BORDERCOLOR.

BORDERHLCOLOR: color used for borders when highlighted. Default use BORDERCOLOR.

BORDERWIDTH: line width used for borders. Default: "1". Any borders can be hidden by simply setting this value to 0. This is for the
IupDropButton drawn border.

SHOWBORDER: by default borders are drawn only when the button is highlighted, if SHOWBORDER=Yes borders are always show.
When SHOWBORDER=Yes and BGCOLOR is not defined, the actual BGCOLOR will be a darker version of the background color of the
native parent.

CANFOCUS (creation only) (non inheritable): enables the focus traversal of the control. In Windows the button will respect CANFOCUS in
opposite to the other controls. Default: YES.

FOCUSFEEDBACK (non inheritable): draw the focus feedback. Can be Yes or No. Default: Yes. (since 3.26)

DROPCHILD: the name of the element that will be displayed when dropped. Use IupSetHandle or IupSetAttributeHandle to associate a
child to a name. In Lua you can also use the element reference directly. The drop dialog, were the drop child is inserted, is available right
after setting the attribute using IupGetDialog on the drop child handle. See the Notes bellow for more information.

DROPCHILD_HANDLE: same as DROPCHILD but directly using the Ihandle* of the element.

DROPONARROW (non inheritable): when enabled only clicking on the drop arrow will show the drop child. Clicking on the remaining of
the button will call FLAT_ACTION. There will be two separates areas in the button, one for the drop arrow and one for the regular button.
When disabled there will be only one area, and the drop child will be show any where the button is clicked, the callback FLAT_ACTION
will not be called. Default: Yes.

DROPPOSITION (non inheritable): the drop child can be shown in four different positions relative to the drop button: BOTTOMLEFT,
TOPLEFT, BOTTOMRIGHT, TOPRIGHT. BOTTOMLEFT the top-left corner of the drop child is aligned with the bottom-left corner of the
drop button, BOTTOMRIGHT the top-right corner of the drop child is aligned with the bottom-right corner of the drop button, TOPLEFT
the bottom-left corner of the drop child is aligned with the top-left corner of the drop button, TOPRIGHT the bottom-right corner of the
drop child is aligned with the top-right corner of the drop button. Default: BOTTOMLEFT.

PROPAGATEFOCUS (non inheritable): enables the focus callback forwarding to the next native parent with FOCUS_CB defined. Default:
NO.

EXPAND (non inheritable): The default value is "NO".

FGCOLOR: Text color. Default: the global attribute DLGFGCOLOR.

TEXTHLCOLOR: text color used to indicate a highlight state. If not defined FGCOLOR will be used instead. (since 3.26)

TEXTPSCOLOR: text color used to indicate a press state. If not defined FGCOLOR will be used instead. (since 3.26)

FITTOBACKIMAGE (non inheritable): enable the natural size to be computed from the BACKIMAGE. If BACKIMAGE is not defined will
be ignored. Can be Yes or No. Default: No.

IUP - Portable User Interface 07-Jan-25

276/496

../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../attrib/iup_bgcolor.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../attrib/iup_expand.html
../attrib/iup_fgcolor.html

FRONTIMAGE (non inheritable): image name to be used as foreground. The foreground image is drawn in the same position as the
background, but it is drawn at last. Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See also IupImage.

FRONTIMAGEHIGHLIGHT (non inheritable): foreground image name of the element in highlight state. If it is not defined then the
FRONTIMAGE is used.

FRONTIMAGEINACTIVE (non inheritable): foreground image name of the element when inactive. If it is not defined then the
FRONTIMAGE is used and its colors will be replaced by a modified version creating the disabled effect.

FRONTIMAGEPRESS (non inheritable): foreground image name of the element in pressed state. If it is not defined then the
FRONTIMAGE is used.

HASFOCUS (read-only): returns the button state if has focus. Can be Yes or No.

HIGHLIGHTED (read-only): returns the button state if highlighted. Can be Yes or No.

IMAGE (non inheritable): Image name. Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See also IupImage.

IMAGEHIGHLIGHT (non inheritable): Image name of the element in highlight state. If it is not defined then the IMAGE is used.

IMAGEINACTIVE (non inheritable): Image name of the element when inactive. If it is not defined then the IMAGE is used and its colors
will be replaced by a modified version creating the disabled effect.

IMAGEPRESS (non inheritable): Image name of the element in pressed state. If it is not defined then the IMAGE is used.

IMAGEPOSITION (non inheritable): Position of the image relative to the text when both are displayed. Can be: LEFT, RIGHT, TOP,
BOTTOM. Default: LEFT.

PADDING: internal margin. Works just like the MARGIN attribute of the IupHbox and IupVbox containers, but uses a different name to
avoid inheritance problems. Alignment does not includes the padding area. Default value: "3x3". Value can be
DEFAULTBUTTONPADDING, so the global attribute of this name will be used instead (since 3.29).

CPADDING: same as PADDING but using the units of the SIZE attribute. It will actually set the PADDING attribute. (since 3.29)

PRESSED (read-only): returns the button state if pressed. Can be Yes or No.

SHOWDROPDOWN (write-only): opens or closes the dropdown child. Can be "YES" or "NO". Ignored if set before map.

SPACING (non inheritable): spacing between the image and the text. Default: "2".

CSPACING: same as SPACING but using the units of the vertical part of the SIZE attribute. It will actually set the SPACING attribute.
(since 3.29)

TITLE (non inheritable): Label's text. The '\n' character is accepted for line change.

TEXTALIGNMENT (non inheritable): Horizontal text alignment for multiple lines. Can be: ALEFT, ARIGHT or ACENTER. Default: ALEFT.

TEXTWRAP (non inheritable): For single line texts if the text is larger than its box the line will be automatically broken in multiple lines.
Notice that this is done internally by the system, the element natural size will still use only a single line. For the remaining lines to be
visible the element should use EXPAND=VERTICAL or set a SIZE/RASTERSIZE with enough height for the wrapped lines. (since 3.25)

TEXTELLIPSIS (non inheritable): If the text is larger that its box, an ellipsis ("...") will be placed near the last visible part of the text and
replace the invisible part. It will be ignored when TEXTWRAP=Yes. (since 3.25)

TEXTORIENTATION (non inheritable): text angle in degrees and counterclockwise. The text size will adapt to include the rotated space.
(since 3.25)

VISIBLECOLUMNS: Defines the number of visible columns for the Natural Size, this means that will act also as minimum number of
visible columns. It uses a wider character size then the one used for the SIZE attribute so strings will fit better without the need of extra
columns. Padding will be around the visible columns.

ACTIVE, FONT, EXPAND, SCREENPOSITION, POSITION, MINSIZE, MAXSIZE, WID, TIP, SIZE, RASTERSIZE, ZORDER, VISIBLE, THEME:
also accepted.

Callbacks

Inherits all callbacks of the IupCanvas, but redefines a few of them. Including ACTION, BUTTON_CB, MOTION_CB, FOCUS_CB,
LEAVEWINDOW_CB, and ENTERWINDOW_CB. To allow the application to use those callbacks the same callbacks are exported with the
"FLAT_" prefix using the same parameters, except the FLAT_ACTION callback that now mimics the IupButton ACTION. They are all
called before the internal callbacks and if they return IUP_IGNORE the internal callbacks are not processed.

FLAT_ACTION: Action generated when the button 1 (usually left) is selected. This callback is called only after the mouse is released and
when it is released inside the button area. Called only when DROPONARROW=Yes.

int function(Ihandle* ih); [in C]
ih:action() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

IUP - Portable User Interface 07-Jan-25

277/496

../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../attrib/iup_title.html
../attrib/iup_active.html
../attrib/iup_font.html
../attrib/iup_expand.html
../attrib/iup_screenposition.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_wid.html
../attrib/iup_tip.html
../attrib/iup_size.html
../attrib/iup_rastersize.html
../attrib/iup_zorder.html
../attrib/iup_visible.html
../attrib/iup_theme.html
../elem/iupcanvas.html

Returns: IUP_CLOSE will be processed.

DROPDOWN_CB: Action generated right before the drop child is shown or hidden. This callback is also called when SHOWDROPDOWN
is set.

int function (Ihandle *ih, int state); [in C]
ih:dropdown_cb(state: boolean) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
state: the new state of the drop child 1=to be shown, 0=to be hidden.

DROPSHOW_CB: Action generated right after the drop child is shown or hidden. This callback is also called when SHOWDROPDOWN is
set.

int function (Ihandle *ih, int state); [in C]
ih:dropdown_cb(state: boolean) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
state: the current state of the drop child 1=shown, 0=hidden.

MAP_CB, UNMAP_CB, DESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB, K_ANY, HELP_CB: All
common callbacks are supported.

Notes

The natural size will be a combination of the size of the image and the title, if any, plus PADDING and SPACING (if both image and title
are present), and plus the horizontal space occupied by the arrow.

The drop dialog is configured with no decorations and it is not resizable, only the FOCUS_CB and K_ESC callbacks are set. But this can be
changed by the application. It is a regular IupDialog. To obtain the drop button handle from the handle of the dialog get the
"DROPBUTTON" attribute handle from the dialog, using IupGetAttributeHandle. After performing some operation on the drop child, use
SHOWDROPDOWN=NO on the drop button, you may also update its TITLE, just like a regular IupList with DROPDOWN=Yes, but this
will not be performed automatically by the drop button. For example, set the ACTION callback on the IupList used as drop child:

static int list_cb(Ihandle* list, char *text, int item, int state)
{
 if (state == 1)
 {
 Ihandle* ih = IupGetAttributeHandle(IupGetDialog(list), "DROPBUTTON");
 IupSetAttribute(ih, "SHOWDROPDOWN", "No");
 IupSetStrAttribute(ih, "TITLE", text);
 }
 return IUP_DEFAULT;
}

Additionally to mimic a IupList with DROPDOWN=Yes set SHOWBORDER=Yes and DROPONARROW=NO on the drop button. But notice
that the natural size will not use the largest item in the drop child list, so you can use EXPAND=HORIZONTAL or set VISIBLECOLUMNS,
both on the drop button.

Examples

Browse for Example Files

The following screenshots where taken while the button is highlighted or dropped.

See Also

IUP - Portable User Interface 07-Jan-25

278/496

../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_getfocus_cb.html
../call/iup_killfocus_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
../call/iup_k_any.html
../call/iup_help_cb.html
../dlg/iupdialog.html
../func/iupgetattributehandle.html
../../examples/

IupImage, IupButton, IupToggle, IupLabel, IupList

IupCalendar (since 3.17)
Creates a month calendar interface element, where the user can select a date.

GTK and Windows only. NOT available in Motif.

Creation

Ihandle* IupCalendar(void); [in C]
iup.calendar{} -> (ih: ihandle) [in Lua]
calendar() [in LED]

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

TODAY (read-only): Returns the date corresponding to today in VALUE format.

VALUE: the current date always in the format "year/month/day" ("%d/%d/%d" in C). Can be set to "TODAY". Default value is the today
date.

WEEKNUMBERS: Shows the number of the week along the year. Default: NO.

Callbacks

VALUECHANGED_CB: Called after the value was interactively changed by the user.

int function(Ihandle *ih); [in C]
ih:valuechanged_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

MAP_CB, UNMAP_CB, DESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB, K_ANY, HELP_CB: All
common callbacks are supported.

Notes

In Windows, the view is changed when the month of year is clicked, so the user can select the month of the year or an year among years.

In GTK the today date is not marked in the calendar.

In GTK uses GtkCalendar, and in Windows uses MONTHCAL_CLASS.

Examples

Windows
Classic

Windows
w/ Styles GTK

Browse for Example Files

See Also

IupDatePick.

IupCanvas

IUP - Portable User Interface 07-Jan-25

279/496

iupimage.html
iupbutton.html
iuptoggle.html
iuplabel.html
iuplist.html
../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_getfocus_cb.html
../call/iup_killfocus_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
../call/iup_k_any.html
../call/iup_help_cb.html
../../examples/
iupdatepick.html

Creates an interface element that is a canvas - a drawing area for your application.

Creation

Ihandle* IupCanvas(const char *action); [in C]
iup.canvas{} -> (ih: ihandle) [in Lua]
canvas(action) [in LED]

action: Name of the action generated when the canvas needs to be redrawn. It can be NULL.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

BACKINGSTORE [Motif Only]: Controls the canvas backing store flag. The default value is "YES".

BGCOLOR: Background color. The background is painted only if the ACTION callback is not defined. If the callback is defined the
application must draw all the canvas contents. In GTK or Motif if you set the ACTION callback after map then you should also set
BGCOLOR to any value just after setting the callback or the first redraw will be lost. Default: "255 255 255".

BORDER (creation only): Shows a border around the canvas. Default: "YES".

CANFOCUS (creation only) (non inheritable): enables the focus traversal of the control. In Windows the canvas will respect CANFOCUS
differently to some other controls. Default: YES. (since 3.0)

PROPAGATEFOCUS(non inheritable): enables the focus callback forwarding to the next native parent with FOCUS_CB defined. Default:
NO. (since 3.23)

CAIRO_CR [GTK Only] (non inheritable): Contains the "cairo_t*" parameter of the internal GTK callback. Valid only during the ACTION
callback and onyl when using GTK version 3. (since 3.7)

CLIPRECT [Windows and GTK Only] (only during ACTION): Specifies a rectangle that has its region invalidated for painting, it could be
used for clipping. Format: "%d %d %d %d"="x1 y1 x2 y2".

CURSOR (non inheritable): Defines a cursor for the canvas. The Windows SDK recommends that cursors and icons should be
implemented as resources rather than created at run time.

DROPFILESTARGET [Windows and GTK Only] (non inheritable): Enable or disable the drop of files. Default: NO, but if DROPFILES_CB
is defined when the element is mapped then it will be automatically enabled.

DRAWSIZE (non inheritable): The size of the drawing area in pixels. This size is also used in the RESIZE_CB callback.

Notice that the drawing area size is not the same as RASTERSIZE. The SCROLLBAR and BORDER attributes affect the size of the
drawing area.

DRAWDRIVER (read-only): returns the name of the draw driver in use by the IupDraw API. Can be: X11 (Motif), GDK (GTK), Cairo
(GTK), D2D (Windows), GDI+ (Windows) or GDI (Windows). (since 3.25)

DRAWUSEGDI [Windows Only] (non inheritable): force the use of the old GDI driver, instead of the new DirectD2 driver. Used in the
IupGauge, IupMatrix and Flat Scrollbars for better performance and backward compatibility. (since 3.26)

EXPAND (non inheritable): The default value is "YES". The natural size is the size of 1 character.

HDC_WMPAINT [Windows Only] (non inheritable): Contains the HDC created with the BeginPaint inside the WM_PAINT message. Valid
only during the ACTION callback.

HWND [Windows Only] (non inheritable, read-only): Returns the Windows Window handle. Available in the Windows driver or in the GTK
driver in Windows.

SCROLLBAR (creation only): Associates a horizontal and/or vertical scrollbar to the canvas. Default: "NO". The secondary attributes are all
non inheritable.

DX: Size of the thumb in the horizontal scrollbar. A lso the horizontal page size. Default: "0.1".
DY: Size of the thumb in the vertical scrollbar. A lso the vertical page size. Default: "0.1".
POSX: Position of the thumb in the horizontal scrollbar. Default: "0.0".
POSY: Position of the thumb in the vertical scrollbar. Default: "0.0".
XMIN: Minimum value of the horizontal scrollbar. Default: "0.0".
XMAX: Maximum value of the horizontal scrollbar. Default: "1.0".
YMIN: Minimum value of the vertical scrollbar. Default: "0.0".
YMAX: Maximum value of the vertical scrollbar. Default: "1.0".
LINEX: The amount the thumb moves when an horizontal step is performed. Default: 1/10th of DX. (since 3.0)
LINEY: The amount the thumb moves when a vertical step is performed. Default: 1/10th of DY. (since 3.0)
XAUTOHIDE: When enabled, if DX >= XMAX-XMIN then the horizontal scrollbar is hidden. Default: "YES". (since 3.0)
YAUTOHIDE: When enabled, if DY >= YMAX-YMIN then the vertical scrollbar is hidden. Default: "YES". (since 3.0)
SCROLLVISIBLE (read-only) [Windows Only]: Returns which scrollbars are visible at the moment. Can be: YES (both), VERTICAL,
HORIZONTAL, NO. (since 3.31)

TOUCH [Windows Only]: enable the touch processing if touch support is available. (since 3.3)

IUP - Portable User Interface 07-Jan-25

280/496

../attrib/iup_bgcolor.html
../attrib/iup_cursor.html
../attrib/iup_expand.html
../attrib/iup_scrollbar.html
../attrib/iup_dx.html
../attrib/iup_dy.html
../attrib/iup_posx.html
../attrib/iup_posy.html
../attrib/iup_xmin.html
../attrib/iup_xmax.html
../attrib/iup_ymin.html
../attrib/iup_ymax.html

GESTURE [Windows Only]: disable the gesture support for touch interfaces. Accepts only the NO value. (since 3.31)

WHEELDROPFOCUS (non inheritable): when the wheel is used the focus control receives a SHOWDROPDOWN=No. (since 3.28)

XDISPLAY [UNIX Only](non inheritable, read-only): Returns the X-Windows Display. Available in the Motif driver or in the GTK driver in
UNIX.

XWINDOW [UNIX Only](non inheritable, read-only): Returns the X-Windows Window (Drawable). Available in the Motif driver or in the
GTK driver in UNIX.

ACTIVE, FONT, SCREENPOSITION, POSITION, MINSIZE, MAXSIZE, WID, TIP, SIZE, RASTERSIZE, ZORDER, VISIBLE, THEME: also
accepted.

Drag & Drop attributes and callbacks are supported.

Callbacks

ACTION: Action generated when the canvas needs to be redrawn.

int function(Ihandle *ih, float posx, float posy); [in C]
ih:action(posx, posy: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
posx: thumb position in the horizontal scrollbar. The POSX attribute value. Old parameter in float format, use POSX attribute to get
the value in double format.
posy: thumb position in the vertical scrollbar. The POSY attribute value. Old parameter in float format, use POSX attribute to get the
value in double format.

BUTTON_CB: Action generated when any mouse button is pressed or released.

DROPFILES_CB [Windows and GTK Only]: Action generated when one or more files are dropped in the element.

FOCUS_CB: Called when the canvas gets or looses the focus. It is called after the common callbacks GETFOCUS_CB and
KILL_FOCUS_CB.

int function(Ihandle *ih, int focus); [in C]
ih:focus_cb(focus: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
focus: is non zero if the canvas is getting the focus, is zero if it is loosing the focus.

MOTION_CB: Action generated when the mouse is moved.

KEYPRESS_CB: Action generated when a key is pressed or released. It is called after the common callback K_ANY.

When the canvas has the focus, pressing the arrow keys may change the focus to another control in some systems. If your callback
process the arrow keys, we recommend you to return IUP_IGNORE so it will not lose its focus.

RESIZE_CB: Action generated when the canvas size is changed.

SCROLL_CB: Called when the scrollbar is manipulated. (GTK 2.8) Also the POSX and POSY values will not be correctly updated for older
GTK versions.

TOUCH_CB [Windows Only]: Action generated when a touch event occurred. Multiple touch events will trigger several calls. Must set
TOUCH=Yes to receive this event. (Since 3.3)

int function(Ihandle* ih, int id, int x, int y, char* state); [in C]
ih:touch_cb(id, x, y: number, state: string) -> (ret: number) [in Lua]

ih: identifies the element that activated the event.
id: identifies the touch point.
x, y: position in pixels, relative to the top-left corner of the canvas.
state: the touch point state. Can be: DOWN, MOVE or UP. If the point is a "primary" point then "-PRIMARY" is appended to the
string.

Returns: IUP_CLOSE will be processed.

MULTITOUCH_CB [Windows Only]: Action generated when multiple touch events occurred. Must set TOUCH=Yes to receive this event.
(Since 3.3)

int function(Ihandle *ih, int count, int* pid, int* px, int* py, int* pstate) [in C]
ih:multitouch_cb(count: number, pid, px, py, pstate: table) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

IUP - Portable User Interface 07-Jan-25

281/496

../attrib/iup_active.html
../attrib/iup_font.html
../attrib/iup_screenposition.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_wid.html
../attrib/iup_tip.html
../attrib/iup_size.html
../attrib/iup_rastersize.html
../attrib/iup_zorder.html
../attrib/iup_visible.html
../attrib/iup_theme.html
../attrib/iup_dragdrop.html
../call/iup_action.html
../call/iup_button_cb.html
../call/iup_dropfiles_cb.html
../call/iup_motion_cb.html
../call/iup_keypress_cb.html
../call/iup_resize_cb.html
../call/iup_scroll_cb.html

count: Number of touch points in the array.
pid: Array of touch point ids.
px: Array of touch point x coordinates in pixels, relative to the top-left corner of the canvas.
py: Array of touch point y coordinates in pixels, relative to the top-left corner of the canvas.
pstate: Array of touch point states. Can be 'D' (DOWN), 'U' (UP) or 'M' (MOVE).

Returns: IUP_CLOSE will be processed.

WHEEL_CB: Action generated when the mouse wheel is rotated.

WOM_CB [Windows Only]: Action generated when an audio device receives an event.

MAP_CB, UNMAP_CB, DESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB, K_ANY, HELP_CB: All
common callbacks are supported.

Drag & Drop attributes and callbacks are supported.

Notes

Note that some keys might remove the focus from the canvas. To avoid this, return IGNORE in the K_ANY callback.

The mouse cursor position can be programmatically controlled using the global attribute CURSORPOS.

When the canvas is displayed for the first time, the callback call order is always:

MAP_CB()
RESIZE_CB()
ACTION()

When the canvas is resized the ACTION callback is always called after the RESIZE_CB callback.

The IupDraw API can be used to draw in the canvas. But the ACTION callback function can NOT be called manually from inside the
application, it must be invoked by the system, so if you need to redraw then call IupRedraw or IupUpdate.

In GTK uses GtkFixed, in Windows uses a custom window class called "IupCanvas", and in Motif uses xmDrawingArea.

Using with the CD library

When using the CD library to draw in a IupCanvas, you can use the callbacks to manage the canvas. The simplest way is to do:

MAP_CB - calls cdCreateCanvas (current size is not available yet)
UNMAP_CB - calls cdKillCanvas
RESIZE_CB - Calling cdCanvasActivate and cdCanvasGetSize returns the same values as
 given by the callback parameters.
 Recalculate the drawing size, update the scrollbars if any.
ACTION - calls cdCanvasActivate
 then use CD primitives to draw the scene,
 finally calls cdCanvasFlush if using double buffer
SCROLL_CB - when using scrollbars,
 if this callback is defined the canvas must be manually redrawn,
 call yourself the action callback or call IupUpdate.
 In other words, if this callback is not defined
 the canvas is automatically redrawn.

Examples

Browse for Example Files

Windows
Classic

Windows
w/ Styles

Motif GTK

IUP - Portable User Interface 07-Jan-25

282/496

../call/iup_wheel_cb.html
../call/iup_wom_cb.html
../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_getfocus_cb.html
../call/iup_killfocus_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
../call/iup_k_any.html
../call/iup_help_cb.html
../attrib/iup_dragdrop.html
../call/iup_k_any.html
../attrib/iup_globals.html#cursorpos
../func/iupdraw.html
../func/iupredraw.html
../func/iupupdate.html
http://www.tecgraf.puc-rio.br/cd/
../../examples/

SCROLLBAR (creation only)
Associates a horizontal and/or vertical scrollbar to the element.

Value

"VERTICAL", "HORIZONTAL", "YES" (both) or "NO" (none).

Default: "NO"

Configuration Attributes (non inheritable)

DX: Size of the thumb in the horizontal scrollbar. A lso the horizontal page size. Default: "0.1".

DY: Size of the thumb in the vertical scrollbar. A lso the vertical page size. Default: "0.1".

POSX: Position of the thumb in the horizontal scrollbar. Default: "0.0".

POSY: Position of the thumb in the vertical scrollbar. Default: "0.0".

XMIN: Minimum value of the horizontal scrollbar. Default: "0.0".

XMAX: Maximum value of the horizontal scrollbar. Default: "1.0".

YMIN: Minimum value of the vertical scrollbar. Default: "0.0".

YMAX: Maximum value of the vertical scrollbar. Default: "1.0".

LINEX: The amount the thumb moves when an horizontal step is performed. Default: 1/10th of DX. (since 3.0)

LINEY: The amount the thumb moves when a vertical step is performed. Default: 1/10th of DY. (since 3.0)

XAUTOHIDE: When enabled, if DX >= XMAX-XMIN then the horizontal scrollbar is hidden. Default: "YES". (since 3.0)

YAUTOHIDE: When enabled, if DY >= YMAX-YMIN then the vertical scrollbar is hidden. Default: "YES". (since 3.0)

XHIDDEN [read-only]: returns if the scrollbar is hidden or not when XAUTOHIDE=Yes. (since 3.13)

YHIDDEN [read-only]: returns if the scrollbar is hidden or not when YAUTOHIDE=Yes. (since 3.13)

SB_RESIZE [read-only]: returns if a scrollbar visibility was changed forcing a canvas resize after setting DX or DY. (since 3.26)

SCROLLVISIBLE (read-only) [Windows Only]: Returns which scrollbars are visible at the moment. Can be: YES (both), VERTICAL,
HORIZONTAL, NO. (since 3.31)

Notes

The scrollbar allows you to create a virtual space associated to the element. In the image below, such space is marked in red, as well as
the attributes that affect the composition of this space. In green you can see how these attributes are reflected on the scrollbar.

Hence you can clearly deduce that POSX is limited to XMIN and XMAX-DX, or XMIN<=POSX<=XMAX-DX.

Usually applications configure XMIN and XMAX to a region in World coordinates, and set DX to the canvas visible area in World
coordinates. Since the canvas can have scrollbars and borders, its visible area in pixel coordinates can be easily obtained using the
DRAWSIZE attribute.

IUP - Portable User Interface 07-Jan-25

283/496

../attrib/iup_dx.html
../attrib/iup_dy.html
../attrib/iup_posx.html
../attrib/iup_posy.html
../attrib/iup_xmin.html
../attrib/iup_xmax.html
../attrib/iup_ymin.html
../attrib/iup_ymax.html

IMPORTANT: the LINEX, XMAX and XMIN attributes are only updated in the scrollbar when the DX attribute is updated.

IMPORTANT: when working with a virtual space with integer coordinates, set XMAX to the integer size of the virtual space, NOT to
"width-1", or the last pixel of the virtual space will never be visible. If you decide to let XMAX with the default value of 1.0 and to control
only DX, then use the formula DX=visible_width/width.

IMPORTANT: When the virtual space has the same size as the canvas, i.e. when DX >= XMAX-XMIN, the scrollbar is automatically
hidden if XAUTOHIDE=Yes. The width of the vertical scrollbar (the same as the height of the horizontal scrollbar) can be obtained using
the SCROLLBARSIZE global attribute (since 3.9).

The same is valid for YMIN, YMAX, DY and POSY. But remember that the Y axis is oriented from top to bottom in IUP. So if you want to
consider YMIN and YMAX as bottom-up oriented, then the actual YPOS must be obtained using YMAX-DY-POSY.

IMPORTANT: Changes in the scrollbar parameters do NOT generate ACTION nor SCROLL_CB callback events. If you need to update the
canvas contents call your own action callback or call IupUpdate. But a change in the DX attribute may generate a RESIZE_CB callback
event if XAUTOHIDE=Yes.

If you have to change the properties of the scrollbar (XMIN, XMAX and DX) but you want to keep the thumb still (if possible) in the same
relative position, then you have to also recalculate its position (POSX) using the old position as reference to the new one. For example,
you can convert it to a 0-1 interval and then scale to the new limits:

old_posx_relative = (old_posx - old_xmin)/(old_xmax - old_xmin)
posx = (xmax - xmin)*old_posx_relative + xmin

IupList, IupTree, and IupText/IupMultiline scrollbars are automatically managed and do NOT have the POS*, *MIN, *MAX and D*
attributes.

When updating the virtual space size, or when the canvas is resized, if XAUTOHIDE=Yes then calculating the actual DX size can be very
tricky. Here is a a helpful algorithm:

void scrollbar_update(Ihandle* ih, int view_width, int view_height) /* view_width and view_height is the virtual space size */
{
 int elem_width, elem_height;
 int canvas_width, canvas_height;
 int sb_size = IupGetInt(NULL, "SCROLLBARSIZE");
 int border = IupGetInt(ih, "BORDER");

 IupGetIntInt(ih, "RASTERSIZE", &elem_width, &elem_height);

 /* remove BORDER (always size=1) */
 /* this is available drawing size not considering the scrollbars*/
 elem_width -= 2 * border;
 elem_height -= 2 * border;
 canvas_width = elem_width;
 canvas_height = elem_height;

 /* if view is greater than canvas in one direction,
 then it has scrollbars,
 but this affects the opposite direction */

 if (view_width > elem_width) /* check for horizontal scrollbar */
 canvas_height -= sb_size; /* affect vertical size */
 if (view_height > elem_height)
 canvas_width -= sb_size;

 if (view_width <= elem_width && view_width > canvas_width) /* check again for horizontal scrollbar */
 canvas_height -= sb_size;
 if (view_height <= elem_height && view_height > canvas_height) /* notice that these two ifs are mutually exclusive */
 canvas_width -= sb_size;

 if (canvas_width < 0) canvas_width = 0;
 if (canvas_height < 0) canvas_height = 0;

 IupSetFloat(ih, "DX", (float)canvas_width / (float)view_width); /* normalize to 0-1 assuming XMIN-XMAX=0-1 */
 IupSetFloat(ih, "DY", (float)canvas_height / (float)view_height);

 /* Another approach is to set DX,DY to canvas_width,canvas_height
 and XMAX,YMAX to view_width,view_height */
}

Inside the canvas ACTION callback, the (x,y) offset for drawing is calculated as:

 int x, y, canvas_width, canvas_height;
float posy = IupGetFloat(ih, "POSY");
float posx = IupGetFloat(ih, "POSX");

IupGetIntInt(ih, "DRAWSIZE", &canvas_width, &canvas_height);

if (canvas_width < view_width)
 x = (int)floor(-posx*view_width);
else
 x = (canvas_width - view_width) / 2; /* no scrollbar, for example, center the view */

IUP - Portable User Interface 07-Jan-25

284/496

if (canvas_height < view_height)
{
 /* posy is top-bottom, CD and OpenGL are bottom-top.
 invert posy reference (YMAX-DY - POSY) */
 float dy = IupGetFloat(ih, "DY");
 posy = 1.0f - dy - posy;
 y = (int)floor(-posy*view_height);
}
else
 y = (canvas_height - view_height) / 2; /* no scrollbar, for example, center the view */

Call scrollbar_update from the RESIZE_CB callback and when you change the zoom factor that affects view_width or view_height.

Affects

IupList, IupMultiline, IupCanvas

See Also

POSX, XMIN, XMAX, DX, POSY, YMIN, YMAX, DY

DX
Size of the horizontal scrollbar's thumbnail in any unit.

Value

Any floating-point value greater than zero and smaller than the difference between XMAX and XMIN.

Default:: "0.1".

Notes

LINEX, XMAX and XMIN are only updated in the scrollbar when DX is updated.

When the canvas is visible, a change in DX can generate a redraw in the horizontal scrollbar on the screen. But it may generate a
RESIZE_CB callback event if XAUTOHIDE=Yes.

A change in these values can affect the attribute POSX.

Affects

IupCanvas

See Also

SCROLLBAR

DY
Size of the vertical scrollbar's thumbnail in any unit.

Value

Any floating-point value greater than zero and smaller than the difference between YMAX and YMIN.

Default:: "0.1".

Notes

LINEY, YMAX and YMIN are only updated in the scrollbar when DY is updated.

When the canvas is visible, a change in DY can generate a redraw in the horizontal scrollbar on the screen. But it may generate a
RESIZE_CB callback event if YAUTOHIDE=Yes.

A change in these values can affect the attribute POSY.

Affects

IupCanvas

See Also

IUP - Portable User Interface 07-Jan-25

285/496

../elem/iuplist.html
../elem/iupmultiline.html
../elem/iupcanvas.html
iup_posx.html
iup_xmin.html
iup_xmax.html
iup_dx.html
iup_posy.html
iup_ymin.html
iup_ymax.html
iup_dy.html
iup_xmax.html
iup_xmin.html
iup_posx.html
../elem/iupcanvas.html
iup_scrollbar.html
iup_ymax.html
iup_ymin.html
iup_posy.html
../elem/iupcanvas.html

SCROLLBAR

POSX
Thumbnail position in the horizontal scrollbar in any unit.

Value

Any floating-point value. Must be a value between XMIN and XMAX-DX.

Default: "0.0"

Notes

When the canvas is visible, a change in POSX can generate a redraw in the horizontal scrollbar on the screen, but will NOT generate a
redraw of the canvas.

Affects

IupCanvas

See Also

SCROLLBAR

POSY
Thumbnail position in the vertical scrollbar in any unit.

Value

Any floating-point value. Must be a value between YMIN and YMAX-DY.

Default: "0.0"

Notes

When the canvas is visible, a change in POSY can generate a redraw in the vertical scrollbar on the screen, but will NOT generate a redraw
of the canvas.

Affects

IupCanvas

See Also

SCROLLBAR

XMIN
Minimum value of the horizontal scrollbar, in any unit.

Value

Any floating-point value.

Default: "0.0"

Notes

A change in this value will only be effective after the attribute DX is changed.

Affects

IupCanvas

See Also

IUP - Portable User Interface 07-Jan-25

286/496

iup_scrollbar.html
../elem/iupcanvas.html
iup_scrollbar.html
../elem/iupcanvas.html
iup_scrollbar.html
iup_dx.html
../elem/iupcanvas.html

SCROLLBAR

XMAX
Maximum value of the horizontal scrollbar, in any unit.

Value

Any floating-point value.

Default: "1.0"

Notes

A change in this value will only be effective after the attribute DX is changed.

Affects

IupCanvas

See Also

SCROLLBAR

YMIN
Minimum value of the vertical scrollbar, in any unit.

Value

Any floating-point value.

Default: "0.0"

Notes

A change in this value will only be effective after the attribute DY is changed.

Affects

IupCanvas

See Also

SCROLLBAR

YMAX
Maximum value of the vertical scrollbar, in any unit.

Value

Any floating-point value.

Default: "1.0"

Notes

A change in this value will only be effective after the attribute DY is changed.

Affects

IupCanvas

See Also

SCROLLBAR

BUTTON_CB

IUP - Portable User Interface 07-Jan-25

287/496

iup_scrollbar.html
iup_dx.html
../elem/iupcanvas.html
iup_scrollbar.html
iup_dy.html
../elem/iupcanvas.html
iup_scrollbar.html
iup_dy.html
../elem/iupcanvas.html
iup_scrollbar.html

Action generated when a mouse button is pressed or released.

Callback

int function(Ihandle* ih, int button, int pressed, int x, int y, char* status); [in C]
ih:button_cb(button, pressed, x, y: number, status: string) -> (ret: number) [in Lua]

ih: identifies the element that activated the event.
button: identifies the activated mouse button:

IUP_BUTTON1 - left mouse button (button 1);
IUP_BUTTON2 - middle mouse button (button 2);
IUP_BUTTON3 - right mouse button (button 3).

pressed: indicates the state of the button:

0 - mouse button was released;
1 - mouse button was pressed.

x, y: position in the canvas where the event has occurred, in pixels.
status: status of the mouse buttons and some keyboard keys at the moment the event is generated. The following macros must be used
for verification:

iup_isshift(status)
iup_iscontrol(status)
iup_isbutton1(status)
iup_isbutton2(status)
iup_isbutton3(status)
iup_isbutton4(status)
iup_isbutton5(status)
iup_isdouble(status)
iup_isalt(status)
iup_issys(status)

They return 1 if the respective key or button is pressed, and 0 otherwise. These macros are also available in Lua, returning a
boolean.

Returns: IUP_CLOSE will be processed. On some controls if IUP_IGNORE is returned the action is ignored (this is system dependent).

Notes

This callback can be used to customize a button behavior. For a standard button behavior use the ACTION callback of the IupButton.

For a single click the callback is called twice, one for pressed=1 and one for pressed=0. Only after both calls the ACTION callback is
called. In Windows, if a dialog is shown or popup in any situation there could be unpredictable results because the native system still has
processing to be done even after the callback is called.

A double click is preceded by two single clicks, one for pressed=1 and one for pressed=0, and followed by a press=0, all three without
the double click flag set. In GTK, it is preceded by an additional two single clicks sequence. For example, for one double click all the
following calls are made:

BUTTON_CB(but=1 (1), x=154, y=83 [1])
BUTTON_CB(but=1 (0), x=154, y=83 [1])
 BUTTON_CB(but=1 (1), x=154, y=83 [1]) (in GTK only)
 BUTTON_CB(but=1 (0), x=154, y=83 [1]) (in GTK only)
BUTTON_CB(but=1 (1), x=154, y=83 [1 D])
BUTTON_CB(but=1 (0), x=154, y=83 [1])

Between press and release all mouse events are redirected only to this control, even if the cursor moves outside the element. So the
BUTTON_CB callback when released and the MOTION_CB callback can be called with coordinates outside the element rectangle.

Affects

IupCanvas, IupButton, IupText, IupList, IupGLCanvas

MOTION_CB
Action generated when the mouse moves.

Callback

int function(Ihandle *ih, int x, int y, char *status); [in C]
ih:motion_cb(x, y: number, status: string) -> (ret: number) [in Lua]

IUP - Portable User Interface 07-Jan-25

288/496

../elem/iupcanvas.html
../elem/iupbutton.html
../elem/iuptext.html
../elem/iuplist.html
../ctrl/iupglcanvas.html

ih: identifier of the element that activated the event.
x, y: position in the canvas where the event has occurred, in pixels.
status: status of mouse buttons and certain keyboard keys at the moment the event was generated. The same macros used for
BUTTON_CB can be used for this status.

Notes

Between press and release all mouse events are redirected only to this control, even if the cursor moves outside the element. So the
BUTTON_CB callback when released and the MOTION_CB callback can be called with coordinates outside the element rectangle.

Affects

IupCanvas, IupGLCanvas

KEYPRESS_CB
Action generated when a key is pressed or released. If the key is pressed and held several calls will occur. It is called after the callback
K_ANY is processed.

Callback

int function(Ihandle *ih, int c, int press); [in C]
ih:keypress_cb(c, press: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
c: identifier of typed key. Please refer to the Keyboard Codes table for a list of possible values.
press: 1 is the user pressed the key or 0 otherwise.

Returns: If IUP_IGNORE is returned the key is ignored by the system. IUP_CLOSE will be processed.

Affects

IupCanvas

SCROLL_CB
Called when some manipulation is made to the scrollbar. The canvas is automatically redrawn only if this callback is NOT defined.

(GTK 2.8) Also the POSX and POSY values will not be correctly updated for older GTK versions.

In Ubuntu, when liboverlay-scrollbar is enabled (the new tiny auto-hide scrollbar) only the IUP_SBPOSV and IUP_SBPOSH codes are
used.

Callback

int function(Ihandle *ih, int op, float posx, float posy); [in C]
ih:scroll_cb(op, posx, posy: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
op: indicates the operation performed on the scrollbar.

If the manipulation was made on the vertical scrollbar, it can have the following values:

IUP_SBUP - line up
IUP_SBDN - line down
IUP_SBPGUP - page up
IUP_SBPGDN - page down
IUP_SBPOSV - vertical positioning
IUP_SBDRAGV - vertical drag

If it was on the horizontal scrollbar, the following values are valid:

IUP_SBLEFT - column left
IUP_SBRIGHT - column right
IUP_SBPGLEFT - page left
IUP_SBPGRIGHT - page right
IUP_SBPOSH - horizontal positioning
IUP_SBDRAGH - horizontal drag

posx, posy: the same as the ACTION canvas callback (corresponding to the values of attributes POSX and POSY).

Notes

IUP - Portable User Interface 07-Jan-25

289/496

../call/iup_button_cb.html
../elem/iupcanvas.html
../ctrl/iupglcanvas.html
../attrib/key.html
../elem/iupcanvas.html

IUP_SBDRAGH and IUP_SBDRAGV are not supported in GTK. During drag IUP_SBPOSH and IUP_SBPOSV are used.

In Windows, after a drag when mouse is released IUP_SBPOSH or IUP_SBPOSV are called.

Affects

IupCanvas, IupGLCanvas, SCROLLBAR

WHEEL_CB
Action generated when the mouse wheel is rotated. If this callback is not defined the wheel will automatically scroll the canvas in the
vertical direction by some lines, the SCROLL_CB callback if defined will be called with the IUP_SBDRAGV operation.

Callback

int function(Ihandle *ih, float delta, int x, int y, char *status); [in C]
ih:wheel_cb(delta, x, y: number, status: string) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
delta: the amount the wheel was rotated in notches.
x, y: position in the canvas where the event has occurred, in pixels.
status: status of mouse buttons and certain keyboard keys at the moment the event was generated. The same macros used for
BUTTON_CB can be used for this status.

Notes

In Motif and GTK delta is always 1 or -1. In Windows is some situations delta can reach the value of two. In the future with more precise
wheels this increment can be changed.

Affects

IupCanvas, IupGLCanvas

WOM_CB
Action generated when an audio device receives an event.

[Windows Only]

Callback

int function(Ihandle *ih, int state); [in C]
ih:wom_cb(state: number) -> (ret: number) [in Lua]

ih: identifies the element that activated the event.
state: can be opening=1, done=0, or closing=-1.

Notes

This callback is used to syncronize video playback with audio. It is sent when the audio device:

Message Description

opening is opened by using the waveOutOpen function.

done is finished with a data block sent by using the waveOutWrite
function.

closing is closed by using the waveOutClose function.

You must use the HWND attribute when calling waveOutOpen in the dwCallback parameter and set fdwOpen to CALLBACK_WINDOW.

Affects

IupDialog, IupCanvas, IupGLCanvas

IupDraw (since 3.19)
A group of functions to draw in a IupCanvas or a IupBackgroundBox. They are simple functions designed to help the drawing of custom
controls based on these two controls. It is NOT a complete set of drawing functions, for that you should still use another toolkit like CD.

IUP - Portable User Interface 07-Jan-25

290/496

../elem/iupcanvas.html
../ctrl/iupglcanvas.html
../attrib/iup_scrollbar.html
../call/iup_button_cb.html
../elem/iupcanvas.html
../ctrl/iupglcanvas.html
../dlg/iupdialog.html
../elem/iupcanvas.html
../ctrl/iupglcanvas.html
../elem/iupcanvas.html
../elem/iupbackgroundbox.html
http://www.tecgraf.puc-rio.br/cd

To use the functions in C/C++ you must include the "iupdraw.h" header.

Internally IupDraw uses several drawing APIs: GDI, Direct2D, GDI+ (in Windows); X11 (in Motif), GDK and Cairo (in GTK).

All drivers are double buffered, so drawing occurs off-screen and the final result is displayed when IupDrawEnd is called only.

Direct2D and GDI+ are accessed using the WinDrawLib library by Martin Mitáš. This library is embedded in IUP source code and uses
dynamically load to import Direct 2D and GDI+ functions in C, so no extra libraries are need to be linked by the application. It uses the
same MIT license used by IUP. We would like to thank Martin Mitáš for sharing such important tool. (since 3.25)

Since IUP 3.25, the Direct2D/GDI+ Windows, and Cairo in Linux (even in GTK 2) drivers added support for alpha (transparency) in colors
and antialiasing in primitives. In Windows XP, there is no Direct 2D then GDI+ is used. In IUP 3.25 we set the Direct 2D driver as default,
but the overall performance of complex dialogs became noticeably slow unfortunately, so in 3.27 we were force to go back to GDI. But we
added a hack to use GDI+ for diagonal lines (non vertical or horizontal), polygons and arcs were antialiasing is more needed and does not
affect less ordinary rectangular based drawings . The hack is enabled by default using the canvas DRAWANTIALIAS attribute in
Windows when using GDI, set it to NO if you need to disable the hack. The Direct2D driver can be enabled by setting the canvas
DRAWUSEDIRECT2D attribute to Yes. If you want to enable it for all controls at once set DRAWUSEDIRECT2D=Yes as a global
attribute.

The canvas has a new attribute called DRAWDRIVER that returns: GDI, D2D, GDI+, X11, GDK or CAIRO.

IMPORTANT: all functions can be used only in IupCanvas or IupBackgroundBox and inside the ACTION callback. To force a redraw
anytime use the functions IupUpdate or IupRedraw.

Control

All other functions can be called only between calls to DrawBegin and DrawEnd.

void IupDrawBegin(Ihandle* ih); [in C]
iup.DrawBegin(ih: ihandle) [in Lua]
ih:DrawBegin() [in Lua]

Initialize the drawing process.

void IupDrawEnd(Ihandle* ih); [in C]
iup.DrawEnd(ih: ihandle) [in Lua]
ih:DrawEnd() [in Lua]

Terminates the drawing process and actually draw on screen.

void IupDrawSetClipRect(Ihandle* ih, int x1, int y1, int x2, int y2); [in C]
iup.DrawSetClipRect(ih: ihandle, x1, y1, x2, y2: number) [in Lua]
ih:DrawSetClipRect(x1, y1, x2, y2: number) [in Lua]

Defines a rectangular clipping region.

void IupDrawResetClip(Ihandle* ih); [in C]
iup.DrawResetClip(ih: ihandle) [in Lua]
ih:DrawResetClip() [in Lua]

Reset the clipping area to none.

void IupDrawGetClipRect(Ihandle* ih, int *x1, int *y1, int *x2, int *y2); [in C]
iup.DrawGetClipRect(ih: ihandle) -> x1, y1, x2, y2: number [in Lua]
ih:DrawGetClipRect() -> x1, y1, x2, y2: number [in Lua]

Returns the previous rectangular clipping region set by IupDrawSetClipRect, if clipping was reset returns 0 in all values. (since 3.25)

Primitives

The primitives color is controlled by the attribute DRAWCOLOR. Default: "0 0 0". Since version 3.25 the alpha component is also
supported but depends on the current driver, if not specified 255 (opaque) is assumed.

Rectangle, Arc and Polygon can be filled or stroked. When stroked the line style can be continuous, dashed or dotted. These are controlled
by the attribute DRAWSTYLE. Can have values: FILL, STROKE, STROKE_DASH, STROKE_DOT, STROKE_DASH_DOT or
STROKE_DASH_DOT_DOT (dash dot and dash dot dot since 3.25). Default: STROKE. The FILL value when set before DrawLine has the
same effect as STROKE.

The line width default is 1, but it can be controlled by the DRAWLINEWIDTH attribute. (since 3.24)

void IupDrawParentBackground(Ihandle* ih); [in C]
iup.DrawParentBackground(ih: ihandle) [in Lua]
ih:DrawParentBackground() [in Lua]

IUP - Portable User Interface 07-Jan-25

291/496

https://github.com/mity/windrawlib
windrawlib.txt
../func/iupupdate.html
iupdraw.html

Fills the canvas with the native parent background color.

void IupDrawLine(Ihandle* ih, int x1, int y1, int x2, int y2); [in C]
iup.DrawLine(ih: ihandle, x1, y1, x2, y2: number) [in Lua]
ih:DrawLine(x1, y1, x2, y2: number) [in Lua]

Draws a line including start and end points.

void IupDrawRectangle(Ihandle* ih, int x1, int y1, int x2, int y2); [in C]
iup.DrawRectangle(ih: ihandle, x1, y1, x2, y2: number) [in Lua]
ih:DrawRectangle(x1, y1, x2, y2: number) [in Lua]

Draws a rectangle including start and end points.

void IupDrawArc(Ihandle* ih, int x1, int y1, int x2, int y2, double a1, double a2); [in C]
iup.DrawArc(ih: ihandle, x1, y1, x2, y2, a1, a2: number) [in Lua]
ih:DrawArc(x1, y1, x2, y2: number) [in Lua]

Draws an arc inside a rectangle between the two angles in degrees. When filled will draw a pie shape with the vertex at the center of the
rectangle. Angles are counter-clock wise relative to the 3 o'clock position.

void IupDrawPolygon(Ihandle* ih, int* points, int count); [in C]
iup.DrawPolygon(ih: ihandle, points: table of number) [in Lua]
ih:DrawPolygon(points: table of number) [in Lua]

Draws a polygon. Coordinates are stored in the array in the sequence: x1, y1, x2, y2, ...

void IupDrawText(Ihandle* ih, const char* str, int len, int x, int y, int w, int h); [in C]
iup.DrawText(ih: ihandle, str: string, x, y[, w, h]: number) [in Lua]
ih:DrawText(str: string, x, y[, w, h]: number) [in Lua]

Draws a text in the given position using the font defined by DRAWFONT (since 3.22), if not defined then use FONT. The size of the
string is used only in C. Can be -1 so strlen is used internally. The coordinates are relative the top-left corner of the text. Strings with
multiple line are accepted using '\n" as line separator. Horizontal text alignment for multiple lines can be controlled using
DRAWTEXTALIGNMENT attribute: ALEFT (default), ARIGHT and ACENTER options (since 3.22). For single line texts if the text is
larger than its box and DRAWTEXTWRAP=Yes, then the line will be automatically broken in multiple lines. Notice that this is done
internally by the system, the element natural size will still use only a single line. For the remaining lines to be visible the element should
use EXPAND=VERTICAL or set a SIZE/RASTERSIZE with enough height for the wrapped lines. (since 3.25) If the text is larger that its box
and DRAWTEXTELLIPSIS=Yes, an ellipsis ("...") will be placed near the last visible part of the text and replace the invisible part. It will
be ignored when WRAP=Yes (since 3.25). w and h are optional and can be -1 or 0, the text size will be used, so WRAP nor ELLIPSIS will
not produce any changes. The text is not automatically clipped to the rectangle, if DRAWTEXTCLIP=Yes it will be clipped but depending
on the driver may affect the clipping set by IupDrawSetClipRect (since 3.25). The text can be draw in any angle using
DRAWTEXTORIENTATION, in degrees and counterclockwise (since 3.25), its layout is not centered inside the given rectangle when
text is oriented, to center the layout use DRAWTEXTLAYOUTCENTER=Yes. Text orientation, ellipsis and wrap are not supported in
X11.

void IupDrawImage(Ihandle* ih, const char* name, int x, int y, int w, int h); [in C]
iup.DrawImage(ih: ihandle, name: string or image: ihandle, x, y[, w, h]: number) [in Lua]
ih:DrawImage(name: string or image: ihandle, x, y[, w, h]: number) [in Lua]

Draws an image given its name. The coordinates are relative the top-left corner of the image. The image name follows the same behavior
as the IMAGE attribute used by many controls. Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See
also IupImage. In Lua, the name parameter can be the actual image handle. The DRAWMAKEINACTIVE attribute can be used to force
the image to be draw with an inactive state appearance. The DRAWBGCOLOR can be used to control the inactive state background color
or when transparency is flatten. w and h are optional and can be -1 or 0, then the image size will be used and no zoom will be performed
(since 3.25). Image zoom is not supported in X11 and GDK.

void IupDrawSelectRect(Ihandle* ih, int x1, int y1, int x2, int y2); [in C]
iup.DrawSelectRect(ih: ihandle, x1, y1, x2, y2: number) [in Lua]
ih:DrawSelectRect(x1, y1, x2, y2: number) [in Lua]

Draws a selection rectangle.

void IupDrawFocusRect(Ihandle* ih, int x1, int y1, int x2, int y2); [in C]
iup.DrawFocusRect(ih: ihandle, x1, y1, x2, y2: number) [in Lua]
ih:DrawFocusRect(x1, y1, x2, y2: number) [in Lua]

Draws a focus rectangle.

Information

IUP - Portable User Interface 07-Jan-25

292/496

../attrib/iup_font.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
iupimage.html

void IupDrawGetSize(Ihandle* ih, int *w, int *h); [in C]
iup.DrawGetSize(ih: ihandle) -> w, h: number [in Lua]
ih:DrawGetSize() -> w, h: number [in Lua]

Returns the drawing area size. In C unwanted values can be NULL.

void IupDrawGetTextSize(Ihandle* ih, const char* str, int len, int *w, int *h); [in C]
iup.DrawGetTextSize(ih: ihandle, str: string) -> w, h: number [in Lua]
ih:DrawGetTextSize(str: string) -> w, h: number [in Lua]

Returns the given text size using the font defined by DRAWFONT, if not defined then use FONT. In C unwanted values can be NULL, and
if len is -1 the string must be 0 terminated and len will be calculated using strlen.

void IupDrawGetImageInfo(const char* name, int *w, int *h, int *bpp); [in C]
iup.DrawGetImageInfo(name: string) -> w, h, bpp: number [in Lua]
ih:DrawGetImageInfo(name: string) -> w, h, bpp: number [in Lua]

Returns the given image size and bits per pixel. bpp can be 8, 24 or 32. In C unwanted values can be NULL.

Example

static int canvas_action(Ihandle *ih)
{
 int w, h;

 IupDrawBegin(ih);

 IupDrawGetSize(ih, &w, &h);

 /* white background */
 IupSetAttribute(ih, "DRAWCOLOR", "255 255 255");
// IupSetAttribute(ih, "DRAWCOLOR", "255 0 255"); /* pink */
 IupSetAttribute(ih, "DRAWSTYLE", "FILL");
 IupDrawRectangle(ih, 0, 0, w - 1, h - 1);

 /* Guide Lines */
 IupSetAttribute(ih, "DRAWCOLOR", "255 0 0");
 IupSetAttribute(ih, "DRAWSTYLE", "STROKE");
 IupDrawLine(ih, 10, 5, 10, 19);
 IupDrawLine(ih, 14, 5, 14, 19);
 IupDrawLine(ih, 5, 10, 19, 10);
 IupDrawLine(ih, 5, 14, 19, 14);

 /* Stroke Rectangle, must cover guide lines */
 IupSetAttribute(ih, "DRAWCOLOR", "0 0 0");
 IupSetAttribute(ih, "DRAWSTYLE", "STROKE");
 IupDrawRectangle(ih, 10, 10, 14, 14);

 /* Guide Lines */
 IupSetAttribute(ih, "DRAWCOLOR", "255 0 0");
 IupDrawLine(ih, 10, 5 + 30, 10, 19 + 30);
 IupDrawLine(ih, 14, 5 + 30, 14, 19 + 30);
 IupDrawLine(ih, 5, 10 + 30, 19, 10 + 30);
 IupDrawLine(ih, 5, 14 + 30, 19, 14 + 30);

 /* Fill Rectangle, must cover guide lines */
 IupSetAttribute(ih, "DRAWCOLOR", "0 0 0");
 IupSetAttribute(ih, "DRAWSTYLE", "FILL");
 IupDrawRectangle(ih, 10, 10 + 30, 14, 14 + 30);

 IupSetAttribute(ih, "DRAWCOLOR", "255 0 0");
 IupDrawRectangle(ih, 30, 10, 50, 30);

 IupSetAttribute(ih, "DRAWCOLOR", "0 0 0");
 IupDrawArc(ih, 30, 10, 50, 30, 0, 360);

 IupSetAttribute(ih, "DRAWCOLOR", "255 0 0");
 IupDrawRectangle(ih, 60, 10, 80, 30);

 IupSetAttribute(ih, "DRAWCOLOR", "0 0 0");
 IupSetAttribute(ih, "DRAWSTYLE", "FILL");
 IupDrawArc(ih, 60, 10, 80, 30, 0, 360);

 IupSetAttribute(ih, "DRAWCOLOR", "255 0 0");
 IupDrawRectangle(ih, 30, 10 + 30, 50, 30 + 30);

 IupSetAttribute(ih, "DRAWCOLOR", "0 0 0");
 IupDrawArc(ih, 30, 10 + 30, 50, 30 + 30, 45, 135);

 IupSetAttribute(ih, "DRAWCOLOR", "255 0 0");
 IupDrawRectangle(ih, 60, 10 + 30, 80, 30 + 30);

IUP - Portable User Interface 07-Jan-25

293/496

../attrib/iup_font.html

 IupSetAttribute(ih, "DRAWCOLOR", "0 0 0");
 IupSetAttribute(ih, "DRAWSTYLE", "FILL");
 IupDrawArc(ih, 60, 10 + 30, 80, 30 + 30, 45, 135);

 IupSetAttribute(ih, "DRAWCOLOR", "255 0 0");
 IupDrawLine(ih, 20, 70 - 2, 20, 70 + 2);
 IupDrawLine(ih, 20 - 2, 70, 20 + 2, 70);

 IupSetAttribute(ih, "DRAWCOLOR", "0 0 0");
 IupSetAttribute(ih, "DRAWFONT", "Helvetica, -30");
// IupSetAttribute(ih, "DRAWTEXTORIENTATION", "60");
// IupSetAttribute(ih, "DRAWTEXTLAYOUTCENTER", "Yes");
 IupDrawGetTextSize(ih, "Text", -1, &w, &h);
 IupSetAttribute(ih, "DRAWSTYLE", "STROKE");
 IupDrawRectangle(ih, 20, 70, 20 + w, 70 + h);
 IupDrawText(ih, "Text", 0, 20, 70, -1, -1);
 IupSetAttribute(ih, "DRAWTEXTORIENTATION", "0");
 // IupSetAttribute(ih, "DRAWTEXTWRAP", "Yes");
// IupSetAttribute(ih, "DRAWTEXTELLIPSIS", "Yes");
// IupSetAttribute(ih, "DRAWTEXTCLIP", "Yes");
// IupDrawText(ih, "Very Large Text", 0, 20, 70, 50, 70);

// IupSetAttribute(ih, "DRAWLINEWIDTH", "3");
 IupSetAttribute(ih, "DRAWSTYLE", "STROKE");
 IupDrawLine(ih, 10, 110, 100, 110);
 IupSetAttribute(ih, "DRAWSTYLE", "STROKE_DASH");
 IupDrawLine(ih, 10, 110 + 5, 100, 110 + 5);
 IupSetAttribute(ih, "DRAWSTYLE", "STROKE_DOT");
 IupDrawLine(ih, 10, 110 + 10, 100, 110 + 10);
 IupSetAttribute(ih, "DRAWSTYLE", "STROKE_DASH_DOT");
 IupDrawLine(ih, 10, 110 + 15, 100, 110 + 15);
 IupSetAttribute(ih, "DRAWSTYLE", "STROKE_DASH_DOT_DOT");
 IupDrawLine(ih, 10, 110 + 20, 100, 110 + 20);

 IupDrawImage(ih, "Test8bpp", 110, 10, -1, -1);
 IupDrawImage(ih, "Test24bpp", 110, 40, -1, -1);
 IupDrawImage(ih, "Test32bpp", 110, 70, -1, -1);
// IupDrawImage(ih, "Test32bpp", 110, 70, 60, 60);

 IupSetAttribute(ih, "DRAWFONT", "Helvetica, Bold -15");
 IupDrawText(ih, IupGetAttribute(ih, "DRAWDRIVER"), -1, 70, 135, -1, -1);

 IupDrawEnd(ih);
 return IUP_DEFAULT;
}

Direct 2D (Windows) Cairo (Linux)

See Also

IupCanvas, IupBackgroundBox, IupUpdate, IupRedraw

CD_IUPDRAW - IupDraw Driver (iupdraw_cd.h)
This CD driver allows to draw onto an IUP canvas using the CD API but internally uses the IupDraw API.

Use

The canvas is created by means of a call to the function cdCreateCanvas(CD_IUPDRAW, Data), after which other CD functions can be
called as usual. This function creates a CD canvas based on the existing IUP canvas. The parameter Data is a pointer to a handle of the
IUP canvas (Ihandle*). For use with CDLUA, a canvas created with IUPLUA must necessarily be passed as parameter.

Any amount of such canvases may exist simultaneously, but they should not use the same IUP canvas. It is important to note that a call to
function cdKillCanvas is required to close the file properly.

The CD canvas is automatically stored in the IUP canvas as the "_CD_CANVAS" attribute.

 The driver is automatically double buffered. But it will work only inside the ACTION callback, although it can be created in any situation.
Inside the ACTION callback the application must call cdCanvasActivate and cdCanvasDeactivate.

IUP - Portable User Interface 07-Jan-25

294/496

../elem/iupcanvas.html
../elem/iupbackgroundbox.html
../func/iupupdate.html
iupdraw.html
iupdraw.html

To use this driver, it must be linked with the "iupcd" library available in the IUP distribution.

In Lua, it is necessary to call function cdluaiup_open() after a call to function cdlua_open(), apart from linking with the
"iupluacd" library. This is not necessary if you do require"iupluacd".

Behavior of Functions

Control

Flush: draws the contents of the image into the window.
Play: does nothing, returns CD_ERROR.

Coordinate System and Clipping

UpdateYAxis: the orientation of axis Y is the opposite to its orientation in the CD library.

Primitives

Floating point primitives are NOT supported.
Begin: does not supports CD_BEZIER, and CD_PATH is simulated.

Attributes

WriteMode: does nothing. There is no support for XOR or NOT_XOR.
BackOpacity: does nothing. It is always transparent.
Hatch: does nothing.
Stipple: does nothing.
Pattern: does nothing.
LineStyle: Does not supports CD_DASH_DOT_DOT nor CD_CUSTOM. Does not supports line cap nor line join.
TextAlignment: is simulated.
Clipping: only rectangular clipping is supported.

Colors

Palette: does nothing.
Foreground & Background: accepts the transparency information encoded in the color.

Client Images

GetImageRGB: does nothing.

Server Images

All functions do nothing.

IupColorbar
Creates a color palette to enable a color selection from several samples. It can select one or two colors. The primary color is selected with
the left mouse button, and the secondary color is selected with the right mouse button. You can double click a cell to change its color and
you can double click the preview area to switch between primary and secondary colors.

(Migrated from the IupControls library since IUP 3.24, it does not depend on the CD library anymore.)

It inherits from IupCanvas.

Originally implemented by André Clinio.

Creation

Ihandle* IupColorbar(void); [in C]
iup.colorbar{} -> (ih: ihandle) [in Lua]
colorbar() [in LED]

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

CELLn: Contains the color of the "n" cell. "n" can be from 0 to NUM_CELLS-1.

NUM_CELLS (non inheritable): Contains the number of color cells. Default: "16". The maximum number of colors is 256. The default

IUP - Portable User Interface 07-Jan-25

295/496

../elem/iupcanvas.html

colors use the same set of IupImage.

COUNT (read-only) (non inheritable): same as NUM_CELLS but it is read-only. (since 3.3)

FLAT: use a 1 pixel flat border instead of the default 3 pixels sunken border. When enabled is the same as setting SHADOWED=NO. Can
be Yes or No. Default: No. (since 3.24)

FLATCOLOR: color of the border when FLAT=Yes and the preview area borders. Default: "0 0 0". (since 3.24)

FOCUSSELECT: when focus is changed the primary selection is also changed. (since 3.29)

NUM_PARTS (non inheritable): Contains the number of lines or columns. Default: "1".

ORIENTATION: Controls the orientation. It can be "VERTICAL" or "HORIZONTAL". Default: "VERTICAL".

PREVIEW_SIZE (non inheritable): Fixes the size of the preview area in pixels. The default size is dynamically calculated from the size of
the control. The size is reset to the default when SHOW_PREVIEW=NO.

SHOW_PREVIEW: Controls the display of the preview area. Default: "YES".

SHOW_SECONDARY: Controls the existence of a secondary color selection. Default: "NO".

SIZE: there is no initial size. You must define SIZE or RASTERSIZE.

PRIMARY_CELL (non inheritable): Contains the index of the primary color. Default "0" (black).

SECONDARY_CELL (non inheritable): Contains the index of the secondary color. Default "15" (white).

SQUARED: Controls the aspect ratio of the color cells. Non square cells expand equally to occupy all of the control area. Default: "YES".

SHADOWED: Controls the 3D effect of the color cells. When enabled is the same as setting FLAT=NO. Default: "YES".

TRANSPARENCY: Contains a color that will be not rendered in the color palette. The color cell will have a white and gray chess pattern.
It can be used to create a palette with less colors than the number of cells.

ACTIVE, BGCOLOR, FONT, SCREENPOSITION, POSITION, MINSIZE, MAXSIZE, WID, TIP, EXPAND, SIZE, RASTERSIZE, ZORDER,
VISIBLE, THEME: also accepted.

Callbacks

CELL_CB: called when the user double clicks a color cell to change its value.

char* function(Ihandle* ih, int cell); [in C]
ih:cell_cb(cell: number) -> (ret: string) [in Lua]

ih: identifier of the element that activated the event.
cell: index of the selected cell. If the user double click a preview cell, the respective index is returned.

Returns: a new color or NULL (nil in Lua) to ignore the change. By default nothing is changed.

EXTENDED_CB: called when the user right click a cell with the Shift key pressed. It is independent of the SHOW_SECONDARY attribute.

int function(Ihandle* ih, int cell); [in C]
ih:extended_cb(cell: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
cell: index of the selected cell.

Returns: If IUP_IGNORE the cell is not redrawn. By default the cell is always redrawn.

SELECT_CB: called when a color is selected. The primary color is selected with the left mouse button, and if existent the secondary is
selected with the right mouse button.

int function(Ihandle* ih, int cell, int type); [in C]
ih:select_cb(cell, type: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
cell: index of the selected cell.
type: indicates if the user selected a primary or secondary color. In can be: IUP_PRIMARY(-1) or IUP_SECONDARY(-2).

Returns: If IUP_IGNORE the selection is not accepted. By default the selection is always accepted.

SWITCH_CB: called when the user double clicks the preview area outside the preview cells to switch the primary and secondary
selections. It is only called if SHOW_SECONDARY=YES.

int function(Ihandle* ih, int prim_cell, int sec_cell); [in C]

IUP - Portable User Interface 07-Jan-25

296/496

../attrib/iup_size.html
../attrib/iup_active.html
../attrib/iup_bgcolor.html
../attrib/iup_font.html
../attrib/iup_screenposition.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_wid.html
../attrib/iup_tip.html
../attrib/iup_expand.html
../attrib/iup_size.html
../attrib/iup_rastersize.html
../attrib/iup_zorder.html
../attrib/iup_visible.html
../attrib/iup_theme.html

ih:switch_cb(prim_cell, sec_cell: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
prim_cell: index of the actual primary cell.
sec_cell: index of the actual secondary cell.

Returns: If IUP_IGNORE the switch is not accepted. By default the switch is always accepted.

MAP_CB, UNMAP_CB, DESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB, K_ANY, HELP_CB: All
common callbacks are supported.

Notes

When the control has the focus the keyboard can be used to change the colors and activate the callbacks. Use the arrow keys to move
from cell to cell, Home goes to the first cell, End goes to the last cell. Space will activate the SELECT_CB callback for the primary color,
Ctrl+Space will activate the SELECT_CB callback for the secondary color. Shift+Space will activate the EXTENTED_CB callback.
Shift+Enter will activate the CELL_CB callback.

Examples

Browse for Example Files

Creates a Colorbar for selection of two colors.

See Also

IupCanvas, IupImage

Attributes

EXPAND: The default is "NO".

RASTERSIZE (non inheritable): the initial size is "181x181". Set to NULL to allow the automatic layout use smaller values.

RGB (non inheritable): the color selected in the control, in the "r g b"Â ​ format; r, g and b are integers ranging from 0 to 255. Default:
"255 0 0".

HSI (non inheritable): the color selected in the control, in the "h s i"Â ​ format; h, s and i are floating point numbers ranging from 0-360,
0-1 and 0-1 respectively.

ACTIVE, BGCOLOR, FONT, X, Y, POSITION, MINSIZE, MAXSIZE, WID, TIP, SIZE, ZORDER, VISIBLE, THEME: also accepted.

Callbacks

CHANGE_CB: Called when the user releases the left mouse button over the control, defining the selected color.

int change(Ihandle *ih, unsigned char r, unsigned char g, unsigned char b); [in C]
ih:change_cb(r: number, g: number, b: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
r, g, b: color value.

DRAG_CB: Called several times while the color is being changed by dragging the mouse over the control.

IUP - Portable User Interface 07-Jan-25

297/496

../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_getfocus_cb.html
../call/iup_killfocus_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
../call/iup_k_any.html
../call/iup_help_cb.html
../../examples/
../elem/iupcanvas.html
../elem/iupimage.html
../attrib/iup_expand.html
../attrib/iup_rastersize.html
../attrib/iup_active.html
../attrib/iup_bgcolor.html
../attrib/iup_font.html
../attrib/iup_x.html
../attrib/iup_y.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_wid.html
../attrib/iup_tip.html
../attrib/iup_size.html
../attrib/iup_zorder.html
../attrib/iup_visible.html
../attrib/iup_theme.html

int drag(Ihandle *ih, unsigned char r, unsigned char g, unsigned char b); [in C]
ih:drag_cb(r: number, g: number, b: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
r, g, b: color value.

VALUECHANGED_CB: Called after the value was interactively changed by the user. It is called whenever a CHANGE_CB or a
DRAG_CB would also be called, it is just called after them. (since 3.0)

int function(Ihandle *ih); [in C]
ih:valuechanged_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

MAP_CB, UNMAP_CB, DESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB, K_ANY, HELP_CB: All
common callbacks are supported.

Notes

When the control has the focus the keyboard can be used to change the color value. Use the arrow keys to move the cursor inside the SI
triangle, and use Home(0), PageUp, PageDn and End(180) keys to move the cursor inside the Hue circle.

The Hue in the HSI coordinate system defines a plane that it is a triangle in the RGB cube. But the maximum saturation in this triangle is
different for each Hue because of the geometry of the cube. In ColorBrowser this point is fixed at the center of the I axis. So the I axis is
not completely linear, it is linear in two parts, one from 0 to 0.5, and another from 0.5 to 1.0. Although the selected values are linear
specified you can notice that when Hue is changed the gray scale also changes, visually compacting values above or below the I=0.5 line
according to the selected Hue.

This is the same HSI specified in the IM toolkit, except for the non linearity of I. This non linearity were introduced so a simple triangle
could be used to represent the SI plane.

Examples

Browse for Example Files

See Also

IupGetColor, IupColorDlg.

IupDatePick (since 3.17)
Creates a date editing interface element, which can displays a calendar for selecting a date.

In Windows is a native element. In GTK and Motif is a custom element. In Motif is not capable of displaying the calendar.

Creation

Ihandle* IupDatePick(); [in C]
iup.datepick{} -> (ih: ihandle) [in Lua]
datepick() [in LED]

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

CALENDARWEEKNUMBERS: Shows the number of the week along the year in the calendar. Default: NO.

FORMAT [Windows Only]: Flexible format for the date in Windows. For more information see "About Date and Time Picker Control" in
the Windows SDK. The Windows control was configured to display date only without any time options. Default: "d'/'M'/'yyyy". See Noted
bellow.

IUP - Portable User Interface 07-Jan-25

298/496

../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_getfocus_cb.html
../call/iup_killfocus_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
../call/iup_k_any.html
../call/iup_help_cb.html
http://www.tecgraf.puc-rio.br/im
../../examples/
../dlg/iupgetcolor.html
../dlg/iupcolordlg.html
https://msdn.microsoft.com/EN-US/library/windows/desktop/bb761726(v=vs.85).aspx

MONTHSHORTNAMES [Windows Only]: Month display will use a short name instead of numbers. Must be set before ORDER. Default:
NO. Names will be in the language of the system.

ORDER: Day, month and year order. Can be any combination of "D", "M" and "Y" without repetition, and with all three letters. It will set
the FORMAT attribute in Windows. It will NOT affect the VALUE attribute order. Default: "DMY".

SEPARATOR: Separator between day, month and year. Must be set before ORDER in Windows. Default: "/".

SHOWDROPDOWN (write-only): opens or closes the dropdown calendar. Can be "YES" or "NO". Ignored if set before map. In Windows,
it works only for NO. (since 3.28)

TODAY (read-only): Returns the date corresponding to today in VALUE format.

VALUE: the current date always in the format "year/month/day" ("%d/%d/%d" in C). Can be set to "TODAY". Default value is the today
date.

ZEROPRECED: Day and month numbers will be preceded by a zero. Must be set before ORDER in Windows. Default: No.

Callbacks

VALUECHANGED_CB: Called after the value was interactively changed by the user.

int function(Ihandle *ih); [in C]
ih:valuechanged_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

MAP_CB, UNMAP_CB, DESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB, K_ANY, HELP_CB: All
common callbacks are supported.

Notes

In GTK uses a custom control built with IUP elements, and in Windows uses DATETIMEPICK_CLASS.

In Windows, when the user navigates to other pages in the calendar the date is not changed until the user actually selects a day.

In Windows, FORMAT can have the following values, but other text in the format string must be enclosed in single quotes:

Element Description

"d" The one- or two-digit day. (default)

"dd" The two-digit day. Single-digit day values are preceded by a zero.
(Set when ZEROPRECED=Yes)

"ddd" The three-character weekday abbreviation.

"dddd" The full weekday name.

"M" The one- or two-digit month number. (default)

"MM" The two-digit month number. Single-digit values are preceded by a zero.
(Set when ZEROPRECED=Yes)

"MMM" The three-character month abbreviation.
(Set when MONTHSHORTNAMES=Yes)

"MMMM" The full month name.

"yy" The last two digits of the year (that is, 1996 would be displayed as "96").
(Not recommended)

"yyyy" The full year (that is, 1996 would be displayed as "1996"). (default)

Examples

Windows
Classic

Windows
w/ Styles GTK

IUP - Portable User Interface 07-Jan-25

299/496

../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_getfocus_cb.html
../call/iup_killfocus_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
../call/iup_k_any.html
../call/iup_help_cb.html

Browse for Example Files

See Also

IupCalendar.

ih: identifier of the element that activated the event.
angle: the dial value converted according to UNIT.

VALUECHANGED_CB: Called after the value was interactively changed by the user. It is called whenever a BUTTON_PRESS_CB, a
BUTTON_RELEASE_CB or a MOUSEMOVE_CB would also be called, but if defined those callbacks will not be called. (since 3.0)

int function(Ihandle *ih); [in C]
ih:valuechanged_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

MAP_CB, UNMAP_CB, DESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB, K_ANY, HELP_CB: All
common callbacks are supported.

Notes

When the keyboard arrows are pressed and released the mouse press and the mouse release callbacks are called in this order. If you hold
the key down the mouse move callback is also called for every repetition.

When the wheel is rotated only the mouse move callback is called, and it increments the last angle the dial was rotated.

In all cases the value is incremented or decremented by PI/10 (18 degrees).

If you press Shift while using the arrow keys the increment is reduced to PI/100 (1.8 degrees). Press the Home key in the circular dial to
reset to 0.

Examples

Browse for Example Files

IUP - Portable User Interface 07-Jan-25

300/496

../../examples/
iupcalendar.html
../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_getfocus_cb.html
../call/iup_killfocus_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
../call/iup_k_any.html
../call/iup_help_cb.html
../../examples/

Regular

Flat=Yes and fgcolor

See Also

IupCanvas

IupGauge
Creates a Gauge control. Shows a percent value that can be updated to simulate a progression. It inherits from IupCanvas.

(Migrated from the IupControls library since IUP 3.24, it does not depend on the CD library anymore.)

IUP - Portable User Interface 07-Jan-25

301/496

../elem/iupcanvas.html
../elem/iupcanvas.html

Creation

Ihandle* IupGauge(void); [in C]
iup.gauge{} -> (ih: ihandle) [in Lua]
gauge() [in LED]

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

BACKCOLOR (non inheritable): color of the background inside the borders. Predefined to "220 220 220. Can be NULL. When NULL it will
use the parent's background color. (since 3.28)

CANFOCUS: enables the focus traversal of the control. Default: NO. (different from IupCanvas)

DASHED: Changes the style of the gauge for a dashed pattern. Default is "NO".

FGCOLOR: Controls the gauge and text color. Default: "0 120 220" (changed in 3.28).

FLAT: use a 1 pixel flat border instead of the default 3 pixels sunken border. Can be Yes or No. Default: No. (since 3.21)

FLATCOLOR: color of the border when FLAT=Yes. Default: "160 160 160". (since 3.21)

MAX (non inheritable): Contains the maximum value. Default is "1".

MIN (non inheritable): Contains the minimum value. Default is "0".

ORIENTATION (creation only): can be "VERTICAL" or "HORIZONTAL". Default: "HORIZONTAL". Horizontal goes from left to right, and
vertical from bottom to top. Width and height are swapped when orientation is set. (since 3.27)

PADDING: internal margin. Works just like the MARGIN attribute of the IupHbox and IupVbox containers, but uses a different name to
avoid inheritance problems. Default value: "0x0". (since 3.0)

CPADDING: same as PADDING but using the units of the SIZE attribute. It will actually set the PADDING attribute. (since 3.29)

SHOWTEXT: Indicates if the text inside the Gauge is to be shown or not. If the gauge is dashed the text is never shown. Possible values:
"YES" or "NO". Default: "YES".

SIZE (non inheritable): The initial size is "120x14". Set to NULL to allow the automatic layout use smaller values.

TEXT (non inheritable): Contains a text to be shown inside the Gauge when SHOW_TEXT=YES. If it is NULL, the percentage calculated
from VALUE will be used. If the gauge is dashed the text is never shown. When ORIENTATION=VERTICAL text is drawn in 90º.

VALUE (non inheritable): Contains a number between "MIN" and "MAX", controlling the current position.

ACTIVE, BGCOLOR, EXPAND, FONT, SCREENPOSITION, POSITION, MINSIZE, MAXSIZE, WID, TIP, RASTERSIZE, ZORDER, VISIBLE,
THEME: also accepted.

Callbacks

MAP_CB, UNMAP_CB, DESTROY_CB: common callbacks are supported.

Notes

To replace a IupProgressBar by a IupGauge you should set RASTERSIZE=200x30 and SHOWTEXT=NO.

Examples

Browse for Example Files

The Two Types of Gauge

See Also

IupCanvas, IupProgressBar

Browse for Example Files

See Also

IUP - Portable User Interface 07-Jan-25

302/496

../attrib/iup_fgcolor.html
../attrib/iup_size.html
../attrib/iup_active.html
../attrib/iup_bgcolor.html
../attrib/iup_expand.html
../attrib/iup_font.html
../attrib/iup_screenposition.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_wid.html
../attrib/iup_tip.html
../attrib/iup_rastersize.html
../attrib/iup_zorder.html
../attrib/iup_visible.html
../attrib/iup_theme.html
../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../../examples/
../elem/iupcanvas.html
iupprogressbar.html
../../examples/

IupImage, IupButton.

See Also

IupImage, IupButton, IupToggle, IupLabel

See Also

IupLabel, IupHelp.

See Also

IupListDialog, IupText

See Also

IupList, IupCanvas

IupProgressBar (since 3.0)
Creates a progress bar control. Shows a percent value that can be updated to simulate a progression.

It is similar of IupGauge, but uses native controls internally. A lso does not have support for text inside the bar.

Creation

Ihandle* IupProgressBar(void); [in C]
iup.progressbar{} -> (ih: ihandle) [in Lua]
progressbar() [in LED]

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

BGCOLOR [Windows Classic and Motif only]: controls the background color. Default: the global attribute DLGBGCOLOR.

DASHED (creation only in Windows) [Windows and GTK only]: Changes the style of the progress bar for a dashed pattern. Default is
"NO". In Windows it is not supported since Windows Vista when using Visual Styles.

FGCOLOR [Windows Classic and Motif only]: Controls the bar color. Default: the global attribute DLGFGCOLOR.

MARQUEE (creation): displays an undefined state. Default: NO. You can set the attribute after map but only to start or stop the
animation. In Windows it will work only if using Visual Styles.

MAX (non inheritable): Contains the maximum value. Default is "1". The control display is not updated, must set VALUE attribute to
update.

MIN (non inheritable): Contains the minimum value. Default is "0". The control display is not updated, must set VALUE attribute to
update.

ORIENTATION (creation only): can be "VERTICAL" or "HORIZONTAL". Default: "HORIZONTAL". Horizontal goes from left to right, and
vertical from bottom to top.

RASTERSIZE: The initial size is defined as "200x30". Set to NULL to allow the use of smaller values in the layout computation.

VALUE (non inheritable): Contains a number between "MIN" and "MAX", controlling the current position.

ACTIVE, EXPAND, FONT, SCREENPOSITION, POSITION, MINSIZE, MAXSIZE, WID, TIP, SIZE, ZORDER, VISIBLE, THEME: also
accepted.

Callbacks

MAP_CB, UNMAP_CB, DESTROY_CB: common callbacks are supported.

Notes

In GTK uses GtkProgressBar, in Windows uses PROGRESS_CLASS, and in Motif uses xmScale.

Examples

IUP - Portable User Interface 07-Jan-25

303/496

iupimage.html
iupbutton.html
iupimage.html
iupbutton.html
iuptoggle.html
iuplabel.html
iuplabel.html
../func/iuphelp.html
../dlg/iuplistdialog.html
iuptext.html
iuplist.html
../elem/iupcanvas.html
../attrib/iup_bgcolor.html
../attrib/iup_fgcolor.html
../attrib/iup_rastersize.html
../attrib/iup_active.html
../attrib/iup_expand.html
../attrib/iup_font.html
../attrib/iup_screenposition.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_wid.html
../attrib/iup_tip.html
../attrib/iup_size.html
../attrib/iup_zorder.html
../attrib/iup_visible.html
../attrib/iup_theme.html
../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html

Browse for Example Files

DASHED=NO DASHED=YES MARQUEE=YES

Motif (same as DASHED=NO)

Windows
Classic (same as DASHED)

Windows
w/

Styles
(same as DASHED=YES)

Windows
Vista (same as DASHED=NO)

GTK

See Also

IupGauge

Notes

The spinbox can be created with no elements and be dynamic filled using IupAppend or IupInsert.

Examples

Ihandle* spinbox = IupSpinbox(IupText(NULL));

See Also

IupText, IupVbox, IupHbox, IupButton

IupText
Creates an editable text field.

Creation

Ihandle* IupText(const char *action); [in C]
iup.text{} -> (ih: ihandle) [in Lua]
text(action) [in LED]

action: name of the action generated when the user types something. It can be NULL.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

ALIGNMENT [Windows and GTK Only] (non inheritable): horizontal text alignment. Possible values: "ALEFT", "ARIGHT", "ACENTER".
Default: "ALEFT". In Motif, text is always left aligned.

APPEND (write-only): Inserts a text at the end of the current text. In the Multiline, if APPENDNEWLINE=YES, a "\n" character will be
automatically inserted before the appended text if the current text is not empty(APPENDNEWLINE default is YES). Ignored if set before
map.

BGCOLOR: Background color of the text. Default: the global attribute TXTBGCOLOR. Ignored in GTK when MULTILINE=NO.

BORDER (creation only): Shows a border around the text. Default: "YES".

CANFOCUS (creation only) (non inheritable): enables the focus traversal of the control. In Windows the control will still get the focus
when clicked. Default: YES. (since 3.0)

IUP - Portable User Interface 07-Jan-25

304/496

../../examples/
iupgauge.html
../func/iupappend.html
../func/iupinsert.html
iuptext.html
iupvbox.html
iuphbox.html
iupbutton.html
../attrib/iup_bgcolor.html

PROPAGATEFOCUS(non inheritable): enables the focus callback forwarding to the next native parent with FOCUS_CB defined. Default:
NO. (since 3.23)

CARET (non inheritable): Character position of the insertion point. Its format depends in MULTILINE=YES. The first position, lin or
col, is "1".

For multiple lines: a string with the "lin,col" format, where lin and col are integer numbers corresponding to the caret's position.

For single line: a string in the "col" format, where col is an integer number corresponding to the caret's position.

When lin is greater than the number of lines, the caret is placed at the last line. When col is greater than the number of characters in
the given line, the caret is placed after the last character of the line.

If the caret is not visible the text is scrolled to make it visible.

In Windows, if the element does not have the focus the returned value is the position of the first character of the current selection.
The caret is only displayed if the element has the keyboard focus, but its position can be changed even if not visible. When changed it
will also change the selection but the text will be scrolled only when it receives the focus.

See the Notes below if using UTF-8 strings in GTK.

CARETPOS (non inheritable): Also the character position of the insertion point, but using a zero based character unique index "pos".
Useful for indexing the VALUE string. See the Notes below if using UTF-8 strings in GTK. (since 3.0)

CHANGECASE (non inheritable): Change case according to given conversion. Can be UPPER, LOWER, TOGGLE, or TITLE. TITLE case
change first letter of words separated by spaces to upper case others to lower case, but first letter is changed only if word has more than 3
characters, for instance: "Best of the World". Supports Latin-1 encoding only, even when using UTF-8. Does not depends on current
locale. (since 3.28)

CLIPBOARD (write-only): clear, cut, copy or paste the selection to or from the clipboard. Values: "CLEAR", "CUT", "COPY" or "PASTE".
In Windows UNDO is also available, and REDO is available when FORMATTING=YES. (since 3.0)

COUNT (read-only): returns the number of characters in the text, including the line breaks. (since 3.5)

CUEBANNER [Windows and GTK Only] (non inheritable): a text that is displayed when there is no text at the control. It works as a
textual cue, or tip to prompt the user for input. Valid only for MULTILINE=NO, and works only when Visual Styles are enabled. (since 3.0)
[GTK 3.2] (GTK support added in IUP 3.20)

DROPFILESTARGET [Windows and GTK Only] (non inheritable): Enable or disable the drop of files. Default: NO, but if DROPFILES_CB
is defined when the element is mapped then it will be automatically enabled. (since 3.0)

FGCOLOR: Text color. Default: the global attribute TXTFGCOLOR.

FILTER [Windows Only] (non inheritable): allows a custom filter to process the characters: Can be LOWERCASE, UPPERCASE or
NUMBER (only numbers allowed). (since 3.0)

FORMATTING [Windows and GTK Only] (non inheritable): When enabled allow the use of text formatting attributes. In GTK is always
enabled, but only when MULTILINE=YES. Default: NO. (since 3.0)

INSERT (write-only): Inserts a text in the caret's position, also replaces the current selection if any. Ignored if set before map.

LINECOUNT (read-only): returns the number of lines in the text. When MULTILINE=NO returns always "1". (since 3.5)

LINEVALUE (read-only): returns the text of the line where the caret is. It does not include the "\n" character. When MULTILINE=NO
returns the same as VALUE. (since 3.5)

LOADRTF (write-only) [Windows Only]: loads formatted text from a Rich Text Format file given its filename. The attribute
LOADRTFSTATUS is set to OK or FAILED after the file is loaded. (since 3.28)

SAVERTF (write-only) [Windows Only]: saves formatted text to a Rich Text Format file given its filename. The attribute
SAVERTFSTATUS is set to OK or FAILED after the file is saved. (since 3.28)

MASK (non inheritable): Defines a mask that will filter interactive text input.

MULTILINE (creation only) (non inheritable): allows the edition of multiple lines. In single line mode some characters are invalid, like
"\t", "\r" and "\n". Default: NO. When set to Yes will also reset the SCROLLBAR attribute to Yes.

NC: Maximum number of characters allowed for keyboard input, larger text can still be set using attributes. The maximum value is the
limit of the VALUE attribute. The "0" value is the same as maximum. Default: maximum.

NOHIDESEL [Windows Only]: do not hide the selection when the control loses its focus. Default: Yes. (since 3.16)

OVERWRITE [Windows and GTK Only] (non inheritable): turns the overwrite mode ON or OFF. Works only when FORMATTING=YES.
(since 3.0)

PADDING: internal margin. Works just like the MARGIN attribute of the IupHbox and IupVbox containers, but uses a different name to
avoid inheritance problems. Default value: "0x0". In Windows, only the horizontal value is used. (since 3.0) (GTK 2.10 for single line)

CPADDING: same as PADDING but using the units of the SIZE attribute. It will actually set the PADDING attribute. (since 3.29)

PASSWORD (creation only) [Windows and GTK Only] (non inheritable): Hide the typed character using an "*". Default: "NO".

IUP - Portable User Interface 07-Jan-25

305/496

../attrib/iup_fgcolor.html
../attrib/iup_formatting.html
../attrib/iup_mask.html

READONLY: A llows the user only to read the contents, without changing it. Restricts keyboard input only, text value can still be changed
using attributes. Navigation keys are still available. Possible values: "YES", "NO". Default: NO.

SCROLLBAR (creation only): Valid only when MULTILINE=YES. Associates an automatic horizontal and/or vertical scrollbar to the
multiline. Can be: "VERTICAL", "HORIZONTAL", "YES" (both) or "NO" (none). Default: "YES". For all systems, when SCROLLBAR!=NO
the natural size will always include its size even if the native system hides the scrollbar. If AUTOHIDE=YES scrollbars are visible only if
they are necessary, by default AUTOHIDE=NO. In Windows when FORMATTING=NO, AUTOHIDE is not supported. In Motif AUTOHIDE
is not supported.

SCROLLTO (non inheritable, write only): Scroll the text to make the given character position visible. It uses the same format and
reference of the CARET attribute ("lin:col" or "col" starting at 1). In Windows, when FORMATTING=Yes "col" is ignored. (since 3.0)

SCROLLTOPOS (non inheritable, write only): Scroll the text to make the given character position visible. It uses the same format and
reference of the CARETPOS attribute ("pos" starting at 0). (since 3.0)

SCROLLVISIBLE (read-only) [Windows Only]: Returns which scrollbars are visible at the moment. Can be: YES (both), VERTICAL,
HORIZONTAL, NO. (since 3.31)

SELECTEDTEXT (non inheritable): Selection text. Returns NULL if there is no selection. When changed replaces the current selection.
Similar to INSERT, but does nothing if there is no selection.

SELECTION (non inheritable): Selection interval in characters. Returns NULL if there is no selection. Its format depends in
MULTILINE=YES. The first position, lin or col, is "1".

For multiple lines: a string in the "lin1,col1:lin2,col2" format, where lin1, col1, lin2 and col2 are integer numbers
corresponding to the selection's interval. col2 correspond to the character after the last selected character.

For single line: a string in the "col1:col2" format, where col1 and col2 are integer numbers corresponding to the selection's
interval. col2 correspond to the character after the last selected character.

In Windows, when changing the selection the caret position is also changed.

The values ALL and NONE are also accepted independently of MULTILINE (since 3.0).

See the Notes below if using UTF-8 strings in GTK.

SELECTIONPOS (non inheritable): Same as SELECTION but using a zero based character index "pos1:pos2". Useful for indexing the
VALUE string. The values ALL and NONE are also accepted. See the Notes below if using UTF-8 strings in GTK. (since 3.0)

SIZE (non inheritable): Since the contents can be changed by the user, the Natural Size is not affected by the text contents (since 3.0).
Use VISIBLECOLUMNS and VISIBLELINES to control the Natural Size.

SPIN (non inheritable, creation only): enables a spin control attached to the element. Default: NO. The spin increments and decrements
an integer number. The editing in the element is still available. (since 3.0)

SPINVALUE (non inheritable): the current value of the spin. The value is limited to the minimum and maximum values.
SPINMAX (non inheritable): the maximum value. Default: 100.
SPINMIN (non inheritable): the minimum value. Default: 0.
SPININC (non inheritable): the increment value. Default: 1.
SPINALIGN (creation only): the position of the spin. Can be LEFT or RIGHT. Default: RIGHT. In GTK is always RIGHT.
SPINWRAP (creation only): if the position reach a limit it continues from the opposite limit. Default: NO.
SPINAUTO (creation only): enables the automatic update of the text contents. Default: YES. Use SPINAUTO=NO and the VALUE
attribute during SPIN_CB to control the text contents when the spin is incremented.

In Windows, the increment is multiplied by 5 after 2 seconds and multiplied by 20 after 5 seconds of a spin button pressed. In GTK,
the increment change is progressively accelerated when a spin button is pressed.

TABSIZE [Windows and GTK Only]: Valid only when MULTILINE=YES. Controls the number of characters for a tab stop. Default: 8.

VALUE (non inheritable): Text entered by the user. The '\n' character indicates a new line, valid only when MULTILINE=YES. After the
element is mapped and if there is no text will return the empty string "".

VALUEMASKED (non inheritable) (write-only): sets VALUE but first checks if it is validated by MASK. If not does nothing. (since 3.4)

VISIBLECOLUMNS: Defines the number of visible columns for the Natural Size, this means that will act also as minimum number of
visible columns. It uses a wider character size than the one used for the SIZE attribute so strings will fit better without the need of extra
columns. As for SIZE you can set to NULL after map to use it as an initial value. Default: 5 (since 3.0)

VISIBLELINES: When MULTILINE=YES defines the number of visible lines for the Natural Size, this means that will act also as
minimum number of visible lines. As for SIZE you can set to NULL after map to use it as an initial value. Default: 1 (since 3.0)

WORDWRAP (creation only): Valid only when MULTILINE=YES. If enabled will force a word wrap of lines that are greater than the with
of the control, and the horizontal scrollbar will be removed. Default: NO.

ACTIVE, FONT, EXPAND, SCREENPOSITION, POSITION, MINSIZE, MAXSIZE, WID, TIP, RASTERSIZE, ZORDER, VISIBLE, THEME: also
accepted.

Drag & Drop attributes are supported. See Notes bellow.

IUP - Portable User Interface 07-Jan-25

306/496

../attrib/iup_size.html
../attrib/iup_active.html
../attrib/iup_font.html
../attrib/iup_expand.html
../attrib/iup_screenposition.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_wid.html
../attrib/iup_tip.html
../attrib/iup_rastersize.html
../attrib/iup_zorder.html
../attrib/iup_visible.html
../attrib/iup_theme.html
../attrib/iup_dragdrop.html

Callbacks

ACTION: Action generated when the text is edited, but before its value is actually changed. Can be generated when using the keyboard,
undo system or from the clipboard.

int function(Ihandle *ih, int c, char *new_value); [in C]
ih:action(c: number, new_value: string) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
c: valid alpha numeric character or 0.
new_value: Represents the new text value.

Returns: IUP_CLOSE will be processed, but the change will be ignored. If IUP_IGNORE, the system will ignore the new value. If c is
valid and returns a valid alpha numeric character, this new character will be used instead. The VALUE attribute can be changed only if
IUP_IGNORE is returned.

BUTTON_CB: Action generated when any mouse button is pressed or released. Use IupConvertXYToPos to convert (x,y) coordinates in
character positioning. (since 3.0)

CARET_CB: Action generated when the caret/cursor position is changed.

int function(Ihandle *ih, int lin, int col, int pos); [in C]
ih:caret_cb(lin, col, pos: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin, col: line and column number (start at 1).
pos: 0 based character position.

For single line controls lin is always 1, and pos is always "col-1".

DROPFILES_CB [Windows and GTK Only]: Action generated when one or more files are dropped in the element. (since 3.0)

MOTION_CB: Action generated when the mouse is moved. Use IupConvertXYToPos to convert (x,y) coordinates in character positioning.
(since 3.0)

SPIN_CB: Action generated when a spin button is pressed. Valid only when SPIN=YES. When this callback is called the ACTION callback
is not called. The VALUE attribute can be changed during this callback only if SPINAUTO=NO. (since 3.0)

int function(Ihandle *ih, int pos); [in C]
ih:spin_cb(pos: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
pos: the value of the spin (after it was incremented).

Returns: IUP_IGNORE is processed in Windows and Motif.

VALUECHANGED_CB: Called after the value was interactively changed by the user. (since 3.0)

int function(Ihandle *ih); [in C]
ih:valuechanged_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

MAP_CB, UNMAP_CB, DESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB, K_ANY, HELP_CB: All
common callbacks are supported.

Drag & Drop callbacks are supported. See Notes bellow.

Auxiliary Functions

void IupTextConvertLinColToPos(Ihandle* ih, int lin, int col, int *pos); [in C]
iup.TextConvertLinColToPos(ih: ihandle, lin, col: number) -> pos: number [in Lua]

Converts a (lin, col) character positioning into an absolute position. lin and col starts at 1, pos starts at 0. For single line controls pos is
always "col-1". (since 3.0)

void IupTextConvertPosToLinCol(Ihandle* ih, int pos, int *lin, int *col); [in C]
iup.TextConvertPosToLinCol(ih: ihandle, pos: number) -> lin, col: number [in Lua]

Converts an absolute position into a (lin, col) character positioning. lin and col starts at 1, pos starts at 0. For single line controls lin is
always 1, and col is always "pos+1". (since 3.0)

IUP - Portable User Interface 07-Jan-25

307/496

../call/iup_action.html
../call/iup_button_cb.html
../func/iupconvertxytopos.html
../call/iup_dropfiles_cb.html
../call/iup_motion_cb.html
../func/iupconvertxytopos.html
../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_getfocus_cb.html
../call/iup_killfocus_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
../call/iup_k_any.html
../call/iup_help_cb.html
../attrib/iup_dragdrop.html

Notes

When MULTILINE=YES the Enter key will add a new line, and the Tab key will insert a Tab. So the "DEFAULTENTER" button will not be
processed when the element has the keyboard focus, also to change focus to the next element press <Ctrl>+<Tab>.

In Windows, if you press a Ctrl+key combination that is not supported by the control, then a beep is sound.

When using UTF-8 strings in GTK be aware that all attributes are indexed by characters, NOT by byte index, because some characters in
UTF-8 can use more than one byte. This also applies to Windows if FORMATTING=YES depending on the Windows codepage (for
example East Asian codepage where some characters take two bytes).

Internal Drag&Drop support is enabled by default. But in Windows the internal Drag&Drop is enabled only if FORMATTING=YES. In GTK
the internal Drag&Drop can NOT be disabled, so it will conflict with the Drag & Drop attributes and callbacks.

In GTK uses GtkTextView/GtkEntry/GtkSpinButton, in Windows uses RICHEDIT_CLASS (formatting)/WC_EDIT, and in Motif uses
xmText/xmTextField, for Single/Multiline.

Navigation, Selection and Clipboard Keys

Here is a list of the common keys for all drivers. Other keys are available depending on the driver.

Keys Action

Navigation

Arrows move by individual characters/lines

Ctrl+Arrows move by words/paragraphs

Home/End move to begin/end line

Ctrl+Home/End move to begin/end text

PgUp/PgDn move vertically by pages

Ctrl+PgUp/PgDn move horizontally by pages

Selection

Shift+Arrows select charaters

Ctrl+A select all

Deleting

Del delete the character at right

Backspace delete the character at left

Clipboard

Ctrl+C copy

Ctrl+X cut

Ctrl+V paste

Examples

Browse for Example Files

Motif Windows
Classic

Windows
w/ Styles GTK

When FORMATTING=YES in Windows or GTK (formatting attributes are set to a formatag object that it is a IupUser):

"ALIGNMENT" = "CENTER"
"SPACEAFTER" = "10"
"FONTSIZE" = "24"
"SELECTION" = "3,1:3,50"
"ADDFORMATTAG"

"BGCOLOR" = "255 128 64"
"UNDERLINE" = "SINGLE"

IUP - Portable User Interface 07-Jan-25

308/496

../attrib/iup_dragdrop.html
../../examples/

"WEIGHT" = "BOLD"
"SELECTION" = "3,7:3,11"
"ADDFORMATTAG"

"ITALIC" = "YES"
"STRIKEOUT" = "YES"
"SELECTION" = "2,1:2,12"
"ADDFORMATTAG"

When SPIN=YES:

Motif Windows
Classic

Windows
w/ Styles GTK

See Also

IupList, IupMultiLine

FORMATTING [Windows and GTK Only] (non inheritable) (since 3.0)
When enabled allow the use of text formatting attributes. In GTK is always enabled, but only when MULTILINE=YES. Default: NO.

Value

Can be: YES or NO. Default: NO.

Affects

IupText

Auxiliary Attributes

ADDFORMATTAG [write only] (non inheritable)

Name of a format tag element to be added to the IupText. The name is associated in C using IupSetHandle. The name association must
be done before setting the attribute. It will set the ADDFORMATTAG_HANDLE with the associated handle.

ADDFORMATTAG_HANDLE [write only] (non inheritable)

Handle of a format tag element to be added to the IupText. The tag element will be automatically destroyed when the IupText is
mapped. If the IupText is already mapped, the format tag is immediately destroyed when the attribute is set. The format tag can NOT
be reused.

REMOVEFORMATTING [write only] (non inheritable)

Removes the formatting of the current selection if Yes or NULL, and from all text if ALL is used.

Format Tag

The format tag element is a simple IupUser element with some known attributes that will be interpreted when the tag is updated in the
native system.

The formatting depends on the existing text, so if VALUE attribute is set, all formatting is lost. You must set it again for the new text.

If the FONT attribute of the IupText is set then it will affect the format of all characters in the text.

The default values can not be dynamically changed.

General Format Tag Attributes

BULK: flag that means this tag is composed by several tags as its children. The bulk tag itself does not have formatting. Used to optimize
format tag modifications. Default: NO. (since 3.3)

CLEANOUT: when BULK=Yes is used to clear all the formatting at start. Default: NO. (since 3.3)

SELECTION/SELECTIONPOS: same as the IupText SELECTION/SELECTIONPOS attributes. If not defined the IupText attribute will
be used. If the IupText attribute is also not defined then the current position will receive the format, so new text inserted or typed will be
formatted with the tag (this is not working in GTK). Different tags that use the same selection interval are combined. Setting these
attributes here will not change the current setting in IupText (since 3.3).

IUP - Portable User Interface 07-Jan-25

309/496

iuplist.html
iupmultiline.html
../elem/iuptext.html
../func/iupsethandle.html
../elem/iupuser.html
../elem/iuptext.html#SELECTION

UNITS [Windows Only]: By default all distance units are integers in pixels, but in Windows you can also specify integer units in TWIPs
(one twip is 1/1440 of an inch). Can be TWIP or PIXELS. Default: PIXELS.

Paragraph Format Tag Attributes

ALIGNMENT: Can be JUSTIFY, RIGHT, CENTER and LEFT. Default: LEFT.

INDENT: paragraph indentation, the distance between the margin and the paragraph. In Windows the right indentation, and the
indentation of the second and subsequent lines (relative to the indentation of the first line) can be independently set using the
INDENTRIGHT and INDENTOFFSET attributes, but only when INDENT is set.

LINESPACING: the distance between lines of the same paragraph. In Windows, the values SINGLE, ONEHALF and DOUBLE can be used.

NUMBERING [Windows Only]: Can be BULLET (bullet symbol), ARABIC (arabic numbers - 1,2,3...), LCLETTER (lower case letters -
a,b,c...), UCLETTER (upper case letters - A,B,C...), LCROMAN (lower case Roman numerals - i,ii,iii...), UCROMAN (upper case Roman
numerals - I,II,III...) and NONE. Default: NONE.

NUMBERINGSTYLE [Windows Only]: Can be RIGHTPARENTHESIS "a)", PARENTHESES "(a)", PERIOD "a.", NONUMBER (it will skip the
numbering or bullet for the item) and NONE "". Default: NONE.

NUMBERINGTAB [Windows Only]: Minimum distance from a paragraph numbering or bullet to the paragraph text.

SPACEAFTER: distance left empty above the paragraph.

SPACEBEFORE: distance left empty below the paragraph.

TABSARRAY: a sequence of tab positions and alignment up to 32 tabs. It uses the format:"pos align pos align pos align...". Position is
the distance relative to the left margin and alignment can be LEFT, CENTER, RIGHT and DECIMAL. In GTK only LEFT is currently
supported. When DECIMAL alignment is used, the text is aligned according to a decimal point or period in the text, it is normally used to
align numbers.

Character Format Tag Attributes

BGCOLOR: string containing a color in the format "rrr ggg bbb" for the background of the text.

DISABLED [Windows Only]: Can be YES or NO. Default NO. Set the visual appearance to disabled.

FGCOLOR: string containing a color in the format "rrr ggg bbb" for the text.

FONTSCALE: a size scale relative to the selected or current size. Values greatter than 1 will increase the font. Values smaller than 1 will
shirnk the font. Default: 1.0. The following values are also accpeted: "XX-SMALL" (0.58), "X-SMALL" (0.64), "SMALL" (0.83), "MEDIUM"
(1.0), "LARGE" (1.2), "X-LARGE" (1.44), "XX-LARGE" (1.73).

FONTFACE: the face name of the font.

FONTSIZE: the size of the font in pixels or points. Pixel size uses negative values.

ITALIC: Can be YES or NO. Default NO.

LANGUAGE [GTK Only]: A text with a description of the text language. The same value can be used in the "SYSTEMLANGUAGE" global
attribute.

RISE: the distance, positive or negative from the base line. Can also use the values SUPERSCRIPT and SUBSCRIPT, but this values will
also reduce the size of the font.

SMALLCAPS [GTK Only]: Can be YES or NO. Default NO. (Does not work always, depends on the font)

PROTECTED: Can be YES or NO. Default NO. When set to YES the selected text can NOT be edited.

STRETCH [GTK Only]: Can be EXTRA_CONDENSED, CONDENSED, SEMI_CONDENSED, NORMAL, SEMI_EXPANDED, EXPANDED and
EXTRA_EXPANDED. Default NORMAL. (Does not work always, depends on the font)

STRIKEOUT: Can be YES or NO. Default NO.

UNDERLINE: Can be SINGLE, DOUBLE, DOTTED or NONE. Default NONE. DOTTED is supported only in Windows.

WEIGHT: Can be EXTRALIGHT, LIGHT, NORMAL, SEMIBOLD, BOLD, EXTRABOLD and HEAVY. Default: NORMAL.

Examples

In C:

Ihandle* formattag;
IupSetAttribute(text, "FORMATTING", "YES");

formattag = IupUser();
IupSetAttribute(formattag, "ALIGNMENT", "CENTER");
IupSetAttribute(formattag, "SPACEAFTER", "10");
IupSetAttribute(formattag, "FONTSIZE", "24");

IUP - Portable User Interface 07-Jan-25

310/496

IupSetAttribute(formattag, "SELECTION", "3,1:3,50");
IupSetAttribute(text, "ADDFORMATTAG_HANDLE", (char*)formattag);

formattag = IupUser();
IupSetAttribute(formattag, "BGCOLOR", "255 128 64");
IupSetAttribute(formattag, "UNDERLINE", "SINGLE");
IupSetAttribute(formattag, "WEIGHT", "BOLD");
IupSetAttribute(formattag, "SELECTION", "3,7:3,11");
IupSetAttribute(text, "ADDFORMATTAG_HANDLE", (char*)formattag);

formattag = IupUser();
IupSetAttribute(formattag, "ITALIC", "YES");
IupSetAttribute(formattag, "STRIKEOUT", "YES");
IupSetAttribute(formattag, "SELECTION", "2,1:2,12");
IupSetAttribute(text, "ADDFORMATTAG_HANDLE", (char*)formattag);

In Lua using BULK:

tags = iup.user { bulk = "Yes", cleanout = "Yes" }
iup.Append(tags, iup.user { selectionpos = "0:3", fgcolor = "255 0 0"})
iup.Append(tags, iup.user { selectionpos = "5:10", fgcolor = "0 0 255"})
text.addformattag = tags

Check the Indentation library created by Kristofer Karlsson and ported to IUP by Nicolas Noble that adds syntax highlighting to a Lua code
text in a IupText control. It is not fast because it process the entire text from time to time. For example:

require"indent" -- indent.lua must be available
text = iup.text { multiline = "Yes", font = "Courier", expand = "Yes", value = someluacode }
IndentationLib.enable(text)

MASK (non inheritable) (since 3.0)
Defines a mask that will filter interactive text input.

Value

string

Set to NULL to remove the mask.

Notes

Since the validation process is performed key by key when the user is typing, an intermediate value cannot be typed if it does not follow
the mask rules.

If you set the VALUE attribute any text can be used. To set a value that is validated by the current MASK use VALUEMASKED.

Pre-Defined Masks

Definition Value Description

IUP_MASK_INT "[+/-]?/d+" integer number

IUP_MASK_UINT "/d+" unsigned integer number

IUP_MASK_FLOAT "[+/-]?(/d+/.?/d*|/./d+)" floating point number

IUP_MASK_UFLOAT "(/d+/.?/d*|/./d+)" unsigned floating point number

IUP_MASK_EFLOAT "[+/-]?(/d+/.?/d*|/./d+)([eE][+/-]?/d+)?" floating point number with exponential notation

IUP_MASK_FLOATCOMMA "[+/-]?(/d+/,?/d*|/,/d+)" floating point number

IUP_MASK_UFLOATCOMMA "(/d+/,?/d*|/,/d+)" unsigned floating point number

Auxiliary Attributes

MASKCASEI (non inheritable)

If YES, will turn the filter case insensitive. Default: NO.

MASKNOEMPTY (non inheritable) (since 3.17)

If YES, value can NOT be NULL or empty. Default: NO (can be empty or NULL).

IUP - Portable User Interface 07-Jan-25

311/496

../../examples/Lua/indent.lua

MASKDECIMALSYMBOL (non inheritable) (since 3.13)

The decimal symbol for string/float conversion. Can be "." or ",". Must be set before MASKFLOAT.

MASKINT (non inheritable) (write only)

Defines an integer mask with limits. Format: "%d:%d" ("min:max"). It will replace MASK using one of the pre-defined masks.

MASKFLOAT (non inheritable) (write only)

Defines a floating point mask with limits. Format: "%g:%g" ("min:max"). It will replace MASK using one of the pre-defined masks.

Auxiliary Callbacks

MASKFAIL_CB: Action generated when the new text fails at the mask check. (since 3.9)

int function(Ihandle *ih, char *new_value); [in C]
elem:maskfail(new_value: string) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
new_value: Represents the new text value.

Pattern Specification

The pattern to be searched in the text can be defined by the rules given below.

"Function" codes (such as /l, /D, /w) cannot be used inside a class ([...]).
If the character following a / does not mean a special case (such as /w or /n), it is matched with no / - that means that /x will
match only x, and not /x. If you want to match /x, use //x.
The caret (^) character has different meanings when used inside or outside a class - inside a class it means negative, and outside
a class it is an anchor to the beginning of a line.
The boundary function (/b) anchors the pattern to a word boundary - it does not match anything. A word boundary is a point
between a /w and a /W character.
Capture operators (f and g) group patterns and are also used to keep matched sections of texts.
A word on precedence: concatenation has precedence over the alternation (j) operator - that is, faj fej fi will match fa OR fe OR fi.
The @ character is used to determine that, instead of searching the text until the first match is made, the function should try to
match the pattern only with the first character. If present, it must be the first character of the pattern.
The % character is used to determine that the text should be searched to its end, independently of the number of matches found.
If present, it must be the first character of the pattern. This is only useful when combined with the capture feature.

Allowed pattern characters

c Matches a "c" (non-special) character

. Matches any single character

[abc] Matches an "a", "b" or "c" characters

[a-d] Matches any character between "a" and "d", including them (just like [abcd])

[^a-dg] Matches any character which is neither between "a" and "d" nor "a" "g"

/d Matches any digit (just like [0-9])

/D Matches any non-digit (just like [^0-9])

/l Matches any letter (just like [a-zA-Z])

/L Matches any non-letter (just like [^a-zA-Z])

/w Matches any alphanumeric character (just like [0-9a-zA-Z])

/W Matches any non-alphanumeric character (just like [^0-9a-zA-Z])

/s Matches any "blank" character (TAB, SPACE, CR)

/S Matches any non-blank character

/n Matches a newline character

/t Matches a tabulation character

/nnn Matches an ASCII character with a nnn value (decimal)

/xnn Matches an ASCII character with a nn value (hexadecimal)

/special Matches the special character literally (/[, //, /.)

abc Matches a sequence of a, b and c patterns in order

aj bj c Matches a pattern a, b or c

a* Matches 0 or more characters a

IUP - Portable User Interface 07-Jan-25

312/496

a+ Matches 1 or more characters a

a? Matches 1 or no characters a

(pattern) Considers pattern as one character for the above

fpatterng Captures pattern for later reference

/b Anchors to a word boundary

/B Anchors to a non-boundary

^pattern Anchors pattern to the beginning of a line

pattern$ Anchors pattern to the end of a line

@pattern Returns the match found only in the beginning of the text

%pattern Returns the first match found, but searches all the text

Examples

(my|his) Matches both my pattern and his pattern.

/d/d:/d/d(:/d/d)? Matches time with seconds (01:25:32) or without seconds (02:30).

[A-D]/l+ Matches names such as Australia, Bolivia, Canada or Denmark, but not England, Spain or single letters such as A.

/l/w* my variable = 23 * width;

^Subject:[^/n]*/n Subject: How to match a subject line.1

/b[ABab]/w* Matches any word that begins with A or B

from:/s*/w+ Captures "sender" in a message from sender

Affects

IupText, IupMultiline, IupList and IupMatrix

IupMultiLine (same as IupText with MULTILINE=YES since IUP 3.0)
Creates an editable field with one or more lines.

Since IUP 3.0, IupText has support for multiple lines when the MULTILINE attribute is set to YES. Now when a IupMultiline element is
created in fact a IupText element with MULTILINE=YES is created.

See IupText

Creation

Ihandle* IupMultiLine(const char *action); [in C]
iup.multiline{} -> (ih: ihandle) [in Lua]
multiline(action) [in LED]

action: name of the action generated when the user types something. It can be NULL.

Returns: the identifier of the created element, or NULL if an error occurs.

Examples

Browse for Example Files

IupToggle
Creates the toggle interface element. It is a two-state (on/off) button that, when selected, generates an action that activates a function in
the associated application. Its visual representation can contain a text or an image.

Creation

Ihandle* IupToggle(const char *title, const char *action); [in C]
iup.toggle{[title = title: string]} -> (ih: ihandle) [in Lua]
toggle(title, action) [in LED]

title: Text to be shown on the toggle. It can be NULL. It will set the TITLE attribute.
action: name of the action generated when the toggle is selected. It can be NULL.

Returns: the identifier of the created element, or NULL if an error occurs.

IUP - Portable User Interface 07-Jan-25

313/496

../elem/iuptext.html
../elem/iupmultiline.html
../elem/iuplist.html
../ctrl/iupmatrix.html
iuptext.html
../../examples/

Attributes

ALIGNMENT (non inheritable): horizontal and vertical alignment when IMAGE is defined. Possible values: "ALEFT", "ACENTER" and
"ARIGHT", combined to "ATOP", "ACENTER" and "ABOTTOM". Default: "ACENTER:ACENTER". Partial values are also accepted, like
"ARIGHT" or ":ATOP", the other value will be obtained from the default value. In Motif, vertical alignment is restricted to "ACENTER". In
Windows works only when Visual Styles is active. Text is always left aligned. (since 3.0)

BGCOLOR: Background color of toggle mark when displaying a text. The text background is transparent, it will use the background color
of the native parent. When displaying an image in Windows the background is ignored and the system color is used. Default: the global
attribute DLGBGCOLOR.

CANFOCUS (creation only) (non inheritable): enables the focus traversal of the control. In Windows the control will still get the focus
when clicked. Default: YES. (since 3.0)

PROPAGATEFOCUS(non inheritable): enables the focus callback forwarding to the next native parent with FOCUS_CB defined. Default:
NO. (since 3.23)

FGCOLOR: Color of the text shown on the toggle. In Windows, when using Visual Styles FGCOLOR is ignored. Default: the global
attribute DLGFGCOLOR.

FLAT (creation only): Hides the toggle borders until the mouse enter the toggle area when the toggle is not checked. If the toggle is
checked, then the borders will be shown even if flat is enabled. Used only when IMAGE is defined. Can be YES or NO. Default: NO. (since
3.3)

IMAGE (non inheritable): Image name. When the IMAGE attribute is defined, the TITLE is not shown. This makes the toggle looks just
like a button with an image, but its behavior remains the same. Use IupSetHandle or IupSetAttributeHandle to associate an image to a
name. See also IupImage. (GTK 2.6)

IMPRESS (non inheritable): Image name of the pressed toggle. Unlike buttons, toggles always display the button border when IMAGE
and IMPRESS are both defined. (GTK 2.6)

IMINACTIVE (non inheritable): Image name of the inactive toggle. If it is not defined but IMAGE is defined then for inactive toggles the
colors will be replaced by a modified version of the background color creating the disabled effect. (GTK 2.6)

MARKUP [GTK only]: allows the title string to contains pango markup commands. Works only if a mnemonic is NOT defined in the title.
Can be "YES" or "NO". Default: "NO".

PADDING: internal margin when IMAGE is defined. Works just like the MARGIN attribute of the IupHbox and IupVbox containers, but
uses a different name to avoid inheritance problems. Default value: "0x0". Value can be DEFAULTBUTTONPADDING, so the global
attribute of this name will be used instead (since 3.29). (since 3.0)

RADIO (read-only): returns if the toggle is inside a radio. Can be "YES" or "NO". Valid only after the element is mapped, before returns
NULL. (since 3.0)

IGNORERADIO (non inheritable): when set the toggle will not behave as a radio when inside an IupRadio hierarchy. (since 3.21)

RIGHTBUTTON (Windows Only) (creation only): place the check button at the right of the text. Can be "YES" or "NO". Default: "NO".

VALUE (non inheritable): Toggle's state. Values can be "ON", "OFF" or "TOGGLE". If 3STATE=YES then can also be "NOTDEF". Default:
"OFF". The TOGGLE option will invert the current state (since 3.7). In GTK if you change the state of a radio, the unchecked toggle will
receive an ACTION callback notification. Can only be set to ON if the toggle is inside a radio, it will automatically set to OFF the previous
toggle that was ON in the radio. The first toggle inside an IupRadio will have its value set to ON after map.

TITLE (non inheritable): Toggle's text. If IMAGE is not defined before map, then the default behavior is to contain a text. The button
behavior can not be changed after map. The natural size will be larger enough to include all the text in the selected font, even using
multiple lines, plus the button borders or check box if any. The '\n' character is accepted for line change. The "&" character can be used to
define a mnemonic, the next character will be used as key. Use "&&" to show the "&" character instead on defining a mnemonic. The
toggle can be activated from any control in the dialog using the "Alt+key" combination. (mnemonic support since 3.0)

3STATE (creation only): Enable a three state toggle. Valid for toggles with text only and that do not belong to a radio. Can be "YES" or
NO". Default: "NO".

ACTIVE, FONT, EXPAND, SCREENPOSITION, POSITION, MINSIZE, MAXSIZE, WID, TIP, SIZE, RASTERSIZE, ZORDER, VISIBLE, THEME:
also accepted.

Callbacks

ACTION: Action generated when the toggle's state (on/off) was changed. The callback also receives the toggle's state.

int function(Ihandle* ih, int state); [in C]
ih:action(state: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
state: 1 if the toggle's state was shifted to on; 0 if it was shifted to off.

Returns: IUP_CLOSE will be processed.

IUP - Portable User Interface 07-Jan-25

314/496

../attrib/iup_bgcolor.html
../attrib/iup_fgcolor.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
iupimage.html
../attrib/iup_title.html
../attrib/iup_active.html
../attrib/iup_font.html
../attrib/iup_expand.html
../attrib/iup_screenposition.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_wid.html
../attrib/iup_tip.html
../attrib/iup_size.html
../attrib/iup_rastersize.html
../attrib/iup_zorder.html
../attrib/iup_visible.html
../attrib/iup_theme.html
../call/iup_action.html

VALUECHANGED_CB: Called after the value was interactively changed by the user. Called after the ACTION callback, but under the
same context. (since 3.0)

int function(Ihandle *ih); [in C]
ih:valuechanged_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

MAP_CB, UNMAP_CB, DESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB, K_ANY, HELP_CB: All
common callbacks are supported.

Notes

Toggle with image or text can not change its behavior after mapped. This is a creation attribute. But after creation the image can be
changed for another image, and the text for another text.

Toggles are activated using the Space key.

To build a set of mutual exclusive toggles, insert them in an IupRadio container. They must be inserted before creation, and their
behavior can not be changed. If you need to dynamically remove toggles that belongs to a radio in Windows, then put the radio inside an
IupFrame that has a title.

A toggle that is a child of an IupRadio automatically receives a name when its is mapped into the native system. (since 3.16)

In GTK uses GtkRadioButton/GtkCheckButton/GtkToggleButton, in Windows uses WC_BUTTON, and in Motif uses xmToggleButton.

Examples

Browse for Example Files

Motif Windows
Classic

Windows
w/ Styles GTK

See Also

IupImage, IupButton, IupLabel, IupRadio.

IupFlatToggle (since 3.25)
Creates an interface element that is a toggle, but it does not have native decorations. When selected, this element activates a function in
the application. Its visual presentation can contain a text and/or an image.

It behaves just like an IupToggle, but since it is not a native control it has more flexibility for additional options.

It inherits from IupCanvas.

Creation

Ihandle* IupFlatToggle(const char *title); [in C]
iup.flattoggle{[title = title: string]} -> ih: ihandle [in Lua]
flattoggle(title) [in LED]

title: Text to be shown to the user. It can be NULL. It will set the TITLE attribute.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

Inherits all attributes and callbacks of the IupCanvas, but redefines a few attributes.

ALIGNMENT (non inheritable): horizontal and vertical alignment of the set image+text. Possible values: "ALEFT", "ACENTER" and

IUP - Portable User Interface 07-Jan-25

315/496

../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_getfocus_cb.html
../call/iup_killfocus_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
../call/iup_k_any.html
../call/iup_help_cb.html
../../examples/
iupimage.html
iupbutton.html
iuplabel.html
iupradio.html
iuptoggle.html
../elem/iupcanvas.html
../elem/iupcanvas.html

"ARIGHT", combined to "ATOP", "ACENTER" and "ABOTTOM". Default: "ACENTER:ACENTER". Partial values are also accepted, like
"ARIGHT" or ":ATOP", the other value will be obtained from the default value. Alignment does not includes the padding area.

BACKIMAGE (non inheritable): image name to be used as background. Use IupSetHandle or IupSetAttributeHandle to associate an
image to a name. See also IupImage.

BACKIMAGEHIGHLIGHT (non inheritable): background image name of the element in highlight state. If it is not defined then the
BACKIMAGE is used.

BACKIMAGEINACTIVE (non inheritable): background image name of the element when inactive. If it is not defined then the
BACKIMAGE is used and its colors will be replaced by a modified version creating the disabled effect.

BACKIMAGEPRESS (non inheritable): background image name of the element in pressed state. If it is not defined then the BACKIMAGE
is used.

BACKIMAGEZOOM (non inheritable): if set the back image will be zoomed to occupy the full background. Aspect ratio is NOT
preserved. Can be Yes or No. Default: No. (since 3.25)

BGCOLOR: Background color. If text and image are not defined, the button is configured to simply show a color, in this case set the
button size because the natural size will be very small. If not defined it will use the background color of the native parent.

HLCOLOR: background color used to indicate a highlight state. Pre-defined to "200 225 245". Can be set to NULL. If NULL BGCOLOR will
be used instead.

PSCOLOR: background color used to indicate a press state. Pre-defined to "150 200 235". Can be set to NULL. If NULL BGCOLOR will be
used instead.

BORDER (creation only): the default value is "NO". This is the IupCanvas border.

BORDERCOLOR: color used for borders. Default: "50 150 255". This is for the IupFlatToggle drawn border.

BORDERPSCOLOR: color used for borders when pressed or selected. Default use BORDERCOLOR.

BORDERHLCOLOR: color used for borders when highlighted. Default use BORDERCOLOR.

BORDERWIDTH: line width used for borders. Default: "1". Any borders can be hidden by simply setting this value to 0. This is for the
IupFlatToggle drawn border. When the check box is shown the borders are not shown, and the background is not highlighted.

SHOWBORDER: by default borders are drawn only when the button is highlighted, if SHOWBORDER=Yes borders are always show.
When SHOWBORDER=Yes and BGCOLOR is not defined, the actual BGCOLOR will be a darker version of the background color of the
native parent.

CANFOCUS (creation only) (non inheritable): enables the focus traversal of the control. In Windows the button will respect CANFOCUS in
opposite to the other controls. Default: YES.

FOCUSFEEDBACK (non inheritable): draw the focus feedback. Can be Yes or No. Default: Yes. (since 3.26)

CHECKSIZE (non inheritable): size of the check box when visible. Default depends on the resolution: 16 (dpi <= 120), or 24 (dpi >
120). Set it to 0 to hide the check box. When the check box is shown the borders are not shown, and the background is not highlighted.

CHECKRIGHT (non inheritable): place the check box at the right. Can be "YES" or "NO". Default: "NO".

CHECKSPACING (non inheritable): spacing between the check box and the image+text. The space occupies the image+text area.
Default: 5

CHECKALIGN (non inheritable): vertical alignment of the check box. Can be "ATOP", "ACENTER" and "ABOTTOM". Default: ACENTER.
(since 3.26)

CHECKIMAGE (non inheritable): image name to be used as check box when VALUE=OFF, be sure the image size is equal to
CHECKSIZE-2. Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See also IupImage. If this attribute is defined
the check box is not drawn, the images will be used instead.

CHECKIMAGEHIGHLIGHT (non inheritable): check box image name of the element in highlight state when VALUE=OFF. If it is not
defined then the CHECKIMAGE is used.

CHECKIMAGEINACTIVE (non inheritable): check box image name of the element when inactive and VALUE=OFF. If it is not defined
then the CHECKIMAGE is used and its colors will be replaced by a modified version creating the disabled effect.

CHECKIMAGEPRESS (non inheritable): check box image name of the element in pressed state when VALUE=OFF. If it is not defined
then the CHECKIMAGE is used.

CHECKIMAGEON* (non inheritable): image names to be used as check box when VALUE=ON. (HIGHLIGHT, INACTIVE and PRESS
included)

CHECKIMAGENOTDEF* (non inheritable): image names to be used as check box when VALUE=NOTDEF. (HIGHLIGHT, INACTIVE and
PRESS included)

PROPAGATEFOCUS (non inheritable): enables the focus callback forwarding to the next native parent with FOCUS_CB defined. Default:
NO.

EXPAND (non inheritable): The default value is "NO".

IUP - Portable User Interface 07-Jan-25

316/496

../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../attrib/iup_bgcolor.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../attrib/iup_expand.html

FGCOLOR: Text color. Default: the global attribute DLGFGCOLOR.

TEXTHLCOLOR: text color used to indicate a highlight state. If not defined FGCOLOR will be used instead. (since 3.26)

TEXTPSCOLOR: text color used to indicate a press state. If not defined FGCOLOR will be used instead. (since 3.26)

FITTOBACKIMAGE (non inheritable): enable the natural size to be computed from the BACKIMAGE. If BACKIMAGE is not defined will
be ignored. Can be Yes or No. Default: No.

FRONTIMAGE (non inheritable): image name to be used as foreground. The foreground image is drawn in the same position as the
background, but it is drawn at last. Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See also IupImage.

FRONTIMAGEHIGHLIGHT (non inheritable): foreground image name of the element in highlight state. If it is not defined then the
FRONTIMAGE is used.

FRONTIMAGEINACTIVE (non inheritable): foreground image name of the element when inactive. If it is not defined then the
FRONTIMAGE is used and its colors will be replaced by a modified version creating the disabled effect.

FRONTIMAGEPRESS (non inheritable): foreground image name of the element in pressed state. If it is not defined then the
FRONTIMAGE is used.

HASFOCUS (read-only): returns the button state if has focus. Can be Yes or No.

HIGHLIGHTED (read-only): returns the button state if highlighted. Can be Yes or No.

IMAGE (non inheritable): Image name. Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See also IupImage.

IMAGEHIGHLIGHT (non inheritable): Image name of the element in highlight state. If it is not defined then the IMAGE is used.

IMAGEINACTIVE (non inheritable): Image name of the element when inactive. If it is not defined then the IMAGE is used and its colors
will be replaced by a modified version creating the disabled effect.

IMAGEPRESS (non inheritable): Image name of the element in pressed state. If it is not defined then the IMAGE is used.

IMAGEPOSITION (non inheritable): Position of the image relative to the text when both are displayed. Can be: LEFT, RIGHT, TOP,
BOTTOM. Default: LEFT.

PADDING: internal margin. Works just like the MARGIN attribute of the IupHbox and IupVbox containers, but uses a different name to
avoid inheritance problems. Alignment does not includes the padding area. Default value: "0x0". Value can be
DEFAULTBUTTONPADDING, so the global attribute of this name will be used instead (since 3.29).

CPADDING: same as PADDING but using the units of the SIZE attribute. It will actually set the PADDING attribute. (since 3.29)

PRESSED (read-only): returns the button state if pressed. Can be Yes or No.

RADIO (read-only): returns if the toggle is inside a radio. Can be "YES" or "NO".

IGNORERADIO (non inheritable): when set the toggle will not behave as a radio when inside an IupRadio hierarchy.

SELECTEDNOTIFY (non inheritable): for a toggle inside a radio notify the selected toggle when pressed again. (since 3.28)

SPACING (non inheritable): spacing between the image and the text. Default: "2".

CSPACING: same as SPACING but using the units of the vertical part of the SIZE attribute. It will actually set the SPACING attribute.
(since 3.29)

TITLE (non inheritable): toggle text. The '\n' character is accepted for line change.

TEXTALIGNMENT (non inheritable): Horizontal text alignment for multiple lines. Can be: ALEFT, ARIGHT or ACENTER. Default: ALEFT.

TEXTWRAP (non inheritable): For single line texts if the text is larger than its box the line will be automatically broken in multiple lines.
Notice that this is done internally by the system, the element natural size will still use only a single line. For the remaining lines to be
visible the element should use EXPAND=VERTICAL or set a SIZE/RASTERSIZE with enough height for the wrapped lines. (since 3.25)

TEXTELLIPSIS (non inheritable): If the text is larger that its box, an ellipsis ("...") will be placed near the last visible part of the text and
replace the invisible part. It will be ignored when TEXTWRAP=Yes. (since 3.25)

TEXTORIENTATION (non inheritable): text angle in degrees and counterclockwise. The text size will adapt to include the rotated space.
(since 3.25)

VALUE (non inheritable): Toggle's state. Values can be "ON", "OFF" or "TOGGLE". If 3STATE=YES then can also be "NOTDEF". Default:
"OFF". The TOGGLE option will invert the current state. Can only be set to ON if the toggle is inside a radio, it will automatically set to
OFF the previous toggle that was ON in the radio.

3STATE (creation only): Enable a three state toggle. Valid for toggles with text only and that do not belong to a radio. Can be "YES" or
NO". Default: "NO".

ACTIVE, FONT, EXPAND, SCREENPOSITION, POSITION, MINSIZE, MAXSIZE, WID, TIP, SIZE, RASTERSIZE, ZORDER, VISIBLE, THEME:
also accepted.

IUP - Portable User Interface 07-Jan-25

317/496

../attrib/iup_fgcolor.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../attrib/iup_title.html
../attrib/iup_active.html
../attrib/iup_font.html
../attrib/iup_expand.html
../attrib/iup_screenposition.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_wid.html
../attrib/iup_tip.html
../attrib/iup_size.html
../attrib/iup_rastersize.html
../attrib/iup_zorder.html
../attrib/iup_visible.html
../attrib/iup_theme.html

Callbacks

Inherits all callbacks of the IupCanvas, but redefines a few of them. Including ACTION, BUTTON_CB, MOTION_CB, FOCUS_CB,
LEAVEWINDOW_CB, and ENTERWINDOW_CB. To allow the application to use those callbacks the same callbacks are exported with the
"FLAT_" prefix using the same parameters, except the FLAT_ACTION callback that now mimics the IupToggle ACTION. They are all
called before the internal callbacks and if they return IUP_IGNORE the internal callbacks are not processed.

FLAT_ACTION: Action generated when the button 1 (usually left) is selected. This callback is called only after the mouse is released and
when it is released inside the button area.

int function(Ihandle* ih, int state); [in C]
ih:action(state: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
state: 1 if the toggle's state was shifted to on; 0 if it was shifted to off.

Returns: IUP_CLOSE will be processed.

VALUECHANGED_CB: Called after the value was interactively changed by the user. Called after the ACTION callback, but under the
same context.

int function(Ihandle *ih); [in C]
ih:valuechanged_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

MAP_CB, UNMAP_CB, DESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB, K_ANY, HELP_CB: All
common callbacks are supported.

Notes

The IupFlatToggle can contain the check box, text and image simultaneously.

The natural size will be a combination of the size of the image and the title, if any, plus PADDING and SPACING (if both image and title
are present), and the check box if visible.

Borders are drawn only when the button is highlighted reproducing the behavior of the IupButton when FLAT=Yes. When the check box
is shown the borders are not shown, and the background is not highlighted.

Buttons are activated using Enter or Space keys.

To build a set of mutual exclusive toggles, insert them in a IupRadio container. Only the IupFlatToggle controls inside the radio will be
part of the exclusive group.

The toggle that is a child of an IupRadio automatically receives a name when its is mapped into the native system.

To replace a IupToggle by a IupFlatToggle you must change the function call (IupFlatToggle does not includes the action callback in
the constructor) and change the ACTION callback name to FLAT_ACTION.

Finally notice that the name of the secondary image attributes are different (for instance IMINACTIVE is IMAGEINACTIVE, IMPRESS is
IMAGEPRESS, and so on).

When the IupFlatToggle displays only a text it will look like a label, use SHOWBORDER=Yes to force the display of the borders all the
time.

Examples

Browse for Example Files

Here are a few combinations:

Text+Check Image+Check 3 State Text Only Inside a Radio

See Also

IupImage, IupButton, IupToggle, IupLabel, IupRadio.

IupTree Attributes

General

IUP - Portable User Interface 07-Jan-25

318/496

../elem/iupcanvas.html
../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_getfocus_cb.html
../call/iup_killfocus_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
../call/iup_k_any.html
../call/iup_help_cb.html
../../examples/
iupimage.html
iupbutton.html
iuptoggle.html
iuplabel.html
iupradio.html

AUTOREDRAW [Windows] (non inheritable): automatically redraws the tree when something has change. Set to NO to change many
nodes without updating the display. Default: "YES". (since 3.3)

BGCOLOR: Background color of the tree. Default: the global attribute TXTBGCOLOR.

EXPAND (non inheritable): The default value is "YES".

FGCOLOR: default text foreground color. Once each node is created it will not change its color when FGCOLOR is changed. Default: the
global attribute TXTFGCOLOR. (since 3.0)

HIDEBUTTONS (creation only): hide the expand and collapse buttons. In GTK, branches will be only expanded programmatically. In
Motif it did not work and crash the test. (since 3.0) (GTK 2.12)

HIDELINES (creation only): hide the lines that connect the nodes in the hierarchy. (since 3.0) (GTK 2.10)

HLCOLOR [Windows and Motif Only] (non inheritable): the background color of the selected node. Default: TXTHLCOLOR global
attribute. (since 3.16)

INDENTATION: sets the indentation level in pixels. The visual effect of changing the indentation is highly system dependent. In GTK it
acts as an additional indent value, and the lines do not follow the extra indent. In Windows is limited to a minimum of 5 pixels. (since
3.0) (GTK 2.12)

INFOTIP [Windows Only]: the TIP is shown every time a node is highlighted. This is the default behavior for TIPs in native tree controls
in Windows, if set to No then it will use the regular TIP behavior. Default: Yes. (since 3.14)

RASTERSIZE (non inheritable): the initial size is "400x200". Set to NULL to allow the automatic layout use smaller values.

SCROLLVISIBLE (read-only) [Windows Only]: Returns which scrollbars are visible at the moment. Can be: YES (both), VERTICAL,
HORIZONTAL, NO. (since 3.31)

SPACING: vertical internal padding for each node. Notice that the distance between each node will be actually 2x the spacing. (since 3.0)

CSPACING: same as SPACING but using the units of the vertical part of the SIZE attribute. It will actually set the SPACING attribute.
(since 3.29)

TOPITEM (write-only): position the given node identifier at the top of the tree or near to make it visible. If any parent node is collapsed
then they are automatically expanded. (since 3.0)

ACTIVE, EXPAND, FONT, SCREENPOSITION, POSITION, MINSIZE, MAXSIZE, WID, TIP, SIZE, RASTERSIZE, ZORDER, VISIBLE, THEME:
also accepted.

Expanders (non inheritable)

HIDEBUTTONS (creation only): hide the expand and collapse buttons. In GTK, branches will be only expanded programmatically. In
Motif it did not work and crash the test. (since 3.0) (GTK 2.12)

HIDELINES (creation only): hide the lines that connect the nodes in the hierarchy. (since 3.0) (GTK 2.10)

Nodes (non inheritable)

For these attributes "id" is the specified node identifier. If "id" is empty or invalid, then the focus node is used as the specified node.

COUNT (read only) (non inheritable): returns the total number of nodes in the tree. (since 3.0)

CHILDCOUNTid (read only): returns the immediate children count of the specified branch. It does not count children of child that are
branches. (since 3.0)

TOTALCHILDCOUNTid (read only): returns the total children count of the specified branch. It counts all grandchildren too. (since 3.0)

ROOTCOUNT (read only): returns the number of root nodes. (since 3.23)

COLORid: text foreground color of the specified node. The value should be a string in the format "R G B" where R, G, B are numbers
from 0 to 255.

DEPTHid (read only): returns the depth of the specified node. The first node has depth=0, its immediate children has depth=1, their
children has depth=2 and so on.

KINDid (read only): returns the kind of the specified node. Possible values:

"LEAF": The node is a leaf
"BRANCH": The node is a branch

PARENTid (read only): returns the parent of the specified node.

NEXTid (read only): returns the next brother (same depth) of the specified node. Returns NULLs if at last child node of the parent (at the
same depth). (since 3.23)

PREVIOUSid (read only): returns the previous brother (same depth) of the specified node. Returns NULLs if at first child node of the

IUP - Portable User Interface 07-Jan-25

319/496

../attrib/iup_bgcolor.html
../attrib/iup_expand.html
../attrib/iup_rastersize.html
../attrib/iup_active.html
../attrib/iup_expand.html
../attrib/iup_font.html
../attrib/iup_screenposition.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_wid.html
../attrib/iup_tip.html
../attrib/iup_size.html
../attrib/iup_rastersize.html
../attrib/iup_zorder.html
../attrib/iup_visible.html
../attrib/iup_theme.html

parent (at the same depth). (since 3.23)

LASTid (read only): returns the last brother (same depth) of the specified node. (since 3.23)

FIRSTid (read only): returns the first brother (same depth) of the specified node. This is the same as getting the first child of the parent
of the given node. If the specified node is the first child returns the specified node. (since 3.23)

STATEid: the state of the specified branch. Returns NULL for a LEAF. In Windows, it will be effective only if the branch has children. In
GTK, it will be effective only if the parent is expanded. Possible values:

"EXPANDED": Expanded branch state (shows its children)
"COLLAPSED": Collapsed branch state (hides its children)

TITLEid: the text label of the specified node.

TITLEFONTid: the text font of the specified node. The format is the same as the FONT attribute. (since 3.0)

TITLEFONTSTYLEid: changes the font style of the specified node. Actually changes the TITLEFONTid attribute. (since 3.19.1)

TITLEFONTSIZEid: changes the font size of the specified node. Actually changes the TITLEFONTid attribute. (since 3.21)

USERDATAid: the user data associated with the specified node. (since 3.0)

Toggle (non inheritable)

SHOWTOGGLE (creation only) (non inheritable): enables the use of toggles for all nodes of the tree. Can be "YES", "3STATE" or NO".
Default: "NO". In Motif Versions 2.1.x and 2.2.x, the images are disabled (toggle and text only are drawn in nodes of the tree). (since 3.6)

EMPTYAS3STATE (non inheritable) [Windows Only]: when SHOWTOGGLE=Yes, the empty space left in nodes that
TOGGLEVISIBLEid=NO is filled with the image of the 3state toggle. Can be Yes or NO. Default: No. (since 3.11.2)

TOGGLEVALUEid (non inheritable): defines the toggle state. Values can be "ON" or "OFF". If SHOW3STATE=YES then can also be
"NOTDEF". Default: "OFF". (Since 3.6)

TOGGLEVISIBLEid (non inheritable): defines the toggle visible state. Values can be "Yes" or "No". Default: "Yes". (Since 3.8)

Images (non inheritable)

IMAGEid (write only): image name to be used in the specified node, where id is the specified node identifier. Use IupSetHandle or
IupSetAttributeHandle to associate an image to a name. See also IupImage. In Windows and Motif set the BGCOLOR attribute before
setting the image. If node is a branch it is used when collapsed. In Windows all images must have the same size. In other systems only
expanded and collpased images must have the same size.

IMAGEEXPANDEDid (write only): same as the IMAGE attribute but used for expanded branches.

IMAGELEAF: the image name that will be shown for all leaves. Default: "IMGLEAF" (a bullet). Internal values "IMGBLANK" (blank sheet
of paper) and "IMGPAPER" (written sheet of paper) are also available. If BGCOLOR is set the image is automatically updated. This image
defines the available space for the image in all nodes. "IMGEMPTY" can be used as a totally transparent image (since 3.23).

IMAGEBRANCHCOLLAPSED: the image name that will be shown for all collapsed branches. Default: "IMGCOLLAPSED" (a closed
folder). If BGCOLOR is set the image is automatically updated.

IMAGEBRANCHEXPANDED: the image name that will be shown for all expanded branches. Default: "IMGEXPANDED" (an open folder).
If BGCOLOR is set the image is automatically updated.

Focus

VALUE (non inheritable): The focus node identifier. When retrieved but there isn't a node with focus it returns 0 if there are any nodes,
and returns -1 if there are no nodes. When changed and MARKMODE=SINGLE the node is also selected. The tree is always scrolled so the
node becomes visible. In Motif the tree will also receive the focus. Additionally accepts the values:

"ROOT" or "FIRST": the first node (which is always expanded)
"LAST": the last expanded node
"NEXT": the next expanded node, one node after the focus node. If at the last does nothing
"PREVIOUS": the previous expanded node, one node before the focus node. If at the first does nothing
"PGDN": the next expanded node, ten nodes node after the focus node. If at the last does nothing
"PGUP": the previous expanded node, ten nodes before the focus node. If at the first does nothing
"CLEAR": clears the selection of the focus node. (since 3.24)

CANFOCUS (creation only) (non inheritable): enables the focus traversal of the control. In Windows the control will still get the focus
when clicked. Default: YES. (since 3.0)

PROPAGATEFOCUS(non inheritable): enables the focus callback forwarding to the next native parent with FOCUS_CB defined. Default:
NO. (since 3.23)

Marks

IUP - Portable User Interface 07-Jan-25

320/496

../attrib/iup_font.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
iupimage.html

MARK (write only) (non inheritable): Selects a range of nodes in the format "start-end" (%d-%d). Allowed only when
MARKMODE=MULTIPLE. Also accepts the values:

"INVERTid": Inverts the specified node selected state, where id is the specified node identifier. If id is empty or invalid,
then the focus node is used as reference node.
"BLOCK": Selects all nodes between the focus node and the initial block-marking node defined by MARKSTART
"CLEARALL": Clear the selection of all nodes
"MARKALL": Selects all nodes
"INVERTALL": Inverts the selection of all nodes

MARKEDid (non inheritable): The selection state of the specified node, where id is the specified node identifier. If id is empty or invalid,
then the focus node is used as reference node. Can be: YES or NO. Default: NO

MARKEDNODES (non inheritable): The selection state of all nodes. It is/accepts a sequence of '+' and '-' symbols indicating the state of
each node ('+'=selected, '-'=unselected. When setting this value, if the number of specified symbols is smaller than the total count then
the remaining nodes will not be changed. Can be set only when MARKMODE=MULTIPLE, can also be get when MARKMODE=SINGLE.
(since 3.1)

MARKMODE: defines how the nodes can be selected. Can be: SINGLE or MULTIPLE. Default: SINGLE.

MARKSTART (non inheritable): Defines the initial node for the block marking, used when MARK=BLOCK. The value must be the node
identifier. Default: 0 (first node).

MARKWHENTOGGLE (non inheritable) [GTK and Windows Only]: selects or clears the selection of a node when its toggle is changed.
Works only if the node has a toggle. Default: No. (Since 3.17)

Hierarchy (non inheritable)

For these attributes "id" is the specified node identifier. If "id" is empty or invalid, then the focus node is used as the specified node.

ADDEXPANDED (non inheritable): Defines if branches will be expanded when created. The branch will be actually expanded when it
receives the first child. Possible values: "YES" = The branches will be created expanded; "NO" = The branches will be created collapsed.
Default: "YES".

ADDROOT (non inheritable): automatically adds an empty branch as the first node when the tree is mapped. But this does not prevents
the tree to have more nodes at the first depth. Default: "YES". (Since 3.1)

ADDLEAFid (write only): Adds a new leaf after the reference node, where id is the reference node identifier. Use id=-1 to add before the
first node. The value is used as the text label of the new node. The id of the new node will be the id of the reference node + 1. The
attribute LASTADDNODE is set to the new id. The reference node is marked and all others unmarked. The reference node position
remains the same. If the reference node does not exist, nothing happens. If the reference node is a branch then the depth of the new
node is one depth increment from the depth of the reference node, if the reference node is a leaf then the new node has the same depth.
If you need to add a node after a specified node but at a different depth use INSERTLEAF. Ignored if set before map.

ADDBRANCHid (write only): Same as ADDLEAF for branches. Branches can be created expanded or collapsed depending on
ADDEXPANDED. Ignored if set before map.

COPYNODEid (write only): Copies a node and its children, where id is the specified node identifier. The value is the destination node
identifier. If the destination node is a branch and it is expanded, then the specified node is inserted as the first child of the destination
node. If the branch is not expanded or the destination node is a leaf, then it is inserted as the next brother of the leaf. The specified node
is not changed. All node attributes are copied, except user data. Ignored if set before map. (since 3.0)

DELNODEid (write only): Removes a node and/or its children, where id is the specified node identifier. Ignored if set before map.
Possible values:

"ALL": deletes all nodes, id is ignored (Since 3.1). Notice that this will also deletes the root node.
"SELECTED": deletes the specified node and its children
"CHILDREN": deletes only the children of the specified node
"MARKED": deletes all the selected nodes (and all their children), id is ignored

EXPANDALL (write only): expand or contracts all nodes. Can be YES (expand all), or NO (contract all). (since 3.0)

INSERTLEAFid, INSERTBRANCHid (write only): Same as ADDLEAF and ADDBRANCH but the depth of the new node is always the
same of the reference node. If the reference node is a leaf, then the id of the new node will be the id of the reference node + 1. If the
reference node is a branch the id of the new node will be the id of the reference node + 1 + the total number of child nodes of the
reference node. (since 3.0)

MOVENODEid (write only): Moves a node and its children, where id is the specified node identifier. The value is the destination node
identifier. If the destination node is a branch and it is expanded, then the specified node is inserted as the first child of the destination
node. If the branch is not expanded or the destination node is a leaf, then it is inserted as the next brother of the leaf. The specified node
is removed. User data and all node attributes are preserved. Ignored if set before map. (since 3.0)

Editing

RENAME (write only): Forces a rename action to take place. Valid only when SHOWRENAME=YES.

RENAMECARET (write only): the caret’s position of the text box when in-place renaming. Same as the CARET attribute for IupText, but
here is used only once after SHOWRENAME_CB is called and before the text box is shown.

IUP - Portable User Interface 07-Jan-25

321/496

iuptext.html#Attributes

RENAMESELECTION (write only): the selection interval of the text box when in-place renaming. Same as the SELECTION attribute for
IupText, but here is used only once after SHOWRENAME_CB is called and before the text box is shown.

SHOWRENAME (creation in Windows) (non inheritable): Allows the in place rename of a node. Default: "NO". Since IUP 3.0, F2 and
clicking twice only starts to rename a node if SHOWRENAME=Yes. In Windows must be set to YES before map, but can be changed later
(since 3.3).

Drag&Drop

SHOWDRAGDROP (creation only) (non inheritable): Enables the internal drag and drop of nodes, and enables the DRAGDROP_CB
callback. Default: "NO". Works only if MARKMODE=SINGLE. Drag & Drop attributes are NOT used.

DRAGDROPTREE (non inheritable): prepare the Drag & Drop callbacks to support drag and drop of nodes between trees (IupTree
only), in the same IUP application. Drag & Drop attributes still need to be set in order to activate the drag & drop support, so the
application can control if this tree will be source and/or target. Default: NO. (since 3.10)

DROPFILESTARGET [Windows and GTK Only] (non inheritable): Enable or disable the drop of files. Default: NO, but if DROPFILES_CB
is defined when the element is mapped then it will be automatically enabled. This is NOT related to the drag&drop of nodes inside the
tree. (since 3.0)

DROPEQUALDRAG (non inheritable): if enabled will allow a drop node to be equal to the drag node. Used only if SHOWDRAGDROP
=Yes. In the case the nodes are equal the callback return value is ignored and nothing is done after. (since 3.3)

Drag & Drop attributes are supported, but SHOWDRAGDROP must be set no No.

IupTree Callbacks

SELECTION_CB: Action generated when a node is selected or deselected. This action occurs when the user clicks with the mouse or uses
the keyboard with the appropriate combination of keys. It may be called more than once for the same node with the same status.

int function(Ihandle *ih, int id, int status) [in C]
ih:selection_cb(id, status: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
id: Node identifier.
status: 1=node selected, 0=node unselected.

MULTISELECTION_CB: Action generated after a continuous range of nodes is selected in one single operation. If not defined the
SELECTION_CB with status=1 will be called for all nodes in the range. The range is always completely included, independent if some
nodes were already marked. That single operation also guaranties that all other nodes outside the range are already not selected. Called
only if MARKMODE=MULTIPLE.

int function(Ihandle *ih, int* ids, int n) [in C]
ih:multiselection_cb(ids: table, n: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
ids: Array of node identifiers. This array is kept for backward compatibility, the range is simply defined by ids[0] to ids[n-1], where
ids[i+1]=ids[i]+1.
n: Number of nodes in the array.

MULTIUNSELECTION_CB: Action generated before multiple nodes are unselected in one single operation. If not defined the
SELECTION_CB with status=0 will be called for all nodes in the range. The range is not necessarily continuous. Called only if
MARKMODE=MULTIPLE. (Since 3.1)

int function(Ihandle *ih, int* ids, int n) [in C]
ih:multiunselection_cb(ids: table, n: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
ids: Array of node identifiers.
n: Number of nodes in the array.

BRANCHOPEN_CB: Action generated when a branch is expanded. This action occurs when the user clicks the "+" sign on the left of the
branch, or when double clicks the branch, or hits Enter on a collapsed branch.

int function(Ihandle *ih, int id) [in C]
ih:branchopen_cb(id: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
id: node identifier.

Returns: IUP_IGNORE for the branch not to be opened, or IUP_DEFAULT for the branch to be opened.

BRANCHCLOSE_CB: Action generated when a branch is collapsed. This action occurs when the user clicks the "-" sign on the left of the

IUP - Portable User Interface 07-Jan-25

322/496

iuptext.html#Attributes
../attrib/iup_dragdrop.html
../attrib/iup_dragdrop.html
../attrib/iup_dragdrop.html
../attrib/iup_dragdrop.html

branch, or when double clicks the branch, or hits Enter on an expanded branch.

int function(Ihandle *ih, int id); [in C]
ih:branchclose_cb(id: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
id: node identifier.

Returns: IUP_IGNORE for the branch not to be closed, or IUP_DEFAULT for the branch to be closed.

EXECUTELEAF_CB: Action generated when a leaf is executed. This action occurs when the user double clicks a leaf, or hits Enter on a
leaf.

int function(Ihandle *ih, int id); [in C]
ih:executeleaf_cb(id: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
id: node identifier.

EXECUTEBRANCH_CB: Action generated when a branch is executed. This action occurs when the user double clicks a branch, or hits
Enter on a branch. Is is called before the BRANCH*_CB callbacks. (since 3.29)

int function(Ihandle *ih, int id); [in C]
ih:executebranch_cb(id: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
id: node identifier.

SHOWRENAME_CB: Action generated when a node is about to be renamed. It occurs when the user clicks twice the node or press F2.
Called only if SHOWRENAME=YES.

int function(Ihandle *ih, int id); [in C]
elem:showrename_cb(id: number: string) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
id: node identifier.

Returns: if IUP_IGNORE is returned, the rename is canceled (in GTK the rename continuous but the edit box is read-only).

RENAME_CB: Action generated after a node was renamed in place. It occurs when the user press Enter after editing the name, or when
the text box looses it focus. Called only if SHOWRENAME=YES.

int function(Ihandle *ih, int id, char *title); [in C]
elem:rename_cb(id: number, title: string) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
id: node identifier.
title: new node title.

Returns: The new title is accepted only if the callback returns IUP_DEFAULT. If the callback does not exists the new title is always
accepted. If the user pressed Enter and the callback returns IUP_IGNORE the editing continues. If the text box looses its focus the
editing stops always.

DRAGDROP_CB: Action generated when an internal drag & drop is executed. Only active if SHOWDRAGDROP=YES.

int function(Ihandle *ih, int drag_id, int drop_id, int isshift, int iscontrol); [in C]
ih:dragdrop_cb(drag_id, drop_id, isshift, iscontrol: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
drag_id: Identifier of the clicked node where the drag start.
drop_id: Identifier of the clicked node where the drop were executed. -1 indicates a drop in a blank area.
isshift: flag indicating the shift key state.
iscontrol: flag indicating the control key state.

Returns: if returns IUP_CONTINUE, or if the callback is not defined and SHOWDRAGDROP=YES, then the node is moved to the
new position. If Ctrl is pressed then the node is copied instead of moved. If the drop node is a branch and it is expanded, then the
drag node is inserted as the first child of the node. If the branch is not expanded or the node is a leaf, then the drag node is inserted
as the next brother of the drop node.

NODEREMOVED_CB: Action generated when a node is going to be removed. It is only a notification, the action can not be aborted. No
node dependent attribute can be consulted during the callback. Not called when the tree is unmapped. It is useful to remove memory
allocated for the userdata. (since 3.0)

IUP - Portable User Interface 07-Jan-25

323/496

int function(Ihandle *ih, void* userdata); [in C]
ih:noderemoved_cb(userid: userdata/table) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
userdata/userid: USERDATA attribute in C, or userid object in Lua.

RIGHTCLICK_CB: Action generated when the right mouse button is pressed over a node.

int function(Ihandle *ih, int id); [in C]
ih:rightclick_cb(id: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
id: node identifier.

TOGGLEVALUE_CB: Action generated when the toggle's state was changed. The callback also receives the new toggle's state. (since 3.6)

int function(Ihandle *ih, int id, int state); [in C]
elem:togglevalue_cb(id, state: number: string) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
id: node identifier.
state: 1 if the toggle's state was shifted to ON; 0 if it was shifted to OFF. If SHOW3STATE=YES, −1 if it was shifted to NOTDEF.

BUTTON_CB: Action generated when any mouse button is pressed or released inside the element. Use IupConvertXYToPos to convert
(x,y) coordinates in the node identifier. (since 3.0)

MOTION_CB: Action generated when the mouse is moved over the element. Use IupConvertXYToPos to convert (x,y) coordinates in the
node identifier. (since 3.0)

DROPFILES_CB [Windows and GTK Only]: Action generated when one or more files are dropped in the element. (since 3.0)

MAP_CB, UNMAP_CB, DESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB, K_ANY, HELP_CB: All
common callbacks are supported.

In Motif the tree always resets the focus to the first node when receive the focus. The KILLFOCUS_CB callback is called only when the
focus is at the first node. Also in Motif some LEAVEWINDOW_CB events are delayed to when the user enter again, firing a leave and enter
events at enter time.

Drag & Drop callbacks are supported, but SHOWDRAGDROP must be set to NO.

IupFlatTree Attributes

General

AUTOREDRAW (non inheritable): automatically redraws the tree when something has change. Set to NO to change many nodes without
updating the display. Default: "YES".

BGCOLOR: Background color of the tree. Default: the global attribute TXTBGCOLOR.

EXPAND (non inheritable): The default value is "YES".

BORDERCOLOR: color used for the internal border. Default: "50 150 255". This is for the internal border.

BORDERWIDTH: line width used for the internal border. Default: "0". The internal borders are hidden by simply setting this value to 0.
It is drawn inside the canvas, so inside the scrollbars.

EXTRATEXTWIDTH: width of the extra text area at right. (since 3.30)

FGCOLOR: default text foreground color. Once each node is created it will not change its color when FGCOLOR is changed. Default: the
global attribute TXTFGCOLOR.

HLCOLOR (non inheritable): the color of a filled box drawn over the selected node. Default: TXTHLCOLOR global attribute.

HLCOLORALPHA: the transparency used to draw the selection. Default: 128. If set to 0 the selection box is not drawn.

PSCOLOR: background color of a selected node. If not defined BACKCOLORid will be used. (since 3.30)

TEXTPSCOLOR: foreground color of a selected node. If not defined FORECOLORid will be used. (since 3.30)

ICONSPACING (non inheritable): spacing between the image and the text. Default: "2".

INDENTATION: sets the indentation level in pixels. Default: 16 for standard resolution, 24 for high resolution display

RASTERSIZE (non inheritable): the initial size is "400x200". Set to NULL to allow the automatic layout use smaller values.

IUP - Portable User Interface 07-Jan-25

324/496

../call/iup_button_cb.html
../func/iupconvertxytopos.html
../call/iup_motion_cb.html
../func/iupconvertxytopos.html
../call/iup_dropfiles_cb.html
../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_getfocus_cb.html
../call/iup_killfocus_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
../call/iup_k_any.html
../call/iup_help_cb.html
../attrib/iup_dragdrop.html
../attrib/iup_bgcolor.html
../attrib/iup_expand.html
../attrib/iup_rastersize.html

SPACING: vertical space between nodes. Notice that this is not the same as the IupTree.

CSPACING: same as SPACING but using the units of the vertical part of the SIZE attribute. It will actually set the SPACING attribute.
(since 3.29)

TOPITEM (write-only): position the given node identifier at the top of the tree or near to make it visible. If any parent node is collapsed
then they are automatically expanded.

ACTIVE, EXPAND, FONT, SCREENPOSITION, POSITION, MINSIZE, MAXSIZE, WID, TIP, SIZE, RASTERSIZE, ZORDER, VISIBLE, THEME:
also accepted.

Expanders (non inheritable)

HIDEBUTTONS: hide the expand and collapse buttons.

HIDELINES: hide the lines that connect the nodes in the hierarchy.

LINECOLOR: the color of the dotted guidelines. Default: "110 110 110"

BUTTONBGCOLOR: background color of the expander buttons. Default: "240 240 240"

BUTTONFGCOLOR: sign color of the expander buttons ("+" or "-" signs). Default: "50 100 150"

BUTTONBRDCOLOR: border color of the expander buttons. Default: "150 150 150"

BUTTONSIZE: size of the expander button square. Default: 9 for standard resolution, 16 for high resolution display

BUTTONPLUSIMAGE: the image name that will be shown for all expander button when collapsed. By default the button is drawn. The
"IMGPLUS" pre-defined image is a 9x9 image that can be used.

BUTTONMINUSIMAGE: the image name that will be shown for all expander button when collapsed. By default the button is drawn. The
"IMGMINUS" pre-defined image is a 9x9 image that can be used.

Nodes (non inheritable)

For these attributes "id" is the specified node identifier. If "id" is empty or invalid, then the focus node is used as the specified node.

COUNT (read only) (non inheritable): returns the total number of nodes in the tree.

CHILDCOUNTid (read only): returns the immediate children count of the specified branch. It does not count children of child that are
branches.

TOTALCHILDCOUNTid (read only): returns the total children count of the specified branch. It counts all grandchildren too.

ROOTCOUNT (read only): returns the number of root nodes.

COLORid: foreground color of the title at the given id. If not defined FGCOLOR is used.

BACKCOLORid: background color of the title at the given id. If not defined BGCOLOR is used.

ITEMTIPid: tip of the node at the given id. If defined will be shown instead of the TIP attribute.

DEPTHid (read only): returns the depth of the specified node. The first node has depth=0, its immediate children has depth=1, their
children has depth=2 and so on.

KINDid (read only): returns the kind of the specified node. Possible values:

"LEAF": The node is a leaf
"BRANCH": The node is a branch

PARENTid (read only): returns the parent of the specified node.

NEXTid (read only): returns the next brother (same depth) of the specified node. Returns NULLs if at last child node of the parent (at the
same depth).

PREVIOUSid (read only): returns the previous brother (same depth) of the specified node. Returns NULLs if at first child node of the
parent (at the same depth).

LASTid (read only): returns the last brother (same depth) of the specified node.

FIRSTid (read only): returns the first brother (same depth) of the specified node. This is the same as getting the first child of the parent
of the given node. If the specified node is the first child returns the specified node.

STATEid: the state of the specified branch. Returns NULL for a LEAF. Possible values:

"EXPANDED": Expanded branch state (shows its children)
"COLLAPSED": Collapsed branch state (hides its children)

TITLEid: the text label of the specified node.

IUP - Portable User Interface 07-Jan-25

325/496

../attrib/iup_active.html
../attrib/iup_expand.html
../attrib/iup_font.html
../attrib/iup_screenposition.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_wid.html
../attrib/iup_tip.html
../attrib/iup_size.html
../attrib/iup_rastersize.html
../attrib/iup_zorder.html
../attrib/iup_visible.html
../attrib/iup_theme.html

TITLEFONTid: the text font of the specified node. The format is the same as the FONT attribute.

TITLEFONTSTYLEid: changes the font style of the specified node. Actually changes the TITLEFONTid attribute.

TITLEFONTSIZEid: changes the font size of the specified node. Actually changes the TITLEFONTid attribute.

USERDATAid: the user data associated with the specified node.

EXTRATEXTid: text displayed at the extra text area at right. (since 3.30)

Toggle (non inheritable)

SHOWTOGGLE: enables the use of toggles for all nodes of the tree. Can be "YES", "3STATE" or NO". Default: "NO".

EMPTYTOGGLE: when SHOWTOGGLE=Yes, the empty space left in nodes that TOGGLEVISIBLEid=NO is filled with a blank space. Can
be Yes or NO. Default: No.

TOGGLEVALUEid: defines the toggle state. Values can be "ON" or "OFF". If SHOW3STATE=YES then can also be "NOTDEF". Default:
"OFF".

TOGGLEVISIBLEid: defines the toggle visible state. Values can be "Yes" or "No". Default: "Yes".

TOGGLEBGCOLOR: background color of the toggle. Default: "TXTBGCOLOR"

TOGGLEFGCOLOR: foreground color of the toggle, use to draw the frame and the check mark. Default: "TXTFGCOLOR"

TOGGLESIZE: size of the toggle square. Default: 16 for standard resolution, 24 for high resolution display

Images (non inheritable)

IMAGEid (write only): image name to be used in the specified node, where id is the specified node identifier. Use IupSetHandle or
IupSetAttributeHandle to associate an image to a name. See also IupImage. If node is a branch it is used when collapsed. All images do
NOT need to have the same size, but it is recommended that a branch expanded and collapse images to have the same size.

IMAGEEXPANDEDid (write only): same as the IMAGE attribute but used for expanded branches.

IMAGELEAF: the image name that will be shown for all leaves. Default: "IMGLEAF" (a bullet). Internal values "IMGBLANK" (blank sheet
of paper) and "IMGPAPER" (written sheet of paper) are also available. If BGCOLOR is set the image is automatically updated. This image
defines the available space for the image in all nodes. "IMGEMPTY" can be used as a totally transparent image .

IMAGEBRANCHCOLLAPSED: the image name that will be shown for all collapsed branches. Default: "IMGCOLLAPSED" (a closed
folder).

IMAGEBRANCHEXPANDED: the image name that will be shown for all expanded branches. Default: "IMGEXPANDED" (an open folder).

BACKIMAGE: image name to be used as background. Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See
also IupImage.

BACKIMAGEZOOM: if set the back image will be zoomed to occupy the full background. Aspect ratio is NOT preserved. Can be Yes or
No. Default: No.

Focus

VALUE (non inheritable): The focus node identifier. When retrieved but there isn't a node with focus it returns 0 if there are any nodes,
and returns -1 if there are no nodes. When changed and MARKMODE=SINGLE the node is also selected. The tree is always scrolled so the
node becomes visible. Additionally accepts the values:

"ROOT" or "FIRST": the first node (which is always expanded)
"LAST": the last expanded node
"NEXT": the next expanded node, one node after the focus node. If at the last does nothing
"PREVIOUS": the previous expanded node, one node before the focus node. If at the first does nothing
"PGDN": the next expanded node, ten nodes node after the focus node. If at the last does nothing
"PGUP": the previous expanded node, ten nodes before the focus node. If at the first does nothing
"CLEAR": clears the selection of the focus node.

CANFOCUS (creation only) (non inheritable): enables the focus traversal of the control. Default: YES.

PROPAGATEFOCUS(non inheritable): enables the focus callback forwarding to the next native parent with FOCUS_CB defined. Default:
NO.

FOCUSFEEDBACK (non inheritable): draw the focus feedback. Can be Yes or No. Default: Yes.

HASFOCUS (read-only): returns the button state if has focus. Can be Yes or No.

Marks

MARK (write only) (non inheritable): Selects a range of nodes in the format "start-end" (%d-%d). Allowed only when
MARKMODE=MULTIPLE. Also accepts the values:

IUP - Portable User Interface 07-Jan-25

326/496

../attrib/iup_font.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
iupimage.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html

"INVERTid": Inverts the specified node selected state, where id is the specified node identifier. If id is empty or invalid,
then the focus node is used as reference node.
"BLOCK": Selects all nodes between the focus node and the initial block-marking node defined by MARKSTART
"CLEARALL": Clear the selection of all nodes
"MARKALL": Selects all nodes
"INVERTALL": Inverts the selection of all nodes

MARKEDid (non inheritable): The selection state of the specified node, where id is the specified node identifier. If id is empty or invalid,
then the focus node is used as reference node. Can be: YES or NO. Default: NO

MARKEDNODES (non inheritable): The selection state of all nodes. It is/accepts a sequence of '+' and '-' symbols indicating the state of
each node ('+'=selected, '-'=unselected. When setting this value, if the number of specified symbols is smaller than the total count then
the remaining nodes will not be changed. Can be set only when MARKMODE=MULTIPLE, can also be get when MARKMODE=SINGLE.

MARKMODE: defines how the nodes can be selected. Can be: SINGLE or MULTIPLE. Default: SINGLE.

MARKSTART (non inheritable): Defines the initial node for the block marking, used when MARK=BLOCK. The value must be the node
identifier. Default: 0 (first node).

MARKWHENTOGGLE (non inheritable): selects or clears the selection of a node when its toggle is changed. Works only if the node has a
toggle. Default: No.

Hierarchy (non inheritable)

For these attributes "id" is the specified node identifier. If "id" is empty or invalid, then the focus node is used as the specified node.

ADDEXPANDED (non inheritable): Defines if branches will be expanded when created. The branch will be actually expanded when it
receives the first child. Possible values: "YES" = The branches will be created expanded; "NO" = The branches will be created collapsed.
Default: "YES".

ADDLEAFid (write only): Adds a new leaf after the reference node, where id is the reference node identifier. Use id=-1 to add before the
first node. The value is used as the text label of the new node. The id of the new node will be the id of the reference node + 1. The
attribute LASTADDNODE is set to the new id. The reference node is marked and all others unmarked. The reference node position
remains the same. If the reference node does not exist, nothing happens. If the reference node is a branch then the depth of the new
node is one depth increment from the depth of the reference node, if the reference node is a leaf then the new node has the same depth.
If you need to add a node after a specified node but at a different depth use INSERTLEAF.

ADDBRANCHid (write only): Same as ADDLEAF for branches. Branches can be created expanded or collapsed depending on
ADDEXPANDED.

COPYNODEid (write only): Copies a node and its children, where id is the specified node identifier. The value is the destination node
identifier. If the destination node is a branch and it is expanded, then the specified node is inserted as the first child of the destination
node. If the branch is not expanded or the destination node is a leaf, then it is inserted as the next brother of the leaf. The specified node
is not changed. All node attributes are copied, except user data.

DELNODEid (write only): Removes a node and/or its children, where id is the specified node identifier. Possible values:

"ALL": deletes all nodes, id is ignored.
"SELECTED": deletes the specified node and its children
"CHILDREN": deletes only the children of the specified node
"MARKED": deletes all the selected nodes (and all their children), id is ignored

EXPANDALL (write only): expand or contracts all nodes. Can be YES (expand all), or NO (contract all).

INSERTLEAFid, INSERTBRANCHid (write only): Same as ADDLEAF and ADDBRANCH but the depth of the new node is always the
same of the reference node. If the reference node is a leaf, then the id of the new node will be the id of the reference node + 1. If the
reference node is a branch the id of the new node will be the id of the reference node + 1 + the total number of child nodes of the
reference node.

MOVENODEid (write only): Moves a node and its children, where id is the specified node identifier. The value is the destination node
identifier. If the destination node is a branch and it is expanded, then the specified node is inserted as the first child of the destination
node. If the branch is not expanded or the destination node is a leaf, then it is inserted as the next brother of the leaf. The specified node
is removed. User data and all node attributes are preserved.

Editing

RENAME (write only): Forces a rename action to take place. Valid only when SHOWRENAME=YES.

RENAMECARET (write only): the caret’s position of the text box when in-place renaming. Same as the CARET attribute for IupText, but
here is used only once after SHOWRENAME_CB is called and before the text box is shown.

RENAMESELECTION (write only): the selection interval of the text box when in-place renaming. Same as the SELECTION attribute for
IupText, but here is used only once after SHOWRENAME_CB is called and before the text box is shown.

SHOWRENAME (non inheritable): Allows the in place rename of a node. Default: "NO". F2 and clicking twice only starts to rename a
node if SHOWRENAME=Yes.

Drag&Drop

IUP - Portable User Interface 07-Jan-25

327/496

iuptext.html#Attributes
iuptext.html#Attributes

SHOWDRAGDROP (non inheritable): Enables the internal drag and drop of nodes, and enables the DRAGDROP_CB callback. Default:
"NO". Works only if MARKMODE=SINGLE. Drag & Drop attributes are NOT used.

DRAGDROPTREE (non inheritable): prepare the Drag & Drop callbacks to support drag and drop of nodes between trees (IupFlatTree
only), in the same IUP application. Drag & Drop attributes still need to be set in order to activate the drag & drop support, so the
application can control if this tree will be source and/or target. Default: NO.

DROPFILESTARGET (non inheritable): Enable or disable the drop of files. Default: NO, but if DROPFILES_CB is defined when the
element is mapped then it will be automatically enabled. This is NOT related to the drag&drop of nodes inside the tree.

DROPEQUALDRAG (non inheritable): if enabled will allow a drop node to be equal to the drag node. Used only if SHOWDRAGDROP
=Yes. In the case the nodes are equal the callback return value is ignored and nothing is done after.

Drag & Drop attributes are supported, but SHOWDRAGDROP must be set no No.

IupFlatTree Callbacks

SELECTION_CB: Action generated when a node is selected or deselected. This action occurs when the user clicks with the mouse or uses
the keyboard with the appropriate combination of keys. It may be called more than once for the same node with the same status.

int function(Ihandle *ih, int id, int status) [in C]
ih:selection_cb(id, status: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
id: Node identifier.
status: 1=node selected, 0=node unselected.

MULTISELECTION_CB: Action generated after a continuous range of nodes is selected in one single operation. If not defined the
SELECTION_CB with status=1 will be called for all nodes in the range. The range is always completely included, independent if some
nodes were already marked. That single operation also guaranties that all other nodes outside the range are already not selected. Called
only if MARKMODE=MULTIPLE.

int function(Ihandle *ih, int* ids, int n) [in C]
ih:multiselection_cb(ids: table, n: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
ids: Array of node identifiers. This array is kept for backward compatibility, the range is simply defined by ids[0] to ids[n-1], where
ids[i+1]=ids[i]+1.
n: Number of nodes in the array.

MULTIUNSELECTION_CB: Action generated before multiple nodes are unselected in one single operation. If not defined the
SELECTION_CB with status=0 will be called for all nodes in the range. The range is not necessarily continuous. Called only if
MARKMODE=MULTIPLE.

int function(Ihandle *ih, int* ids, int n) [in C]
ih:multiunselection_cb(ids: table, n: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
ids: Array of node identifiers.
n: Number of nodes in the array.

BRANCHOPEN_CB: Action generated when a branch is expanded. This action occurs when the user clicks the "+" sign on the left of the
branch, or when double clicks the branch, or hits Enter on a collapsed branch.

int function(Ihandle *ih, int id) [in C]
ih:branchopen_cb(id: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
id: node identifier.

Returns: IUP_IGNORE for the branch not to be opened, or IUP_DEFAULT for the branch to be opened.

BRANCHCLOSE_CB: Action generated when a branch is collapsed. This action occurs when the user clicks the "-" sign on the left of the
branch, or when double clicks the branch, or hits Enter on an expanded branch.

int function(Ihandle *ih, int id); [in C]
ih:branchclose_cb(id: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
id: node identifier.

Returns: IUP_IGNORE for the branch not to be closed, or IUP_DEFAULT for the branch to be closed.

IUP - Portable User Interface 07-Jan-25

328/496

../attrib/iup_dragdrop.html
../attrib/iup_dragdrop.html
../attrib/iup_dragdrop.html
../attrib/iup_dragdrop.html

EXECUTELEAF_CB: Action generated when a leaf is executed. This action occurs when the user double clicks a leaf, or hits Enter on a
leaf.

int function(Ihandle *ih, int id); [in C]
ih:executeleaf_cb(id: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
id: node identifier.

EXECUTEBRANCH_CB: Action generated when a branch is executed. This action occurs when the user double clicks a branch, or hits
Enter on a branch. Is is called before the BRANCH*_CB callbacks.

int function(Ihandle *ih, int id); [in C]
ih:executebranch_cb(id: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
id: node identifier.

SHOWRENAME_CB: Action generated when a node is about to be renamed. It occurs when the user clicks twice the node or press F2.
Called only if SHOWRENAME=YES.

int function(Ihandle *ih, int id); [in C]
elem:showrename_cb(id: number: string) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
id: node identifier.

Returns: if IUP_IGNORE is returned, the rename is canceled.

RENAME_CB: Action generated after a node was renamed in place. It occurs when the user press Enter after editing the name, or when
the text box looses it focus. Called only if SHOWRENAME=YES.

int function(Ihandle *ih, int id, char *title); [in C]
elem:rename_cb(id: number, title: string) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
id: node identifier.
title: new node title.

Returns: The new title is accepted only if the callback returns IUP_DEFAULT. If the callback does not exists the new title is always
accepted. If the user pressed Enter and the callback returns IUP_IGNORE the editing continues. If the text box looses its focus the
editing stops always.

DRAGDROP_CB: Action generated when an internal drag & drop is executed. Only active if SHOWDRAGDROP=YES.

int function(Ihandle *ih, int drag_id, int drop_id, int isshift, int iscontrol); [in C]
ih:dragdrop_cb(drag_id, drop_id, isshift, iscontrol: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
drag_id: Identifier of the clicked node where the drag start.
drop_id: Identifier of the clicked node where the drop were executed. -1 indicates a drop in a blank area.
isshift: flag indicating the shift key state.
iscontrol: flag indicating the control key state.

Returns: if returns IUP_CONTINUE, or if the callback is not defined and SHOWDRAGDROP=YES, then the node is moved to the
new position. If Ctrl is pressed then the node is copied instead of moved. If the drop node is a branch and it is expanded, then the
drag node is inserted as the first child of the node. If the branch is not expanded or the node is a leaf, then the drag node is inserted
as the next brother of the drop node.

NODEREMOVED_CB: Action generated when a node is going to be removed. It is only a notification, the action can not be aborted. No
node dependent attribute can be consulted during the callback. It is useful to remove memory allocated for the userdata.

int function(Ihandle *ih, void* userdata); [in C]
ih:noderemoved_cb(userid: userdata/table) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
userdata/userid: USERDATA attribute in C, or userid object in Lua.

RIGHTCLICK_CB: Action generated when the right mouse button is pressed over a node.

int function(Ihandle *ih, int id); [in C]
ih:rightclick_cb(id: number) -> (ret: number) [in Lua]

IUP - Portable User Interface 07-Jan-25

329/496

ih: identifier of the element that activated the event.
id: node identifier.

TOGGLEVALUE_CB: Action generated when the toggle's state was changed. The callback also receives the new toggle's state.

int function(Ihandle *ih, int id, int state); [in C]
elem:togglevalue_cb(id, state: number: string) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
id: node identifier.
state: 1 if the toggle's state was shifted to ON; 0 if it was shifted to OFF. If SHOW3STATE=YES, −1 if it was shifted to NOTDEF.

FLAT_BUTTON_CB: Action generated when any mouse button is pressed or released inside the element. Use IupConvertXYToPos to
convert (x,y) coordinates in the node identifier.

FLAT_MOTION_CB: Action generated when the mouse is moved over the element. Use IupConvertXYToPos to convert (x,y) coordinates
in the node identifier.

DROPFILES_CB [Windows and GTK Only]: Action generated when one or more files are dropped in the element.

MAP_CB, UNMAP_CB, DESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB, K_ANY, HELP_CB: All
common callbacks are supported.

Drag & Drop callbacks are supported, but SHOWDRAGDROP must be set to NO.

orientation: optional orientation of valuator. Can be NULL. See ORIENTATION attribute.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

BGCOLOR: transparent in all systems except in Motif. It will use the background color of the native parent.

CANFOCUS (creation only) (non inheritable): enables the focus traversal of the control. In Windows the control will still get the focus
when clicked. Default: YES. (since 3.0)

PROPAGATEFOCUS(non inheritable): enables the focus callback forwarding to the next native parent with FOCUS_CB defined. Default:
NO. (since 3.23)

INVERTED: Invert the minimum and maximum positions on screen. When INVERTED=YES maximum is at top and left (minimum is
bottom and right), when INVERTED=NO maximum is at bottom and right (minimum is top and left). The initial value depends on
ORIENTATION passed as parameter on creation, if ORIENTATION=VERTICAL default is YES, if ORIENTATION=HORIZONTAL default is
NO. (since 3.0)

MAX: Contains the maximum valuator value. Default is "1". When changed the display will not be updated until VALUE is set.

MIN: Contains the minimum valuator value. Default is "0". When changed the display will not be updated until VALUE is set.

PAGESTEP: Controls the increment for PgDn and PgUp keys. It is not the size of the increment. The increment size is "pagestep*(max-
min)", so it must be 0<pagestep<1. Default is "0.1".

RASTERSIZE (non inheritable): The initial size is 100 pixels along the major axis, and the handler normal size on the minor axis. If there
are ticks then they are added to the natural size on the minor axis. The handler can be smaller than the normal size. Set to NULL to allow
the automatic layout use smaller values.

SHOWTICKS [Windows and Motif Only]: The number of tick marks along the valuator trail. Minimum value is "2". Default is "0", in this
case the ticks are not shown. It can not be changed to 0 from a non zero value, or vice-versa, after the control is mapped. GTK does not
support ticks.

STEP: Controls the increment for keyboard control and the mouse wheel. It is not the size of the increment. The increment size is "step*
(max-min)", so it must be 0<step<1. Default is "0.01".

TICKSPOS [Windows Only] (creation only): Allows to position the ticks in both sides (BOTH) or in the reverse side (REVERSE). Default:
NORMAL. The normal position for horizontal orientation is at the top of the control, and for vertical orientation is at the left of the control.
In Motif, the ticks position is always normal. (since 3.0)

ORIENTATION (creation only) (non inheritable): Informs whether the valuator is "VERTICAL" or "HORIZONTAL". Vertical valuators are
bottom to up, and horizontal valuators are left to right variations of min to max (but can be inverted using INVERTED). Default:
"HORIZONTAL".

VALUE (non inheritable): Contains a number between MIN and MAX, indicating the valuator position. Default: "0.0".

ACTIVE, EXPAND, FONT, SCREENPOSITION, POSITION, MINSIZE, MAXSIZE, WID, TIP, SIZE, ZORDER, VISIBLE, THEME: also
accepted.

IUP - Portable User Interface 07-Jan-25

330/496

../call/iup_button_cb.html
../func/iupconvertxytopos.html
../call/iup_motion_cb.html
../func/iupconvertxytopos.html
../call/iup_dropfiles_cb.html
../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_getfocus_cb.html
../call/iup_killfocus_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
../call/iup_k_any.html
../call/iup_help_cb.html
../attrib/iup_dragdrop.html
../attrib/iup_bgcolor.html
../attrib/iup_rastersize.html
../attrib/iup_active.html
../attrib/iup_expand.html
../attrib/iup_font.html
../attrib/iup_screenposition.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_wid.html
../attrib/iup_tip.html
../attrib/iup_size.html
../attrib/iup_zorder.html
../attrib/iup_visible.html
../attrib/iup_theme.html

Callbacks

VALUECHANGED_CB: Called after the value was interactively changed by the user.

int function(Ihandle *ih); [in C]
ih:valuechanged_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

MAP_CB, UNMAP_CB, DESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB, K_ANY, HELP_CB: All
common callbacks are supported.

Notes

This control replaces the old IupVal implemented in the additional controls. The old callbacks are still supported but called only if the
VALUECHANGED_CB callback is not defined. The MOUSEMOVE_CB callback is only called when the user moves the handler using the
mouse. The BUTTON_PRESS_CB callback is called only when the user press a key that changes the position of the handler. The
BUTTON_RELEASE_CB callback is called only when the user release the mouse button after moving the handler.

In Motif, after the user clicks the handler a KILLFOCUS will be ignored when the control loses its focus.

in GTK uses GtkHScale/GtkVScale (GTK 2) or GtkScale (GTK 3), in Windows uses TRACKBAR_CLASS, and in Motif uses xmScale.

Keyboard Mapping

This is the default mapping when INVERTED has the default value, or ORIENTATION=HORIZONTAL+INVERTED=NO.

Keys Action for HORIZONTAL

Right Arrow move right, increment by one step

Left Arrow move left, decrement by one step

Ctrl+Right Arrow or PgDn move right, increment by one page step

Ctrl+Left Arrow or PgUp move left, decrement by one page step

Home move all left, set to minimum

End move all right, set to maximum

This is the default mapping when INVERTED has the default value, or ORIENTATION=VERTICAL+INVERTED=YES.

Keys Action for VERTICAL

Up Arrow move up, increment by one step

Down Arrow move down, decrement by one step

Ctrl+Up Arrow or PgUp move up, increment by one page step

Ctrl+Down Arrow or PgDn move down, decrement by one page step

Home move all up, set to maximum

End move all down, set to minimum

Visually all the keys move to the same direction independent from the INVERTED attribute.

Semantically all the keys change the value depending on the INVERTED attribute.

This behavior is slightly different from the defined by the native systems (Home and End keys are different). But it is the same in all
systems.

Examples

Browse for Example Files

Motif Windows
Classic

Windows
w/ Styles

Windows
Vista GTK

IUP - Portable User Interface 07-Jan-25

331/496

../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_getfocus_cb.html
../call/iup_killfocus_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
../call/iup_k_any.html
../call/iup_help_cb.html
../ctrl/iupval.html
../../examples/

orientation: optional orientation of valuator. Can be NULL. See ORIENTATION attribute.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

Inherits all attributes and callbacks of the IupCanvas, but redefines a few attributes.

BGCOLOR: ignored. It will use the background color of the native parent.

BACKIMAGE (non inheritable): image name to be used as background. Use IupSetHandle or IupSetAttributeHandle to associate an
image to a name. See also IupImage.

BACKIMAGEZOOM (non inheritable): if set the back image will be zoomed to occupy the full background. Aspect ratio is NOT
preserved. Can be Yes or No. Default: No.

BORDER (creation only): the default value is "NO". This is the IupCanvas border.

BORDERCOLOR: color used for borders. Default: "50 150 255". This is for the drawn border.

BORDERPSCOLOR: color used for borders when pressed or selected. Default use BORDERCOLOR.

BORDERHLCOLOR: color used for borders when highlighted. Pre-defined to "0 120 220". Can be set to NULL. If NULL BORDERCOLOR
will be used instead.

BORDERWIDTH: line width used for borders. Default: "1". Any borders can be hidden by simply setting this value to 0. This is for the
IupFlatButton drawn border.

CANFOCUS (creation only) (non inheritable): enables the focus traversal of the control. In Windows the control will still get the focus
when clicked. Default: YES.

PROPAGATEFOCUS(non inheritable): enables the focus callback forwarding to the next native parent with FOCUS_CB defined. Default:
NO.

FITTOBACKIMAGE (non inheritable): enable the natural size to be computed from the BACKIMAGE. If BACKIMAGE is not defined will
be ignored. Can be Yes or No. Default: No.

FGCOLOR: Controls the handler color. Default: "0 120 220".

HLCOLOR: color used to indicate a highlight state. Pre-defined to "30 150 250". Can be set to NULL. If NULL FGCOLOR will be used
instead.

PSCOLOR: color used to indicate a press state. Pre-defined to "0 60 190". Can be set to NULL. If NULL FGCOLOR will be used instead.

HANDLERSIZE (non inheritable): handler size in the same direction of the ORIENTATION. Default: 0. When 0 it will be calculated with
half of the dimension opposite to the ORIENTATION. If IMAGE is used, it will be ignored. When IMAGE is not used is the handler size in
the opposite direction is the size of the element.

IMAGE (non inheritable): Image name for the handler. Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See
also IupImage. If defined the handler will be replaced by the image.

IMAGEHIGHLIGHT (non inheritable): Image name of the element in highlight state. If it is not defined then the IMAGE is used.

IMAGEINACTIVE (non inheritable): Image name of the element when inactive. If it is not defined then the IMAGE is used and its colors
will be replaced by a modified version creating the disabled effect.

IMAGEPRESS (non inheritable): Image name of the element in pressed state. If it is not defined then the IMAGE is used.

MAX: Contains the maximum valuator value. Default is "1". When changed the display will not be updated until VALUE is set.

MIN: Contains the minimum valuator value. Default is "0". When changed the display will not be updated until VALUE is set.

PAGESTEP: Controls the increment for PgDn and PgUp keys. It is not the size of the increment. The increment size is "pagestep*(max-
min)", so it must be 0<pagestep<1. Default is "0.1".

SIZE (non inheritable): The natural size is the height of one character in one direction and the width of 15 characters in the other.

SLIDERSIZE (non inheritable): slider size in the same direction of the ORIENTATION. Default: 5. Ignored when BACKIMAGE is used.

SLIDERBORDERCOLOR: slider border color. Default: "160 160 160".

SLIDERCOLOR: slider background color. Default: "220 220 220".

IUP - Portable User Interface 07-Jan-25

332/496

../elem/iupcanvas.html
../attrib/iup_bgcolor.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../attrib/iup_fgcolor.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../attrib/iup_size.html

STEP (non inheritable): Controls the increment for keyboard control and the mouse wheel. It is not the size of the increment. The
increment size is "step*(max-min)", so it must be 0<step<1. Default is "0.01".

ORIENTATION (creation only) (non inheritable): Informs whether the valuator is "VERTICAL" or "HORIZONTAL". Vertical valuators are
bottom to up, and horizontal valuators are left to right variations of min to max. Default: "HORIZONTAL".

VALUE (non inheritable): Contains a number between MIN and MAX, indicating the valuator position. Default: "0.0".

ACTIVE, EXPAND, FONT, SCREENPOSITION, POSITION, MINSIZE, MAXSIZE, WID, TIP, SIZE, ZORDER, VISIBLE, THEME: also
accepted.

Callbacks

Inherits all callbacks of the IupCanvas, but redefines a few of them. Including ACTION, BUTTON_CB, MOTION_CB, FOCUS_CB,
WHEEL_CB, LEAVEWINDOW_CB, and ENTERWINDOW_CB. To allow the application to use those callbacks the same callbacks are
exported with the "FLAT_" prefix using the same parameters, except the ACTION. They are all called before the internal callbacks and if
they return IUP_IGNORE the internal callbacks are not processed.

VALUECHANGED_CB: Called after the value was interactively changed by the user.

int function(Ihandle *ih); [in C]
ih:valuechanged_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

VALUECHANGING_CB: Called when the value starts or ends to be interactively changed by the user.

int function(Ihandle *ih, int start); [in C]
elem:valuechanging_cb(start: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
start: flag that indicates if the value started to be changed (1) or the change just ended (0).

MAP_CB, UNMAP_CB, DESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB, K_ANY, HELP_CB: All
common callbacks are supported.

Notes

Keyboard Mapping

This is the default mapping when ORIENTATION=HORIZONTAL.

Keys Action for HORIZONTAL

Right Arrow move right, increment by one step

Left Arrow move left, decrement by one step

Ctrl+Right Arrow or PgDn move right, increment by one page step

Ctrl+Left Arrow or PgUp move left, decrement by one page step

Home move all left, set to minimum

End move all right, set to maximum

This is the default mapping when ORIENTATION=VERTICAL.

Keys Action for VERTICAL

Up Arrow move up, increment by one step

Down Arrow move down, decrement by one step

Ctrl+Up Arrow or PgUp move up, increment by one page step

Ctrl+Down Arrow or PgDn move down, decrement by one page step

Home move all up, set to maximum

End move all down, set to minimum

Examples

Browse for Example Files

IUP - Portable User Interface 07-Jan-25

333/496

../attrib/iup_active.html
../attrib/iup_expand.html
../attrib/iup_font.html
../attrib/iup_screenposition.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_wid.html
../attrib/iup_tip.html
../attrib/iup_size.html
../attrib/iup_zorder.html
../attrib/iup_visible.html
../attrib/iup_theme.html
../elem/iupcanvas.html
../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_getfocus_cb.html
../call/iup_killfocus_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
../call/iup_k_any.html
../call/iup_help_cb.html
../../examples/

IupControls

Additional Controls Library

Several additional controls are included in this library. These controls are drawn by IUP using CD on a IupCanvas control, and are not
native controls.

The iupcontrols.h file must be included in the source code. If you plan to use the control in Lua, you should also include
iupluacontrols.h.

The IupControlsOpen function must be called after IupOpen. To make the controls available in Lua use require"iupluacontrols" or
manually call the initialization function in C, iupcontrolslua_open, after calling iuplua_open.

When manually calling the function your application must be linked to the control library (iupcontrols), the CD_IUP driver (iupcd), and
with the CD library (cd). To use its bindings to Lua, the program must also be linked to the iupluacontrols library.

IupCells
Creates a grid widget (set of cells) that enables several application-specific drawing, such as: chess tables, tiles editors, degrade scales,
drawable spreadsheets and so forth.

This element is mostly based on application callbacks functions that determine the number of cells (rows and columns), their appearance
and interaction. This mechanism offers full flexibility to applications, but requires programmers attention to avoid infinite loops inside this
functions. Using callbacks, cells can be also grouped to form major or hierarchical elements, such as headers, footers etc. This callback
approach was intentionally chosen to allow all cells to be dynamically and directly changed based on application's data structures. Since
the size of each cell is given by the application the size of the control also must be given using SIZE or RASTERSIZE attributes.

This is an additional control that depends on the CD library. It is included in the IupControls library.

It inherits from IupCanvas.

Originally implemented by André Clinio.

Creation

Ihandle* IupCells(void); [in C]
iup.cells{} -> (ih: ihandle) [in Lua]
cells() [in LED]

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

BOXED: Determines if the bounding cells' regions should be drawn with black lines. It can be "YES" or "NO". Default: "YES". If the span
attributes are used, set this attribute to "NO" to avoid grid drawing over spanned cells.

BUFFERIZE: Disables the automatic redrawing of the control, so many attributes can be changed without many redraws. When set to
"NO" the control is redrawn. When REPAINT attribute is set, BUFFERIZE is automatically set to "NO". Default: "NO".

CANVAS (read-only) (non inheritable): Returns the internal IUP CD canvas. This attribute should be used only in specific cases and by
experienced CD programmers.

CLIPPED: Determines if, before cells drawing, each bounding region should be clipped. This attribute should be changed in few specific
cases. It can be "YES" or "NO". Default: "YES".

FIRST_COL (read-only) (non inheritable): Returns the number of the first visible column.

FIRST_LINE (read-only) (non inheritable): Returns the number of the first visible line.

FULL_VISIBLE (write-only) (non inheritable): Tries to show completely a specific cell (considering any vertical or horizontal header or
scrollbar position) .This attribute is set by a formatted string "%d:%d" (C syntax), where each "%d" represent the line and column integer
indexes respectively.

IMAGE_CANVAS (read-only) (non inheritable): Returns the internal image CD canvas. This attribute should be used only in specific
cases and by experienced CD programmers.

LIMITSL:C (read-only) (non inheritable): Returns the limits of a given cell. Input format is "lin:col" or "%d:%d" in C. Output format is
"xmin:xmax:ymin:ymax" or "%d:%d:%d:%d" in C.

IUP - Portable User Interface 07-Jan-25

334/496

http://www.tecgraf.puc-rio.br/cd
elem/iupcanvas.html
http://www.tecgraf.puc-rio.br/cd
../iupcontrols.html
../elem/iupcanvas.html

NON_SCROLLABLE_LINES: Determines the number of non-scrollable lines (vertical headers) that should always be visible despite the
vertical scrollbar position. It can be any non-negative integer value. Default: "0"

NON_SCROLLABLE_COLS: Determines the number of non-scrollable columns (horizontal headers) that should always be visible despite
the horizontal scrollbar position. It can be any non-negative integer value. Default: "0"

ORIGIN: Sets the first visible line and column positions. This attribute is set by a formatted string "%d:%d" (C syntax), where each "%d"
represent the line and column integer indexes respectively.

REPAINT(write-only) (non inheritable): When set with any value, provokes the control to be redrawn.

SIZE (non inheritable): there is no initial size. You must define SIZE or RASTERSIZE.

SCROLLBAR (creation only): Default: "YES".

ACTIVE, BGCOLOR, FONT, SCREENPOSITION, POSITION, MINSIZE, MAXSIZE, WID, TIP, SIZE, RASTERSIZE, ZORDER, VISIBLE: also
accepted.

Callbacks

DRAW_CB: called when a specific cell needs to be redrawn.

int function(Ihandle* ih, int line, int column, int xmin, int xmax, int ymin, int ymax, cdCanvas* canvas); [in C]
ih:draw_cb(line, column, xmin, xmax, ymin, ymax: number, canvas: cdCanvas) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
line, column: the grid position inside the control that is being redrawn, in grid coordinates.
xmin, xmax, ymin, ymax: the raster bounding box of the redrawn cells, where the application can use CD functions to draw
anything. If the attribute IUP_CLIPPED is set (the default), all CD graphical primitives is clipped to the bounding region. Y coordinates
are oriented bottom to top as in CD.
canvas: internal canvas CD used to draw the cells.

HEIGHT_CB: called when the controls needs to know a (eventually new) line height.

int function(Ihandle* ih, int line); [in C]
ih:height_cb(line: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
line: the line index

Returns: an integer that specifies the desired height (in pixels). Default is 30 pixels.

HSPAN_CB: called when the control needs to know if a cell should be horizontally spanned.

int function(Ihandle* ih, int line, int column); [in C]
ih:hspan_cb(line, column: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
line, column: the line and column indexes (in grid coordinates)

Returns: an integer that specifies the desired span. Default is 1 (no span).

MOUSECLICK_CB: called when the mouse is clicked over a cell.

int function(Ihandle* ih, int button, int pressed, int line, int column, int x, int y, char* status); [in C]
ih:mouseclick_cb(button, pressed, line, column, x, y: number, string: status) -> (ret: number) [in Lua]

Same as the BUTTON_CB IupCanvas callback with two additional parameters:

line, column: the grid position in the control where the event has occurred, in grid coordinates.
But Y coordinates are oriented bottom to top as in CD.

MOUSEMOTION_CB: called when the mouse moves over the control.

int function(Ihandle *ih, int line, int column, int x, int y, char *r); [in C]
ih:mousemotion_cb(x, y: number, r: string) -> (ret: number) [in Lua]

Same as the MOTION_CB IupCanvas callback with two additional parameters:

line, column: the grid position in the control where the event has occurred, in grid coordinates.
But Y coordinates are oriented bottom to top as in CD.

NCOLS_CB: called when then controls needs to know its number of columns.

IUP - Portable User Interface 07-Jan-25

335/496

../attrib/iup_size.html
../attrib/iup_scrollbar.html
../attrib/iup_active.html
../attrib/iup_bgcolor.html
../attrib/iup_font.html
../attrib/iup_screenposition.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_wid.html
../attrib/iup_tip.html
../attrib/iup_size.html
../attrib/iup_rastersize.html
../attrib/iup_zorder.html
../attrib/iup_visible.html
../call/iup_button_cb.html
../call/iup_motion_cb.html

int function(Ihandle* ih); [in C]
ih:ncols_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

Returns: an integer that specifies the number of columns. Default is 10 columns.

NLINES_CB: called when then controls needs to know its number of lines.

int function(Ihandle* ih); [in C]
ih:nlines_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

Returns: an integer that specifies the number of lines. Default is 10 lines.

SCROLLING_CB: called when the scrollbars are activated.

int function(Ihandle* ih, int line, int column); [in C]
ih:scrolling_cb(line, column: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
line, column: the first visible line and column indexes (in grid coordinates)

Returns: If IUP_IGNORE the cell is not redrawn. By default the cell is always redrawn.

VSPAN_CB: called when the control needs to know if a cell should be vertically spanned.

int function(Ihandle* ih, int line, int column); [in C]
ih:vspan_cb(line, column: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
line, column: the line and column indexes (in grid coordinates)

Returns: an integer that specifies the desired span. Default is 1 (no span).

WIDTH_CB: called when the controls needs to know the column width

int function(Ihandle* ih, int column); [in C]
ih:width_cb(column: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
column: the column index

Returns: an integer that specifies the desired width (in pixels). Default is 60 pixels.

MAP_CB, UNMAP_CB, DESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB, K_ANY, HELP_CB: All
common callbacks are supported.

Utility Functions

These functions can be used to help set and get attributes from the control:

void IupSetAttributeId2(Ihandle* ih, const char* name, int lin, int col, const char* value);
char* IupGetAttributeId2(Ihandle* ih, const char* name, int lin, int col);
int IupGetIntId2(Ihandle* ih, const char* name, int lin, int col);
float IupGetFloatId2(Ihandle* ih, const char* name, int lin, int col);
void IupSetfAttributeId2(Ihandle* ih, const char* name, int lin, int col, const char* format, ...);
void IupSetIntId2(Ihandle* ih, const char* name, int lin, int col, int value);
void IupSetFloatId2(Ihandle* ih, const char* name, int lin, int col, float value);

IupSetAttribute(ih, "30:10", value) => IupSetAttributeId2(ih, "", 30, 10, value)
IupSetAttribute(ih, "BGCOLOR30:10", value) => IupSetAttributeId2(ih, "BGCOLOR", 30, 10, value)
IupSetAttribute(ih, "ALIGNMENT10", value) => IupSetAttributeId(ih, "ALIGNMENT", 10, value)

When one of the indices is the asterisk, use IUP_INVALID_ID as the parameter. For ex:

IupSetAttribute(ih, "BGCOLOR30:*", value) => IupSetAttributeId2(ih, "BGCOLOR", 30, IUP_INVALID_ID, value)

These functions are faster than the traditional functions because they do not need to parse the attribute name string and the application
does not need to concatenate the attribute name with the id.

IUP - Portable User Interface 07-Jan-25

336/496

../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_getfocus_cb.html
../call/iup_killfocus_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
../call/iup_k_any.html
../call/iup_help_cb.html

Examples

Browse for Example Files

Checkerboard Pattern

Numbering Cells

See Also

IupCanvas

action_cb: Name of the action generated when the user types something.

Returns the identifier of the created matrix, or NULL if an error occurs.

Attributes

See General Attributes

See Cell Attributes

See Column Attributes

See Size Attributes

IUP - Portable User Interface 07-Jan-25

337/496

../../examples/
../elem/iupcanvas.html
iupmatrix_attrib.html#General_Attributes
iupmatrix_attrib.html#Cell_Attributes
iupmatrix_attrib.html#Column_Attributes
iupmatrix_attrib.html#Size_Attributes

See Column Size Attributes

See Line Size Attributes

See Number of Cells Attributes

See Mark Attributes Attributes

See Merge Attributes Attributes

See Action Attributes Attributes

See Editing Attributes Attributes

See Text Editing Attributes Attributes

See Canvas Attributes Attributes

Callbacks

Interaction

ACTION_CB - Action generated when a keyboard event occurs.
CLICK_CB - Action generated when any mouse button is pressed over a cell.
COLRESIZE_CB: Action generated when a column is interactively resized.
RELEASE_CB - Action generated when any mouse button is released over a cell.
RESIZEMATRIX_CB: Action generated after the element size has been updated but before the cells have been actually refreshed.
TOGGLEVALUE_CB: Action generated when a toggle button is pressed.
VALUECHANGED_CB: Called after the value was interactively changed by the user or after a group of values where programmatically
changed in a single operation.
MOUSEMOVE_CB - Action generated to notify the application that the mouse has moved over the matrix.
ENTERITEM_CB - Action generated when a matrix cell is selected, becoming the current cell.
LEAVEITEM_CB - Action generated when a cell is no longer the current cell.
SCROLLTOP_CB - Action generated when the matrix is scrolled with the scrollbars or with the keyboard.

Drawing

BGCOLOR_CB - Action generated to retrieve the background color of a cell when it needs to be redrawn.
FGCOLOR_CB - Action generated to retrieve the foreground color of a cell when it needs to be redrawn.
FONT_CB - Action generated to retrieve the font of a cell when it needs to be redrawn.
TYPE_CB: Action generated to retrieve the type of a cell value.
DRAW_CB - Action generated before the cell is drawn. Allow a custom cell draw.
DROPCHECK_CB - Action generated to determine if a dropdown feedback should be shown.
TRANSLATEVALUE_CB: Action generated to translate the value of a cell during display and size computation.

Editing

DROP_CB - Action generated to determine if a text field or a dropdown will be shown.
MENUDROP_CB - Action generated to determine if a popup menu will be shown.
DROPSELECT_CB - Action generated when an element in the dropdown list is selected.
EDITION_CB - Action generated when the current cell enters or leaves the edition mode.

Callback Mode

VALUE_CB - Action generated to verify the value of a cell.
VALUE_EDIT_CB - Action generated to notify the application that the value of a cell was edited.
MARK_CB - Action generated to verify the selection state of a cell.
MARKEDIT_CB - Action generated to notify the application that the selection state of a cell was changed.

Utility Functions

These functions can be used to help set and get attributes from the matrix:

void IupSetAttributeId2(Ihandle* ih, const char* name, int lin, int col, const char* value);
char* IupGetAttributeId2(Ihandle* ih, const char* name, int lin, int col);
int IupGetIntId2(Ihandle* ih, const char* name, int lin, int col);
float IupGetFloatId2(Ihandle* ih, const char* name, int lin, int col);
void IupSetfAttributeId2(Ihandle* ih, const char* name, int lin, int col, const char* format, ...);
void IupSetIntId2(Ihandle* ih, const char* name, int lin, int col, int value);
void IupSetFloatId2(Ihandle* ih, const char* name, int lin, int col, float value);

IUP - Portable User Interface 07-Jan-25

338/496

iupmatrix_attrib.html#Column_Size_Attributes
iupmatrix_attrib.html#Line_Size_Attributes
iupmatrix_attrib.html#Number_of_Cells_Attributes
iupmatrix_attrib.html#Mark_Attributes
iupmatrix_attrib.html#Merg_Attributes
iupmatrix_attrib.html#Action_Attributes
iupmatrix_attrib.html#Editing_Attributes
iupmatrix_attrib.html#Text_Editing_Attributes
iupmatrix_attrib.html#Canvas_Attributes
iupmatrix_cb.html#ACTION_CB
iupmatrix_cb.html#CLICK_CB
iupmatrix_cb.html#COLRESIZE_CB
iupmatrix_cb.html#DRAW_CB
iupmatrix_cb.html#RELEASE_CB
iupmatrix_cb.html#RESIZEMATRIX_CB
iupmatrix_cb.html#TOGGLEVALUE_CB
iupmatrix_cb.html#VALUECHANGED_CB
iupmatrix_cb.html#DRAW_CB
iupmatrix_cb.html#MOUSEMOVE_CB
iupmatrix_cb.html#ENTERITEM_CB
iupmatrix_cb.html#LEAVEITEM_CB
iupmatrix_cb.html#SCROLL_CB
iupmatrix_cb.html#BGCOLOR_CB
iupmatrix_cb.html#FGCOLOR_CB
iupmatrix_cb.html#FONT_CB
iupmatrix_cb.html#TYPE_CB
iupmatrix_cb.html#DRAW_CB
iupmatrix_cb.html#DROPCHECK_CB
iupmatrix_cb.html#TRANSLATEVALUE_CB
iupmatrix_cb.html#DROP_CB
iupmatrix_cb.html#MENUDROP_CB
iupmatrix_cb.html#DROPSELECT_CB
iupmatrix_cb.html#EDITION_CB
iupmatrix_cb.html#VALUE_CB
iupmatrix_cb.html#VALUE_EDIT_CB
iupmatrix_cb.html#MARK_CB
iupmatrix_cb.html#MARKEDIT_CB

They work just like the respective traditional set and get functions. But the attribute string is complemented with the L and C values. When
only one value is needed then use the Iup*AttributeId functions. For ex:

IupSetAttribute(ih, "30:10", value) => IupSetAttributeId2(ih, "", 30, 10, value)
IupSetAttribute(ih, "BGCOLOR30:10", value) => IupSetAttributeId2(ih, "BGCOLOR", 30, 10, value)
IupSetAttribute(ih, "ALIGNMENT10", value) => IupSetAttributeId(ih, "ALIGNMENT", 10, value)

When one of the indices is the asterisk, use IUP_INVALID_ID as the parameter. For ex:

IupSetAttribute(ih, "BGCOLOR30:*", value) => IupSetAttributeId2(ih, "BGCOLOR", 30, IUP_INVALID_ID, value)

These functions are faster than the traditional functions because they do not need to parse the attribute name string and the application
does not need to concatenate the attribute name with the id.

They are used by the additional methods in Lua:

ih:setcell(lin, col: number, value: string)
ih:getcell(lin, col: number) -> (cell: string)

But you can also use the traditional functions when typing:

ih["bgcolor"..l..":"..c] = v
 or
ih["bgcolor30:10"] = v

void IupMatrixSetFormula(Ihandle* ih, int col, const char* formula, const char* init); [in C]
iup.MatrixSetFormula(ih: ihandle, col: number, formula: string, [init: string]) [in Lua]
or ih:SetFormula(col: number, formula: string, [init: string]) [in Lua]

Fill the contents of the given column using the formula (since 3.13). The formula is executed for each line within the column. Internally
uses Lua to parse the formula. init is an optional Lua initialization code that is called only once (can be NULL). The callback "int
FORMULAINIT_CB(Ihandle* ih, lua_State *L);" can also be used to initialize the Lua state. All Lua standard libraries are pre-loaded.

This function is available in the "iupluacontrols" library but it does not requires an active Lua context, because it uses a temporary Lua
context. If called from Lua it will also be independent from the application's Lua context. To use it in C/C++ you must link also with Lua
and iuplua even when not using theses libraries directly.

The formula will be encapsulated within an internal Lua function so it will not affect the call of subsequent cells. This internal function
receives two parameters "lin" and "col" correspondent to the current cell being processed during script execution. The formula can contain
only one valid Lua statement that will be retuned by the internal Lua function. The formula can evaluate to nil, number, boolean or a
string.

The most commonly used tokens are:

+ (addition)
- (subtraction and negation)
* (multiplication)
/ (division)
% (modulo)
^ (exponentiation)
== (equal)
~= (different)
< (less than)
> (greater than)
<= (less than or equal)
>= (greater than or equal)
and (logical and)
or (logical or)
not (logical not)

The Lua Math Functions are loaded also at the global level, so there is no need for the "math." prefix. The most commonly used functions
are:

abs(x) acos(x) asin(x) atan(x) atan2(y,x) ceil(x) cos(x)
deg(x) exp(x) floor(x) log(x) min(x,...) max(x,...) pow(x,y)
sin(x) sqrt(x) tan(x)

There are also some exclusive functions to access cell values and perform special operations:

sum(x,...) - computes the sum of the input paramters.
average(x,...) - computes the average of the input paramters.
range(lin1, col1, lin2, col2[, only_number]) - returns a range of cell values.

IUP - Portable User Interface 07-Jan-25

339/496

http://www.lua.org
http://www.lua.org/manual/5.2/manual.html#6.6

 Can be used in functions like min, max, sum and average.
 If only_number boolean is used then only numbers are included,
 and others are skipped.
cell(lin, col) - returns the cell value at given line and column.
ifelse(test, value_true, value_false) - if test boolean is true then return value_true,
 if not return value_falseor else.
 The problem with ifelse is that both values are evaluated before calling the function.
 In Lua the solution is to use logical operators:
 test and value_true or value_false
 (but value_true can not be false)
 See http://lua-users.org/wiki/TernaryOperator

If the attribute CELLNAMES is set to "Excel" or "Matrix" (default "No") then it will enable cell names to be used as alternative for "cell(lin,
col)". There are two notations available: the Matrix "L123C123" notation where L and C are fixed and 123s are the line and columns
numbers; and the Excel "ABC123" notation where 123 denotes the line number and ABC denotes the column number just like in Microsoft
Excel. (since 3.14) Obs: there is not support for cell range like "A1:B2" in Excel.

Some formula examples:

"cos(pi*lin/4)"
"cell(lin, 1) + cell(lin, 2)"
"cell(lin, 4) < 3" -- cell value will be 0 or 1
"sum(range(lin, 1, lin, 7))"
"cell('x', 1)" -- error

void IupMatrixSetDynamic(Ihandle* ih, const char* init); [in C]
iup.MatrixSetDynamic(ih: ihandle, [init: string]) [in Lua]
or ih:SetDynamic([init: string]) [in Lua]

Enable dynamic cell values using formulas (since 3.13). It uses the TRANSLATEVALUE_CB callback to process strings just before the
value is displayed, if the string starts with a equal sign ("=") then it is interpreted as a formula using the same features and rules as the
IupMatrixSetFormula function above. If the value is being edited the callback will return the original value so the formula can be
edited.

Internally also uses Lua to parse the formula. init is an optional Lua initialization code that is called only once (can be NULL), at the
function call. The callback "int FORMULAINIT_CB(Ihandle* ih, lua_State *L);" can also be used to initialize the Lua state, at the function
call. A ll Lua standard libraries are pre-loaded.

This Lua state is initialize at the function call and saved for processing during the TRANSLATEVALUE_CB callback. If IupMatrixSetDynamic
is called again then the previous state will be destroyed and a new one will be created. This state is automatically destroyed when the
control is destroyed.

This function is available in the "iupluacontrols" library but it does not requires an active Lua context, because it uses a temporary Lua
context. If called from Lua it will also be independent from the application's Lua context. To use it in C/C++ you must link also with Lua
and iuplua even when not using theses libraries directly.

If the cell has a formula, i.e. starts with the equal sign, and the attribute EDITHIDEONFOCUS is NO, then during editing the user can click
on another cell to insert a reference to its value in the format "cell(lin,col)". If CELLNAMES is enabled then the respective cell name will be
used instead of the "cell" function call. Selecting a range of cells it will insert a "range(lin1,col1,lin2,col2)" call instead (there is no special
notation for a range). (since 3.14)

Notes

Storage

Before mapped to the native system, all attributes are stored in the hash table, independently from the size of the matrix or its operation
mode. The action attributes like ADDLIN and DELCOL will NOT work.

When the matrix is mapped, and it is NOT in callback mode, then the cell values and mark state are moved from the hash table to an
internal storage at the matrix. Other cell attributes remains on the hash table. Cell values with indices greater than (NUMLIN,NUMCOL) are
ignored. When in callback mode cell values stored in the hash table are ignored.

Callback Mode

Very large matrices can use the callback mode to store the cell values at the application, and not at the internal matrix storage. The idea is
the following:

1 - Register the VALUE_CB callback
2 - No longer set the value of the cells. Store the cell value at the application. They will be retrieved one by one by the callback.
3 - If the matrix can be edited, set the VALUE_EDIT_CB callback.
4 - When the matrix display must be updated, use the REDRAW attribute to force a matrix redraw.

A negative aspect is that, when VALUE_CB is defined, after it is mapped the matrix never verifies attributes of type L:C again.

If VALUE_CB is defined and VALUE_EDIT_CB is not defined when the matrix is mapped then READONLY will be set to YES.

IUP - Portable User Interface 07-Jan-25

340/496

http://lua-users.org/wiki/TernaryOperatorhttp://lua-users.org/wiki/TernaryOperator
http://www.lua.org

Number of Cells

If you do not plan to use ADDLIN nor ADDCOL, and plan to set sparse cell values, then you must set NUMLIN and NUMCOL before
mapping.

Titles

A matrix might have titles for lines and columns. Titles are always non scrollable, non editable and presented with a different default
background color. A matrix will have a line of titles if an attribute of the "L:0" type is defined, where L is a line number, or if the HEIGHT0
attribute is defined. It will have a column of titles if an attribute of the "0:C" type is defined, where C is a column number, or if the
WIDTH0 attribute is defined.

When allowed the width of a column can be changed by holding and dragging its title right border, see RESIZEMATRIX.

Any cell can have more than one text line, just use the \n control character. Multiple text lines will be considered when calculating the title
cell size based on its contents. The contents of ordinary cells (not a title) do not affect the cell size.

Natural Size

The Natural size is calculated using only the title cells size plus the size of NUMCOL_VISIBLE and NUMLIN_VISIBLE cells, but it is also
affected if SCROLBAR is enabled. The natural height is the sum of the line heights from line 0 to NUMLIN_VISIBLE (inclusive). The natural
width is the sum of the column width from column 0 to NUMCOL_VISIBLE (inclusive). Notice that since NUMCOL_VISIBLE and
NUMLIN_VISIBLE do not include the titles then NUMCOL_VISIBLE+1 columns and NUMLIN_VISIBLE+1 lines are included in the sum.

The height of a line L depends on several attributes, first it checks the HEIGHTL attribute, then checks RASTERHEIGHTL, then when
USETITLESIZE=YES or not in callback mode the height of the title text for the line or if L=0 it searches for the highest column title, if still
could not define a height then if L!=0 it will use HEIGHTDEF, if L=0 then height will be 0.

A similar approach is valid for the column width. The width of a column C first checks the WIDTHC attribute, then checks
RASTERWIDTHC, then when USETITLESIZE=YES or not in callback mode the width of the title text for the column or if C=0 it searches
for the widest line title, if still could not define a width then if C!=0 it will use WIDTHDEF, if C=0 then height will be 0.

Virtual Size

When the scrollbars are enabled if the matrix area is greater than the visible area then scrollbars will be displayed so the cells can be
scrolled to be visible area. When dragging the scrollbar the position of cells is free, when clicking on its buttons it will move in cell steps,
aligning to the left border of the cell.

By default EXPAND=Yes, so matrix will be automatically resized when the dialog is resized. So more columns and lines will be displayed.
But the matrix Natural size will be used as minimum size. To remove the minimum size limitation set NUMCOL_VISIBLE and
NUMLIN_VISIBLE to 0 after showing it for the first time.

The RESIZEMATRIX_CB callback can be used to dynamically change columns or lines sizes when the matrix is resized by setting
FITTOSIZE accordingly.

Edition Mode

When READONLY=NO and there is no EDITION_CB callback or the callback return is IUP_DEFAULT, the matrix cell values can be edited.

Editing starts automatically when the user press a character key when the focus is at a cell, then the old cell value is replaced by the new
one being typed. If F2, Enter or Space is pressed, the current cell enters the edition mode with the current text of the cell. And double-
clicking a cell enters the edition mode (in Motif the user must click again to the edit control get the focus).

The new value will be accepted if the user press Enter during edition mode. Pressing Esc will cancel the editing and the the old value
remains. The cell will also leave the edition mode if the user clicked in another cell or in another control, then the new value will be
automatically accepted. But the value confirmation still depends on the EDITION_CB callback return code.

Keyboard Navigation

Keyboard navigation through the matrix cells outside the edition mode is done by using the following keys:

Arrows: Moves the focus to the next cell, according to the arrows direction.
Page Up and Page Down: Moves a visible page up or down.
Home: Moves the focus to the fist column in the line.
Home Home: Moves the focus to the top-left corner of the visible page.
Home Home Home: Moves the focus to the top-left corner of the first page of the matrix.
End: Moves the focus to the last column in the line.
End End: Moves the focus to the bottom-right corner of the visible page.
End End End: Moves the focus to the bottom-right corner of the last page in the matrix.

When using the keyboard to change the focus cell if the limit of the visible area is reached then the cells are automatically scrolled. Also if
a cell partially visible is edited then first it is scrolled to the visible area. Also while pressing together the Shift key and marks are enabled
with MARKMULTIPLE=Yes then a continuous area will be selected (since 3.9).

Inside the edition mode, the following keys are used for a text field:

IUP - Portable User Interface 07-Jan-25

341/496

Left, Right, Up and Down arrows: if the caret is at the extremes of the text being edited then leave the edition mode and
moves the focus accordingly. The value is confirmed.
Ctrl + arrows: leave the edition mode and moves the focus accordingly independent of caret position. The value is confirmed.
Enter: leave the edition mode. The value is confirmed. Moves the focus to the cell below.
Esc: leave the edition mode. The new value is ignored and the old value remains.

When pressing Enter to confirm the value the focus goes to the cell below the current cell, if at the last line then the focus goes to the cell
on the left. This can be controlled using the EDITNEXT attribute.

Marks (Selected Cells)

When a mark mode is set the cells can be marked using mouse.

A marked cell will have its background attenuated to indicate that it is marked. A title cell appears marked only when MARKMODE=LIN,
COL or LINCOL.

Cells can be selected individually or can be restricted to lines or columns. Also multiple cells can be marked simultaneously in continuous
or in segmented areas. Lines and columns are marked only when the user clicks in their respective titles, if MARKMODE=CELL then all the
cells of the line or column will be marked. Continuous areas are marked holding and dragging the mouse or holding the Shift key when
clicking at the end of the area. Segmented areas are marked or unmarked holding the Ctrl key, the mark state is inverted. Clicking on the
cell 0:0 will select all the cells depending on MARKMODE, except for LINCOL.

When there are cells marked, pressing the Del key remove the selected cells contents.

IupMatrixEx

For more features, like Import/Export, Clipboard, Undo/Redo, Search, Sort, Column Visibility, Numeric Columns, Numeric, Context Menu
and others, see the IupMatrixEx extension library.

Examples

Browse for Example Files

See Also

IupCanvas, IupMatrixEx

IupMatrix Attributes (all non inheritable, with exceptions)

General Attributes

CURSOR: Default cursor used by the matrix. The default cursor is a symbol that looks like a cross. If you need to refer to this default
cursor, use the name "IupMatrixCrossCursor".

DROPIMAGE: drop image name. Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See also IupImage. By
default an internal image will be used. (since 3.16)

FOCUSCELL: Defines the current cell. Two numbers in the "L:C" format, (L>0 and C>0, a title cell can NOT be the current cell).
Default: "1:1".

FLAT: removes the 3D appearance from the matrix. (since 3.25)

FLATSCROLLBAR: enable the flat scrollbars. Can be set only before map. SCROLLBAR is set to NO. Can be Yes, Vertical or Horizontal.
Default: not defined. (since 3.22)

HIDEFOCUS: do not show the focus mark when drawing the matrix. Default is NO.

HIDDENTEXTMARKS: when text is greater than cell space, it is normally cropped, but when set to YES a "..." mark will be added at the
crop point to indicate that there is more text not visible. Default: NO. (since 3.1)

HLCOLOR: the overlay color for the selected cells. Default: TXTHLCOLOR global attribute. If set to "" will only use the attenuation
process. The color is composited using HLCOLORALPHA attribute as alpha value (default is 128). (since 3.16)

IUP - Portable User Interface 07-Jan-25

342/496

iupmatrixex.html
../../examples/
../elem/iupcanvas.html
iupmatrixex.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../attrib/iup_flatscrollbar.html

ORIGIN: Scroll the visible area to the given cell. Returns the cell at the top-left corner. To scroll to a line or a column, use a value such as
"L:*" or "*:C" (where L>0 and C>0). L and C can not be a non scrollable cell either.

ORIGINOFFSET: complements the ORIGIN attribute by specifying the drag offset of the top left cell. Returns the current value. Has the
format "X:Y" or "%d:%d" in C. When changing this attribute must change also ORIGIN right after. (since 3.5)

READONLY: disables the editing of all cells. EDITION_CB and VALUE_EDIT_CB will not be called anymore. The L:C attribute will still be
able to change the cell value. (since 3.0)

SHOWFILLVALUE: enable the display of the numeric percentage in the cell when TYPE* is FILL. Default: NO. (since 3.9)

TOGGLECENTERED: center the toggle and use the cell value in place of TOGGLEVALUEL:C. No text will be drawn. (since 3.16)

TOGGLEIMAGEON/TOGGLEIMAGEOFF: toggle image name. Use IupSetHandle or IupSetAttributeHandle to associate an image to a
name. See also IupImage. By default an internal image will be used. (since 3.16)

TYPECOLORINACTIVE: when inactive the color of the cell for TYPE*=COLOR will be attenuated as everything else. Default: Yes. (since
3.19)

ACTIVE, EXPAND, FONT, SCREENPOSITION, POSITION, MINSIZE, MAXSIZE, WID, TIP, SIZE, RASTERSIZE, ZORDER, VISIBLE: also
accepted.

Cell Attributes (no redraw)

(These attributes are only updated in the display when you set the REDRAW attribute.)

L:C: Text of the cell located in line L and column C, where L and C are integer numbers.
L:0: Title of line L.
0:C: Title of column C.
0:0: Title of the area between the line and column titles.

These are valid only in normal mode.

ALIGNL:C: A lignment of the cell value in line L and column C. Values are in the format: "linalign:colalign", where linalign can be "ATOP",
"ACENTER" or "ABOTTOM", and colalign can be "ALEFT", "ACENTER" or "ARIGHT". Default will use ALIGNMENT* and LINEALIGMENT*.
(Since 3.16)

TYPEL:C: Type of the cell value in line L and column C. (Since 3.9)
TYPE*:C: Type of column C. (Since 3.9)
TYPEL:*: Type of line L. (Since 3.9)

Can be TEXT, COLOR, FILL, or IMAGE. When type is COLOR the cell value is interpreted as a color and a rectangle with the color is
drawn inside the cell instead of the text (the FGCOLOR of the cell is ignored). When type is FILL the cell value is interpreted as
percentage and a rectangle showing the percentage in the FGCOLOR is drawn like in IupGauge and IupProgressBar. When type is
IMAGE the cell value is interpreted as an image name, and if an image exist with that name is drawn (the name can NOT be of a
Windows resource or GTK stock image). Only TEXT and IMAGE are affected by alignment attributes. Default: TEXT. (Since 3.9)

BGCOLOR: Background color of the matrix. (inheritable)
BGCOLOR*:C: Background color of column C.
BGCOLORL:*: Background color of line L.
BGCOLORL:C: Background color of the cell in line L and column C.

When more than one attribute are defined, the background color will be selected following this priority: BGCOLORL:C, BGCOLORL:*,
BGCOLOR*:C, and last BGCOLOR. (L or C >= 0)
Default BGCOLOR is the global attribute TXTBGCOLOR for cells and the parent's BGCOLOR for titles.
Since the matrix control can be larger than the matrix itself, the empty area will always be filled with the parent's BGCOLOR.

FGCOLOR: Text color. (inheritable)
FGCOLOR*:C: Text color of column C.
FGCOLORL:*: Text color of line L.
FGCOLORL:C: Text color of the cell in line L and column C.

When more than one attribute are define, the text color of a cell will be selected following this priority: FGCOLORL:C, FGCOLORL:*,
FGCOLOR*:C, and last FGCOLOR. (L or C >= 0)
Default FGCOLOR is the global attribute TXTFGCOLOR for cells or the global attribute DLGFGCOLOR for titles.

FONT: Character font of the text. (inheritable)
FONTL:*: Text font of the cells in line L.
FONT*:C: Text font of the cells in column C.
FONTL:C: Text font of the cell in line L and column C.

This attribute must be set before the control is showed. It affects the calculation of the size of all the matrix cells. The cell size is
always calculated from the base FONT attribute. FONTSTYLEL:C and FONTSIZEL:C can also be used to set FONT changing only the
font style or size (since 3.21).

FRAMECOLOR: Sets the color to be used in the frame lines. (inheritable)
FRAMEVERTCOLORL:C: Color of the vertical right frame line of the cell. When not defined the FRAMEVERTCOLOR*:C is used. For a
title column cell (col=0) defines right and left frames, except if FRAMETITLEVERTCOLORL:C is defined. If value is "BGCOLOR" the frame

IUP - Portable User Interface 07-Jan-25

343/496

../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../attrib/iup_active.html
../attrib/iup_expand.html
../attrib/iup_font.html
../attrib/iup_screenposition.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_wid.html
../attrib/iup_tip.html
../attrib/iup_size.html
../attrib/iup_rastersize.html
../attrib/iup_zorder.html
../attrib/iup_visible.html
../attrib/iup_font.html

line is not drawn.
FRAMEVERTCOLOR*:C: same as FRAMEVERTCOLORL:C but for all the cells of the column C. When not defined the FRAMECOLORL:C
is used. (since 3.5)
FRAMEVERTCOLORL:*: same as FRAMEVERTCOLORL:C but for all the cells of the line L. When not defined the FRAMECOLOR*:C is
used. (since 3.28)
FRAMETITLEVERTCOLORL:0: color of the vertical left frame line of the cell. When not defined the FRAMEVERTCOLORL:0 is used. "L"
can also be "*" (since 3.22)
FRAMEHORIZCOLORL:C: color of the horizontal bottom frame line of the cell. When not defined the FRAMEHORIZCOLORL:* is used.
For a title line cell (lin=0) defines bottom and top frames, except if FRAMETITLEHORIZCOLORL:C is defined. If value is "BGCOLOR" the
frame line is not drawn.
FRAMEHORIZCOLORL:*: same as FRAMEHORIZCOLORL:C but for all the cells of the line L. When not defined the FRAMECOLORL:C is
used. (since 3.5)
FRAMEHORIZCOLOR*:C: same as FRAMEHORIZCOLORL:C but for all the cells of the column C. When not defined the
FRAMECOLORL:* is used. (since 3.28)
FRAMETITLEHORIZCOLOR0:C: color of the horizontal top frame line of the cell. When not defined the FRAMEHORIZCOLOR0:C is
used. "C" can also be "*". (since 3.22)

FRAMETITLEHIGHLIGHT: by default the title cells will have a bright line at left and top to configure a raise appearance. Can be Yes or
No. Default: Yes. (since 3.9)

FRAMEBORDER: show a fixed border (non scrollable) of 1 pixel around the matrix visible area using FRAMECOLOR. It is drawn after the
matrix cells are drawn. Drawn only when the scrollbars are visible, and only up to matrix total size. Default: No. (since 3.20)

RESIZEMATRIXCOLOR: color used by the column resize feedback. Default: "102 102 102". (Since 3.9)

TOGGLEVALUEL:C : value of the toggle inside the cell. The toggle is shown only if the DROPCHECK_CB returns IUP_CONTINUE for the
cell. When the toggle is interactively change the TOGGLEVALUE_CB callback is called. (Since 3.9)

VALUE: A llows setting or verifying the value of the current cell. Is the same as obtaining the current cell line and column from
FOCUSCELL attribute, and then using them to access the "L:C" attribute. But when updated or retrieved during cell editing, the edit control
will be updated or consulted instead of the matrix cell. When retrieved inside the EDITION_CB callback when mode is 0, then the return
value is the new value that will be updated in the cell.

CELLL:C (read-only): Returns the displayed cell value. Returns NULL if the cell does not exists, or it is not visible, or the element is not
mapped. (since 3.14)

CELLBGCOLORL:C (read-only): Returns the actual cell background color, including lin and col variations, callback returned values, mark
and active state modifications. Returns NULL if the cell does not exists, or it is not visible, or the element is not mapped. (since 3.6)

CELLFGCOLORL:C (read-only): Returns the actual cell foreground color, including lin and col variations, callback returned values, mark
state modifications. Returns NULL if the cell does not exists, or it is not visible, or the element is not mapped. (since 3.6)

CELLFONTL:C (read-only): Returns the actual cell font, including lin and col variations, callback returned values. Returns NULL if the cell
does not exists, or it is not visible, or the element is not mapped. (since 3.23)

CELLTYPEL:C (read-only): Returns the actual cell type, including lin and col variations, callback returned values. Returns NULL if the cell
does not exists, or it is not visible, or the element is not mapped. (since 3.23)

CELLFRAMEHORIZCOLORL:C (read-only): Returns the actual cell frame horizontal color, including lin and col variations. Returns NULL
if the cell does not exists, or it is not visible, the element is not mapped, or the color is transparent. (since 3.23)

CELLFRAMEVERTCOLORL:C (read-only): Returns the actual cell frame vertical color, including lin and col variations. Returns NULL if
the cell does not exists, or it is not visible, the element is not mapped, or the color is transparent. (since 3.23)

CELLALIGNMENTL:C (read-only): Returns the actual cell text aligment, including lin and col variations. Returns NULL if the cell does not
exists, or it is not visible, or the element is not mapped. (since 3.23)

CELLOFFSETL:C (read-only): Returns the cell computed offset in pixels from the top-left corner of the matrix, in the format "XxY" or
"%dx%d" in C. Returns NULL if the cell does not exists, or it is not visible, or the element is not mapped. It will only return a valid result
if the cell has already been displayed. They are similar to the parameters of the DRAW_CB callback but they do NOT include the
decorations. (since 3.5)

CELLSIZEL:C (read-only): Returns the cell computed size in pixels, in the format "WxH" or "%dx%d" in C. Returns NULL if the cell does
not exists, or the element is not mapped. It will only return a valid result if the cell has already been displayed. They are similar to the
parameters of the DRAW_CB callback but they do NOT include the decorations. (since 3.5)

Column/Line Only Attributes (no redraw)

ALIGNMENTC : Horizontal alignment of the cells in column C (C >= 0) for lines that greater than 0. Can be: "ALEFT", "ACENTER" or
"ARIGHT". Default: "ALEFT" for C=0 and "ACENTER" for C>0. Before checking the default value it will check the "ALIGNMENT" attribute
value. If the text do not fit in the cell then the alignment is changed to ALEFT.

ALIGNMENTLIN0: Horizontal alignment of all the cells in line 0. Default is "ACENTER". (since 3.9)

LINEALIGNMENTL: Vertical alignment of the cells in line L (L >= 0) for all columns. Can be: "ATOP", "ACENTER" or "ABOTTOM".
Default is "ACENTER". (since 3.16)

IUP - Portable User Interface 07-Jan-25

344/496

SORTSIGNC : Shows a sort sign (up or down arrow) in the column C (C >= 0) title. Possible values: "UP", "DOWN" and "NO". Default:
NO.

SORTIMAGEDOWN/SORTIMAGEUP: sort sign image name. Use IupSetHandle or IupSetAttributeHandle to associate an image to a
name. See also IupImage. By default an internal image will be used. (since 3.16)

Size Attributes

LIMITEXPAND: limit expansion to the maximum size that shows all cells. This will set the MAXSIZE attribute to match the natural size of
the matrix when all cells are visible. When the scrollbars have *AUTOHIDE=Yes, the maximum size will not include the scrollbars (since
3.9). (since 3.5)

RESIZEMATRIX: Defines if the width of a column can be interactively changed. When this is possible, the user can change the size of a
column by dragging the column title right border. Possible values: "YES" or "NO". Default: "NO" (does not allow interactive width
change). The minimum size is 0 by default, the column is then hidden, but it can be controlled by the MINCOLWIDTHid and
MINCOLWIDTHDEF attributes (since 3.26).

RESIZEDRAG: Resize the column while dragging. By default the column is resized only when the mouse button is released, the resize
feedback is a simple vertical line. Works only when RESIZEMATRIX=Yes. Default: NO. (since 3.25)

USETITLESIZE: Use the title size to define the cell size if necessary. See WIDTHn and HEIGHTn. Default: NO. (since 3.0)

Column Size Attributes

For all columns if WIDTHn is not defined, then RASTERWIDTHn is used. If also not defined, then depending on the circumstances a logic
is used to find the column width.

If it is the title column (n=0), then if USETITLESIZE=YES or not in callback mode, it will search for the maximum width among the titles
of all lines. Finally if the conditions are not true or the maximum width of the column is 0, then the column of line titles is hidden.

If it is a regular column (n>0), then if USETITLESIZE=YES, then it will use the width of the title of the column. Finally if the condition is
not true or the width of the title of the column is 0, then the default value WIDTHDEF is used.

RASTERWIDTHn: Same as WIDTHn but in pixels. Has lower priority than WIDTHn. The returned value is the actual computed size.

WIDTHn: Width of column n in SIZE units, where n is the number of the column (n>=0). If the width value is 0, the column will not be
shown on the screen. It does not includes the decoration size occupied by the frame lines. The returned value is the actual computed size.

WIDTHDEF: Default column width in SIZE units. Not used for the title column. Default: 80 (width corresponding to 20 characters).

MINCOLWIDTHid: when the column is interactively resized controls the minimum width of the given column. If not defined
MINCOLWIDTHDEF is used. (since 3.26)

Line Size Attributes

For all lines if HEIGHTn is not defined, then RASTERHEIGHTn is used. If also not defined, then depending on the circumstances a logic is
used to find the line height.

If it is the title line (n=0), then if USETITLESIZE=YES or not in callback mode, it will search for the maximum height among the titles of
all columns. Finally if the conditions are not true or the maximum height of the line is 0, then the line of column titles is hidden.

If it is a regular line (n>0), then if USETITLESIZE=YES, then it will use the height of the title of the line. Finally if the condition is not true
or the height of the title of the line is 0, then the default value HEIGHTDEF is used.

HEIGHTn: Height of line n in SIZE units, where n is the number of the line (n>=0). If the height value is 0, the line will not be shown on
the screen. It does not includes the decoration size occupied by the frame lines. The returned value is the actual computed size.

HEIGHTDEF: Default line height in SIZE units. Not used for the title line. Default: 8 (height corresponding to 1 line).

RASTERHEIGHTn: Same as HEIGHTn but in pixels. Has lower priority than HEIGHTn. The returned value is the actual computed size.

Number of Cells Attributes

When lines or columns are added or removed the existing cell, line and column attributes are preserved, except custom application
attributes.

ADDCOL (write-only): Adds a new column to the matrix after the specified column. To insert a column at the top of the spreadsheet,
value 0 must be used. To add more than one column, use format "C-C", where the first number corresponds to the base column and the
second number corresponds to the number of columns to be added. It can be used in normal operation mode or in callback mode, but in
callback mode will not update cell values this must be done by the application. Can NOT add a title column. Ignored if set before map.

ADDLIN (write-only): Adds a new line to the matrix after the specified line. To insert a line at the top of the spreadsheet, value 0 must be
used. To add more than one line, use format "L-L", where the first number corresponds to the base line and the second number
corresponds to the number of lines to be added. It can be used in normal operation mode or in callback mode, but in callback mode will
not update cell values this must be done by the application. Can NOT add a title line. Ignored if set before map.

DELCOL (write-only): Removes the given column from the matrix. To remove more than one column, use format "C-C", where the first

IUP - Portable User Interface 07-Jan-25

345/496

../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html

number corresponds to the base column and the second number corresponds to the number of columns to be removed. It can be used in
normal operation mode or in callback mode, but in callback mode will not update cell values this must be done by the application. Can
NOT remove a title column, C>0. Ignored if set before map.

DELLIN (write-only): Removes the given line from the matrix. To remove more than one line, use format "L-L", where the first number
corresponds to the base line and the second number corresponds to the number of lines to be removed. It can be used in normal
operation mode or in callback mode, but in callback mode will not update cell values this must be done by the application. Can NOT
remove a title line, L>0. Ignored if set before map.

NUMCOL: Defines the number of columns in the matrix. Must be an integer number. Default: "0". It does not include the title column. If
changed after map will add empty cells or discard cells at the end.

NUMCOL_VISIBLE: When set defines the number of visible columns to be counted when calculating the Natural size, not counting the
title column. Not used elsewhere. The Natural size will always include the title column if any. Can be greater than the actual number of
columns, so room will be reserved for adding new columns without the need to resize the matrix. A lso it will always use the first columns
of the matrix, except if NUMCOL_VISIBLE_LAST=YES then it will use the last columns. The remaining columns will be accessible only
by using the scrollbar. IMPORTANT: When retrieved returns the current number of visible columns, not including the non scrollable
columns. Default: "4".

NUMCOL_NOSCROLL: Number of columns that are non scrollable, not counting the title column. Default: "0". It does not affect the
NUMCOL_VISIBLE attribute behavior nor Natural size computation. It will always use the first columns of the matrix. The cells appearance
will be the same of ordinary cells, and they can also receive the focus and be edited. Must be less than the total number of columns. (since
3.5)

NUMLIN: Defines the number of lines in the matrix. Must be an integer number. Default: "0". It does not include the title line. If changed
after map will add empty cells or discard cells at the end.

NUMLIN_VISIBLE: When set defines the number of visible lines to be counted when calculating the Natural size, not counting the title
line. Not used elsewhere. The Natural size will always include the title line if any. Can be greater than the actual number of lines, so
room will be reserved for adding new lines without the need to resize the matrix. A lso it will always use the first lines of the matrix, except
if NUMLIN_VISIBLE_LAST=YES then it will use the last lines. The remaining lines will be accessible only by using the scrollbar.
IMPORTANT: When retrieved returns the current number of visible lines, not including the non scrollable lines. Default: "3".

NUMLIN_NOSCROLL: Number of lines that are non scrollable, not counting the title line. Default: "0". It does not affect the
NUMLIN_VISIBLE attribute behavior nor Natural size computation. It will always use the first lines of the matrix. The cells appearance will
be the same of ordinary cells, and they can also receive the focus and be edited. Must be less than the total number of lines. (since 3.5)

NOSCROLLASTITLE: Non scrollable lines and columns to look and behave as title cells. Can be Yes or No. Default: No. (since 3.24)

Mark Attributes

MARKAREA: Defines if the area to be interactively marked by the user must be continuous or not, valid only if MARKMULTIPLE=YES.
Possible values: "CONTINUOUS" or "NOT_CONTINUOUS". Default: "CONTINUOUS".

MARKATTITLE: a click at a title will mark a full line or a full column if they can be marked. Default: "Yes". (since 3.16)

MARKMODE: Defines the entity that can be marked: none, lines, columns, (lines or columns), and cells. Possible values: "NO", "LIN",
"COL", "LINCOL" or "CELL". Default: "NO" (no mark).

MARKL:C (no redraw): marks a cell, a line or a column depending on MARKMODE, and returns cell, line or column mark state also
according to MARKMODE. Can be "1" or "0". If MARKMODE=LIN,COL,LINCOL use 0 to mark only the other element (ex: "0:3" set/get for
column 3). Even when MARKMODE=LIN,COL,LINCOL you can specify a single cell address. (since 3.0)

MARKED: String of '0' or '1' characters, informing which cells are marked (indicated by value '1'). Use NULL to clear all marks, returns
NULL if no marks. The format of this character vector depends on the value of the MARKMODE attribute: if its value is CELL, the vector
will have NUMLIN x NUMCOL positions, corresponding to all the cells in the matrix starting with all the cells of the first line, then the
second line and so on. If its value is LIN, the vector will begin with letter 'L' and will have further NUMLIN positions, each one
corresponding to a line in the matrix. If its value is COL, the vector will begin with letter 'C' and will have further NUMCOL positions, each
one corresponding to a column in the matrix. If its value is LINCOL, the first letter, which can be either 'L' or 'C', will indicate which of the
above formats is being used. If you change the other mark attributes the marked cells are cleared. When setting the attribute the LIN and
COL notation can be used even if MARKMODE=CELL. MULTIPLE and AREA are NOT considered when setting MARKED or MARKL:C.

MARKMULTIPLE: Defines if more than one entity defined by MARKMODE can be interactively marked. Possible values: "YES" or "NO".
Default: "NO".

Merge Attributes (since 3.23)

MERGEL:C: merge a range of cells starting from the given "lin:col" (in id), and ending at the given "lin:col" (in value). Title cells can also
be merge but only among them, i.e. in the line of column titles (L=0) can only merge columns, and in the column of line titles (C=0) can
only merge lines. The corner cell (0:0) can not be merged with any other cell. Only cells that are not already merged can be merged into
a range. Returns if the given cell belongs to a merged range, can be "Yes" or "No".

MERGESPLIT (write-only): split a merged range. value is a cell "lin:col" than belongs to the range, any cell of the range can be used.

MERGEDSTARTL:C (read-only): returns the start cell of the range given a cell that belongs to the range, any cell of the range can be
used.

MERGEDENDL:C (read-only): returns the end cell of the range given a cell that belongs to the range, any cell of the range can be used.

IUP - Portable User Interface 07-Jan-25

346/496

Action Attributes

CLEARATTRIB (write-only): Clear all cell attributes if ALL, all attributes except titles if CONTENTS, and all selected cell attributes if
MARKED. When ALL is specified, all lines and column attributes are also cleared. (since 3.6)
CLEARATTRIBL:C (write-only): Clear all cell attributes in an interval starting at the specified cell. Its value defines the end cell in the
"L:C" format, the default is the last cell. (since 3.6)
CLEARATTRIBL:* (write-only): the cell attributes in line L. Its value defines a column inclusive interval in the "C1-C2" format. The
default is 0 and the last column. When a full line is specified, all line attributes are also cleared. (since 3.6)
CLEARATTRIB*:C (write-only): the cell attributes in column C. Its value defines a line inclusive interval in the "L1-L2" format. The
default is 0 and the last line. When a full column is specified, all column attributes are also cleared, including ALIGNMENT and SORTSIGN.
(since 3.6)

In all cases, attributes are set to NULL. Only the attributes FONT*, BGCOLOR*, FGCOLOR*, FRAMEHORIZCOLOR*,
FRAMEVERTCOLOR*, ALIGNMENTLIN0, LINEALIGNMENT*, ALIGNMENT* and SORTSIGN* are affected. In callback mode will not
call the user callbacks.

CLEARVALUE (write-only): Clear all values if ALL, all values except titles if CONTENTS, and all selected cell values if MARKED. (since
3.6)
CLEARVALUEL:C (write-only): Clear all values in an interval starting at the specified cell. Its value defines the end cell in the "L:C"
format, the default is the last cell. (since 3.6)
CLEARVALUEL:* (write-only): the values in line L. Its value defines a column inclusive interval in the "C1-C2" format. The default is 0
and the last column. (since 3.6)
CLEARVALUE*:C (write-only): the values in column C. Its value defines a line inclusive interval in the "L1-L2" format. The default is 0
and the last line. (since 3.6)

In all cases, values are set to NULL. Works also in callback mode.

COPYCOLC (write-only): copy the values and attributes from column C to the given column (value is the number of a column). (Since
3.9)

COPYLINL (write-only): copy the values and attributes from line L to the given line (value is the number of a line). (Since 3.9)

FITTOSIZE (write-only): Force lines and/or columns sizes so the matrix visible size fit in its current size. NUMCOL_VISIBLE and
NUMLIN_VISIBLE are considered when fitting and they are not changed, only the RASTERWIDTHn and RASTERHEIGHTn attributes are
changed. But if any of the RASTERWIDTHn and RASTERHEIGHTn attributes where already set, then they will not be changed. If the
matrix is resized then it must be set again to obtain the same result, but before doing that set to NULL all the RASTERWIDTHn and
RASTERHEIGHTn attributes that you want to be changed. Can be LINES, COLUMNS or YES (meaning both). (since 3.3)

FITTOTEXT (write-only): Fit the RASTERWIDTHn or the RASTERHEIGHTn attribute for the given column or line, so that it will fit the
largest text in the column or the highest text in the line. The number of the column or line must be preceded by a character identifying its
type, "C" for columns and "L" for lines. For example "C5"=column 5 or "L3"=line 3. If FITMAXWIDTHn or FITMAXHEIGHTn are set for the
column or line they are used as maximum limit for the size. (since 3.4)

MOVECOLC (write-only): move the values and attributes from column C to the given column (value is the number of a column).
Internally will use ADDCOL+COPYCOL+DELCOL to perform the move so it is limited to those attributes restrictions. It can be used in
normal operation mode or in callback mode, but in callback mode will not update cell values, this must be done by the application. (Since
3.9)

MOVELINL (write-only): move the values and attributes from line L to the given line (value is the number of a line). Internally will use
ADDLIN+COPYLIN+DELLIN to perform the move so it is limited to those attributes restrictions. It can be used in normal operation mode
or in callback mode, but in callback mode will not update cell values, this must be done by the application. (Since 3.9)

REDRAW (write-only): The user can inform the matrix that the data has changed, and it must be redrawn. Values:

"ALL": Redraws the whole matrix.
"L%d": Redraws the given line (e. g.: "L3" redraws line 3)
"L%d-%d": Redraws the lines in the given region (e.g.: "L2-4" redraws lines 2, 3 and 4)
"C%d": Redraws the given column (e.g.: "C3" redraws column 3)
"C%d-%d": Redraws the columns in the given region (e.g: "C2-4" redraws columns 2, 3 and 4)

No redraw is done when the application sets the attributes: L:C, ALIGNMENTc, BGCOLOR*, FGCOLOR*, FONT*, VALUE,
FRAME*COLOR, MARKL:C. Global and size attributes always automatically redraw the matrix.

SHOW (write-only): If necessary scroll the visible area to make the given cell visible. To scroll to a line or a column, use a value such as
"L:*" or "*:C" (where L>0 and C>0). (since 3.0)

Editing Attributes

EDITMODE: When set to YES, programmatically puts the current cell in edition mode, allowing the user to modify its value. When
consulted informs if the editing control is visible (text or dropdown). Possible values: "YES" or "NO".

EDITALIGN: sets the text box alignment to the column alignment when editing a cell value. Default: No. (since 3.14)

EDITCELL (read-only): returns the current cell being edited ("L:C"), or NULL if none. Can also be used during interaction while editing is
being performed and EDITHIDEONFOCUS=NO. (since 3.14)

IUP - Portable User Interface 07-Jan-25

347/496

EDITFITVALUE: enable a text box larger than the cell size of necessary, according to the cell font and cell current value. While editing if
more room is necessary it will grow to the right. (since 3.14)

EDITHIDEONFOCUS: when editing a cell if text box loses its focus, then editing ends. Default: Yes. When set to NO editing will continue
and the matrix can be scrolled, also when pressing Esc or Enter if the focus is at the matrix it has the same effect as if pressed at the text
box. (since 3.14)

EDITING (read-only): returns Yes if the editing process is active for text or dropdown. It is set to Yes after EDITION_CB, after
MENUDROP_CB, before DROP_CB and before the editing control is made visible. Set to NO when editing is about to end, after
EDITION_CB and after the value has been updated, but before the editing control is made invisible. (since 3.13)

EDITNEXT: controls how the next cell after editing is chosen. Can be LIN, COL, LINCR, COLCR. Default: LIN. (since 3.4)

LIN - go to the next line at the same column, if at the last line then go to the next column at the same line;
LINCR - go to the next line at the same column, if at the last line then go to the next column at the first line;
COL - go to the next column at the same line, if at the last column then go to the next line at the same column;
COLCR - go to the next column at the same line, if at the last column then go to the next line at the first column;
NONE - stay in the same cell. (since 3.6)

EDITTEXT (read-only): returns Yes if the editing is being done by a text box. (since 3.14)

EDITVALUE (read-only): returns Yes if the display cell value being consulted will be used for a text box initial value. Useful for being
consulted inside the translate and numeric callbacks. (since 3.14)

Text Editing Attributes

CARET: A llows specifying and verifying the caret position of the text box in edition mode.

INSERT: inserts a text at the caret position of the text box in edition mode. (since 3.14)

MASKL:C or MASKL:* or MASK*:C: Defines a mask that will filter text input. All MASK auxiliary attributes are also available by adding
the line and column at the end of the attribute name. (lin and col * variations since 3.17)

MULTILINE: allows the edition of multiple lines. Use Shift+Enter to add lines. Enter will end the editing.

SELECTION: A llows specifying and verifying selection interval of the text box in edition mode.

Canvas Attributes (inheritable)

BORDER: Changed to NO.

SCROLLBAR: Changed to YES.

IupMatrix Callbacks

Interaction

ACTION_CB: Action generated when a keyboard event occurs.

int function(Ihandle *ih, int key, int lin, int col, int edition, char* value); [in C]
ih:action_cb(key, lin, col, edition: number, value: string) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
key: Identifier of the typed key. Please refer to the Keyboard Codes table for a list of possible values.
lin, col: Coordinates of the selected cell.
edition: 1 if the cell is in edition mode, and 0 if it is not.
value: When EDITMODE=NO is the cell current value, but if the type key is a valid character then contains a string with that
character. When EDITMODE=Yes depends on the editing field type. If a dropdown, then it is an empty string (""). If a text, and the
type key is a valid character then it is the future value of the text field, if not a valid character then it is the cell current value. Notice
that this value can be NULL if the cell does not have a value and the key pressed is not a character.

Returns: IUP_DEFAULT validates the key, IUP_IGNORE ignores the key, IUP_CONTINUE forwards the key to IUPs conventional
processing, or the identifier of the key to be treated by the matrix.

CLICK_CB: Action generated when any mouse button is pressed over a cell. This callback is always called after other callbacks. When
EDITHIDEONFOCUS=NO and editing is on going the callback EDITCLICK_CB with the same parameters will also be called right before
this one (since 3.14).

int function(Ihandle *ih, int lin, int col, char *status); [in C]
ih:click_cb(lin, col: number, status: string) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin, col: Coordinates of the cell where the mouse button was pressed.
status: Status of the mouse buttons and some keyboard keys at the moment the event is generated. The same macros used for
BUTTON_CB can be used for this status.

IUP - Portable User Interface 07-Jan-25

348/496

../attrib/iup_mask.html
../attrib/key.html
../call/iup_button_cb.html

Returns: To avoid the display update return IUP_IGNORE.

COLRESIZE_CB: Action generated when a column is interactively resized. (Since 3.9)

int function(Ihandle *ih, int col); [in C]
ih:colresize_cb(col: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
col: Column that had its size changed.

RELEASE_CB: Action generated when any mouse button is released over a cell. This callback is always called after other callbacks. When
EDITHIDEONFOCUS=NO and editing is on going the callback EDITRELEASE_CB with the same parameters will also be called right before
this one (since 3.14).

int function(Ihandle *ih, int lin, int col, char *status); [in C]
ih:release_cb(lin, col: number, status: string) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin, col: Coordinates of the cell where the mouse button was pressed.
status: Status of the mouse buttons and some keyboard keys at the moment the event is generated. The same macros used for
BUTTON_CB can be used for this status.

Returns: To avoid the display update return IUP_IGNORE.

RESIZEMATRIX_CB: Action generated after the element size has been updated but before the cells have been actually refreshed. (Since
3.10.1) Can be used to resize columns or lines when the matrix is resized by setting a column or line size to null and setting FITTOSIZE to
COLUMNS or LINES.

int function(Ihandle *ih, int width, int height); [in C]
ih:resizematrix_cb(width, height: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
width: the width of the internal element size in pixels not considering the BORDER size (client size)
height: the height of the internal element size in pixels not considering the BORDER size (client size)

MOUSEMOVE_CB: Action generated to notify the application that the mouse has moved over the matrix. When
EDITHIDEONFOCUS=NO and editing is on going the callback EDITMOUSEMOVE_CB with the same parameters will also be called right
before this one (since 3.14).

int function(Ihandle *ih, int lin, int col); [in C]
ih:mousemove_cb(lin, col: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin, col: Coordinates of the cell that the mouse cursor is currently on.

ENTERITEM_CB: Action generated when a matrix cell is selected, becoming the current cell. A lso called when matrix is getting focus.
Also called when focus is changed because lines or columns were added or removed (since 3.9).

int function(Ihandle *ih, int lin, int col); [in C]
ih:enteritem_cb(lin, col: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin, col: Coordinates of the selected cell.

LEAVEITEM_CB: Action generated when a cell is no longer the current cell. A lso called when the matrix is losing focus.

int function(Ihandle *ih, int lin, int col); [in C]
ih:leaveitem_cb(lin, col: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin, col: Coordinates of the cell which is no longer the current cell.

Returns: IUP_IGNORE prevents the current cell from changing, but this will not work when the matrix is losing focus. If you try to
move to beyond matrix borders the cell will lose focus and then get it again, so leaveitem_cb and enteritem_cb will be called.

SCROLLTOP_CB: Action generated when the matrix is scrolled with the scrollbars or with the keyboard. Can be used together with the
ORIGIN and ORIGINOFFSET attributes to synchronize the movement of two or more matrices.

int function(Ihandle *ih, int lin, int col); [in C]
ih:scrolltop_cb(lin, col: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin, col: Coordinates of the cell currently in the top-left corner of the matrix.

IUP - Portable User Interface 07-Jan-25

349/496

../call/iup_button_cb.html

Drawing

BGCOLOR_CB - Action generated to retrieve the background color of a cell when it needs to be redrawn.

int function(Ihandle *ih, int lin, int col, int *red, int *green, int *blue); [in C]
ih:bgcolor_cb(lin, col: number) -> (red, green, blue, ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin, col: Coordinates of the cell.
red, green, blue: the cell background color.

Returns: If IUP_IGNORE, the values are ignored and the attribute defined background color will be used. If returns IUP_DEFAULT
the returned values will be used as the background color.

FGCOLOR_CB - Action generated to retrieve the foreground color of a cell when it needs to be redrawn.

int function(Ihandle *ih, int lin, int col, int *red, int *green, int *blue); [in C]
ih:fgcolor_cb(lin, col: number) -> (red, green, blue, ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin, col: Coordinates of the cell.
red, green, blue: the cell foreground color.

Returns: If IUP_IGNORE, the values are ignored and the attribute defined foreground color will be used. If returns IUP_DEFAULT the
returned values will be used as the foreground color.

FONT_CB: Action generated to retrieve the font of a cell. Called both for common cells and for line and column titles. (since 3.0)

char* function(Ihandle* ih, int lin, int col); [in C]
ih:font_cb(lin, col: number) -> (ret: string) [in Lua]

ih: identifier of the element that activated the event.
lin, col: Coordinates of the cell.

Returns: Must return a font or NULL to use the the attribute defined font.

TYPE_CB: Action generated to retrieve the type of a cell value. Called both for common cells and for line and column titles. (since 3.9)

char* function(Ihandle* ih, int lin, int col); [in C]
ih:type_cb(lin, col: number) -> (ret: string) [in Lua]

ih: identifier of the element that activated the event.
lin, col: Coordinates of the cell.

Returns: Must return "TEXT", "COLOR", "FILL" or "IMAGE".

DRAW_CB: Action generated before a cell is drawn. Allows to draw a custom cell contents. You must use the CD library primitives. The
clipping is set for the bounding rectangle. The callback is called after the cell background has been filled with the background color. The
focus feedback area is not included in the decoration size. CD control functions like cdCanvasActivate, cdCanvasDeactivate, cdCanvasFlush,
cdCanvasClear, can NOT be called. Since IUP 3.25, the OLD CD functions declared in "cd_old.h" can not be used anymore.

int function(Ihandle *ih, int lin, int col, int x1, int x2, int y1, int y2, cdCanvas* cnv); [in C]
ih:draw_cb(lin, col, x1, x2, y1, y2: number, cnv: cdCanvas) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin, col: Coordinates of the current cell.
x1, x2, y1, y2: Bounding rectangle of the current cell in pixels, excluding the decorations.
cnv: internal canvas CD used to draw the matrix.

Returns: If IUP_IGNORE the normal text drawing will take place.

DROPCHECK_CB: Action generated before the current cell is redrawn to determine if a dropdown/popup menu feedback or a toggle
should be shown. If this action is not registered, no feedback will be shown. If the callback is defined and return IUP_DEFAULT for a cell,
to show the dropdown/popup menu the user can simply do a single click in the drop feedback area of that cell. (Toggle support since 3.9)

int function(Ihandle *ih, int lin, int col); [in C]
ih:dropcheck_cb(lin, col: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin, col: Coordinates of the cell.

Returns: IUP_DEFAULT will show a drop feedback, IUP_CONTINUE will show and enable the toggle button, or IUP_IGNORE to draw
nothing.

IUP - Portable User Interface 07-Jan-25

350/496

http://www.tecgraf.puc-rio.br/cd/

TRANSLATEVALUE_CB: Action generated to translate the value of a cell during display and size computation. Called both for common
cells and for line and column titles. (since 3.13)

char* function(Ihandle* ih, int lin, int col, char* value); [in C]
ih:translatevalue_cb(lin, col: number, value: string) -> (ret: string) [in Lua]

ih: identifier of the element that activated the event.
lin, col: Coordinates of the cell.
value: original cell value

Returns: the string to be drawn.

Editing (not called if READONLY=Yes)

TOGGLEVALUE_CB: Action generated when a toggle button is pressed. (Since 3.9)

int function(Ihandle *ih, int lin, int col, int status); [in C]
ih:togglevalue_cb(lin, col, status: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin, col: Coordinates of the cell where the mouse button was pressed.
status: Value of the toggle. Can be 1 or 0.

VALUECHANGED_CB: Called after the value was interactively changed by the user or after a group of values where programmatically
changed in a single operation (since 3.9). When it was interactively changed the temporary attribute CELL_EDITED will be set to Yes
during the callback (since 3.13).

int function(Ihandle *ih); [in C]
ih:valuechanged_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

DROP_CB: Action generated before the current cell enters edition mode to determine if a text field or a dropdown list will be shown. It is
called after EDITION_CB. If this action is not registered, a text field will be shown. Its return determines what type of element will be used
in the edition mode. If the selected type is a dropdown, the values appearing in the dropdown must be fulfilled in this callback, just like
elements are added to any list (the drop parameter is the handle of the dropdown list to be shown). You should also set the lists current
value ("VALUE"), the default is always "1". The previously cell value can be verified from the given drop Ihandle via the
"PREVIOUSVALUE" attribute.

int function(Ihandle *ih, Ihandle *drop, int lin, int col); [in C]
ih:drop_cb(drop: ihandle, lin, col: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
drop: Identifier of the dropdown list which will be shown to the user.
lin, col: Coordinates of the current cell.

Returns: IUP_IGNORE to show a text-edition field, or IUP_DEFAULT to show a dropdown field.

MENUDROP_CB: Action generated before the current cell enters edition mode to determine if a popup menu will be shown instead of a
text field or a dropdown. If this action is registered and retunr IUP_DEFAULT the DROP_CB callback is not called, and the popup menu is
shown. Like DROP_CB, it is called after EDITION_CB. The values appearing as menu items in the popup menu must be fulfilled in this
callback, like elements are added to a list (the drop parameter is the handle of the popup menu to be shown, but the actual menu items
will be added later by the internal processing). You could also set the "VALUE" attribute that will add a mark to the menu item with the
same number. If IMAGEid is set then an IMAGE attribute will be set at the correspondent menu item. The previously cell value can be
verified from the given drop Ihandle via the "PREVIOUSVALUE" attribute. (since 3.6)

int function(Ihandle *ih, Ihandle *drop, int lin, int col); [in C]
ih:menudrop_cb(drop: ihandle, lin, col: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
drop: Identifier of the popup menu which will be shown to the user.
lin, col: Coordinates of the current cell.

Returns: IUP_IGNORE to not show the menu for the given cell, DROP_CB will then be called.

DROPSELECT_CB: Action generated when an element in the dropdown list or the popup menu is selected. For the dropdown, if returns
IUP_CONTINUE the value is accepted as a new value and the matrix leaves edition mode, else the item is selected and editing remains.
For the popup menu the returned value is ignored.

int function(Ihandle *ih, int lin, int col, Ihandle *drop, char *t, int i, int v); [in C]
ih:dropselect_cb(lin, col: number, drop: ihandle, t: string, i, v: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

IUP - Portable User Interface 07-Jan-25

351/496

lin, col: Coordinates of the current cell.
drop: Identifier of the dropdown list or the popup menu shown to the user.
t: Text of the item whose state was changed.
i: Number of the item whose state was changed.
v: Indicates if item was selected or unselected (1 or 0). A lways 1 for the popup menu.

EDITION_CB: Action generated when the current cell enters or leaves the edition mode. Not called if READONLY=YES.

int function(Ihandle *ih, int lin, int col, int mode, int update); [in C]
ih:edition_cb(lin, col, mode, update: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin, col: Coordinates of the current cell.
mode: 1 if the cell has entered the edition mode, or 0 if the cell has left the edition mode.
update: used when mode=0 to identify if the value will be updated when the callback returns with IUP_DEFAULT. (since 3.0)

Returns: can be IUP_DEFAULT, IUP_IGNORE or IUP_CONTINUE.

If the callback does not exists the cell can always be edited and the new value is always accepted.

When editing is started, mode=1 and update=0. Editing is allowed if the callback returns IUP_DEFAULT, so to make the cell read-
only return IUP_IGNORE.

When editing ends, mode=0 and update can be 0 or 1. The new value is accepted only if the callback returns IUP_DEFAULT. The
VALUE attribute when consulted inside the callback returns the new value that will be updated to the cell. update=0 only when the
user cancel the editing by pressing the Esc key. If the callback returns IUP_CONTINUE the edit mode is ended and the new value will
not be updated, so the application can set a different value during the callback (useful to format the new value). If the callback returns
IUP_IGNORE the editing is not ended, with several exceptions: the Esc key was used; the matrix size, scroll or visibility was changed
during edition mode; a click in another cell; or the edit control loses its focus.

This callback is also called when the user press Del to clear the cell contents or other multiple cell editing. The callback will simply
validate the operation for each cell been cleared by checking if the matrix is read-only or if the cell is read-only. In this situation it is
called with mode=1 and update=1. When in normal mode (not callback mode) the new value can not be refused, but you can use
the VALUE_EDIT_CB to reset a new value or use the VALUECHANGED_CB to check all the new values after they where changed.

Callback Mode

VALUE_CB: Action generated to retrieve the value of a cell. Called both for common cells and for line and column titles.

char* function(Ihandle* ih, int lin, int col); [in C]
ih:value_cb(lin, col: number) -> (ret: string) [in Lua]

ih: identifier of the element that activated the event.
lin, col: Coordinates of the cell.

Returns: the string to be drawn.

IMPORTANT: The existence of this callback defines the callback operation mode of the matrix when it is mapped.

VALUE_EDIT_CB: Action generated to notify the application that the value of a cell was changed. Never called when READONLY=YES.
This callback is usually set in callback mode, but also works in normal mode. When in normal mode, it is called after the new value has
been internally stored, so to refuse the new value simply reset the cell to the desired value. When it was interactively changed the
temporary attribute CELL_EDITED will be set to Yes during the callback (since 3.13).

int function(Ihandle *ih, int lin, int col, char* newval); [in C]
ih:value_edit_cb(lin, col: number, newval: string) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin, col: Coordinates of the cell.
newval: String containing the new cell value

IMPORTANT: if VALUE_CB is defined and VALUE_EDIT_CB is not defined when the matrix is mapped it will be read-only.

MARK_CB: Action generated to retrieve the selection state of a cell. Called only for common cells, only when MARKMODE=CELL and
only in callback mode.

int function(Ihandle* ih, int lin, int col); [in C]
ih:mark_cb(lin, col: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin, col: Coordinates of the cell.

Returns: the selection state (marked=1, not marked 0). If not defined the attribute "MARKL:C" will be returned.

MARKEDIT_CB: Action generated to notify the application that the selection state of a cell was changed. Since it is a notification, it

IUP - Portable User Interface 07-Jan-25

352/496

cannot refuse the mark modification. Called only for common cells, only when MARKMODE=CELL and only in callback mode.

int function(Ihandle *ih, int lin, int col, int marked); [in C]
ih:markedit_cb(lin, col, marked: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin, col: Coordinates of the cell.
marked: selection state (marked=1, not marked 0).

If not defined the attribute "MARKL:C" will be updated. So if you define the MARKEDIT_CB the "MARKL:C" will NOT be updated
and the callback MARK_CB must return the selection state of the cell. If you do not want to implement the MARK_CB callback then
set the "MARKL:C" attribute inside the MARKEDIT_CB callback.

MAP_CB, UNMAP_CB, DESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB, K_ANY, HELP_CB:
All common callbacks are supported.

The IupCanvas callbacks ACTION, SCROLL_CB, KEYPRESS_CB, MOTION_CB, FOCUS_CB, RESIZE_CB and BUTTON_CB can be changed
but you should save and call the original definition from inside your own callback, or the matrix will not correctly work. This can not be
done in Lua, except for BUTTON_CB, MOTION_CB and KEYPRESS_CB that are exported to Lua as "MatButtonCb", "MatMotionCb" and
"MatKeyPressCb" functions.

Use IupConvertXYToPos to convert (x,y) coordinates in the cell position, then use IupTextConvertPosToLinCol to convert pos into
(lin,col), or use the formula "pos=lin*(NUMCOL+1) + col". Here lin and col starts at 0, pos starts at 0.

See IupCanvas.

Shortcut Keys

The library adds some shortcut keys to the already implemented in IupMatrix:

Ctrl+A (English) => Select All
Ctrl+T (Portuguese or Spanish) => Select All
Ctrl+X => Cut (Copy + Clear Cell Values)
Ctrl+C => Copy to Clipboard (marked cells)
Ctrl+V => Paste from Clipboard (start at focus cell)
Ctrl+Z => Undo 1 level
Ctrl+Y (English) => Redo 1 level
Ctrl+R (Portuguese or Spanish) => Redo 1 level
Ctrl+F (English) => Show the Find Dialog
Ctrl+L (Portuguese or Spanish) => Show the Find Dialog
Alt+F3 => Show the Find Dialog
Esc => Hide the Find Dialog
F3 => Find Next
Shift+F3 => Find Previous
Ctrl+G => Show the Go To Cell Dialog

Available Quantity and Units

Unit names, symbols and conversion factors were almost all based on:

http://en.wikipedia.org/wiki/Conversion_of_units

By definition, unit names and symbols follow the case displayed in the table. When setting the NUMERICQUANTITY and NUMERICUNIT
attributes use English names, the case is insensitive and spaces are ignored. Some Quantities have alternative names, once used the
returned values in the attribute will be the same alternative name. For example, you can use "Specific Weight" or "SPECIFICWEIGHT", and
you can use "Speed" or "Velocity".

All numeric attributes can be set without the element being mapped to the native system, so the IupMatrixEx element can also be used
as a Quantity Units database.

The unit used as a reference for conversion is always the first unit listed, and it is the unit defined by the International System of
Units (SI). The American spell can be used setting NUMERICUNITSPELL=AMERICAN.

NOTICE: These are only a small set of commonly used units. If you need other units, please let us know so we can include them.

Obs: "g" in Comments is the standard gravity. All Quantity and Unit names are described in English. The symbols that have extended
characters will work in ISO8859-1 and in UTF-8, according to the UTF8MODE global attribute. The cell background colors are just for
clarity and do not imply in any standard classification.

Quantity
NUMERICQUANTITY

Units
NUMERICUNIT

Symbol
NUMERICUNITSYMBOL Comments

Time

second
minute
hour
day
week

s
min
h
d
wk

IUP - Portable User Interface 07-Jan-25

353/496

../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_getfocus_cb.html
../call/iup_killfocus_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
../call/iup_k_any.html
../call/iup_help_cb.html
../call/iup_action.html
../call/iup_scroll_cb.html
../call/iup_keypress_cb.html
../call/iup_motion_cb.html
../elem/iupcanvas.html#FOCUS_CB
../call/iup_resize_cb.html
../call/iup_button_cb.html
../func/iupconvertxytopos.html
../elem/iuptext.html#AUX
../elem/iupcanvas.html
http://en.wikipedia.org/wiki/Conversion_of_units
http://en.wikipedia.org/wiki/International_System_of_Units

millisecond
microsecond

ms
µs

Mass

kilogram
gram
tonne
pound
ounce

kg
g
t
lb
oz

- (CGS Unit)
- metric ton
- (international avoirdupois)
- oz = lb / 16

Temperature
Kelvin
degree Celsius
degree Fahrenheit
degree Rankine

K
°C
°F
°Ra

Length

metre
millimetre
centimetre
kilometre
nanometre
angstrom
micron
inch
foot
yard
mile
nautical mile

m
mm
cm
km
nm
Å
µ
in
ft
yd
mi
NM

- (CGS Unit)

- micrometre
- in = 25.4 mm (international)
- ft = 12 in (international)
- yd = 3 ft (international)
- mi = 1760 yd (international)
- NM = 6080 ft (Admiralty)

Area

square metre
square millimetre
square centimetre
square kilometre
square nanometre
square angstrom
square micron
square inch
square foot
square yard
square mile
acre
hectare

m²
mm²
cm²
km²
nm²
Å²
µ²
sq in
sq ft
sq yd
sq mi
ac
ha

- (CGS Unit)

- ac = 4840 sq yd

Volume

cubic metre
cubic centimetre
cubic millimetre
cubic kilometre
cubic inch
cubic foot
cubic mile
cubic yard
litre
gallon
barrel

m³
cm³
mm³
km³
cu in
cu ft
cu mi
cu yd
L
gal
bl

- (CGS Unit)

- gal = 231 cu in (US fluid; Wine)
- bl = 42 gal (petroleum)

Angle
radian
degree
gradian

rad
°
grad

Speed
(or Velocity)

metre per second
inch per second
foot per second
kilometre per hour
centimetre per second
mile per hour
knot

m/s
in/s
ft/s
km/h
cm/s
mph
kn

- (CGS Unit)

- kn = NM/h

Angular Speed
(or Angular Frequency)

radian per second
radian per minute
degree per second
degree per minute
Hertz
revolution per minute

rad/s
rad/min
deg/s
deg/min
Hz
rpm

- revolution per second (frequency)

Acceleration

metre per second squared
inch per second squared
knot per second
mile per second squared
standard gravity

m/s²
in/s²
kn/s
mi/s²
g

Kinematic Viscosity
square metre per second
square foot per second
stokes

m²/s
ft²/s
St - (CGS Unit)

pascal second
poise

Pa·s
P

IUP - Portable User Interface 07-Jan-25

354/496

Dynamic Viscosity pound per foot hour
pound per foot second

lb/(ft·h)
lb/(ft·s)

Flow
cubic metre per second
cubic inch per second
cubic foot per second

m³/s
in³/s
ft³/s

Force

Newton
Kilonewton
dyne
kilogram-force
pound-force
kip-force
ton-force

N
kN
dyn
kgf
lbf
kip
tnf

= kg·m/s²

= g·cm/s² (CGS Unit)

- lbf = g · lb
- kip = g · 1000 lb
- tnf = g · 2000 lb

Pressure
(or Mechanical Stress)

Pascal
kilopascal
atmosphere
millimetre of mercury
bar
torr
pound per square inch
kip per square inch

Pa
kPa
atm
mmHg
bar
torr
psi
ksi

- Pa = N/m² = kg/(m·s²)

- (standard)
= mmHg =13595.1 kg/m³·mm·g

- psi = lbf/sq in
- ksi = kip/sq in

Force per length
(or Linear Weight)

Newton per metre
Kilonewton per metre
kilogram-force per metre
ton-force per metre

N/m
kN/m
kgf/m
tnf/m

= kg/s²

Torque
(or Moment of Force)

Newton metre
kilogram-force metre
ton-force metre
Newton centimetre
kilogram-force centimetre
ton-force centimetre
Kilonewton-metre
metre kilogram

N·m
kgf·m
tnf·m
N·cm
kgf·cm
tnf·cm
kN·m
m·kg

= kg·m²/s²

Specific Mass
(or Density)

kilogram per cubic metre
gram per cubic centimetre
gram per millilitre
kilogram per litre
pound per cubic foot
pound per cubic inch
pound per gallon

kg/m³
g/cm³
g/mL
kg/L
lb/ft³
lb/in³
lb/gal

Specific Weight

Newton per cubic metre
Kilonewton per cubic metre
kilogram-force per cubic metre
ton-force per cubic metre
kilogram-force per litre
pound-force per cubic foot

N/m³
kN/m³
kgf/m³
tnf/m³
kgf/L
lbf/ft³

Energy

Joule
Kilojoule
calorie
kilocalorie
British Thermal Unit
Kilowatt-hour
horsepower-hour

J
kJ
cal
kcal
BTU
kW.h
hp.h

= m·N = kg·m²/s²

- (International Table)

- (International Table)

Power
(or Heat Flow Rate)

Watt
Kilowatt
calorie per second
horsepower

W
kW
cal/s
hp

= J/s = N·m/s = kg·m²/s³

- (International Table)
- hp = 550 ft lbf/s (imperial mechanical)

Electric Charge
Coulomb
Faraday
milliampere hour

C
F
mA·h

= A·s

Illuminance
lux
footcandle
lumen per square inch
phot

lx
fc
lm/in²
ph

- lm/m²
- lumen per square foot

Fraction
percentage
per one
per ten
per thousand

%
/1
/10
/1000

None Use numeric values
but without using units.

Examples

IUP - Portable User Interface 07-Jan-25

355/496

Browse for Example Files

See Also

IupMatrix

Returns the identifier of the created matrix, or NULL if an error occurs.

Attributes

"1": First item in the list.
"2": Second item in the list.
"3": Third item in the list.
...
"id": idth item in the list.

(non inheritable) Item value. It can be any text. Differently from the IupList control, the item must exist so its label can be changed.
So APPENDITEM, INSERTITEMid , ADDLIN or COUNT attributes must be used to reserve space for the list items. Notice that
lines and items in the list are the same thing.

ADDLIN (write-only): adds a new line to the list after the specified line. To insert a line at the top, value 0 must be used. To add more
than one line, use format "L-L", where the first number corresponds to the base line and the second number corresponds to the number
of lines to be added. Ignored if set before map.

APPENDITEM (write-only): inserts an item after the last item. Ignored if set before map.

COLORCOL (read-only): returns the number of color column. If not exists, returns 0.

COLORid : the color displayed at the color column. If not defined the color box is not diplayed.

COLUMNORDER: defines or retrieves the display order of the columns. Possible values a combination of: "LABEL", "COLOR" and
"IMAGE". These values also can be combined in these formats: VALUE1 (one column); VALUE1:VALUE2 (two columns) or
VALUE1:VALUE2:VALUE3 (three columns). Default: "LABEL" (one column).

COUNT: defines the number of items in the list. Differently from the IupList control it is not read-only. It does not include the extra
empty item when EDITABLE=Yes.

DELLIN (write-only): removes the given line from the list. To remove more than one line, use format "L-L", where the first number
corresponds to the base line and the second number corresponds to the number of lines to be removed. Ignored if set before map.

EDITABLE (creation-only): enables the interactive editing of the list. It can be Yes or No. Default: "NO". An empty item at the end of the
list will be available so new items can be interactively inserted. Also while editing a label, the IMAGE column will display a button so the
item can be interactively removed.

FOCUSCOLOR: the background color when an item get the focus. Values in RGB format ("r g b"). Default: "255 235 155".

FOCUSFGCOLOR: the text color when an item get the focus. If not defined uses the ITEMFGCOLORid. (since 3.29)

FOCUSITEM: defines the current focus item. Default: "1".

IMAGEid (write-only): name of the image to be used in the specified item (id). Use IupSetHandle or IupSetAttributeHandle to associate
an image to a name. See also IupImage. Image column must be available.

IMAGEACTIVEid: controls the interaction with the image of an item. It can be Yes or No. Default: Yes. Image column must be available.

IMAGEADD (write-only): name of the image that will be shown when the IupMatrixList is editable. Default: "MTXLIST_IMG_ADD". Use
IupSetHandle or IupSetAttributeHandle to associate an image to a name. See also IupImage. Image column must be available.

IMAGECHECK (write-only): name of the image that will be shown when the IMAGEVALUE attribute is "IMAGECHECK". Default:
"MTXLIST_IMG_CHECK". Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See also IupImage. Image column
must be available.

IMAGECOL (read-only): returns the number of image column. If not exists, returns 0.

IMAGEDEL (write-only): name of the image that will be shown when the IupMatrixList is editable or when SHOWDELETE=Yes. Default:
"MTXLIST_IMG_DEL". Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See also IupImage. Image column
must be available.

IMAGEUNCHECK (write-only): name of the image that will be shown when the IMAGEVALUE attribute is "IMAGEUNCHECK". Default:
"MTXLIST_IMG_UNCHECK". Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See also IupImage. Image
column must be available.

IMAGEVALUEid: selects the CHECK or the UNCHECK image to display for an item (id). It can be Yes or No. Default: NO.

INSERTITEMid (write-only): inserts an item before the given id position (id starts at 1). If id=COUNT+1 then it will append after the
last item. Ignored if out of bounds. Ignored if set before map.

ITEMACTIVEid: controls the interaction with an item (id). It can be Yes or No. Default: "YES".

IUP - Portable User Interface 07-Jan-25

356/496

../../examples/
iupmatrix.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html

ITEMFGCOLORid: text color of an item (id). If not defined FGCOLOR is used.

ITEMBGCOLORid: background color of an item (id). If not defined BGCOLOR is used.

LABELCOL (read-only): returns the number of label column. If not exists, returns 0.

REMOVEITEM (write-only): removes the given item from the list.

SHOWDELETE: Shows only the IMAGEDEL image and ignores IMAGECHECK and IMAGEUNCHECK.

TITLE: title of the list. When not NULL the list will display a non scrollable title.

TOPITEM (write-only): position the given item at the top of the list or near to make it visible.

VALUE: defines or retrieves the value of the current cell.

VISIBLELINES: defines the number of visible lines for the Natural Size, this means that will act also as minimum number of visible
lines. Default: "3".

Other Attributes

Since the IupMatrixList inherits its implementation from the IupMatrix, and that one from IupCanvas, those controls attributes and
callbacks can be used. But notice that IupMatrixList uses several of them internally for its own purpose, and reusing them may affect the
control behavior and appearance.

Some attribute defaults were changed:

EXPAND: changed to "NO".

ALIGNMENTLIN0: changed to "ALEFT".

CURSOR: changed to "ARROW".

FRAMETITLEHIGHLIGHT: changed to "NO".

HIDEFOCUS: changed to "YES".

SCROLLBAR: changed to "VERTICAL".

ACTIVE, EXPAND, FONT, SCREENPOSITION, POSITION, MINSIZE, MAXSIZE, WID, TIP, SIZE, RASTERSIZE, ZORDER, VISIBLE: also
accepted.

Callbacks

IMAGEVALUECHANGED_CB: called after the image value was interactively changed by the user (mark/unmark).

int function (Ihandle *ih, int lin, int imagevalue); [in C]
ih:imagevaluechanged_cb(lin, imagevalue: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin: item line.
imagevalue: equal to 1 if the image used was IMAGECHECK or to 0 if the image used IMAGEUNCHECK.

LISTACTION_CB: Action generated when the state of an item in the list is changed. Also provides information on the changed item:

int function (Ihandle *ih, int item, int state); [in C]
ih:listaction_cb(item, state: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
item: Number of the changed item starting at 1.
state: Equal to 1 if the item is in focus or to 0 if the item loses its focus.

LISTCLICK_CB: Action generated when any mouse button is pressed over a item.

int function (Ihandle *ih, int lin, int col, char *status); [in C]
ih:listclick_cb(lin, col: number, status: string) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin: item line.
col: item column (label, image or color).
status: Status of the mouse buttons and some keyboard keys at the moment the event is generated. The same macros used for
BUTTON_CB can be used for this status.

Returns: To avoid the default processing return IUP_IGNORE.

LISTDRAW_CB: Action generated when an item needs to be redrawn. It is called before the default processing.

IUP - Portable User Interface 07-Jan-25

357/496

../attrib/iup_active.html
../attrib/iup_expand.html
../attrib/iup_font.html
../attrib/iup_screenposition.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_wid.html
../attrib/iup_tip.html
../attrib/iup_size.html
../attrib/iup_rastersize.html
../attrib/iup_zorder.html
../attrib/iup_visible.html
../call/iup_button_cb.html

int function (Ihandle *ih, int lin, int col, int x1, int x2, int y1, int y2, cdCanvas* cnv); [in C]
ih:listdraw_cb(text: string, item, state: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin: item line.
col: item column (label, image or color).
x1, x2, y1, y2: bounding rectangle of the current cell in pixels, excluding the decorations.
cnv: internal canvas CD used to draw the list.

Returns: If IUP_IGNORE the normal drawing will take place.

LISTEDITION_CB: Action generated when the current cell of an item enters or leaves the edition mode. Called before the default
processing.

int function (Ihandle *ih, int lin, int col, int mode, int update); [in C]
ih:listedition_cb(lin, col, mode, update: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin: item line.
col: item column (label, image or color).
mode: equal to 1 if the cell has entered the edition mode, or 0 if the cell has left the edition mode.
update: equal to 1 to redraw, or 0 to no update returning IUP_IGNORE.

LISTINSERT_CB: Action generated when a new item is inserted into the list.

int function (Ihandle *ih, int lin); [in C]
ih:listinsert_cb(lin: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin: position of the new item.

LISTRELEASE_CB: Action generated when any mouse button is released over a item.

int function (Ihandle *ih, int lin, int col, char *status); [in C]
ih:listrelease_cb(lin, col: number, status: string) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin: item line.
col: item column (label, image or color).
status: Status of the mouse buttons and some keyboard keys at the moment the event is generated. The same macros used for
BUTTON_CB can be used for this status.

Returns: To avoid the default processing return IUP_IGNORE.

LISTREMOVE_CB: Action generated when an item is removed of the list.

int function (Ihandle *ih, int lin); [in C]
ih:listremove_cb(lin: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin: position of the removed item.

Examples

Browse for Example Files

IUP - Portable User Interface 07-Jan-25

358/496

../call/iup_button_cb.html
../../examples/

See Also

IupCanvas, IupMatrix

action: Name of the action generated when the canvas needs to be redrawn. It can be NULL.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

The IupGLCanvas element handle all attributes defined for a conventional canvas, see IupCanvas.

Apart from these attributes, IupGLCanvas handle specific attributes used to define the kind of buffer to be instanced. Such attributes are
all creation only attributes and must be set before the element is mapped on the native system. After the mapping, specifying these
special attributes has no effect.

ACCUM_RED_SIZE, ACCUM_GREEN_SIZE, ACCUM_BLUE_SIZE and ACCUM_ALPHA_SIZE: Indicate the number of bits for
representing the color components in the accumulation buffer. Value 0 means the accumulation buffer is not necessary. Default is 0.

ALPHA_SIZE: Indicates the number of bits for representing each colors alpha component (valid only for RGBA and for hardware that
store the alpha component). Default is "0".

ARBCONTEXT (non inheritable): enable the usage of ARB extension contexts. If during map the ARB extensions could not be loaded the
attribute will be set to NO and the standard context creation will be used. Default: NO. (since 3.6)

BUFFER: Indicates if the buffer will be single "SINGLE" or double "DOUBLE". Default is "SINGLE".

BUFFER_SIZE: Indicates the number of bits for representing the color indices (valid only for INDEX). The system default is 8 (256-color
palette).

COLOR: Indicates the color model to be adopted: "INDEX" or "RGBA". Default is "RGBA".

COLORMAP (read-only): Returns "Colormap" in UNIX and "HPALETTE" in Win32, if COLOR=INDEX.

CONTEXT (read-only): Returns "GLXContext" in UNIX and "HGLRC" in Win32.

CONTEXTFLAGS (non inheritable): Context flags. Can be DEBUG, FORWARDCOMPATIBLE or DEBUGFORWARDCOMPATIBLE. Used
only when ARBCONTEXT=Yes. (since 3.6)

CONTEXTPROFILE (non inheritable): Context profile mask. Can be CORE, COMPATIBILITY or CORECOMPATIBILITY. Used only when
ARBCONTEXT=Yes. (since 3.6)

CONTEXTVERSION (non inheritable): Context version number in the format "major.minor". Used only when ARBCONTEXT=Yes. (since
3.6)

DEPTH_SIZE: Indicates the number of bits for representing the z coordinate in the z-buffer. Value 0 means the z-buffer is not
necessary.

ERROR (read-only): If an error is found during IupMap and IupGLMakeCurrent, returns a string containing a description of the error
in English. See notes bellow.

LASTERROR (read-only) [Windows Only]: If an error is found, returns a string with the system error description. (Since 3.6)

RED_SIZE, GREEN_SIZE and BLUE_SIZE: Indicate the number of bits for representing each color component (valid only for RGBA).
The system default is usually 8 for each component (True Color support).

REFRESHCONTEXT (write-only) [Windows Only]: action attribute to refresh the internal device context when it is not owned by the
window class. The IupCanvas of the Win32 driver will always create a window with an owned DC, but GTK in Windows will not. (since
3.0)

STENCIL_SIZE: Indicates the number of bits in the stencil buffer. Value 0 means the stencil buffer is not necessary. Default is 0.

STEREO: Creates a stereo GL canvas (special glasses are required to visualize it correctly). Possible values: "YES" or "NO". Default: "NO".
When this flag is set to Yes but the OpenGL driver does not support it, the map will be successful and STEREO will be set to NO and
ERROR will not be set (since 3.9).

IUP - Portable User Interface 07-Jan-25

359/496

../elem/iupcanvas.html
iupmatrix.html
../elem/iupcanvas.html

SHAREDCONTEXT: name of another IupGLCanvas that will share its display lists and textures. That canvas must be mapped before
this canvas.

VISUAL (read-only): Returns "XVisualInfo*" in UNIX and "HDC" in Win32.

Callbacks

The IupGLCanvas element understands all callbacks defined for a conventional canvas, see IupCanvas.

Additionally:

RESIZE_CB: By default the resize callback sets:

glViewport(0,0,width,height);

SWAPBUFFERS_CB: action generated when IupGLSwapBuffers is called. (since 3.11)

int function(Ihandle* ih); [in C]
elem:swapbuffers_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

Auxiliary Functions

These are auxiliary functions based on the WGL and XGL extensions. Check the respective documentations for more information. ERROR
attribute will be set to "Failed to set new current context." if the call failed. It will reset ERROR to NULL if successful.

void IupGLMakeCurrent(Ihandle* ih); [in C]
iup.GLMakeCurrent(ih: ihandle) [in Lua]
or ih:MakeCurrent() [in Lua]

Activates the given canvas as the current OpenGL context. A ll subsequent OpenGL commands are directed to such canvas. The first call
will set the global attributes GL_VERSION, GL_VENDOR and GL_RENDERER (since 3.16).

int IupGLIsCurrent(Ihandle* ih); [in C]
iup.GLIsCurrent(ih: ihandle) -> status: boolean [in Lua]
or ih:IsCurrent() -> status: boolean [in Lua]

Returns a non zero value if the given canvas is the current OpenGL context.

void IupGLSwapBuffers(Ihandle* ih); [in C]
iup.GLSwapBuffers(ih: ihandle) [in Lua]
or ih:SwapBuffers() [in Lua]

Makes the BACK buffer visible. This function is necessary when a double buffer is used.

void IupGLPalette(Ihandle* ih, int index, float r, float g, float b); [in C]
iup.GLPalette(ih: ihandle, index, r, g, b: number) [in Lua]
or ih:Palette(index, r, g, b: number) [in Lua]

Defines a color in the color palette. This function is necessary when INDEX color is used.

void IupGLUseFont(Ihandle* ih, int first, int count, int list_base); [in C]
iup.GLUseFont(ih:ihandle, first, count, list_base: number) [in Lua]
or ih:UseFont(first, count, list_base: number) [in Lua]

Creates a bitmap display list from the current FONT attribute. See the documentation of the wglUseFontBitmaps and glXUseXFont
functions. (since 3.0)

void IupGLWait(int gl) [in C]
iup.GLWait(gl: number) [in Lua]

If gl is non zero it will call glFinish or glXWaitGL, else will call GdiFlush or glXWaitX. (since 3.0)

Notes

In Windows XP, if the COMPOSITE attribute is enabled then the hardware acceleration will be disabled.

The IupGLCanvas works with the GTK base driver in Windows and in UNIX (X-Windows).

Not available in our SunOS510x86 pre-compiled binaries just because we were not able to compile OpenGL code in our installation.

IUP - Portable User Interface 07-Jan-25

360/496

../elem/iupcanvas.html
../call/iup_resize_cb.html

Possible ERROR strings during IupMap:

"X server has no OpenGL GLX extension." - OpenGL not supported (UNIX Only)
"No appropriate visual." - Failed to choose a Visual (UNIX Only)
"No appropriate pixel format." - Failed to choose a Pixel Format (Windows Only)
"Could not create a rendering context." - Failed to create the OpenGL context. (Windows and UNIX)

Examples

Browse for Example Files

See Also

IupCanvas

IupGLControls (since 3.11)

OpenGL Controls Library

This library contains several controls that behave much like their standard controls counterpart such as IupLabel, IupButton,
IupFrame, and so on. But they were designed to be used only embedded in an OpenGL canvas along with the application drawing. They
will work and be displayed on top of the application drawing and respond to mouse events concurrently with the application mouse
events.

In order to use these controls the application must use the IupGLCanvasBox controls instead of the IupGLCanvas control. Actually the
IupGLCanvasBox inherits from the IupGLCanvas control so their usage is identical. But IupGLCanvasBox can have children and it
will manage the display and mouse events of all its children.

All the IupGlControls visible elements that can be an embedded children of a IupGLCanvasBox are based on the IupGLSubCanvas
control. Other IUP elements can also be used. It will work seemsly elements that are void containers can also be used, such as IupHbox,
IupVbox, IupGridBox, and so on. IupFill can also be used, but native elements can also be placed on top although they will not be
clipped by IupGLFrame and other IupGlControls containers. All functions and resources, like IupImage, are used just like any other
IUP control.

These controls are drawn by IUP using OpenGL on a IupGLCanvas control, and are not native controls.

The iupglcontrols.h file must be included in the source code. If you plan to use the control in Lua, you should also include
iupluaglcontrols.h.

The IupGLControlsOpen function must be called after IupOpen. To make the controls available in Lua use require"iupluaglcontrols" or
manually call the initialization function in C, iupglcontrolslua_open, after calling iuplua_open.

When manually calling the function your application must be linked to the control library (iupglcontrols), the IupGLCanvas control
library (iupgl), with the FTGL library, and with the OpenGL library. To use its bindings to Lua, the program must also be linked to the
iupluaglcontrols library.

The FTGL library is dependent also on the GLU library and on the Freetype library. In UNIX, IupGLControls is also dependent
on fontconfig.

The FTGL and Freetype libraries use the licenses that are compatible with the IUP license.

Examples

Browse for Example Files

IUP - Portable User Interface 07-Jan-25

361/496

../../examples/
../elem/iupcanvas.html
ctrl/iupglcanvas.html
ftgl.txt
freetype.txt
../examples/

child, ... : List of the identifiers that will be placed in the box. NULL must be used to define the end of the list in C. It can be empty, but
in C must have at least the NULL terminator..

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

The IupGLCanvasBox element handle all attributes defined for an OpenGL canvas and a conventional canvas, see IupGLCanvas and
IupCanvas.

MARGIN (non inheritable): Defines a margin in pixels. Its value has the format "widthxheight", where width and height are integer values
corresponding to the horizontal and vertical margins, respectively. Default: "0x0" (no margin).

REDRAW (non inheritable, write-only): force a full redraw of all elements and the main canvas.

CLIENTSIZE, CLIENTOFFSET: also accepted.

Attributes (at Children)

HORIZONTALALIGN (non inheritable) (at children only): Horizontally aligns the element inside the box. Possible values: "ALEFT",
"ACENTER", "ARIGHT" or "FLOAT". Default: "FLOAT". When FLOAT is used its horizontal position is obtained from the POSITION
attribute.

VERTICALALIGN (non inheritable) (at children only): Vertically aligns the element inside the box. Possible values: "ATOP",
"ACENTER", "ABOTTOM" or "FLOAT". Default: "FLOAT". When FLOAT is used its vertical position is obtained from the POSITION
attribute.

EXPANDHORIZONTAL (non inheritable) (at children only): Expand the horizontal size of the element to the box width. Works only if
EXPAND=Yes or HORIZONTAL. Can be Yes or No. Default: No. (since 3.13)

EXPANDVERTICAL (non inheritable) (at children only): Expand the vertical size of the element to the box height. Works only if
EXPAND=Yes or VERTICAL. Can be Yes or No. Default: No. (since 3.13)

Callbacks

The IupGLCanvasBox element understands all callbacks defined for the IupGLCanvas.

But since it has to forward the mouse and action callbacks to the IupGLControls elements when it is mapped the callbacks ACTION,
BUTTON_CB, MOTION_CB, WHEEL_CB, and LEAVEWINDOW_CB are replaced by internal callbacks. The application callbacks will still be
called and they can be retrieved by using the prefix "APP_" on the callback name. If for some reason the application set one of these
callbacks after being mapped, the box internal callback can be retrieved by using the prefix "GLBOX_" on the callback name.

IUP - Portable User Interface 07-Jan-25

362/496

../ctrl/iupglcanvas.html
../elem/iupcanvas.html
../attrib/iup_clientsize.html
../attrib/iup_clientoffset.html
../attrib/iup_position.html
../attrib/iup_position.html
../ctrl/iupglcanvas.html

Keyboard focus is NOT processed for IupGLCanvasBox children.

The IupGLCanvas SWAPBUFFERS_CB callback is used internally to enable a correct display for the box children. This means that when
the application calls IupGLSwapBuffers, then children will be drawn before actually swapping the double buffer.

Examples

Browse for Example Files

See Also

IupGLCanvas, IupCanvas

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

ACTIVE: disables mouse interaction and highlight feedback. Also for some controls it will affect its appearance to greyed version.
Possible values: "YES, "NO". Default: "YES".

BGCOLOR: background color used in derived controls. Can have an alpha component. Default: NULL.

BORDERCOLOR: color used for borders in derived controls. Can have an alpha component. Default: "50 150 255".

BORDERWIDTH: line width used for borders in derived controls. Default: "1". Any borders can be disabled by simply setting this value
to 0.

CURSOR (non inheritable): Defines a cursor for the sub-canvas.

FONT: Uses the FTGL library to render text in OpenGL using the Freetype library. Depends on locating a font file that matches the font
attribute. See Notes bellow. The default font typeface is changed to Helvetica to avoid system fonts that are not well processed by
FreeType.

HIGHLIGHT (non inheritable): flag indicating that the control is highlighted. Dynamically updated during mouse move.

HLCOLOR: color used to indicate a highlight state in derived controls. Can have an alpha component. Default: "200 225 245".

PSCOLOR: color used to indicate a press state in derived controls. Can have an alpha component. Default: "150 200 235".

PRESSED (non inheritable): flag indicating that the control is pressed with button1. Dynamically updated during button press.

REDRAWALL (non inheritable): flag to control the redraw update during a change of state like highlight or pressed. If "No" only the
element is redrawn, else all the IupGLCanvasBox is redrawn. It will work only if the control is fully opaque. Default: "Yes".

REDRAWFRONT (non inheritable, write-only): redraw only the control on the front buffer. It will work only if the control is fully opaque.

UNDERLINE (non inheritable): flag indicating that the control text should be redrawn with an underline. Since FTGL does not supports
underline, the drawing of the text will manually draw a line under the text.

WID (non inheritable): returns the same value as the IupGLCanvasBox where the element is inside.

ZORDER (non inheritable, write-only): change the order of the control inside its parent.

 SCREENPOSITION, POSITION, MINSIZE, MAXSIZE, TIP, SIZE, RASTERSIZE, VISIBLE: also accepted.

Callbacks

GL_ACTION: Action generated when the sub-canvas needs to be redrawn. The transformation matrix is already set to the subcanvas
rectangular region. Also, do not call IupGLMakeCurrent nor IupGLSwapBuffers, the IupCanvasBox management will take care of
that.

int function(Ihandle *ih); [in C]
elem:gl_action() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

GL_BUTTON_CB: Action generated when any mouse button is pressed or released. Same parameters as BUTTON_CB. If
IUP_CONTINUE is returned the application callback is called even the user clicked on the sub-canvas.

GL_ENTERWINDOW_CB: Action generated when the mouse enters the element. Same parameters as ENTERWINDOW_CB.

GL_LEAVEWINDOW_CB: Action generated when the mouse leaves the element. Same parameters as LEAVEWINDOW_CB.

GL_MOTION_CB: Action generated when the mouse is moved. Same parameters as MOTION_CB. If IUP_CONTINUE is returned the
application callback is called even the user moved the cursor on the sub-canvas.

IUP - Portable User Interface 07-Jan-25

363/496

../../examples/
../ctrl/iupglcanvas.html
../elem/iupcanvas.html
../attrib/iup_cursor.html
../attrib/iup_font.html
../attrib/iup_wid.html
../attrib/iup_zorder.html
../attrib/iup_screenposition.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_tip.html
../attrib/iup_size.html
../attrib/iup_rastersize.html
../attrib/iup_visible.html
../call/iup_button_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
../call/iup_motion_cb.html

GL_WHEEL_CB: Action generated when the mouse wheel is rotated. Same parameters as WHEEL_CB. If IUP_CONTINUE is returned
the application callback is called even the user clicked on the sub-canvas.

MAP_CB, UNMAP_CB, DESTROY_CB: common callbacks are supported.

Utilities (since 3.20)

Since there is no high quality text rendering in OpenGL we use FTGL and Freetype to load fonts and render using OpenGL. So we also
export the same function used internally so the applications can have the same functionality for other purposes, among with other utilities
for text and images.

void IupGLDrawText(Ihandle* ih, const char* str, int len, int x, int y); [in C]
iup.GLDrawText(ih: ihandle, str: string, x, y: number) [in Lua]
ih:GLDrawText(str: string, x, y: number) [in Lua]

Draws a text in the given position using the current FONT. The size of the string is used only in C. Can be -1 so strlen is used internally.
The coordinates are relative the top-left corner of the text. ATTENTION: Different from the IupDrawText function, the color of the text
uses the current color set in the OpenGL context.

void IupGLDrawImage(Ihandle* ih, const char* name, int x, int y, int active); [in C]
iup.GLDrawImage(ih: ihandle, name: string or image: ihandle, x, y, active: number) [in Lua]
ih:GLDrawImage(name: string or image: ihandle, x, y, active: number) [in Lua]

Draws an image given its name. The coordinates are relative the top-left corner of the image. The image name follows the same behavior
as the IMAGE attribute used by many controls. Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See
also IupImage. In Lua, the name parameter can be the actual image handle. When active parameter is 0, it will draw the same image in
inactive state.

void IupGLDrawGetTextSize(Ihandle* ih, const char* str, int *w, int *h); [in C]
iup.GLDrawGetTextSize(ih: ihandle, str: string) -> w, h: number [in Lua]
ih:GLDrawGetTextSize(str: string) -> w, h: number [in Lua]

Returns the given text size using the current FONT. In C unwanted values can be NULL.

void IupGLDrawGetImageInfo(const char* name, int *w, int *h, int *bpp); [in C]
iup.GLDrawGetImageInfo(name: string) -> w, h, bpp: number [in Lua]
ih:GLDrawGetImageInfo(name: string) -> w, h, bpp: number [in Lua]

Returns the given image size and bits per pixel. bpp can be 8, 24 or 32. In C unwanted values can be NULL.

Notes

FTGL and Freetype are third party libraries not developed at Tecgraf. But their licenses are also free and have the same freedom as
the Tecgraf Library License. You can read the license and copyright in the files ftgl.txt and freetype.txt. FTGL is copyright to Henry
Maddocks.

IUP uses the same FTGL library included in the CD library. Currently CD is using the FTGL version 2.1.3-rc5 with modifications.

To locate font files we use several strategies.

1. search for the font in the system. In Windows use the Registry to locate the font, in UNIX use the FontConfig library;
2. use the type face as a file title, compose with the font path to get a filename (assume style already in the typeface);
3. try some pre-defined names, and use the style to compose the filename;
4. use the typeface directly as the file name;

It will search for TrueType (*.ttf) and OpenType (*.otf) font files. It will search in the current directory; in the path returned by
the FREETYPEFONTS_DIR environment variable or from the FREETYPEFONTS_DIR global attribute; and in Windows on the
Fonts folder.

FTGL fonts are cached internally to optimal use of multiple fonts in the same IupGLCanvasBox.

We use OpenGL textures to draw images, so the image width and height MUST be a power of two if OpenGL version is 1.x, modern
OpenGL does not have this limitation.

See Also

IupCanvas

IupGLButton (since 3.11)
Creates an embedded OpenGL interface element that is a button. When selected, this element activates a function in the application. Its
visual presentation can contain a text and/or an image. It inherits from IupGLLabel. It exists only inside an IupGLCanvasBox.

IUP - Portable User Interface 07-Jan-25

364/496

../call/iup_wheel_cb.html
../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../attrib/iup_font.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../attrib/iup_font.html
../copyright.html
../ftgl.txt
../freetype.txt
../elem/iupcanvas.html
iupgllabel.html
iupglcanvasbox.html

Creation

Ihandle* IupGLButton(const char *title); [in C]
iup.glbutton{[title = title: string]} -> elem: ihandle [in Lua]
glbutton(title) [in LED]

title: Text to be shown to the user. It can be NULL. It will set the TITLE attribute.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

The IupGLButton element handle all attributes defined for the IupGLLabel control, and consequently for the IupGLSubCanvas control
too.

BACKIMAGE (non inheritable): image name to be used as background. It will be zoomed to fill the background (it does not includes the
border). Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See also IupImage. (since 3.11.2)

BACKIMAGEHIGHLIGHT (non inheritable): background image name of the element in highlight state. If it is not defined then the
BACKIMAGE is used. (since 3.11.2)

BACKIMAGEINACTIVE (non inheritable): background image name of the element when inactive. If it is not defined then the
BACKIMAGE is used and its colors will be replaced by a modified version creating the disabled effect. (since 3.11.2)

BACKIMAGEPRESS (non inheritable): background image name of the element in pressed state. If it is not defined then the BACKIMAGE
is used.(since 3.11.2)

FGCOLOR: Text color. Can have an alpha component. Default: "0 0 0". If TITLE and IMAGE are both not defined then the button will
show a color in a rectangle using this attribute (since 3.15).

FRONTIMAGE (non inheritable): image name to be used as foreground. It will be zoomed to fill the foreground (it does not includes the
border). The foreground has the same are as the background, but it is drawn at last. Use IupSetHandle or IupSetAttributeHandle to
associate an image to a name. See also IupImage. (since 3.11.2)

FITTOBACKIMAGE (non inheritable): enable the natural size to be computed from the BACKIMAGE. If BACKIMAGE is not defined will
be ignored. When set to Yes it will set BORDERWIDTH to 0. Can be Yes or No. Default: No. (since 3.11.2)

FRONTIMAGEHIGHLIGHT (non inheritable): foreground image name of the element in highlight state. If it is not defined then the
FRONTIMAGE is used. (since 3.11.2)

FRONTIMAGEINACTIVE (non inheritable): foreground image name of the element when inactive. If it is not defined then the
FRONTIMAGE is used and its colors will be replaced by a modified version creating the disabled effect. (since 3.11.2)

FRONTIMAGEPRESS (non inheritable): foreground image name of the element in pressed state. If it is not defined then the
FRONTIMAGE is used.(since 3.11.2)

Callbacks

The IupGLButton element handle all callbacks defined for the IupGLSubCanvas control.

ACTION: Action generated when the button 1 (usually left) is selected. This callback is called only after the mouse is released and when it
is released inside the button area.

int function(Ihandle* ih); [in C]
elem:action() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

Returns: IUP_CLOSE will be processed.

Notes

The difference between an IupGLButton and an IupGLLabel is the border (controlled by IupGLSubCanvas attributes BORDERWIDTH
and BORDERCOLOR), the change in background color for state feedback (controlled by PRESSCOLOR and HLCOLOR attributes), and the
callback to notify the application.

The natural size if the same as a IupGLLabel plus BORDERWIDTH.

See Also

IupImage, IupGLToggle, IupGLLabel

IupGLExpander (since 3.11)

IUP - Portable User Interface 07-Jan-25

365/496

iupgllabel.html
iupglsubcanvas.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../attrib/iup_fgcolor.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../call/iup_action.html
../elem/iupimage.html
iupgltoggle.html
iupgllabel.html

Creates an embedded OpenGL container that can interactively show or hide its child. It inherits from IupGLSubCanvas. It exists only inside
an IupGLCanvasBox.

Creation

Ihandle* IupGLExpander(Ihandle* child); [in C]
iup.glexpander{child: ihandle} -> (elem: ihandle) [in Lua]
glexpander(child) [in LED]

child: Identifier of an interface element. It can be NULL (nil in Lua), or empty in LED.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

The IupGLExpander element handle all attributes defined for a IupGLSubCanvas control.

BACKCOLOR (non inheritable): background color of the title area. Default: "50 100 150".

BARPOSITION: indicates the bar handler position. Possible values are "TOP", "BOTTOM", "LEFT" or "RIGHT". Default: "TOP".

BARSIZE (non inheritable): controls the size of the bar handler. Default: the height of a text line plus 5 pixels.

EXPAND (non inheritable): the default value is "YES".

EXTRABUTTONS (non inheritable): sets the number of extra image buttons at right when BARPOSITION=TOP. The maximum number
of buttons is 3. See the EXTRABUTTON_CB callback. Default: 0.

IMAGEEXTRAid: image name used for the button. id can be 1, 2 or 3. 1 is the rightmost button, and count from right to left.
IMAGEEXTRAPRESSid: image name used for the button when pressed.
IMAGEEXTRAHIGHLIGHTid: image name for the button used when mouse is over the button area.

All images must be 16x16, or smaller but the occupied size will still be 16x16.

FORECOLOR (non inheritable): text and arrow color. Default: "255 255 255".

HIGHCOLOR (non inheritable): text and arrow color when highlight. Default: "200 225 245".

IMAGE (non inheritable): image name to replace the arrow by an image STATE=CLOSE. Works only when BARPOSITION=TOP. The
minimum horizontal space reserved for the handler is 20 pixels. Use IupSetHandle or IupSetAttributeHandle to associate an image to a
name. See also IupImage.

IMAGEOPEN: image name used when STATE=OPEN.
IMAGEHIGHLIGHT: image name used when mouse is over the bar handler and STATE=CLOSE.
IMAGEOPENHIGHLIGHT: image name used when mouse is over the bar handler and STATE=OPEN.

MOVEABLE (non inheritable): enable the frame to be interactively moved when it is a direct child of the IupGLCanvasBox. Default: NO.

MOVETOTOP (non inheritable): when MOVEABLE=Yes and the frame is moved then its ZORDER is also set to TOP. (Since 3.11.1)

PRESSCOLOR (non inheritable): text and arrow color when pressed. Default: "150 200 235".

STATE (non inheritable): Show or hide the container elements. Possible values: "OPEN" (expanded) or "CLOSE" (collapsed). Default:
OPEN. Setting this attribute will automatically change the layout of the entire dialog so the child can be recomposed.

TITLE (non inheritable): title text, shown in the title bar near the expand or collapse symbol. Shown only when BARPOSITION=TOP.

TITLEBACKIMAGE (non inheritable): image name to be used as a background of the title area. It will be zoomed to fill the background
(it does not includes the border). Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See also IupImage. (Since
3.11.1)

TITLEBACKIMAGEINACTIVE (non inheritable): background image name of the element when inactive. If it is not defined then the
TITLEBACKIMAGE is used and its colors will be replaced by a modified version creating the disabled effect. (Since 3.11.2)

CLIENTSIZE, CLIENTOFFSET: also accepted.

Callbacks

The IupGLFrame element handle all callbacks defined for the IupGLSubCanvas control.

ACTION: Action generated after the expander state is interactively changed.

int function(Ihandle* ih); [in C]
elem:action() -> (ret: number) [in Lua]

IUP - Portable User Interface 07-Jan-25

366/496

iupglsubcanvas.html
iupglcanvasbox.html
iupglsubcanvas.html
../attrib/iup_expand.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../attrib/iup_clientsize.html
../attrib/iup_clientoffset.html
../call/iup_action.html

ih: identifier of the element that activated the event.

MOVE_CB: Called after the frame was moved on the IupGLCanvasBox, when MOVEABLE=Yes. The coordinates are the same as the
POSITION attribute.

int function(Ihandle *ih, int x, int y); [in C]
elem:trayclick_cb(x, y: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
x, y: coordinates of the new position.

OPENCLOSE_CB: Action generated before the expander state is interactively changed.

int function(Ihandle* ih, int state); [in C]
elem:openclose_cb(state: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
state: new state to be applied.

Returns: if return IUP_IGNORE the new state is ignored.

EXTRABUTTON_CB: Action generated when any mouse button is pressed and released.

int function(Ihandle* ih, int button, int pressed); [in C]
elem:extrabutton_cb(button, pressed: number) -> (ret: number) [in Lua]

ih: identifies the element that activated the event.
button: identifies the extra button. can be 1, 2 or 3. (this is not the same as BUTTON_CB)
pressed: indicates the state of the button:

0 - mouse button was released;
1 - mouse button was pressed.

Notes

The container can be created with no elements and be dynamic filled using IupAppend or IupInsert.

When the TITLE is defined and BARPOSITION=TOP then the expand/collapse symbol is left aligned. In all other situations the
expand/collapse symbol is centered.

IupGLFrame (since 3.11)
Creates an embedded OpenGL container, which draws a frame with a title around its child. It inherits from IupGLSubCanvas. It exists only
inside an IupGLCanvasBox.

Creation

Ihandle* IupGLFrame(Ihandle *child); [in C]
iup.glframe{child: ihandle} -> (elem: ihandle) [in Lua]
glframe(child) [in LED]

child: Identifier of an interface element which will receive the frame around. It can be NULL (nil in Lua), or empty in LED.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

The IupGLFrame element handle all attributes defined for a IupGLSubCanvas control.

ALIGNMENT (non inheritable): horizontal and vertical alignment. Possible values: "ALEFT", "ACENTER" and "ARIGHT", combined to
"ATOP", "ACENTER" and "ABOTTOM". Default: "ALEFT:ACENTER". Partial values are also accepted, like "ARIGHT" or ":ATOP", the other
value will be obtained from the default value.

BACKCOLOR (non inheritable): color used as background when TITLE and IMAGE are not defined. Can have an alpha component.
Default: NULL. Used instead of BGCOLOR to avoid inheritance problems.

BACKIMAGE (non inheritable): image name to be used as background when TITLE and IMAGE are not defined. It will be zoomed to fill
the background (it does not includes the border). Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See also
IupImage. (Since 3.11.1)

BACKIMAGEINACTIVE (non inheritable): background image name of the element when inactive. If it is not defined then the
BACKIMAGE is used and its colors will be replaced by a modified version creating the disabled effect. (since 3.11.2)

IUP - Portable User Interface 07-Jan-25

367/496

../attrib/iup_position.html
../func/iupappend.html
../func/iupinsert.html
iupglsubcanvas.html
iupglcanvasbox.html
iupglsubcanvas.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html

EXPAND (non inheritable): The default value is "YES".

FORECOLOR (non inheritable): Text color. Can have an alpha component. Default: "0 0 0". Used instead of FGCOLOR to avoid
inheritance problems.

FRAMECOLOR (non inheritable): color used to draw the frame border. Can have an alpha component. Default: "50 150 255". Used
instead of BORDERCOLOR to avoid inheritance problems.

FRAMEWIDTH (non inheritable): line width of the frame border. Default: 1. Used instead of BORDERWIDTH to avoid inheritance
problems.

IMAGE (non inheritable): Image name. Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See also IupImage.

IMAGEHIGHLIGHT (non inheritable): Image name of the element in highlight state. If it is not defined then the IMAGE is used.

IMAGEINACTIVE (non inheritable): Image name of the element when inactive. If it is not defined then the IMAGE is used and its colors
will be replaced by a modified version creating the disabled effect.

IMAGEPRESS (non inheritable): Image name of the element in pressed state. If it is not defined then the IMAGE is used.

IMAGEPOSITION (non inheritable): Position of the image relative to the text when both are defined. Can be: LEFT, RIGHT, TOP,
BOTTOM. Default: LEFT.

MOVEABLE (non inheritable): enable the frame to be interactively moved when it is a direct child of the IupGLCanvasBox. Default: NO.

MOVETOTOP (non inheritable): when MOVEABLE=Yes and the frame is moved then its ZORDER is also set to TOP. (Since 3.11.1)

PADDING (non inheritable): internal margin for the title area. Default value: "2x0".

CPADDING: same as PADDING but using the units of the SIZE attribute. It will actually set the PADDING attribute. (since 3.29)

SPACING (non inheritable): defines the spacing between the image and the title. Default: "2".

CSPACING: same as SPACING but using the units of the vertical part of the SIZE attribute. It will actually set the SPACING attribute.
(since 3.29)

TITLE (non inheritable): Text the user will see at the top of the frame.

TITLEBACKIMAGE (non inheritable): image name to be used as background on the title area. Works only when TITLEBOX=Yes. Use
IupSetHandle or IupSetAttributeHandle to associate an image to a name. See also IupImage. (Since 3.11.1)

TITLEBACKIMAGEINACTIVE (non inheritable): background image name of the element when inactive. If it is not defined then the
TITLEBACKIMAGE is used and its colors will be replaced by a modified version creating the disabled effect. (Since 3.11.2)

TITLEBOX (non inheritable): enable a different visual style for the frame. Instead of the traditional round frame that starts and ends at
the title area, it will draw a filled box for the title area and a regular rectangle around the child. Default: NO.

TITLEOFFSET (non inheritable): horizontal offset from the left border to start the title area. Default: 5.

CLIENTSIZE, CLIENTOFFSET: also accepted.

Callbacks

The IupGLFrame element handle all callbacks defined for the IupGLSubCanvas control.

MOVE_CB: Called after the frame was moved on the IupGLCanvasBox, when MOVEABLE=Yes. The coordinates are the same as the
POSITION attribute.

int function(Ihandle *ih, int x, int y); [in C]
elem:trayclick_cb(x, y: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
x, y: coordinates of the new position.

Notes

The IupGLFrame can contain text and image simultaneously at the title area.

The frame can be created with no elements and be dynamic filled using IupAppend or IupInsert.

IupGLLabel (since 3.11)
Creates an embedded OpenGL label interface element, which displays a text and/or an image. It inherits from IupGLSubCanvas. It exists
only inside an IupGLCanvasBox.

Creation

IUP - Portable User Interface 07-Jan-25

368/496

../attrib/iup_expand.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../attrib/iup_title.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../attrib/iup_clientsize.html
../attrib/iup_clientoffset.html
../attrib/iup_position.html
../func/iupappend.html
../func/iupinsert.html
iupglsubcanvas.html
iupglcanvasbox.html

Ihandle* IupGLLabel(const char *title); [in C]
iup.gllabel{[title = title: string]} -> (elem: ihandle) [in Lua]
gllabel(title) [in LED]

title: Text to be shown on the label. It can be NULL. It will set the TITLE attribute.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

The IupGLLabel element handle all attributes defined for a IupGLSubCanvas control.

ALIGNMENT (non inheritable): horizontal and vertical alignment. Possible values: "ALEFT", "ACENTER" and "ARIGHT", combined to
"ATOP", "ACENTER" and "ABOTTOM". Default: "ALEFT:ACENTER". Partial values are also accepted, like "ARIGHT" or ":ATOP", the other
value will be obtained from the default value.

FGCOLOR: Text color. Can have an alpha component. Default: "0 0 0".

IMAGE (non inheritable): Image name. Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See also IupImage.

IMAGEHIGHLIGHT (non inheritable): Image name of the element in highlight state. If it is not defined then the IMAGE is used.

IMAGEINACTIVE (non inheritable): Image name of the element when inactive. If it is not defined then the IMAGE is used and its colors
will be replaced by a modified version creating the disabled effect.

IMAGEPRESS (non inheritable): Image name of the element in pressed state. If it is not defined then the IMAGE is used.

IMAGEPOSITION (non inheritable): Position of the image relative to the text when both are defined. Can be: LEFT, RIGHT, TOP,
BOTTOM. Default: LEFT.

PADDING (non inheritable): internal margin. Default value: "0x0".

CPADDING: same as PADDING but using the units of the SIZE attribute. It will actually set the PADDING attribute. (since 3.29)

SPACING (non inheritable): defines the spacing between the image and the title. Default: "2".

CSPACING: same as SPACING but using the units of the vertical part of the SIZE attribute. It will actually set the SPACING attribute.
(since 3.29)

TITLE (non inheritable): Label's text. The '\n' character is accepted for line change.

Notes

The IupGLLabel can contain text and image simultaneously.

The natural size will be a combination of the size of the image and the title, if any, plus PADDING and SPACING (if both image and title
are present).

See Also

IupImage, IupGLButton, IupGLToggle.

IupGLLink (since 3.11)
Creates an embedded OpenGL label that displays an underlined clickable text. It inherits from IupGLLabel. It exists only inside an
IupGLCanvasBox.

Creation

Ihandle* IupGLLink(const char *url, const char * title); [in C]
iup.gllink{[url = url: string], [title = title: string]} -> (elem: ihandle) [in Lua]
gllink(url, title) [in LED]

url: the destination address of the link. Can be any text. If IupHelp is used should be a valid URL. It can be NULL. It will set the URL
attribute.
title: Text to be shown on the link. It can be NULL. It will set the TITLE attribute.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

The IupGLLink element handle all attributes defined for the IupGLLabel control, and consequently for the IupGLSubCanvas control too.

IUP - Portable User Interface 07-Jan-25

369/496

iupglsubcanvas.html
../attrib/iup_fgcolor.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../attrib/iup_title.html
../elem/iupimage.html
iupglbutton.html
iupgltoggle.html
iupgllabel.html
iupglcanvasbox.html
iupgllabel.html
iupglsubcanvas.html

FGCOLOR: Text color. Default: the global attribute LINKFGCOLOR.

URL: the default value is "YES".

Callbacks

The IupGLLink element handle all callbacks defined for the IupGLSubCanvas control.

ACTION: Action generated when the link is activated.

int function(Ihandle* ih, char *url); [in C]
elem:action(url: string) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
url: the destination address of the link.

Returns: IUP_CLOSE will be processed. If returns IUP_DEFAULT or it is not defined, the IupHelp function will be called.

Notes

When the cursor is over the text, it is changed to the HAND cursor.

If the callback is not defined the IupHelp function is called with the given URL.

See Also

IupGLLabel, IupHelp.

IupGLProgressBar (since 3.11)
Creates an embedded OpenGL progress bar control. Shows a percent value that can be updated to simulate a progression. It inherits from
IupGLSubCanvas. It exists only inside an IupGLCanvasBox.

Creation

Ihandle* IupGLProgressBar(void); [in C]
iup.glprogressbar{} -> (elem: ihandle) [in Lua]
glprogressbar() [in LED]

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

The IupGLProgressBar element handle all attributes defined for a IupGLSubCanvas control.

BACKIMAGE (non inheritable): image name to be used as background. It will be zoomed to fill the background (it does not includes the
border). Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See also IupImage. (since 3.11.2)

BACKIMAGEHIGHLIGHT (non inheritable): background image name of the element in highlight state. If it is not defined then the
BACKIMAGE is used. (since 3.11.2)

BACKIMAGEINACTIVE (non inheritable): background image name of the element when inactive. If it is not defined then the
BACKIMAGE is used and its colors will be replaced by a modified version creating the disabled effect. (since 3.11.2)

BACKIMAGEPRESS (non inheritable): background image name of the element in pressed state. If it is not defined then the BACKIMAGE
is used.(since 3.11.2)

FGCOLOR: Controls the bar color. Can have an alpha component. Default: "200 225 245".

FITTOBACKIMAGE (non inheritable): enable the natural size to be computed from the BACKIMAGE. If BACKIMAGE is not defined will
be ignored. When set to Yes it will set BORDERWIDTH to 0. Can be Yes or No. Default: No. (since 3.11.2)

MAX (non inheritable): Contains the maximum value. Default is "1".

MIN (non inheritable): Contains the minimum value. Default is "0".

ORIENTATION: can be "VERTICAL" or "HORIZONTAL". Default: "HORIZONTAL". Horizontal goes from left to right, and vertical from
bottom to top.

PADDING: internal margin. Default value: "0x0".

CPADDING: same as PADDING but using the units of the SIZE attribute. It will actually set the PADDING attribute. (since 3.29)

IUP - Portable User Interface 07-Jan-25

370/496

../attrib/iup_fgcolor.html
../call/iup_action.html
iupgllabel.html
../func/iuphelp.html
iupglsubcanvas.html
iupglcanvasbox.html
iupglsubcanvas.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../attrib/iup_fgcolor.html

SHOWTEXT: Indicates if the text inside the bar is to be shown or not. Possible values: "YES" or "NO". Default: "YES".

TEXT (non inheritable): Contains a text to be shown inside the bar when SHOW_TEXT=YES. If it is NULL, the percentage calculated from
VALUE will be used.

TXTCOLOR: Text color. Can have an alpha component. Default: "0 0 0".

VALUE (non inheritable): Contains a number between "MIN" and "MAX", controlling the current position.

Notes

The natural size is the height of one character in one direction and the width of 15 characters in the other, plus PADDING and
BORDERWIDTH.

IupGLScrollBox (since 3.11)
Creates an embedded OpenGL container that allows its child to be scrolled. It inherits from IupGLSubCanvas. It exists only inside an
IupGLCanvasBox.

Creation

Ihandle* IupGLScrollBox(Ihandle* child); [in C]
iup.glscrollbox{child: ihandle} -> (elem: ihandle) [in Lua]
glscrollbox(child) [in LED]

child: Identifier of an interface element which will receive the box. It can be NULL (nil in Lua), or empty in LED.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

The IupGLScrollBox element handle all attributes defined for a IupGLSubCanvas control.

It contains automatic scrollbars that are shown or hidden accordingly if the child natural size fits the client size. See the Scrollbars
Attributes for IupGLControls for more details.

EXPAND (non inheritable): The default value is "YES".

POSX: Position of the thumb in the horizontal scrollbar. Default: "0.0". DX is the visible horizontal area and XMAX is set to the child
natural width.

POSY: Position of the thumb in the vertical scrollbar. Default: "0.0". DY is the visible vertical area and YMAX is set to the child natural
height.

CLIENTSIZE, CLIENTOFFSET: also accepted.

Notes

The box allows the application to create a virtual space for the dialog that is actually larger than the visible area. The current size of the
box defines the visible area. The natural size of the child (and its children) defines the virtual space size. So the IupGLScrollBox does not
depend on its child size or expansion, and its natural size is always 0x0.

The user can move the box contents by dragging the background. Also the mouse wheel scrolls the contents vertically.

The box can be created with no elements and be dynamic filled using IupAppend or IupInsert.

Examples

Browse for Example Files

Scrollbar Attributes for IupGLControls (since 3.11)
In IupGLControls scrollbars are always enabled and they are always automatically shown or hidden accordingly to D* >= *MAX-*MIN.

Configuration Attributes (non inheritable)

DX: Size of the thumb in the horizontal scrollbar. A lso the horizontal page size. Default: "10".

DY: Size of the thumb in the vertical scrollbar. A lso the vertical page size. Default: "10".

POSX: Position of the thumb in the horizontal scrollbar. Default: "0".

IUP - Portable User Interface 07-Jan-25

371/496

iupglsubcanvas.html
iupglcanvasbox.html
iupglsubcanvas.html
iupgl_scrollbars.html
../attrib/iup_expand.html
../attrib/iup_posx.html
../attrib/iup_posy.html
../attrib/iup_clientsize.html
../attrib/iup_clientoffset.html
../func/iupappend.html
../func/iupinsert.html
../../examples/
../attrib/iup_dx.html
../attrib/iup_dy.html
../attrib/iup_posx.html

POSY: Position of the thumb in the vertical scrollbar. Default: "0".

XMIN: Minimum value of the horizontal scrollbar. Default: "0".

XMAX: Maximum value of the horizontal scrollbar. Default: "100".

YMIN: Minimum value of the vertical scrollbar. Default: "0".

YMAX: Maximum value of the vertical scrollbar. Default: "100".

LINEX: The amount the thumb moves when an horizontal step is performed. Default: 1/10th of DX.

LINEY: The amount the thumb moves when a vertical step is performed. Default: 1/10th of DY.

Appearance Attributes (non inheritable)

SB_BACKCOLOR (non inheritable): color used as background. Can have an alpha component. Default: "200 225 245". Used instead of
BGCOLOR to avoid inheritance problems.

SB_FORECOLOR (non inheritable): handler and arrow color. Can have an alpha component. Default: "110 210 230". Used instead of
FGCOLOR to avoid inheritance problems.

SB_HIGHCOLOR (non inheritable): handler and arrow color when highlight. Default: "90 190 255".

SB_PRESSCOLOR (non inheritable): handler and arrow color when pressed. Default: "50 150 255".

SCROLLBARSIZE (non inheritable): The width of the vertical scrollbar or the height of the horizontal scrollbar. Default: 11.

Notes

The scrollbar allows you to create a virtual space associated to the element. In the image below, such space is marked in red, as well as
the attributes that affect the composition of this space. In green you can see how these attributes are reflected on the scrollbar.

Hence you can clearly deduce that POSX is limited to XMIN and XMAX-DX, or XMIN<=POSX<=XMAX-DX.

IMPORTANT: set XMAX to the integer size of the virtual space, NOT to "width-1", or the last pixel of the virtual space will never be
visible. If you decide to let XMAX with the default value of 100 and to control only DX, then use the formula DX=visible_width/width.

When the virtual space has the same size as the canvas, DX equals XMAX-XMIN, the scrollbar is automatically hidden. The width of the
vertical scrollbar (the same as the height of the horizontal scrollbar) can be obtained using the SCROLLBARSIZE attribute.

The same is valid for YMIN, YMAX, DY and POSY. But remember that the Y axis is oriented from top to bottom in IUP. So if you want to
consider YMIN and YMAX as bottom-up oriented, then the actual YPOS must be obtained using YMAX-DY-POSY.

If you have to change the properties of the scrollbar (XMIN, XMAX and DX) but you want to keep the thumb still (if possible) in the same
relative position, then you have to also recalculate its position (POSX) using the old position as reference to the new one. For example,
you can convert it to a 0-1 interval and then scale to the new limits:

old_posx_relative = (old_posx - old_xmin)/(old_xmax - old_xmin)
posx = (xmax - xmin)*old_posx_relative + xmin

Affects

IupGLScrollBox

See Also

POSX, XMIN, XMAX, DX, POSY, YMIN, YMAX, DY

IupGLSeparator (since 3.11)
Creates an embedded OpenGL separator interface element, which displays a vertical or horizontal line. It inherits from IupGLSubCanvas. It
exists only inside an IupGLCanvasBox.

Creation

IUP - Portable User Interface 07-Jan-25

372/496

../attrib/iup_posy.html
../attrib/iup_xmin.html
../attrib/iup_xmax.html
../attrib/iup_ymin.html
../attrib/iup_ymax.html
iupglscrollbox.html
iup_posx.html
iup_xmin.html
iup_xmax.html
iup_dx.html
iup_posy.html
iup_ymin.html
iup_ymax.html
iup_dy.html
iupglsubcanvas.html
iupglcanvasbox.html

Ihandle* IupGLSeparator(void); [in C]
iup.glseparator{} -> (elem: ihandle) [in Lua]
glseparator() [in LED]

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

The IupGLSeparator element handle all attributes defined for a IupGLSubCanvas control.

ORIENTATION: can be "VERTICAL" or "HORIZONTAL". Default: "VERTICAL".

Notes

The IupGLSeparator visual is controlled by IupGLSubCanvas attributes BORDERWIDTH and BORDERCOLOR.

The natural size will be BORDERWIDTH in one direction and it will expand if there is free space in the other direction.

IupGLSizebox (since 3.11)
Creates a void container that allows its child to be resized. Allows expanding and contracting the child size in one or two directions. It
inherits from IupGLSubCanvas. It exists only inside an IupGLCanvasBox.

Creation

Ihandle* IupGLSizebox(Ihandle* child); [in C]
iup.glsizebox{child: ihandle} -> (elem: ihandle) [in Lua]
glsizebox(child) [in LED]

child: Identifier of an interface element which will receive the box. It can be NULL (nil in Lua), or empty in LED.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

The IupGLScrollBox element handle all attributes defined for a IupGLSubCanvas control.

FORECOLOR: Changes the color of the bar handler. Default: "192 192 192".

RESIZERS: Indicates the direction of the resize. Possible values are "VERTICAL", "HORIZONTAL", or "BOTH". Default: "BOTH". The
handler is always placed at the right/bottom of its child.

EXPAND (non inheritable): The default value is "YES".

CLIENTSIZE, CLIENTOFFSET: also accepted.

Notes

The control inside the IupGLSizeBox will have its User size changed. See the Layout Guide for mode details on sizes.

IupGLSizeBox can make the layout to be resized larger than the IupGLCanvasBox size so some controls will be positioned outside the
box area at right or bottom. In fact this is part of the dynamic layout default reposition of controls inside the box. See the IupRefresh
function. The IUP layout does not have a maximum limit only a minimum, except if you use the MAXSIZE common attribute.

The box can be created with no elements and be dynamic filled using IupAppend or IupInsert.

Examples

Browse for Example Files

IupGLText (since 3.19)
Creates an embedded OpenGL text interface element, which displays a text and allows to edit it when clicked. It inherits from
IupGLSubCanvas. It exists only inside an IupGLCanvasBox.

Internally uses an IupText when the user clicks the control to allow the user to edit the text. Once the IupText loses its focus the text is
updated and the IupText is hidden. The IupText is an internal child of the IupGLText. The application can use the IupGetChild
function to get access to the IupText control.

Creation

IUP - Portable User Interface 07-Jan-25

373/496

iupglsubcanvas.html
iupglsubcanvas.html
iupglcanvasbox.html
iupglsubcanvas.html
../attrib/iup_expand.html
../attrib/iup_clientsize.html
../attrib/iup_clientoffset.html
../layout_guide.html
../func/iupappend.html
../func/iupinsert.html
../../examples/
iupglsubcanvas.html
iupglcanvasbox.html
../elem/iuptext.html
../func/iupgetchild.html

Ihandle* IupGLText(void); [in C]
iup.gltext{} -> (elem: ihandle) [in Lua]
gltext() [in LED]

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

The IupGLText element handle all attributes defined for a IupGLSubCanvas control.

ALIGNMENT (non inheritable): horizontal and vertical alignment. Possible values: "ALEFT", "ACENTER" and "ARIGHT", combined to
"ATOP", "ACENTER" and "ABOTTOM". Default: "ALEFT:ATOP". Partial values are also accepted, like "ARIGHT" or ":ATOP", the other
value will be obtained from the default value. When editing only horizontal alignment is used.

FGCOLOR: Text color. Can have an alpha component. Default: "0 0 0".

PADDING (non inheritable): internal margin. Default value: "2x2".

CPADDING: same as PADDING but using the units of the SIZE attribute. It will actually set the PADDING attribute. (since 3.29)

SIZE (non inheritable): Since the contents can be changed by the user, the Natural Size is not affected by the text contents. Use
VISIBLECOLUMNS and VISIBLELINES to control the Natural Size.

TEXT (non inheritable): returns the name of the internal IupText used to edit the text when the user clicks the control. Another way to
get access to the internal child IupText.

TEXT_HANDLE (non inheritable): returns the Ihandle of the internal IupText.

VALUE (non inheritable): Text entered by the user.

VISIBLECOLUMNS: Defines the number of visible columns for the Natural Size, this means that will act also as minimum number of
visible columns. It uses a wider character size than the one used for the SIZE attribute so strings will fit better without the need of extra
columns. As for SIZE you can set to NULL after map to use it as an initial value. Default: 5

Callbacks

The IupGLText element handle all callbacks defined for the IupGLSubCanvas control.

VALUECHANGED_CB: Called after the value was interactively changed by the user.

int function(Ihandle *ih); [in C]
elem:valuechanged_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

Notes

Visually the difference between an IupGLText and an IupGLButton is that by default the border is always visible in the IupGLText.

See Also

 IupGLLabel, IupGLButton, IupGLToggle.

IupGLToggle (since 3.11)
Creates an embedded OpenGL toggle interface element. It is a two-state (on/off) button that, when selected, generates an action that
activates a function in the associated application. Its visual representation can contain a text and/or an image. It inherits from
IupGLButton. It exists only inside an IupGLCanvasBox.

Creation

Ihandle* IupGLToggle(const char *title); [in C]
iup.gltoggle{[title = title: string]} -> (elem: ihandle) [in Lua]
gltoggle(title) [in LED]

title: Text to be shown on the toggle. It can be NULL. It will set the TITLE attribute.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

IUP - Portable User Interface 07-Jan-25

374/496

iupglsubcanvas.html
../attrib/iup_fgcolor.html
../attrib/iup_size.html
iupgllabel.html
iupglbutton.html
iupgltoggle.html
iupglbutton.html
iupglcanvasbox.html

The IupGLToggle element handle all attributes defined for the IupGLButton control, and consequently for the IupGLLabel control and for
the IupGLSubCanvas control too.

CHECKMARK (non inheritable): Enables the check mark. Default: NO. When enabled the border and the background are not drawn, and
a check mark box is drawn at left or right, according to RIGHTBUTTON.

CHECKMARKWIDTH (non inheritable): Size of the check mark. Default: 14.

RADIO (read-only): returns if the toggle is inside a radio. Can be "YES" or "NO". Valid only after the element is mapped, before returns
NULL.

IGNORERADIO (non inheritable): when set the toggle will not behave as a radio when inside an IupRadio hierarchy. (since 3.21)

RIGHTBUTTON (non inheritable): place the check button at the right of the text. Can be "YES" or "NO". Default: "NO".

VALUE (non inheritable): Toggle's state. Values can be "ON", "OFF" or "TOGGLE". Default: "OFF". The TOGGLE option will invert the
current state.

Callbacks

The IupGLToggle element handle all callbacks defined for the IupGLSubCanvas control.

ACTION: Action generated when the toggle's state (on/off) was changed. The callback also receives the toggle's state.

int function(Ihandle* ih, int state); [in C]
elem:action(state: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
state: 1 if the toggle's state was set to on; 0 if it was set to off.

Returns: IUP_CLOSE will be processed.

VALUECHANGED_CB: Called after the value was interactively changed by the user. Called after the ACTION callback, but under the
same context.

int function(Ihandle *ih); [in C]
elem:valuechanged_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

Notes

IupGLToggle visual is the same as a IupGLButton. There is no check mark.

To build a set of mutual exclusive toggles, insert them in a IupRadio container. They must be inserted before creation, and their
behavior can not be changed.

A toggle that is a child of an IupRadio automatically receives a name when its is mapped into the native system. (since 3.16)

See Also

IupImage, IupGLButton, IupGLLabel, IupRadio.

orientation: optional orientation of valuator. Can be NULL. See ORIENTATION attribute.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

The IupGLVal element handle all attributes defined for a IupGLSubCanvas control.

BACKIMAGE (non inheritable): image name to be used as background. It will be zoomed to fill the background (it does not includes the
border). Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See also IupImage. IMPORTANT: for the slider
match the handler movement area the backimage must has a transparent space that will have room for the handler, in the extremes this
space should be at least half the handler size. (since 3.11.2)

BACKIMAGEHIGHLIGHT (non inheritable): background image name of the element in highlight state. If it is not defined then the
BACKIMAGE is used. (since 3.11.2)

BACKIMAGEINACTIVE (non inheritable): background image name of the element when inactive. If it is not defined then the
BACKIMAGE is used and its colors will be replaced by a modified version creating the disabled effect. (since 3.11.2)

BACKIMAGEPRESS (non inheritable): background image name of the element in pressed state. If it is not defined then the BACKIMAGE

IUP - Portable User Interface 07-Jan-25

375/496

iupglbutton.html
iupgllabel.html
iupglsubcanvas.html
../call/iup_action.html
../elem/iupimage.html
iupglbutton.html
iupgllabel.html
iupradio.html
iupglsubcanvas.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html

is used. (since 3.11.2)

FGCOLOR: Controls the bar color. Can have an alpha component. Default: "200 225 245".

FITTOBACKIMAGE (non inheritable): enable the natural size to be computed from the BACKIMAGE. If BACKIMAGE is not defined will
be ignored. When set to Yes it will set BORDERWIDTH to 0. Can be Yes or No. Default: No. (since 3.11.2)

HANDLERSIZE (non inheritable): handler size in the same direction of the ORIENTATION. Default: 0. If set to 0 it will be calculated with
half of the dimension opposite to the ORIENTATION. If IMAGE is used, it will be ignored (since 3.11.2). When IMAGE is not used the
handler size in the opposite direction is the size of the element.

HLCOLOR: color used to indicate a highlight state. Can have an alpha component. Default: "190 210 230".

IMAGE (non inheritable): Image name for the handler. Use IupSetHandle or IupSetAttributeHandle to associate an image to a name. See
also IupImage. If defined the handler will be replaced by the image.

IMAGEHIGHLIGHT (non inheritable): Image name of the element in highlight state. If it is not defined then the IMAGE is used.

IMAGEINACTIVE (non inheritable): Image name of the element when inactive. If it is not defined then the IMAGE is used and its colors
will be replaced by a modified version creating the disabled effect.

IMAGEPRESS (non inheritable): Image name of the element in pressed state. If it is not defined then the IMAGE is used.

MAX: Contains the maximum valuator value. Default is "1". When changed the display will not be updated until VALUE is set.

MIN: Contains the minimum valuator value. Default is "0". When changed the display will not be updated until VALUE is set.

ORIENTATION (non inheritable): Informs whether the valuator is "VERTICAL" or "HORIZONTAL". Vertical valuators are bottom to up,
and horizontal valuators are left to right variations of min to max. Default: "HORIZONTAL".

SLIDERSIZE (non inheritable): slider size in the same direction of the ORIENTATION. Default: 5. Ignored when BACKIMAGE is used.

VALUE (non inheritable): Contains a number between MIN and MAX, indicating the valuator position. Default: "0.0".

Callbacks

The IupGLVal element handle all callbacks defined for the IupGLSubCanvas control.

VALUECHANGED_CB: Called after the value was interactively changed by the user.

int function(Ihandle *ih); [in C]
elem:valuechanged_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

VALUECHANGING_CB: Called when the value starts or ends to be interactively changed by the user.

int function(Ihandle *ih, int start); [in C]
elem:valuechanging_cb(start: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
start: flag that indicates if the value started to be changed (1) or the change just ended (0).

Notes

The natural size is the height of one character in one direction and the width of 15 characters in the other.

See Also

IupCanvas, IupMglPlot

Differences from IupPlot

Uses OpenGL for screen output and internal drivers for metafile output. IupPlot uses CD for screen and metafile output.

Selection and editing of a dataset using the DS_EDIT attribute are not implemented.

All functions use double floating point. (since 3.11)

New support for 3D data and 3D plots. New support for planar and volumetric data. New ALPHA, ANTIALIAS, DS_DIMENSION,
LEGENDBOX, BOX, BOXTICKS, BOXCOLOR, AXS_*ORIGIN, AXS_?LABELPOSITION, AXS_?LABELROTATION, AXS_?
TICKVALUESROTATION, LEGENDCOLOR, TITLECOLOR, LIGHT, COLORBAR*, COLORSCHEME attributes. Many new DS_MODE options.

USE_IMAGERGB and USE_GDI+ attributes are NOT supported. MARGIN* attributes are NOT supported. AXS_?SCALE attribute does NOT
support the LOG2 and LOGN values. The Crosshair cursor is not supported.

IUP - Portable User Interface 07-Jan-25

376/496

../attrib/iup_fgcolor.html
../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html
../elem/iupcanvas.html
iup_mglplot.html

The PREDRAW_CB, POSTDRAW_CB callbacks does not includes the CD canvas parameter. *FONTSIZE attributes are a multiple factor of
the FONT size. DASH_DOT_DOT line style is not supported, but has new line styles: LONGDASHED, SMALLDASHED and
SMALLDASH_DOT. AXS_?TICKMAJORSIZE, MARKSIZE are in normalized coordinates. New options for GRID: Z, XYZ, XZ, YZ. AXS_?
TICKSIZE renamed to AXS_?TICKMINORSIZE, and is a factor of the AXS_?TICKMAJORSIZE. AXS_?TICKMAJORSPAN default value is -5.
AXS_?TICKFORMAT default is internally computed according to the Min-Max range.

Function Mapping:

IupPlotBegin -> IupMglPlotBegin (IMPORTANT: parameter is the dimension 1, 2 or 3)
IupPlotAddStr -> IupMglPlotAdd1D
IupPlotAdd -> IupMglPlotAdd2D
 (none) IupMglPlotAdd3D
IupPlotEnd -> IupMglPlotEnd
 (none) IupMglPlotNewDataSet
IupPlotInsertStr (not mapped, use IupMglPlotInsert1D)
IupPlotInsert (not mapped, use IupMglPlotInsert2D)
IupPlotInsertStrPoints -> IupMglPlotInsert1D (names array is optional)
IupPlotInsertPoints -> IupMglPlotInsert2D
 (none) IupMglPlotInsert3D
IupPlotAddStrPoints -> IupMglPlotInsert1D (insert at DS_COUNT)
IupPlotAddPoints -> IupMglPlotInsert2D (insert at DS_COUNT)
 (none) IupMglPlotInsert3D
 (none) IupMglPlotSet1D
 (none) IupMglPlotSet2D
 (none) IupMglPlotSet3D
 (none) IupMglPlotSetData
 (none) IupMglPlotLoadData
 (none) IupMglPlotSetFromFormula
IupPlotTransform -> IupMglPlotTransform (includes z coordinate)
 (none) IupMglPlotTransformXYZ
 (cdCanvasMark) -> IupMglPlotDrawMark
 (cdCanvasLine) -> IupMglPlotDrawLine
 (cdCanvasText) -> IupMglPlotDrawText
IupPlotPaintTo -> IupMglPlotPaintTo (parameters are different)

Known Issues/To Do

Add UTF-8 mode using MathGL unicode support.
Compile MathGL using OpenMP support.
Text render quality is lower than in IupPlot.
Logarithm scale is not working properly.
Automatic ticks computation needs to be improved.
Text rotation when DS_SHOWVALUES=Yes is not ok. (MathGL)
When OPENGL=Yes initial size is smaller. (MathGL)
There is still lots of MathGL features not available in IupMglPlot.

See Also

IupCanvas, IupPlot

IupMglPlot DS_MODES Options

For Linear Datasets

LINE

Draws lines between points. DS_COLOR, DS_LINESTYLE and DS_LINEWIDTH are used to configure the lines.

(3 plots)
BOX=Yes

ROTATE=40:0:60
BOX=Yes

MARK

Draws a mark in each point. DS_COLOR, DS_MARKSTYLE and DS_MARKSIZE are used to configure the marks.

IUP - Portable User Interface 07-Jan-25

377/496

../elem/iupcanvas.html
iup_plot.html

MARKLINE

Draws lines between points and draws a mark in each point. Same as if LINE and MARK where set together.

RADAR

Draws a radar chart. Like a LINE plot in polar coordinates. RADARSHIFT configures an additional radial shift of the data [If rs<0 then
rs=max(0, -min(a))], default=-1. If DATAGRID=Yes then a grid of radial lines and a circle for rs are drawn. DS_COLOR, DS_LINESTYLE
and DS_LINEWIDTH are used to configure the lines. DS_COLOR, DS_MARKSTYLE and DS_MARKSIZE are used to configure the marks.

(3 plots)
RADARSHIFT=0.4
DATAGRID=Yes
BOX=Yes

AREA

Draws lines between points and fills it to axis plane. DS_COLOR is used to configure fill color. The order of the datasets will define which
one will be drawn first.

(3 plots)
AXS_XORIGIN=0
AXS_YORIGIN=0
BOX=Yes

BAR

Draws vertical bars from points to axis plane. If DATAGRID=Yes then grid lines are drawn, default=No. BARWIDTH sets relative width of
rectangles, default=0.7.

AXS_XORIGIN=0
AXS_YORIGIN=0
BOX=Yes

ROTATE=40:0:60
BOX=Yes

BARHORIZONTAL

Draws horizontal bars from points to axis plane. If DATAGRID=Yes then grid lines are drawn, default=No. BARWIDTH sets relative width
of rectangles, default=0.7.

AXS_XORIGIN=0
AXS_YORIGIN=0
BOX=Yes

IUP - Portable User Interface 07-Jan-25

378/496

CHART

Draws colored stripes (boxes). If DATAGRID=Yes then black border lines are drawn, default=No. If PIECHART=Yes cylindrical
coordinates are used, default=No.

DATAGRID=Yes
BOX=Yes

DATAGRID=Yes
BOX=Yes
PIECHART=Yes
COLORSCHEME=bgr
cmy

STEP

Draws continuous stairs for points to axis plane. DS_COLOR, DS_LINESTYLE and DS_LINEWIDTH are used to configure the lines.
DS_COLOR, DS_MARKSTYLE and DS_MARKSIZE are used to configure the marks.

(3 plots)
BOX=Yes

STEM

Draws vertical lines from points to axis plane. DS_COLOR, DS_LINESTYLE and DS_LINEWIDTH are used to configure the lines.
DS_COLOR, DS_MARKSTYLE and DS_MARKSIZE are used to configure the marks.

(3 plots)
DS_MARKSTYLE=HOLLOW_CIRCLE
DS_SHOWMARKS=Yes
AXS_XORIGIN=0
AXS_YORIGIN=0
BOX=Yes

DOTS

Draws arbitrary placed points. Colors will be used from the previous color scheme or from COLORSCHEME if defined.

IUP - Portable User Interface 07-Jan-25

379/496

ROTATE=40:0:60
BOX=Yes
TRANSPARENT=No
LIGHT=Yes

CRUST

This will reconstruct and draw the surface for arbitrary placed points. If DATAGRID=Yes then wire plot is produced, default=No. Colors
will be used from the previous color scheme or from COLORSCHEME if defined.

ROTATE=40:0:60
BOX=Yes
TRANSPARENT=No
LIGHT=Yes

For Planar Datasets

For all planar modes colors will be used from the previous color scheme or from COLORSCHEME if defined. COLORSCHEME is a string
that can specify a group of colors to be used by the plot.

Colors in a color scheme are specified by the codes "wkrgbcymhRGBCYMHWlenupqLENUPQ" only. A brightness weight from 1 to 9 can
also be used to change the default value from 5 normal, to 1 very dark, and to 9 very bright.

Also the symbol ‘d’ denotes the interpolation by 3D position instead of the coloring by amplitude. Symbol ‘|’ disables color interpolation in
color scheme, which can be useful, for example, for sharp colors during matrix plotting.

For coloring by amplitude (most common) the final color is a linear interpolation of color array. The color array is constructed from the
string ids. The argument is the amplitude normalized based on COLORBARRANGE. When coloring by coordinate, the final color is
determined by the position of the point in 3D space and is calculated from combining the first three elements of color array with the x, y
and z normalizes values. This type of coloring is useful for isosurface plot where color may show the exact position of a piece of surface.

Here are some examples or color codes and color schemes:

IUP - Portable User Interface 07-Jan-25

380/496

PLANAR_MESH

Draws mesh lines for the surface. Mesh lines are plotted for each z slice of the data. DS_LINESTYLE and DS_LINEWIDTH are used to
configure the lines.

ROTATE=40:0:60
BOX=Yes
TRANSPARENT=No
LIGHT=Yes

PLANAR_FALL

Draws fall lines for the surface. DS_LINESTYLE and DS_LINEWIDTH are used to configure the lines. If DIR=X, then lines are drawn along
x-direction else lines are drawn along y-direction, default=Y.

ROTATE=40:0:60
BOX=Yes
TRANSPARENT=No
LIGHT=Yes

PLANAR_BELT

Draws belts for the surface. If DIR=X, then lines are drawn along x-direction else lines are drawn along y-direction, default=Y.

ROTATE=40:0:60
BOX=Yes
TRANSPARENT=No
LIGHT=Yes

IUP - Portable User Interface 07-Jan-25

381/496

PLANAR_SURFACE

Draws the surface. If DATAGRID=Yes then grid lines are drawn, default=No.

ROTATE=40:0:60
BOX=Yes
TRANSPARENT=No
LIGHT=Yes

ROTATE=40:0:60
BOX=Yes
TRANSPARENT=No
LIGHT=Yes
COLORSCHEME=BbcyrR|

PLANAR_BOXES

Draws vertical boxes for the surface. If DATAGRID=Yes then box lines are drawn, default=No.

ROTATE=40:0:60
BOX=Yes
TRANSPARENT=No
LIGHT=Yes
AXS_XORIGIN=0
AXS_YORIGIN=0
AXS_ZORIGIN=0

PLANAR_TILE

Draws horizontal tiles for the surface, it can be seen as 3D generalization of STEP.

ROTATE=40:0:60
BOX=Yes
TRANSPARENT=No
LIGHT=Yes

PLANAR_DENSITY

Draws density plot for the surface at minimum z coordinate.

BOX=Yes
TRANSPARENT=No

IUP - Portable User Interface 07-Jan-25

382/496

COLORBAR=Yes

PLANAR_CONTOUR

Draws contour lines for the surface at the minimum z coordinate. CONTOURCOUNT defines the number of contour lines, default=7. If
CONTOURFILLED=Yes draws solid (or filled) contour lines for the surface, default=No. If CONTOURLABELS is defined then contour
labels will be drawn BELLOW or ABOVE the contours.

ROTATE=40:0:60
BOX=Yes
TRANSPARENT=No
LIGHT=Yes
CONTOURLABELS=BELLOW

ROTATE=40:0:60
BOX=Yes
TRANSPARENT=No
LIGHT=Yes
CONTOURFILLED=Yes

ROTATE=40:0:60
BOX=Yes
TRANSPARENT=No
LIGHT=Yes

(dual plot)
DS_MODE=PLANAR_SURFACE
DS_MODE=PLANAR_CONTOUR

PLANAR_AXIALCONTOUR

Draws a surface which is result of the contour plot rotation for the surface. AXIALCOUNT defines the number of elements distributed in
the COLORBARRANGE interval, default=3.

ROTATE=40:0:60
BOX=Yes
TRANSPARENT=Yes
LIGHT=Yes

PLANAR_GRADIENTLINES

Draws gradient lines for scalar field defined by the surface at minimum z coordinate. Number of lines is proportional to
GRADLINESCOUNT, default=5 . If GRADLINESCOUNT<0 then lines start from borders only. Lines are plotted for each z slice of the data.

BOX=Yes
TRANSPARENT=Yes
LIGHT=Yes

BOX=Yes
TRANSPARENT=Yes
LIGHT=Yes

IUP - Portable User Interface 07-Jan-25

383/496

(dual plot)
DS_MODE=PLANAR_GRADIENTLINES
DS_MODE=PLANAR_DENSITY

For Volumetric Datasets

For all volumetric modes colors will be used from the previous color scheme or from COLORSCHEME if defined.

VOLUME_ISOSURFACE

Draws isosurface plot for the volume. If DATAGRID=Yes then wire plot is produced, default=No. if ISOVALUE is defined only 1
isosurface is plot, else ISOCOUNT (default=3) surfaces are plot distributed in the COLORBARRANGE interval.

Note, that there is possibility of incorrect plotting due to uncertainty of cross-section defining if there are two or more isosurface
intersections inside one cell.

ROTATE=40:0:60
BOX=Yes
TRANSPARENT=Yes
LIGHT=Yes

VOLUME_DENSITY

Draws density plot for the volume. If DATAGRID=Yes then grid lines are drawn, default=No. If PROJECT=Yes draws density plot in x, y,
or z plain, default=No. When PROJECT=Yes, PROJECTVALUEX, PROJECTVALUEY and PROJECTVALUEZ, are used to select data at the
given coordinate, if they are not defined AXS_?ORIGIN is used accordingly. When PROJECT=No, SLICEX, SLICEY and SLICEZ, are used
to define the slice where the plot is done, default is -1 (central). SLICEDIR defines which directions are used, default "XYZ".

ROTATE=40:0:60
BOX=Yes
TRANSPARENT=Yes
LIGHT=No
AXS_XORIGIN=0
AXS_YORIGIN=0
AXS_ZORIGIN=0
AXS_X=Yes
AXS_Y=Yes
AXS_Z=Yes

ROTATE=40:0:60
BOX=Yes
TRANSPARENT=No
LIGHT=No
PROJECT=Yes
PROJECTVALUEX=-
1
PROJECTVALUEY=1
PROJECTVALUEZ=-
1

VOLUME_CONTOUR

Draws contour plot for the volume. If DATAGRID=Yes then grid lines are drawn, default=No. If PROJECT=Yes draws contour plot in x,
y, or z plain, default=No. When PROJECT=Yes, PROJECTVALUEX, PROJECTVALUEY and PROJECTVALUEZ, are used to select data at the
given coordinate, if they are not defined AXS_?ORIGIN is used accordingly. When PROJECT=No, SLICEX, SLICEY and SLICEZ, are used
to define the slice where the plot is done, default is -1 (central). SLICEDIR defines which directions are used, default "XYZ". If
CONTOURFILLED=Yes draws solid (or filled) contour lines for the surface, default=No. CONTOURCOUNT defines the number of contour
lines, default=7. Where lines are used, DS_LINESTYLE and DS_LINEWIDTH are used to configure the lines.

ROTATE=40:0:60
BOX=Yes
TRANSPARENT=No
LIGHT=Yes

ROTATE=40:0:60
BOX=Yes
TRANSPARENT=No
LIGHT=Yes

IUP - Portable User Interface 07-Jan-25

384/496

PROJECT=Yes
PROJECTVALUEX=-1
PROJECTVALUEY=1
PROJECTVALUEZ=-1

ROTATE=40:0:60
BOX=Yes
TRANSPARENT=No
LIGHT=Yes

ROTATE=40:0:60
BOX=Yes
TRANSPARENT=No
LIGHT=Yes
PROJECT=Yes
PROJECTVALUEX=-1
PROJECTVALUEY=1
PROJECTVALUEZ=-1
CONTOURFILLED=Yes

VOLUME_CLOUD

Draws cloud plot for the volume. This plot is a set of cubes with color and transparency proportional to value of ALPHA. The resulting
plot is like cloud – low value is transparent but higher ones are not. If CLOUDLOW=Yes then lower quality plot will be produced with
much low memory usage.

 ROTATE=40:0:60
BOX=Yes
TRANSPARENT=Yes
LIGHT=No
COLORSCHEME=wyrRk

IupMglLabel (since 3.11.1)
Creates a label interface element using MathGL so it can display TeX symbols. It inherits from IupMglPlot.

Creation

Ihandle* IupMglLabel(const char *title); [in C]
iup.mgllabel{[title = title: string]} -> (ih: ihandle) [in Lua]
mgllabel(title) [in LED]

title: Text to be shown on the label. It can be NULL. It will set the LABELTITLE attribute.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

The IupMglLabel element handle all attributes defined for a IupMglPlot control.

BGCOLOR: By default will use the background color of the native parent.

LABELTITLE (non inheritable): Label's text.

LABELFONT (non inheritable): same as DRAWFONT .

LABELFONTSIZE (non inheritable): same as DRAWFONTSIZE.

IUP - Portable User Interface 07-Jan-25

385/496

iup_mglplot.html
iup_mglplot.html
../attrib/iup_bgcolor.html

LABELFONTSTYLE (non inheritable): same as DRAWFONTSTYLE.

Notes

All MARGIN* attributes are set to NO. All AXS_* attributes are set to NO. EXPAND and BORDER are set to NO. And POSTDRAW_CB
callback is implemented.

The IupMglLabel can NOT contain images.

The Natural size is NOT computed from its contents. The application must set SIZE or RASTERSIZE and then set LABELFONTSIZE to
obtain the desired result. MathGL does not have the same font scale as IUP.

Examples

lbl = IupMglLabel("\\int \\alpha \\sqrt{sin(\\pi x)^2 + \\gamma_{i_k}} dx");
IupSetAttribute(lbl, "RASTERSIZE", "400x80");
IupSetAttribute(lbl, "LABELFONTSIZE", "10");

Browse for Example Files

See Also

IupMglPlot.

IupOleControl [Windows only]
The IupOleControl hosts an windows OLE control (also named ActiveX control), allowing it to be used inside IUP dialogs. There are many
OLE controls available, like calendars, internet browsers, PDF readers etc.

Notice that IupOleControl just takes care of the visualization of the control (size and positioning), and map some callbacks (navigate and
new window) using a listener interface to sink events. It does not deal with properties, methods and events. The application must deal
with them using the COM interfaces offered by the control. Nevertheless, using IupLua together with LuaCOM makes it possible to use
OLE controls very easily in Lua, accessing their methods, properties and events similarly to the other IUP elements.

Notice that this control works only on Windows.

When linking with GCC add the "oleaut32" and "uuid" to the list of libraries.

Initialization and usage

The IupOleControlOpen function must be called after a IupOpen, so that the control can be used. The iupole.h file must also be
included in the source code. The program must be linked to the controls library (iupole).

To make the control available in Lua use require"iupluaole" or manually call the initialization function in C, iupolelua_open, after calling
iuplua_open. When manually calling the function the iupluaole.h file must also be included in the source code, and the program must be
linked to the lua control library (iupluaole).

Creation

Ihandle* IupOleControl(const char* ProgID); [in C]
iup.olecontrol{ProgID: string} -> (ih: ihandle) [in Lua]
olecontrol(ProgID) [in LED]

ProgID: the programmatic identifier of the OLE control. This can be found in the documentation of the OLE control or by browsing the
list of registered controls, using tools like OleView.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

PROGID: the programmatic identifier of the OLE control.

DESIGNMODE: activates the design mode. Some controls behave differently when in design mode. See this article for more information
about design mode. Can be YES or NO. Default value: "NO".

IUP - Portable User Interface 07-Jan-25

386/496

../../examples/
iup_mglplot.html
https://github.com/davidm/luacom
http://support.microsoft.com/default.aspx?scid=kb;en-us;260744

DESIGNMODE_DONT_NOTIFY: sets the design mode, but do not notify the native control.

IUNKNOWN (read-only): Returns the IUnknown pointer for the control. This pointer is necessary to access methods and properties of the
control in C/C++ code.

The control's specific attributes shall be accessed using the COM mechanism (see section below for more information).

Some IupCanvas attributes may also work, like:

ACTIVE, SCREENPOSITION, POSITION, MINSIZE, MAXSIZE, WID, TIP, SIZE, RASTERSIZE, ZORDER, VISIBLE

Callbacks

In C/C++, the OLE control's callbacks (events, in ActiveX terms) shall be set using the control's interface and the COM mechanism. When
using IupLua, it's possible to call methods, access properties and receive events from the OLE control using the LuaCOM library. When the
LuaCOM library is loaded, call elem:CreateLuaCOM so a LuaCOM object is created and stored in the "elem.com" field of the object
returned by iup.olecontrol. This LuaCOM object can be used to access properties, methods and events in a way very similar to VB. See the
examples for more information.

Some IupCanvas callbacks may also work, like:

MAP_CB, UNMAP_CB, DESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB.

Additional Methods in Lua

ih:CreateLuaCOM()

If LuaCOM is loaded and the IUNKNOWN is valid then set:

ih.com = luacom.CreateLuaCOM(luacom.ImportIUnknown(ih.iunknown))

Notes

To learn more about OLE and ActiveX:

http://docs.microsoft.com/en-us/windows/desktop/com/component-object-model--com--portal
http://docs.microsoft.com/en-us/windows/desktop/com/activex-controls
http://www.webopedia.com/TERM/A/ActiveX_control.html

Examples

Browse for Example Files

IupScintilla (since 3.8)
Creates a multiline source code text editor that uses the Scintilla library.

Scintilla is a free library that provides text-editing functions, with an emphasis on advanced features for source code editing. It comes with
complete source code and a license that permits use in any free project or commercial product, and it is available on
http://www.scintilla.org/.

IUP - Portable User Interface 07-Jan-25

387/496

../attrib/iup_active.html
../attrib/iup_screenposition.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_wid.html
../attrib/iup_tip.html
../attrib/iup_size.html
../attrib/iup_rastersize.html
../attrib/iup_zorder.html
../attrib/iup_visible.html
https://github.com/davidm/luacom
../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_getfocus_cb.html
../call/iup_killfocus_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
http://docs.microsoft.com/en-us/windows/desktop/com/component-object-model--com--portal
http://docs.microsoft.com/en-us/windows/desktop/com/activex-controls
http://www.webopedia.com/TERM/A/ActiveX_control.html
../../examples/
scintilla.txt
http://www.scintilla.org/

IupScintilla library includes the Scintilla code, so no external references are needed.

For compilers that don't have C++ 11 support (g++ < 4.8 and Visual C++ < 14) we use Scintilla version 3.6.6, for compilers that have
we use Scintilla version 3.11.2. We are still not using Scintilla 4.x because it uses C++14 features, and requires Microsoft Visual C++
2017 and g++ 7.

The global attribute SCINTILLA_VERSION contains the Scintilla version in use. (since 3.29)

Supported in Windows and in the systems the GTK driver is supported.

Initialization and Usage

The IupScintillaOpen function must be called after a IupOpen, so that the control can be used. The "iup_scintilla.h" file must also be
included in the source code. The program must be linked to the controls library (iup_scintilla). When statically linking there are additional
libraries: "imm32.lib" and "msimg32" in Windows; and "atk-1.0" in Linux.

To make the control available in Lua use require"iuplua_scintilla" or manually call the initialization function in C, iupscintillalua_open,
after calling iuplua_open. When manually calling the function the iuplua_scintilla.h file must also be included in the source code and the
program must be linked to the Lua control library (iuplua_scintilla).

Creation

Ihandle* IupScintilla(void); [in C]
iup.scintilla{} -> (ih: ihandle) [in Lua]
scintilla() [in LED]

This function returns the identifier of the created editing component, or NULL if an error occurs.

Auxiliary Functions

sptr_t IupScintillaSendMessage(Ihandle* ih, unsigned int iMessage, uptr_t wParam, sptr_t lParam); [in C]
Not available in Lua.

Sends a message to the Scintilla control in any platform. (since 3.11)

IupText auxiliary functions IupTextConvertLinColToPos and IupTextConvertPosToLinCol can also be used. But here lin and col
starts at 0, pos starts at 0.

Attributes

General

BORDER (creation only): Shows a border around the text. Default: "YES".

CANFOCUS (creation only) (non inheritable): enables the focus traversal of the control. In Windows the control will still get the focus
when clicked. Default: YES.

PROPAGATEFOCUS(non inheritable): enables the focus callback forwarding to the next native parent with FOCUS_CB defined. Default:
NO. (since 3.23)

CLIPBOARD (non inheritable): clear, cut, copy or paste the selection to or from the clipboard. Values: "CLEAR", "CUT", "COPY",
"PASTE". Returns Yes or No, if data can be pasted from the clipboard.

CURSOR (non inheritable): defines the cursor type. Can be: "NORMAL" or "WAIT" (displays a wait cursor when the mouse is over or
owned by the control).

DROPFILESTARGET [Windows and GTK Only] (non inheritable): Enable or disable the drop of files. Default: NO, but if DROPFILES_CB
is defined when the element is mapped then it will be automatically enabled.

KEYSUNICODE [Windows Only] (non inheritable): allow processing of Unicode typed characters. Default: NO. (since 3.9)

OVERWRITE (non inheritable): turns the overwrite mode ON or OFF. When enabled, each typed character replaces the character to the
right of the text caret. When disabled, characters are inserted at the caret.

MOUSEDWELLTIME (non inheritable): time the mouse must sit still, in milliseconds, to generate a DWELL_CB callback. If set to NULL,
the default, no dwell events are generated. (since 3.23)

READONLY (non inheritable): Allows the user only to read the contents, without changing it. Restricts the insertion using keyboard input
and attributes. Navigation keys are still available. Possible values: "YES" and "NO". Default: NO.

SAVEPOINT (non inheritable, write-only): sets the current state of the document to saved (given value is ignored). The SAVEPOINT_CB
callback is called with status=0 if the document is modified, and called with status=1 if the save point is reached with Undo/Redo. After
setting the SAVEPOINT, when editing is done the SAVEPOINT_CB callback is called with status=0. When undo is performed back to the
point were the saved state was set the callback is called again with status=1. (since 3.23)

IUP - Portable User Interface 07-Jan-25

388/496

../elem/iuptext.html#AUX

MODIFIED (non inheritable, read-only): returns if the text has been modified since the last SAVEPOINT. Can return Yes or No. (since
3.23)

SIZE (non inheritable): Since the contents can be changed by the user, the Natural Size is not affected by the text contents. Use
VISIBLECOLUMNS and VISIBLELINES to control the Natural Size.

USEPOPUP (non inheritable): allows to disable the default editing menu shown when the user clicks with the right button. Default: Yes.

VISIBLECOLUMNS: Defines the number of visible columns for the Natural Size, this means that will act also as minimum number of
visible columns. It uses a wider character size then the one used for the SIZE attribute so strings will fit better without the need of extra
columns. As for SIZE you can set to NULL after map to use it as an initial value. Default: 50.

VISIBLELINES: Defines the number of visible lines for the Natural Size, this means that will act also as minimum number of visible
lines. As for SIZE you can set to NULL after map to use it as an initial value. Default: 10.

VISIBLELINESCOUNT (non inheritable, read-only): returns the number of actual visible lines.

WORDWRAP (non inheritable): If enabled will force a word wrap of lines that are greater than the with of the control, and the horizontal
scrollbar will be removed. Can be "WORD", "CHAR" or "NONE". Default: NONE.

WORDWRAPVISUALFLAGS (non inheritable): enable the drawing of visual flags to indicate a line is wrapped. Can be: MARGIN (at the
line number margin), START (start of wrapped line), END (end of wrapped line) or NONE. Default: NONE.

Text Retrieval and Modification

ADD (non inheritable, write-only): Inserts a text at the current position. If VALUELEN is defined, the it is used instead of strlen. (since
3.27)

APPEND (non inheritable, write-only): Inserts a text at the end of the text. If APPENDNEWLINE=YES, an end of line character will be
automatically inserted before the appended text (APPENDNEWLINE default is YES). If VALUELEN is defined, the it is used instead of strlen
(since 3.27).

CHARid (non inheritable, read-only): returns the character at a given position, considering the "id" as the position.

CLEARALL (non inheritable, write-only): deletes all the text (unless the document is read-only).

COUNT (non inheritable, read-only): returns the number of characters in the text.

DELETERANGE (non inheritable, write-only): Deletes a range of text in the document. It uses a string format "pos,len" in order to
indicate the start position and text length to delete.

INSERTid (non inheritable, write-only): Inserts a text string at position "id" or at the current position if pos is -1 or omitted. If the
current position is after the insertion point then it is moved along with its surrounding text but no scrolling is performed. Notice that the
selected text is not used to position the inserted text.

LINEid (non inheritable, read-only): returns the text of the line, considering the "id" as the line number. It includes the end of line
character if the line has one. Number lines starts at 0.

LINECOUNT (non inheritable, read-only): returns the number of lines in the text.

LINEVALUE (non inheritable, read-only): returns the text of the line where the caret is. It does not include the end of line character.

PREPEND (non inheritable, write-only): Inserts a text at the begin of the text. If APPENDNEWLINE=YES, an end of line character will be
automatically inserted after the prepended text if the text is not empty (APPENDNEWLINE default is YES).

VALUE (non inheritable): Text entered by the user. The end of line character indicates a new line. After the element is mapped and if
there is no text will return the empty string "". This replaces all the text in the document with the zero terminated text string you pass in.

Annotation

ANNOTATIONTEXTid (non inheritable): defines and returns an annotation displayed underneath a specific line, considering the "id" as
the line number. An annotation may consist of multiple lines separated by '\n'.

ANNOTATIONSTYLEid (non inheritable): sets and gets a particular style to the annotation, considering the "id" as the line number.

ANNOTATIONSTYLEOFFSET (non inheritable): sets and gets a style offset, in order to separate standard text styles from annotation
styles.

ANNOTATIONVISIBLE (non inheritable): enable or disable annotations. Can be "HIDDEN" (not displayed), "STANDARD" (displayed) or
"BOXED" (displayed and surrounded by a box). Default HIDDEN.

ANNOTATIONCLEARALL (non inheritable, write-only): deletes all annotations.

Auto-Completion (since 3.10)

AUTOCSHOWid (non inheritable, write only): causes a list of words to be displayed. The words are separated by a space. "id" defines
the number of characters of the word already entered by user.

AUTOCCANCEL (non inheritable, write only): cancels any displayed auto-completion list. When in auto-completion mode, the list should

IUP - Portable User Interface 07-Jan-25

389/496

../attrib/iup_size.html

disappear when the user types a character that can not be part of the auto-completion.

AUTOCACTIVE (non inheritable, read only): returns YES if there is an active auto-completion list and NO if there is not.

AUTOCPOSSTART (non inheritable, read only): returns the current position when the list of words started to be shown.

AUTOCCOMPLETE (non inheritable, write only): triggers auto-completion. This has the same effect as the tab key.

AUTOCSELECT (non inheritable, write only): selects an item in the auto-completion list. It searches in the list of words for the first that
matches of value (comparisons are case sensitive). If the item is not found, no item is selected.

AUTOCSELECTEDINDEX (non inheritable, read only): retrieves the current selection index, set by AUTOCSELECT attribute.

AUTOCDROPRESTOFWORD (non inheritable): when an item is selected, any word characters following the caret are first erased if this
attribute is set YES. The default is NO.

AUTOCMAXHEIGHT (non inheritable): sets and gets the maximum number of rows that will be visible in an auto-completion list. If
there are more rows in the list, then a vertical scrollbar is shown. The default is 5.

AUTOCMAXWIDTH (non inheritable): the maximum width of an auto-completion list expressed as the number of characters in the
longest item that will be totally visible. The default is 0 (in this case, the list width is calculated to fit the item with the most characters).

Brace Highlighting

BRACEHIGHLIGHT (non inheritable, write only): highlights the brace, defined by its initial and final positions (format: "pos1:pos2").
Up to two characters can be highlighted in a 'brace highlighting style', which is defined as style number (See Style Definition, id = 34).

BRACEBADLIGHT (non inheritable, write only): highlights the non matching brace, based on a position. If there is no matching brace
then the brace badlighting style (See Style Definition, id = 35) can be used to show the brace that is unmatched. Set -1 as position
removes the highlight.

BRACEMATCHid (non inheritable, read only): finds a corresponding matching brace given id, the position of one brace. The brace
characters handled are '(', ')', '[', ']', '{', '}', '<', and '>'. If the character at position is not a brace character, or a matching brace cannot be
found, the return value is -1.

Caret and Selection

CARET (non inheritable): Position of the insertion point. The first position, lin or col, is "0". It uses a string format "lin,col" in order to
indicate the caret position, where lin and col must be integer numbers.

When lin is greater than the number of lines, the caret is placed at the last line. When col is greater than the number of characters in
the given line, the caret is placed after the last character of the line.

If the caret is not visible the text is scrolled to make it visible.

CARETPOS (non inheritable): Position of the insertion point using a zero based character unique index "pos". Useful for indexing the
VALUE string. This removes any selection, sets the caret at pos and scrolls the view to make the caret visible, if necessary.

CARETTOVIEW (non inheritable, write only): Moves the caret to the nearest visible line. Any selection is lost.

CARETCOLOR (non inheritable): color of the caret. Values in RGB format ("r g b"). (since 3.17)

CARETSTYLE (non inheritable): style of the caret. Can be LINE, BLOCK or INVISIBLE. Default: LINE. (since 3.17)

CARETWIDTH (non inheritable): with of the caret line. Can be 0, 1, 2 or 3 pixels. Default: 1. Works only when CARETSTYLE=LINE. A
size of 0 will make the caret invisible also. (since 3.17)

CARETLINEVISIBLE (non inheritable): Enable or disable caret line background color. Can be Yes or No. Default: No. (since 3.21)

CARETLINEBACKCOLOR (non inheritable): Color of caret line background. Values in RGB format ("r g b"). (since 3.21)

CARETLINEBACKALPHA (non inheritable): Set translucency used for line containing the caret. Translucency ranges from 0 for
completely transparent to 255 for opaque with 256 being opaque and not using translucent drawing code which may be slower. (since
3.21)

CARETXPOLICY/CARETYPOLICY (non inheritable): These set the caret policy. The value can be a combination
of "SLOP", "STRICT", "JUMPS" and "EVEN" using "|" as separator. When SLOP is used the attribute CARETSLOP defines an unwanted zone
for the caret. This zone is defined as a number of pixels near the vertical margins, and as a number of lines near the horizontal margins.
(since 3.26)

FIRSTVISIBLELINE (non inheritable): the line number of the first visible line. (since 3.18)

SELECTEDTEXT (non inheritable): Selection text. Returns NULL if there is no selection. When changed replaces the current selection.
Similar to INSERT, but does nothing if there is no selection.

SELECTION (non inheritable): Selection interval. Returns NULL if there is no selection. The first position, lin or col, is "0". The accepted
format is represented by the string "lin1,col1:lin2,col2", where lin1, col1, lin2 and col2 are integer numbers corresponding to the
selection's interval. col2 correspond to the character after the last selected character. The values ALL and NONE are also accepted.

SELECTIONFGCOLOR (non inheritable): foreground color of the selection. Values in RGB format ("r g b"). Default is system dependent.

IUP - Portable User Interface 07-Jan-25

390/496

(since 3.23)

SELECTIONBGCOLOR (non inheritable): background color of the selection. Values in RGB format ("r g b"). Default is system dependent.
(since 3.23)

SELECTIONALPHA (non inheritable): The selection can be drawn translucently in the selection background color by setting an alpha
value. Translucency ranges from 0 for completely transparent to 255 for opaque with 256 being opaque and not using translucent
drawing. (since 3.23)

SELECTIONPOS (non inheritable): Same as SELECTION but using a zero based character index "pos1:pos2". Useful for indexing the
VALUE string. The values ALL and NONE are also accepted.

WORDPOSid (non inheritable, read-only): returns the start and end of a word in the text around the given position (in id). It uses the
format "start:end". Returns NULL if no words were found. (since 3.23)

WORDRANGE (non inheritable): interval for ISWORD. (since 3.23)

ISWORD (non inheritable, read-only): check if the interval defined by WORDRANGE is a word. (since 3.23)

Folding

FOLDFLAGS (non inheritable, write-only): determines how folding lines are drawn. Can be: "LINEBEFORE_EXPANDED",
"LINEBEFORE_CONTRACTED", "LINEAFTER_EXPANDED" or "LINEAFTER_CONTRACTED " (default).

FOLDLINEid (non inheritable, write-only): operates over a single line. Can be CONTRACT, EXPAND, or TOGGLE. (since 3.23)

FOLDCHILDRENid (non inheritable, write-only): operates over a single line and all its children. Can be CONTRACT, EXPAND, or
TOGGLE. (since 3.23)

FOLDALL (non inheritable, write-only): operates over all levels. Can be CONTRACT, EXPAND, or TOGGLE. (since 3.23)

FOLDEXPANDEDid (non inheritable): the expanded state of a single line. It has no effect on the visible state of the line or any lines that
depend on it. It does change the markers in the folding margin. If you just want to toggle the fold state of one line and handle all the
lines that are dependent on it, it is much easier to use TOGGLEFOLD. It can be used to process many folds without updating the display
until you had finished, but you have to manually hide or show lines, and force a COLORISE. (since 3.23)

FOLDLEVELid (non inheritable): the fold level number of a line (given in id). If you use a Lexer, it is not recommend to set the fold level
(this is far better handled by the Lexer). By contrast, the fold level is useful to decide how to handle user folding requests. Fold level starts
at 0.

FOLDLEVELWHITEid (non inheritable): the fold level white flag state of a line (indicates that the line is blank). Can be: "Yes" or "No".
(since 3.23)

FOLDLEVELHEADERid (non inheritable): the fold level header flag state of a line (indicates that the line is a header/fold point). Can be:
"Yes" or "No". (since 3.23)

FOLDPARENTid (non inheritable, read-only): returns the line number of the first line before the given line (in id) that is marked as a fold
point with FOLDLEVELHEADER=Yes and has a fold level less than the given line. If no line is found, or if the header flags and fold levels
are inconsistent, the return value is -1. (since 3.23)

FOLDTOGGLE (non inheritable, write-only): Determines if the fold point (line number) may be either expanded, displaying all its child
lines, or contracted, hiding all the child lines.

ENSUREVISIBLEid (non inheritable, write-only): ensure that the given line (in id) is visible by expanding folded parents. Value is can be
NULL or "ENFORCEPOLICY" to apply vertical caret policy. (since 3.23)

SHOWLINES (non inheritable, write-only): make the given lines interval visible. Value is in the format "start:end", start default is 0, end
default is -1 (last line). (since 3.23)

HIDELINES (non inheritable, write-only): make the given lines interval hidden. Value is in the format "start:end", start default is 0, end
default is -1 (last line). (since 3.23)

Indicators

Indicators are used to display additional information over the top of styling.

INDICATORCURRENT (non inheritable): sets the indicator number that will affect INDICATORCLEARRANGE and
INDICATORFILLRANGE. (since 3.23)

INDICATORVALUE (non inheritable): sets the indicator value that will affect INDICATORFILLRANGE. (since 3.23)

INDICATORCLEARRANGE (non inheritable, write-only): clears the current indicator in the range given in the format "start:length"
("%d:%d" in C). (since 3.23)

INDICATORFILLRANGE (non inheritable, write-only): fills the current indicator with the current value in the range given in the format
"start:length" ("%d:%d" in C). (since 3.23)

INDICATORSTYLEid (non inheritable): the style used to draw the given indicator (in id). Can be: PLAIN, SQUIGGLE, TT, DIAGONAL,
STRIKE, HIDDEN, BOX, ROUNDBOX, STRAIGHTBOX, FULLBOX, DASH, DOTS, SQUIGGLELOW, DOTBOX, SQUIGGLEPIXMAP,

IUP - Portable User Interface 07-Jan-25

391/496

COMPOSITIONTHICK, COMPOSITIONTHIN, TEXTFORE. Default for indicator 0 is SQUIGGLE, default for indicator 1 is TT, default for
indicator 2 is PLAIN. (since 3.23)

INDICATORFGCOLORid (non inheritable): the color used to draw the given indicator (in id). Value in RGB format ("r g b"). Default for
indicator 0 is "0 127 0", default for indicator 1 is "255 0 0", default for indicator 2 is "0 0 255". (since 3.23)

INDICATOROUTLINEALPHAid (non inheritable): sets and retrieves the alpha transparency used to draw the outline color of the given
indicator (in id). The alpha value can range from 0 (completely transparent) to 255 (no transparency). (since 3.23)

INDICATORALPHAid (non inheritable): sets and retrieves the alpha transparency used to draw the fill color of the given indicator (in
id). The alpha value can range from 0 (completely transparent) to 255 (no transparency). (since 3.23)

Lexer

COLORISE (non inheritable, write-only): requests the lexer to style the document in an character interval given in value (format
"start:end", start default is 0, end default is -1 (last pos)). (since 3.23)

KEYWORDid (non inheritable, write-only): keyword list used by the current Lexer. Until 9 lists of keywords can set up using id from 0 to
8. The value is a list of keywords separated by spaces, tabs, "\n" or "\r" or any combination of these.

KEYWORDSETS (non inheritable, read only): returns a description of all of the keyword sets separated by "\n".

LEXERLANGUAGE (non inheritable): associate the Lexer language name. It is case sensitive. Default: not defined. Set to NULL to clear
the association. Can be: any name supported by Scintilla. For instance: asm, bash, freebasic, cmake, COBOL, cpp (C++), css, d, diff,
eiffel, fortran, hypertext (HTML), xml, lisp, lua (Lua), makefile, matlab, mysql, nsis, pascal, perl, python, ruby, smalltalk, sql, tcl, tex, vb
(Visual Basic), and many others.

LOADLEXERLIBRARY (non inheritable, write-only): Load a Lexer implemented in a dynamic library given the library file name. This is a
.so file on GTK+/Linux or a .DLL file on Windows. (since 3.11)

PROPERTY (non inheritable): sets and gets Lexer properties using "name=value" string pairs, where name is case sensitive and value is
the associated string. There is no limit to the number of keyword pairs you can set, other than available memory. To retrieve a property
first set the PROPERTYNAME attribute, the PROPERTY attribute will return its value.

PROPERTYNAMES (non inheritable, read only): returns a list of property names separated by "\n". If the Lexer does not support this
information then an empty string is returned.

Line Endings

EOL (non inheritable): Returns the current end of line character(s). Can be "\r", "\r\n" or "\n". (since 3.24)

EOLMODE (non inheritable): End of line mode. Can be CR ("\r"), CRLF ("\r\n") or LF ("\n"). Default: LF. (since 3.24)

EOLVISIBLE (non inheritable): End of line visibility. Default: No. (since 3.22)

FIXEOL (non inheritable, write only): Fix the line ends to use only the given mde. Can be CR ("\r"), CRLF ("\r\n") or LF ("\n"). (since
3.22, options other than LF since 3.24)

Margins

The margins id are numbered 0 to 4. By default, Scintilla margin 0 is set to display line numbers, margin 1 is set to display non-folding
symbols, and margin 2 is set to display folding symbols. However, you can set the margins to be whatever you wish using
MARGINTYPEid. All margins are hidden by default, i.e. margin with is set to 0.

MARGINMASKFOLDERSid (non inheritable): defines if a margin is folding or non-folding. Can be: Yes or No.

MARGINSENSITIVEid (non inheritable): determines if a margin is sensitive or not. Margins that are not sensitive act as selection
margins which make it easy to select ranges of lines. By default, all margins are insensitive. Can be: YES or NO.

MARGINTYPEid (non inheritable): set and get the type of a margin. Each margin can be set to display only symbols, line numbers, or
text. You can use the predefined values "SYMBOL", "NUMBER", "TEXT", "RTEXT" (right justify text), "BACKGROUND" or "FOREGROUND"
(the latter two used for symbol margins that set their background or foreground using the style default colors).

MARGINWIDTHid (non inheritable): width of a margin in pixels (Default value: 0). A margin with width=0 is invisible.

MARGINMASKid (non inheritable): defines which markers can be used for symbols in the given margin (id). The value is a 32 bit
number with the selected markers. A single margin can display several types of markers. See Markers. (since 3.22)

MARGINLEFT (non inheritable): size of the blank margin on the left side. Default: 1.

MARGINRIGHT (non inheritable): size of the blank margin on the right side. Default: 1.

MARGINTEXTid (non inheritable): controls the text of each line of a text margin. id is the line number.

MARGINTEXTSTYLEid (non inheritable): controls the style of the text of each line of a text margin. id is the line number.

MARGINTEXTCLEARALL (non inheritable, write-only): clear all text and styles of a text margin.

MARGINCURSORid (non inheritable): set and get the arrow cursor normally shown over margins. Can be: "REVERSEARROW" (default)

IUP - Portable User Interface 07-Jan-25

392/496

or "ARROW".

FOLDMARGINCOLOR (non inheritable, write-only): changes the color of the fold margin. Values in RGB format ("r g b"). If set to NULL
reset to internal default values. (since 3.22)

FOLDMARGINHICOLOR (non inheritable, write-only): changes the color of the fold margin highlight. Values in RGB format ("r g b"). If
set to NULL reset to internal default values. (since 3.22)

Markers

Markers are numbers from 0 to 31. They can be combined in a 32 bit mask with one or more markers.

MARKERSYMBOLid (non inheritable): associates a marker number in the range 0 to 31 (id) with one of the marker symbols or an ASCII
character.

Marker symbols: 0="CIRCLE", 1="ROUNDRECT", 2="ARROW", 3="SMALLRECT", 4="SHORTARROW", 5="EMPTY",
6="ARROWDOWN", 7="MINUS", 8="PLUS", 9="VLINE", 10="LCORNER", 11="TCORNER", 12="BOXPLUS",
13="BOXPLUSCONNECTED", 14="BOXMINUS", 15="BOXMINUSCONNECTED", 16="LCORNERCURVE", 17="TCORNERCURVE",
18="CIRCLEPLUS", 19="CIRCLEPLUSCONNECTED", 20="CIRCLEMINUS", 21="CIRCLEMINUSCONNECTED", 22="BACKGROUND"
(line background color), 23="DOTDOTDOT", 24="ARROWS", 25=(unused), 26="FULLRECT" (margin background color),
27="LEFTRECT", 28=(unused), 29="UNDERLINE" (underline across the line), 30="RGBAIMAGE", 31="BOOKMARK" and
"CHARACTER+c" (where c is an ASCii character code). The numbers are used only in marker masks.

MARKERDEFINE (non inheritable, write-only): Defines a marker using its number and its symbol in the format: "number=symbol".

Marker numbers: can be a number in the range 0 to 31, or the pre-defined names: "FOLDEREND", "FOLDEROPENMID",
"FOLDERMIDTAIL", "FOLDERSUB", "FOLDER" and "FOLDEROPEN".
Marker symbols: the same values used in MARKERSYMBOL.

MARKERFGCOLORid (non inheritable, write only): defines the foreground color of a marker number (id). Values in RGB format ("r g
b").

MARKERBGCOLORid (non inheritable, write only): defines the background color of a marker number (id). Values in RGB format ("r g
b").

MARKERBGCOLORSELid (non inheritable, write only): defines the highlight background color of a marker number (id) when its folding
block is selected. Values in RGB format ("r g b").

MARKERALPHAid (non inheritable, write only): defines the alpha value of a marker number (id). Markers may be drawn translucently
when there are no margins.

MARKERRGBAIMAGEid (non inheritable, write only): defines the image name to be used on a marker number. Use IupSetHandle or
IupSetAttributeHandle to associate an image to a name. See also IupImage. It must be an image created with the IupImageRGBA
constructor, it can not be a image loaded from stock or resources.

MARKERRGBAIMAGESCALE (non inheritable, write only): defines the image scale factor, in percent (1-100).

MARKERHIGHLIGHT (non inheritable): enable or disable the the highlight folding block when it is selected. (i.e. block that contains the
caret). Can be Yes or No. Default: No.

MARKERADDid (non inheritable, write-only): adds marker number to a line (id). Internally, sets the marker handle number
(LASTMARKERADDHANDLE attribute) that identifies the added marker (or -1 for invalid line and out of memory), which may be useful to
find where a marker is after moving or combining lines.

MARKERGETid (non inheritable, read-only): returns a marker mask with the markers that are present on the line (id).

MARKERDELETEid (non inheritable, write-only): deletes marker number given a line number (id). If marker number is -1, all markers
are deleted from the line.

MARKERDELETEALL (non inheritable, write-only): removes the marker from all lines given its number (0-31). If marker number is -1,
it deletes all markers from all lines.

MARKERNEXTid (non inheritable, write-only): searches for a given marker mask, starting at line number (id) and continuing forwards to
the end of the file. Internally, sets the the line number of the first line that contains the markers in the mask (LASTMARKERFOUND
attribute) or -1, if no marker is found.

MARKERPREVIOUSid (non inheritable, write-only): searches for a given marker mask, starting at line number (id) and continuing
backwards to the start of the file. Internally, sets the the line number of the first line that contains the markers (LASTMARKERFOUND
attribute) or -1, if no marker is found.

MARKERLINEFROMHANDLEid (non inheritable, read-only): searches for a marker given its handle (id) created in MARKERADDid (use
the LASTMARKERADDHANDLE attribute to obtain its value) and returns the line number of the first line that contains the marker or -1, if
no marker is found.

MARKERDELETEHANDLE (non inheritable, write-only): searches for a marker given its handle and deletes the marker if it is found.

LASTMARKERADDHANDLE (non inheritable, read-only): returns the last marker handle created by the MARKERADDid attribute.

LASTMARKERFOUND (non inheritable, read-only): returns the last line number that contains a marker found by the MARKERNEXTid,

IUP - Portable User Interface 07-Jan-25

393/496

../func/iupsethandle.html
../func/iupsetattributehandle.html
../elem/iupimage.html

MARKERPREVIOUSid or MARKERLINEFROMHANDLE attributes.

Printing (since 2.23)

PRINT: Prints the text. Use the following attributes to configure the printed document. Value is the job title. By default will print all text.

PRINTDIALOG: shows the system dialog before printing. Can be YES or NO. Default: YES. If there is a selection the user can print only
the selected text.

PRINTMARGINLEFT: left margin.

PRINTMARGINTOP: top margin.

PRINTMARGINRIGHT: right margin.

PRINTMARGINBOTTOM: bottom margin.

PRINTMARGINUNITS: units used in print margin attributes. Can be: INCH, CM or PIXELS. Default: INCH.

PRINTWORDWRAP: controls how long lines that don't fit in the page are processed. Can be: NONE (lines are truncated) or WORD
(lines are break between words). Default: WORD. Notice that CHAR wrap mode is not supported when printing.

PRINTCOLOR: controls how colors are printed. Can be: NORMAL (print using the current screen colors), INVERTLIGHT (inverts the light
value of all colors and printing on a white background), BLACKONWHITE (print all text as black on a white background),
COLORONWHITE (prints all text in its own color on a white background), and COLORONWHITEDEFAULTBG (everything prints in its own
color on a white background except that line numbers use their own background color). Default: NORMAL.

PRINTMAGNIFICATION: lets you to print at a different size than the screen font. It is the number of points to add to the size of each
screen font. A value of -3 or -4 gives reasonably small print.

Scrolling

SCROLLBAR (creation only): Associates an automatic horizontal and/or vertical scrollbar. Can be: "VERTICAL", "HORIZONTAL", "YES"
(both) or "NO" (none). Default: "YES". For all systems, when SCROLLBAR is NO, the natural size will always include its size even if the
native system hides the scrollbar.

SCROLLBY (non inheritable, write only): Scroll the text by the given offsets in the format "lin,col". Positive lin values increase the line
number at the top of the screen (i.e. they move the text upwards). Positive col values increase the column at the left edge of the view (i.e.
they move the text leftwards). (since 3.17)

SCROLLTOCARET (non inheritable, write only): Scroll the text to make the caret position visible.

SCROLLWIDTH (non inheritable): controls the document width in pixels. Default: 2000.

SCROLLWIDTHTRACKING (non inheritable): scroll width is adjusted to ensure that all of the lines currently displayed can be
completely scrolled. This mode never adjusts the scroll width to be narrower. (since 3.30)

Search and Replace (since 3.10)

SEARCHINTARGET (non inheritable, write only): This searches for the first occurrence of a text string in the target defined by
TARGETSTART and TARGETEND. If the search succeeds, the target is set to the found text.

SEARCHFLAGS (non inheritable): sets and gets the search flags used in SEARCHINTARGET attribute. Possible values: MATCHCASE,
WHOLEWORD, WORDSTART, REGEXP and POSIX. The flag options are combined using "|" as separators. Use NULL to reset all flags.

TARGETSTART (non inheritable): sets and gets the start of target. When searching in non-regular expression mode, you can set
TARGETSTART greater than TARGETEND to find the last matching text in the target rather than the first matching text. The first position
of text is 0. If set to NULL, 0 will be used (since 3.23).

TARGETEND (non inheritable): sets and gets the end of target. If set to -1 or NULL, target end will be the last position of text (since
3.23).

TARGETFROMSELECTION (non inheritable, write only): set the target start and end from current position of the selection.

 TARGETWHOLEDOCUMENT (non inheritable, write only): Set the target start to the start of the document and target end to the end of
the document. (since 3.23)

REPLACETARGET (non inheritable, write only): replaces the target text. After replacement, the target range refers to the replacement
text.

Style Definition (See Style Definition)

BGCOLOR: Background color of the text. Default: the global attribute TXTBGCOLOR. If changed it will affect the background color of all
styles (since 3.23).

FGCOLOR: Text color. Default: the global attribute TXTFGCOLOR. If changed it will affect the foreground color of all styles (since 3.23).

FONT: the text font. Default: the global attribute DEFAULTFONT. If changed it will affect all the font attributes of all styles (since 3.23).

IUP - Portable User Interface 07-Jan-25

394/496

../attrib/iup_bgcolor.html
../attrib/iup_fgcolor.html
../attrib/iup_font.html

STYLEBGCOLORid (non inheritable): background color for a style (See Style Definition). Values in RGB format ("r g b").

STYLEBOLDid (non inheritable): the boldness of a font (See Style Definition).

STYLECASEid (non inheritable): determines how text is displayed (See Style Definition). Values: LOWERCASE, UPPERCASE or MIXED
(default).

STYLECHARSETid (non inheritable): sets and gets a style to use a different character set than the default (See Style Definition). Can be
ANSI (default), EASTEUROPE, RUSSIAN, GB2312, HANGUL or SHIFTJIS.

STYLECLEARALL (non inheritable): sets all styles to have the same attributes as default global style (id = 32) (See Style Definition).

STYLEEOLFILLEDid (non inheritable): If the last character in the line has a style with this attribute set, the remainder of the line up to
the right edge of the window is filled with the background color set for the last character (See Style Definition). Can be YES (italic) or NO.

STYLEFGCOLORid (non inheritable): foreground color for a style (See Style Definition). Values in RGB format ("r g b").

STYLEFONTid (non inheritable): sets and gets the font name (See Style Definition). Scintilla caches fonts by their names, but the cache is
case sensitive.

STYLEFONTSIZEid (non inheritable): sets and gets the font size (See Style Definition), using a integer number of points.

STYLEFONTSIZEFRACid (non inheritable): sets and gets the font size (See Style Definition), using a fractional point size in hundredths
of a point. For example, a text size of 9.4 points is set with value = 940.

STYLEHOTSPOTid (non inheritable): used to mark ranges of text that can detect mouse clicks (See Style Definition). The cursor changes
to a hand over hotspots, and the foreground, and background colors may change and an underline appear to indicate that these areas are
sensitive to clicking. This may be used to allow hyperlinks to other documents.

STYLEITALICid (non inheritable): the italic style of a font (See Style Definition). Can be YES (italic) or NO.

STYLERESET (non inheritable, write-only): Resets to the initial Scintilla style default (See Style Definition).

STYLEUNDERLINEid (non inheritable): determines if the underline is drawn, using a foreground color (See Style Definition). Can be
YES (underline) or NO.

STYLEVISIBLEid (non inheritable): determines if the text is visible (YES) or hidden (NO) (See Style Definition).

STYLEWEIGHTid (non inheritable): the weight of a font (See Style Definition). Predefined values: NORMAL, SEMIBOLD and BOLD. The
weight can also be a number between 1 and 999 with 1 being very light and 999 very heavy.

Styling

CLEARDOCUMENTSTYLE (non inheritable, write-only): clear all styling information and reset the folding state.

STARTSTYLING (non inheritable, write only): prepares for styling by setting the styling position.

STYLINGid (non inheritable, write only): sets the style of given length characters starting at the styling position and then increases the
styling position by length. id is the style.

Tabs and Indentation Guides

TABSIZE (non inheritable): Controls the number of characters for a tab stop. Default: 8.

INDENTATIONGUIDES (non inheritable): dotted vertical lines that appear within indentation white space every indent size columns. Can
be: NONE, REAL, LOOKFORWARD, LOOKBOTH. Default: NONE.

HIGHLIGHTGUIDE (non inheritable): Highlights the indentation guide of a given column. When brace highlighting occurs, the
indentation guide corresponding to the braces may be highlighted with the brace highlighting style (See Style Definition, id = 34). Set
column to 0 to cancel this highlight.

USETABS (non inheritable): Use tabs also for indentation or only spaces. Can be Yes or No. Default: Yes.

Undo and Redo

REDO (non inheritable): redo the last operation if set to Yes, redo all operations if set to ALL, clears the undo information otherwise.
Returns Yes or No if redo can be performed.

UNDO (non inheritable): undo the last operation if set to Yes, undo all operations if set to ALL, clears the undo information otherwise.
Returns Yes or No if undo can be performed.

UNDOCOLLECT (non inheritable): enable or disable the undo collect of information. Can be Yes or No. Default: Yes.

UNDOACTION (non inheritable, write only): allows to create a block of undo operations. Can be BEGIN (start a bock) or END (end a
block). (since 3.21)

White Space

IUP - Portable User Interface 07-Jan-25

395/496

EXTRAASCENT (non inheritable): sets and gets the space to be added to the maximum ascent, in order to allow for more space
between lines. Default: 0.

EXTRADESCENT (non inheritable): sets and gets the space to be added to the maximum descent, in order to allow for more space
between lines. Default: 0.

WHITESPACEVIEW (non inheritable): sets and gets the white space display mode. The white spaces can be: "INVISIBLE" (shown as an
empty background color), "VISIBLEALWAYS" (drawn as dots and arrows) or "VISIBLEAFTERINDENT" (white space used for indentation is
displayed normally but after the first visible character, it is shown as dots and arrows). Default: INVISIBLE.

WHITESPACESIZE (non inheritable): sets and gets the size of the dots used for mark space characters. Default: 3.

WHITESPACEFGCOLOR (non inheritable, write only): defines the foreground color of visible white space. Values in RGB format ("r g
b"). By default the color will be defined by the Lexer, but defining this attribute will overriding the Lexer definition. Set to NULL to reset
the definition and use the Lexer again.

WHITESPACEBGCOLOR (non inheritable, write only): defines the background color of visible white space. Values in RGB format ("r g
b"). By default the color will be defined by the Lexer, but defining this attribute will overriding the Lexer definition. Set to NULL to reset
the definition and use the Lexer again.

Zooming

ZOOMIN (non inheritable, write only): increases the zoom factor by one point if the current zoom factor is less than 20 points.

ZOOMOUT (non inheritable, write only): decreases the zoom factor by one point if the current zoom factor is greater than -10 points.

ZOOM (non inheritable): sets and gets the zoom factor directly. Limits: -10 points to zoom out and 20 points to zoom in.

ACTIVE, EXPAND, SCREENPOSITION, POSITION, MINSIZE, MAXSIZE, WID, TIP, RASTERSIZE, ZORDER, VISIBLE: also accepted.

Drag & Drop attributes are supported. See Notes bellow.

Callbacks

ACTION: Action generated when the text is edited, but before its value is actually changed. Can be generated when using the keyboard,
undo/redo system or from the clipboard.

int function(Ihandle *ih, int insert, int pos, int length, char* text); [in C]
ih:action(insert, pos, length: number, text: string) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
insert: =1 when text is inserted, =0 when text is deleted.
pos: 0 based character position when change started.
length: size of the change.
text: the inserted text value. It is NULL when insert=0.

AUTOCSELECTION_CB: Action generated when the user has selected an item in an auto-completion list. It is sent before the selection
is inserted. Automatic insertion can be cancelled by setting the AUTOCCANCEL attribute before returning from the callback. (since
3.10.1)

int function(Ihandle *ih, int pos, char* text); [in C]
ih:autocselection_cb(pos: number, text: string) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
pos: 0 based character start position of the word being completed.
text: the text of the selection.

AUTOCCANCELLED_CB: Called after the user has cancelled an auto-completion list. (since 3.10.1)

int function(Ihandle *ih); [in C]
ih:autoccancelled_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

AUTOCCHARDELETED_CB: Called after the user deleted a character while auto-completion list was active. (since 3.10.1)

int function(Ihandle *ih); [in C]
ih:autocchardeleted_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

BUTTON_CB: Action generated when any mouse button is pressed or released. Use IupConvertXYToPos to convert (x,y) coordinates in
character positioning.

IUP - Portable User Interface 07-Jan-25

396/496

../attrib/iup_active.html
../attrib/iup_expand.html
../attrib/iup_screenposition.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_wid.html
../attrib/iup_tip.html
../attrib/iup_rastersize.html
../attrib/iup_zorder.html
../attrib/iup_visible.html
../attrib/iup_dragdrop.html
../call/iup_action.html
../call/iup_button_cb.html
../func/iupconvertxytopos.html

CARET_CB: Action generated when the caret/cursor position is changed.

int function(Ihandle *ih, int lin, int col, int pos); [in C]
ih:caret_cb(lin, col, pos: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin, col: line and column number (start at 0).
pos: 0 based character position.

INSERTCHECK_CB: Action generated before some text is inserted. Inside the callback the attribute CHANGEINSERT can be set to
change the inserted text. (since 3.27)

int function(Ihandle *ih, int pos, int length, char* text); [in C]
ih:insertcheck_cb(pos, length: number, text: string) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
pos: 0 based character position when change started.
length: size of the change.
text: the inserted text value. It is NULL when insert=0.

DROPFILES_CB: Action generated when one or more files are dropped in the element.

DWELL_CB: Action generated when the user keeps the mouse in one position for the dwell period defined in MOUSEDWELLTIME. (since
3.23)

int function(Ihandle *ih, int state, int pos, int x, int y); [in C]
ih:dwell_cb(state, pos, x, y: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
state: 1 if mouse sit still more than the dwell period, 0 if mouse moved or key pressed after state=1 was called.
pos: the nearest position in the document to the position where the mouse pointer was lingering. Can be -1 if not near any character.
x, y: Where the pointer lingered.

HOTSPOTCLICK_CB: Action generated when the user clicks or double clicks on text that is in a style with the hotspot attribute set.

int function(Ihandle *ih, int pos, int lin, int col, char* status); [in C]
ih:hotspotclick_cb(pos, lin, col: number, status: string) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
pos: the character position in the document that corresponds to the hotspot click.
lin: line in the document that corresponds to the hotspot click.
col: column in the document that corresponds to the hotspot click.
status: status of mouse buttons and certain keyboard keys at the moment the event was generated. The same macros used for
BUTTON_CB can be used for this status.

LINESCHANGED_CB: Called after the number of lines was interactively changed by the user. (since 3.23)

int function(Ihandle *ih, int lin, int num); [in C]
ih:lineschanged_cb(lin, num: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
lin: line where the change started
num: number of lines than changed. A negative value indicates that lines were removed.

MARGINCLICK_CB: Action generated when the mouse button is clicked inside a margin that is marked as sensitive.

int function(Ihandle *ih, int margin, int lin, char* status); [in C]
ih:marginclick_cb(margin, lin: number, status: string) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
margin: the margin number that was clicked.
lin: line in the document that corresponds to the margin click.
status: status of mouse buttons and certain keyboard keys at the moment the event was generated. The same macros used for
BUTTON_CB can be used for this status.

MOTION_CB: Action generated when the mouse is moved. Use IupConvertXYToPos to convert (x,y) coordinates in character positioning.

SAVEPOINT_CB: Notifies the application that a save point was reached (1) or left (0). Can be used to control whether to display a saved
or modified document. To set the save point use the SAVEPOINT attribute.

int function(Ihandle *ih, int status); [in C]
ih:savepoint_cb(status: number) -> (ret: number) [in Lua]

IUP - Portable User Interface 07-Jan-25

397/496

../call/iup_dropfiles_cb.html
../call/iup_button_cb.html
../call/iup_button_cb.html
../call/iup_motion_cb.html
../func/iupconvertxytopos.html

ih: identifier of the element that activated the event.
status: can be 1 (reached) or 0 (left).

UPDATECONTENT_CB: Called when contents, styling or markers have been changed. (since 3.23)

int function(Ihandle *ih); [in C]
ih:updatecontent_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

UPDATESELECTION_CB: Called when selection has been changed . (since 3.23)

int function(Ihandle *ih); [in C]
ih:updateselection_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

UPDATEHSCROLL_CB: Called when the document was scrolled horizontally. (since 3.23)

int function(Ihandle *ih); [in C]
ih:updatehscroll_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

UPDATEVSCROLL_CB: Called when the document was scrolled vertically. (since 3.23)

int function(Ihandle *ih); [in C]
ih:updatevscroll_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

VALUECHANGED_CB: Called after the value was interactively changed by the user.

int function(Ihandle *ih); [in C]
ih:valuechanged_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

ZOOM_CB: Notifies the application when the user zooms the display using the keyboard or the ZOOM attribute. Can be used to
recalculate positions, such as the width of the line number margin to maintain sizes in terms of characters rather than pixels.

int function(Ihandle *ih, int zoomInPoints); [in C]
ih:zoom_cb(zoomInPoints: number) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
zoomInPoints: the current zoom factor.

MAP_CB, UNMAP_CB, DESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB, K_ANY, HELP_CB: All
common callbacks are supported.

Drag & Drop callbacks are supported (*). See Notes bellow.

Style Definition

Scintilla can automatically format the text using the Lexer or the application can manually format the text. In both cases only 256 different
styles are available. Styles are numbered from 0 to 255, invalid IDs are simply ignored. When the id is not specified for an attributes the
style 0 is assumed.

Each Lexer will use the available styles with its own rules, but several Lexers share many ids. Notice that language keywords and styles
definitions are not pre-defined internally, the application must define them.

ID Global styles

32 This style defines the attributes that all styles receive when the STYLECLEARALL attribute is used.

33 This style sets the attributes of the text used to display line numbers in a line number margin.

34 This style sets the attributes used when highlighting braces with the BRACEHIGHLIGHT and HIGHLIGHTGUIDE attributes.

35 This style sets the attributes used when marking an unmatched brace with the BRACEBADLIGHT attribute.

36 This style sets the font used when drawing control characters.

37 This style sets the foreground and background colors used when drawing the indentation guides. Used when
INDENTATIONGUIDES!=NONE.

IUP - Portable User Interface 07-Jan-25

398/496

../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_getfocus_cb.html
../call/iup_killfocus_cb.html
../call/iup_enterwindow_cb.html
../call/iup_leavewindow_cb.html
../call/iup_k_any.html
../call/iup_help_cb.html
../attrib/iup_dragdrop.html

Here are some known styles for C++ and Lua:

Style ID C++ styles Lua styles

0 Default Default

1 C comment Lua comment

2 C++ comment line Lua comment line

3 JavaDoc/ Doxygen style C comment JavaDoc/ Doxygen style Lua comment

4 Number Number

5 Keyword Keyword (id=0)

6 String String

7 Character Character

8 IDL UUID Literal string

9 Preprocessor block Old preprocessor block (obsolete)

10 Operator Operator

11 Identifier Identifier

12 End of a line where a string is not closed End of a line where a string is not closed

13 C# verbatim string Keyword set number 2 (id=1)

14 Regular expression Keyword set number 3 (...)

15 JavaDoc/Doxygen style C++ comment line Keyword set number 4

16 Keyword set number 2 Keyword set number 5

17 JavaDoc/Doxygen keyword Keyword set number 6

18 JavaDoc/Doxygen keyword error Keyword set number 7

19 Global class or typedef defined in keyword Keyword set number 8

20 C++ raw string Label

21 F# triple-quoted verbatim strings

22 Hash-quoted strings

23 Preprocessor block comment

Notes

Enter key will add a new line, and the Tab key will insert a Tab.

Internal Drag&Drop support is enabled by default, although the Drag & Drop attributes and callbacks are supported they may not work as
expected.

IupScintilla uses attributes and callbacks very similar to the IupText control, except for text formatting. But notice that in IupScintilla
position always starts at 0.

Although the IupScintilla documentation should be sufficient for most uses, some advanced features will be better understood if the
Scintilla Documentation is consulted. Also some Scintilla features are not available in IupScintilla, so by consulting that documentation
you will be able to check which one and if necessary you can request the implementation in IupScintilla.

Our version of Scintilla also supports a LED lexer. (since 3.28)

Navigation, Selection and Clipboard Keys

Here is a list of the common keys for all drivers. Other keys are available depending on the driver.

Keys Action

Navigation

Arrows move by individual characters/lines

Ctrl+Arrows move by words/paragraphs

Home/End move to begin/end line

Ctrl+Home/End move to begin/end text

PgUp/PgDn move vertically by pages

Ctrl+PgUp/PgDn move horizontally by pages

Selection

Shift+Arrows select characters

IUP - Portable User Interface 07-Jan-25

399/496

../attrib/iup_dragdrop.html
http://www.scintilla.org/ScintillaDoc.html

Ctrl+A select all

Deleting

Del delete the character at right

Backspace delete the character at left

Clipboard

Ctrl+C copy

Ctrl+X cut

Ctrl+V paste

Examples

Browse for Example Files

 IupSetAttribute(ih, "LEXERLANGUAGE", "cpp");

IupSetAttribute(ih, "KEYWORDS0", "void struct union enum char short int long double float signed unsigned const static extern auto register volatile bool class private protected public friend inline template virtual asm explicit typename mutable"
 "if else switch case default break goto return for while do continue typedef sizeof NULL new delete throw try catch namespace operator this const_cast static_cast dynamic_cast reinterpret_cast true false using"
 "typeid and and_eq bitand bitor compl not not_eq or or_eq xor xor_eq");

//IupSetAttribute(ih, "STYLEFONT32", "Courier New");
IupSetAttribute(ih, "STYLEFONT32", "Consolas");
IupSetAttribute(ih, "STYLEFONTSIZE32", "11");
IupSetAttribute(ih, "STYLECLEARALL", "Yes"); /* sets all styles to have the same attributes as 32 */

IupSetAttribute(ih, "STYLEFGCOLOR1", "0 128 0"); // 1-C comment
IupSetAttribute(ih, "STYLEFGCOLOR2", "0 128 0"); // 2-C++ comment line
IupSetAttribute(ih, "STYLEFGCOLOR4", "128 0 0"); // 4-Number
IupSetAttribute(ih, "STYLEFGCOLOR5", "0 0 255"); // 5-Keyword
IupSetAttribute(ih, "STYLEFGCOLOR6", "160 20 20"); // 6-String
IupSetAttribute(ih, "STYLEFGCOLOR7", "128 0 0"); // 7-Character
IupSetAttribute(ih, "STYLEFGCOLOR9", "0 0 255"); // 9-Preprocessor block
IupSetAttribute(ih, "STYLEFGCOLOR10", "255 0 255"); // 10-Operator
IupSetAttribute(ih, "STYLEBOLD10", "YES");

IupSetAttribute(ih, "STYLEHOTSPOT6", "YES");

IupSetAttribute(ih, "MARGINWIDTH0", "50");

IupSetAttribute(ih, "PROPERTY", "fold=1");
IupSetAttribute(ih, "PROPERTY", "fold.compact=0");
IupSetAttribute(ih, "PROPERTY", "fold.comment=1");
IupSetAttribute(ih, "PROPERTY", "fold.preprocessor=1");

IupSetAttribute(ih, "MARGINWIDTH1", "20");
IupSetAttribute(ih, "MARGINTYPE1", "SYMBOL");
IupSetAttribute(ih, "MARGINMASKFOLDERS1", "Yes");

IupSetAttribute(ih, "MARKERDEFINE", "FOLDER=PLUS");
IupSetAttribute(ih, "MARKERDEFINE", "FOLDEROPEN=MINUS");
IupSetAttribute(ih, "MARKERDEFINE", "FOLDEREND=EMPTY");
IupSetAttribute(ih, "MARKERDEFINE", "FOLDERMIDTAIL=EMPTY");
IupSetAttribute(ih, "MARKERDEFINE", "FOLDEROPENMID=EMPTY");
IupSetAttribute(ih, "MARKERDEFINE", "FOLDERSUB=EMPTY");
IupSetAttribute(ih, "MARKERDEFINE", "FOLDERTAIL=EMPTY");

IupSetAttribute(ih, "FOLDFLAGS", "LINEAFTER_CONTRACTED");

IupSetAttribute(ih, "MARGINSENSITIVE1", "YES");

IUP - Portable User Interface 07-Jan-25

400/496

../../examples/

See Also

IupText, Scintilla

IupWebBrowser [GTK and Windows only] (since 3.3)
Creates a web browser control. It is responsible for managing the drawing of the web browser content and forwarding of its events.

In Linux, the implementation uses the WebKit/GTK+, the new GTK+ port of the WebKit, an open-source web content engine. More
information about WebKit/GTK+ (building, dependencies, releases, etc) can be seen in Notes section. When using GTK 2.x it uses the
WebKit1 API. When using GTK 3.x, in Linux 3.x uses the WebKit1 API, in Linux 4.x and newer uses the WebKit2 API.

In Windows, the implementation uses the IupOleControl to embed an instance of the Internet Explorer WebBrowser control. A listener
interface is used to capture and handle events using the Active Template Library (ATL) classes. More information about ATL can be seen
in Notes section. So it is only available for Visual C++ compilers when statically linking.

Initialization and usage

The IupWebBrowserOpen function must be called after IupOpen. The iupweb.h file must also be included in the source code. The
program must be linked to the controls library (iupweb). If static linking is used then in Windows must be linked with the "iupole" library
and in Linux must be linked with the "webkit-1.0" for WebKit1 with GTK2, webkitgtk-3.0 for WebKit1 with GTK3, and webkit2gtk-4.0 +
gio-2.0 libraries for WebKit2 with GTK3.

To make the control available in Lua use require"iupluaweb" or manually call the initialization function in C, iupweblua_open, after
calling iuplua_open. When manually calling the function the iupluaweb.h file must also be included in the source code, and the program
must be linked to the lua control library (iupluaweb).

Creation

Ihandle* IupWebBrowser(void); [in C]
iup.webbrowser{} -> (ih: ihandle) [in Lua]
webbrowser() [in LED]

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

BACKCOUNT [GTK Only] (read only): gets the number of items that precede the current page.

BACKFORWARD (write only): sets the number of steps away from the current page and loads the history item. Negative values
represent steps backward while positive values represent steps forward.

GOBACK (write only): go to the previous page. Same as BACKFORWARD=-1. (since 3.23)

GOFORWARD (write only): go to the next page. Same as BACKFORWARD=1. (since 3.23)

CANGOBACK (read-only): informs if there is a previous page. (since 3.23)

CANGOFORWARD (read-only): informs if there is a next page. (since 3.23)

IUP - Portable User Interface 07-Jan-25

401/496

../elem/iuptext.html
http://www.scintilla.org/
http://webkitgtk.org/
http://webkit.org
http://msdn.microsoft.com/en-us/library/t9adwcde%28v=VS.80%29.aspx

COPY (write only): copy the selection to the clipboard. (since 3.10)

FORWARDCOUNT [GTK Only] (read only): gets the number of items that succeed the current page.

HTML: loads a given HTML content. (not write only since 3.30)

ITEMHISTORYid [GTK Only] (read only): Returns the URL associated with a specific history item. Negative "id" value represents a
backward item while positive "id" value represents a forward item ("0" represents the current item).

INNERTEXT [Windows Only]: the innerText property of the HTML element marked with the ID given by the attribute ELEMENT_ID.
(since 3.24)

ATTRIBUTE [Windows Only]: the content attribute of the HTML element marked with the ID given by the attribute ELEMENT_ID. The
name of the content attribute is given by the attribute ATTRIBUTE_NAME. (since 3.24)

PRINT (write only): shows the print dialog. In Windows if set to Yes will display the system print dialog (since 3.30). (since 3.10)

PRINTPREVIEW [Windows Only]: shows a print preview dialog. (since 3.30)

RELOAD (write only): reloads the page in the webbrowser.

SELECTALL (write only): selects all contents. (since 3.10)

STATUS (read only): returns the load status. Can be "LOADING", "COMPLETED" or "FAILED".

STOP (write only): stops any ongoing load in the webbrowser.

VALUE: sets a specified URL to load into the webbrowser, or retrieve the current URL.

ZOOM: the zoom factor of the browser in percent. No zoom is 100%. (since 3.10)

EDITABLE: enable the design mode, or the WYSIWYG HTML editor. Can be Yes or NO. (since
3.30)

(All the following attributes depends on the EDITABLE attribute)

NEW (write-only): initializes blank document. Value is ignored.

OPENFILE (write-only): open an HTML file given its filename. In Windows if the file is modified it will ask for a confirmation.

SAVEFILE (write-only): save the contents in a HTML file given its filename. In Linux will save in a .mhtml file with all the images packed
in a single file.

DIRTY [Windows Only]: Returns Yes or No if the contents has been edited by the user.

UNDO (write-only): undo the last editing.

REDO (write-only): redo the last editing.

CUT (write-only): cuts the selection to the clipboard.

PASTE (write-only): pastes the clipboard to the selection or caret.

SELECTALL (write-only): selects all the contents.

FIND [Windows Only] (write-only): shows a dialog for finding a text.

EXECCOMMAND (write-only): executes an editing command. Possible commands: CUT, COPY, PASTE, UNDO, REDO, SELECTALL,
BOLD, ITALIC, UNDERLINE, STRIKETHROUGH, JUSTIFYLEFT, JUSTIFYCENTER, JUSTIFYRIGHT, JUSTIFYFULL, INDENT, OUTDENT,
REMOVEFORMAT, DELETE, SUBSCRIPT, SUPERSCRIPT, INSERTORDEREDLIST, INSERTUNORDEREDLIST, UNLINK.

COMMANDSTATE [Windows Only] (read-only): returns the command state. Can be Yes or No. The command name must be stored on
the attribute COMMAND.

COMMANDENABLED [Windows Only] (read-only): returns if the command is enabled. Can be Yes or No. The command name must be
stored on the attribute COMMAND.

COMMANDTEXT [Windows Only] (read-only): returns the command text if any. The command name must be stored on the attribute
COMMAND.

COMMANDVALUE [Windows Only] (read-only): returns the command value if any. The command name must be stored on the attribute
COMMAND.

INSERTIMAGE (write-only): inserts an image given its url. In Windows if value is NULL displays a system dialog for inserting an image.

INSERTIMAGEFILE (write-only): inserts an image given its filename.

CREATELINK (write-only): inserts a link given its url. In Windows if value is NULL displays a system dialog for editing a link.

INSERTTEXT (write-only): inserts a text at the current selection or caret.

IUP - Portable User Interface 07-Jan-25

402/496

INSERTHTML (write-only): inserts a formatted text at the current selection or caret.

FONTNAME: font face name. In Linux is write-only.

FONTSIZE: font relative size. In Linux is write-only. Can be a number form "1" to "7", meaning 1: x-small, 2: small, 3: medium, 4:
large, 5: x-large, 6: xx-large, 7: xxx-large.

FORMATBLOCK: The block format. In Linux is write-only. It can be: "Heading 1", "Heading 2", "Heading 3", "Heading 4", "Heading 5",
"Heading 6", "Paragraph", "Preformatted" and "Block Quote". In Windows returns "Normal" for "Paragraph", "Formatted" for
"Preformatted" and "Block Quote" is not supported.

FORECOLOR: the foreground color of the selected text. In Linux is write-only.

BACKCOLOR: the background color of the selected text. In Linux is write-only.

ACTIVE, FONT, EXPAND, SCREENPOSITION, POSITION, MINSIZE, MAXSIZE, WID, TIP, RASTERSIZE, ZORDER, VISIBLE: also accepted.

Callbacks

COMPLETED_CB: action generated when a page successfully completed. Can be called multiple times when a frame set loads its frames,
or when a page loads also other pages.

int function(Ihandle* ih, char* url); [in C]
ih:completed_cb(url) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
url: the URL address that completed.

ERROR_CB: action generated when page load fail.

int function(Ihandle* ih, char* url); [in C]
ih:error_cb(url) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
url: the URL address that caused the error.

NAVIGATE_CB: action generated when the browser requests a navigation to another page. It is called before navigation occurs. Can be
called multiple times when a frame set loads its frames, or when a page loads also other pages.

int function(Ihandle* ih, char* url); [in C]
ih:navigate_cb(url) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
url: the URL address to navigate to.

Returns: IUP_IGNORE will abort navigation (since 3.4).

NEWWINDOW_CB: action generated when the browser requests a new window.

int function(Ihandle* ih, char* url); [in C]
ih:newwindow_cb(url) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.
url: the URL address that is opened in the new window.

UPDATE_CB [Windows Only]: action generated when the selection was changed and the editor interface needs an update.
Used only when EDITABLE=Yes. (since 3.30)

int function(Ihandle* ih); [in C]
ih:update_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

MAP_CB, UNMAP_CB, DESTROY_CB: callbacks are supported.

Notes

To learn more about WebKit and WebKitGTK+:

The WebKit Open Source Project
The WebKitGTK+ web page
WebKitGTK+ wiki

IUP - Portable User Interface 07-Jan-25

403/496

../attrib/iup_active.html
../attrib/iup_font.html
../attrib/iup_expand.html
../attrib/iup_screenposition.html
../attrib/iup_position.html
../attrib/iup_minsize.html
../attrib/iup_maxsize.html
../attrib/iup_wid.html
../attrib/iup_tip.html
../attrib/iup_rastersize.html
../attrib/iup_zorder.html
../attrib/iup_visible.html
../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
http://webkit.org/
http://webkitgtk.org/
http://live.gnome.org/WebKitGtk

WebKitGTK+ tracker

To learn more about Internet Explorer WebBrowser control and ATL:

WebBrowser Control from C/C++
Creating ATL sinks
Examples of sinking COM events

Examples

Browse for Example Files

IupMap
Creates (maps) the native interface objects corresponding to the given IUP interface elements.

It will also called recursively to create the native element of all the children in the element's tree.

The element must be already attached to a mapped container, except the dialog. A child can only be mapped if its parent is already
mapped.

This function is automatically called before the dialog is shown in IupShow, IupShowXY or IupPopup.

Parameters/Return

int IupMap(Ihandle* ih); [in C]
iup.Map(ih: ihandle) -> ret: number [in Lua]
or ih:map() [in Lua]

ih: Identifier of an interface element.

Returns: IUP_NOERROR if successful. If the element was already mapped returns IUP_NOERROR. If the native creation failed returns
IUP_ERROR.

Notes

If the element is a dialog then the abstract layout will be updated even if the dialog is already mapped. If the dialog is visible the elements
will be immediately repositioned. Calling IupMap for an already mapped dialog is the same as only calling IupRefresh for the dialog.

Calling IupMap for an already mapped element that is not a dialog does nothing.

IUP - Portable User Interface 07-Jan-25

404/496

http://trac.webkit.org/wiki/WebKitGTK
http://msdn.microsoft.com/en-us/library/aa752044%28VS.85%29.aspx
http://support.microsoft.com/kb/194179/en-us/
http://homepage.eircom.net/~codexpert/sink/
../../examples/

If you add new elements to an already mapped dialog you must call IupMap for that elements. And then call IupRefresh to update the
dialog layout.

If the WID attribute of an element is NULL, it means the element was not already mapped. Some containers do not have a native element
associated, like VBOX and HBOX. In this case their WID is a fake value (void*)(-1).

It is useful for the application to call IupMap when the value of the WID attribute must be known, i.e. the native element must exist,
before a dialog is made visible.

The MAP_CB callback is called at the end of the IupMap function, after all processing, so it can also be used to create other things that
depend on the WID attribute. But notice that for non dialog elements it will be called before the dialog layout has been updated, so the
element current size will still be 0x0 (since 3.14).

See Also

IupAppend, IupDetach, IupUnmap, IupCreate, IupDestroy, IupShowXY, IupShow, IupPopup, MAP_CB

IupUnmap (since 3.0)
Unmap the element from the native system. It will also unmap all its children.

It will NOT detach the element from its parent, and it will NOT destroy the IUP element.

Parameters/Return

void IupUnmap(Ihandle* ih); [in C]
iup.Unmap(ih: ihandle) [in Lua]
or ih:unmap() [in Lua]

ih: Identifier of an interface element.

Notes

When the element is mapped some attributes are stored only in the native system. If the element is unmaped those attributes are lost.
Use the function IupSaveClassAttributes when you want to unmap the element and keep its attributes.

The UNMAP_CB callback is called before the element is actually unmapped from the native system.

See Also

IupAppend, IupDetach, IupMap, IupCreate, IupDestroy

IupCreate
Creates an interface element given its class name and parameters. This function is called from all constructors like IupDialog(...),
IupLabel(...), and so on.

After creation the element still needs to be attached to a container and mapped to the native system so it can be visible.

Parameters/Return

Ihandle* IupCreate(const char *classname); [in C]
Ihandle* IupCreatev(const char *classname, void **params); [in C]
Ihandle *IupCreatep(const char *classname, void* params0, ...); [in C]
Ihandle* IupCreateV(const char *classname, void* first, va_list arglist); [in C]
[Not available in Lua]

classname: class name of the element to be created
params: list of parameters limited by a NULL.

Returns: the identifier of the created element, or NULL if an error occurs.

See Also

IupAppend, IupDetach, IupMap, IupUnmap, IupDestroy, IupGetClassName

IupDestroy
Destroys an interface element and all its children. Only dialogs, timers, popup menus and images should be normally destroyed, but
detached controls can also be destroyed.

IUP - Portable User Interface 07-Jan-25

405/496

iupappend.html
iupdetach.html
iupunmap.html
iupcreate.html
iupdestroy.html
iupshowxy.html
iupshow.html
iuppopup.html
../call/iup_map_cb.html
iupsaveclassattributes.html
iupappend.html
iupdetach.html
iupmap.html
iupcreate.html
iupdestroy.html
iupappend.html
iupdetach.html
iupmap.html
iupunmap.html
iupdestroy.html
iupgetclassname.html

Parameters/Return

void IupDestroy(Ihandle *ih); [in C]
iup.Destroy(ih: ihandle) [in Lua]
or ih:destroy() [in Lua]

ih: Identifier of the interface element to be destroyed.

Notes

It will automatically unmap and detach the element if necessary, and then destroy the element.

This function also deletes the main names associated to the interface element being destroyed, but if it has more than one name then
some names may be left behind.

Menu bars associated with dialogs are automatically destroyed when the dialog is destroyed.

Images associated with controls are NOT automatically destroyed, because images can be reused in several controls the application must
destroy them when they are not used anymore.

All dialogs and all elements that have names are automatically destroyed in IupClose.

See Also

IupAppend, IupDetach, IupMap, IupUnmap, IupCreate

IupGetAllClasses (Since 3.3)
Returns the names of all registered classes.

Parameters/Return

int IupGetAllClasses(char** names, int max_n); [in C]
iup.GetAllClasses([max_n: number]) -> (names: table, n: number) [in Lua]

names: table receiving the names. Only the list of names need to be allocated. Each name will point to an internal string.
max_n: maximum number of names the table can receive. Can be omitted in Lua.

Returns: the actual number of names loaded to the table or -1 (nil) if class not found. If names==NULL or max_n==0 or -1 then returns
the maximum number of names.

See Also

IupGetClassName, IupGetClassType, IupGetAllAttributes

IupGetClassName (renamed from IupGetType in 2.7)
Returns the name of the class of an interface element.

Parameters/Return

char* IupGetClassName(Ihandle* ih); [in C]
iup.GetClassName(ih: ihandle) -> (name: string) [in Lua]

ih: Identifier of the interface element.

Returns: the name of the class.

Notes

The following names are known:

"image"
"button"
"canvas"
"dialog"
"fill"
"frame"
"hbox"
"item"
"separator"
"submenu"

IUP - Portable User Interface 07-Jan-25

406/496

iupappend.html
iupdetach.html
iupmap.html
iupunmap.html
iupcreate.html
iupgetclassname.html
iupgetclasstype.html
iupgetallattributes.html

"label"
"list"
"menu"
"radio"
"text"
"toggle"
"vbox"
"zbox"
"multiline"
"user"
"matrix"
"tree"
"dial"
"gauge"
"val"
"glcanvas"
"tabs"
"cells"
"colorbrowser"
"colorbar"
"spin"
"sbox"
"cbox"
"progressbar"
"olecontrol"

See Also

IupClassMatch, IupGetClassType, IupGetClassAttributes

IupGetClassType (Since 3.0)
Returns the name of the native type of an interface element.

Parameters/Return

char* IupGetClassType(Ihandle* ih); [in C]
iup.GetClassType(ih: ihandle) -> (name: string) [in Lua]

ih: Identifier of the interface element.

Returns: the class type.

Notes

There are only a few pre-defined class types:

"void" - No native representation - HBOX, VBOX, ZBOX, FILL, RADIO, ...
"control" - Native controls - BUTTON, LABEL, TOGGLE, LIST, TEXT, MULTILINE, FRAME, ...
"canvas" - Drawing canvas, also used as a base control for custom controls (Flat* elements, GL*, Plot, Matrix, ...)
"dialog" - dialogs, pre-defined dialogs
"image" - all image types
"menu" - all menu types: MENU, SUBMENU, ITEM, SEPARATOR
"other" - other resources: TIMER, CLIPBOARD, USER, ... (since 3.28)

See Also

IupGetClassName, IupGetClassAttributes

IupClassMatch (since 3.4)
Checks if the give class name matches the class name of the given interface element.

Parameters/Return

int IupClassMatch(Ihandle* ih, const char* classname); [in C]
iup.ClassMatch(ih: ihandle, classname: string) -> (ret: boolean) [in Lua]

ih: Identifier of the interface element.
classname: name of the class to match.

Returns: true (1) if the given name matches the class name or one of its parent class names, false (0) or else.

See Also

IUP - Portable User Interface 07-Jan-25

407/496

iupclassmatch.html
iupgetclasstype.html
iupgetclassattributes.html
iupgetclassname.html
iupgetclassattributes.html

IupGetClassName

IupGetClassAttributes (Since 3.0)
Returns the names of all registered attributes of a class.

Parameters/Return

int IupGetClassAttributes(const char* classname, char** names, int max_n); [in C]
iup.GetClassAttributes(classname: string[, max_n: number]) -> (names: table, n: number) [in Lua]

classname: name of the class
names: table receiving the names. Only the list of names need to be allocated. Each name will point to an internal string.
max_n: maximum number of names the table can receive. Can be omitted in Lua.

Returns: the actual number of names loaded to the table or -1 (nil) if class not found. If names==NULL or max_n==0 or -1 then returns
the maximum number of names.

See Also

IupGetClassName, IupGetClassType, IupGetAllAttributes

IupGetClassCallbacks (Since 3.3)
Returns the names of all registered callbacks of a class.

Parameters/Return

int IupGetClassCallbacks(const char* classname, char** names, int max_n); [in C]
iup.GetClassCallbacks(classname: string[, max_n: number]) -> (names: table, n: number) [in Lua]

classname: name of the class
names: table receiving the names. Only the list of names need to be allocated. Each name will point to an internal string.
max_n: maximum number of names the table can receive. Can be omitted in Lua.

Returns: the actual number of names loaded to the table or -1 (nil) if class not found. If names==NULL or max_n==0 or -1 then returns
the maximum number of names.

See Also

IupGetClassName, IupGetClassType, IupGetAllAttributes

IupSaveClassAttributes
Saves all registered attributes on the internal hash table.

Parameters/Return

void IupSaveClassAttributes(Ihandle* ih); [in C]
iup.SaveClassAttributes(ih: ihandle) [in Lua]

ih: identifier of the interface element.

Notes

When the element is mapped some attributes are stored only in the native system. If the element is unmaped those attributes are lost.
So this function is useful when you want to unmap the element and keep its attributes.

It will not save id dependent attributes, like those which has a complementary number. For example: items in a IupList, IupTree or
IupMatrix.

See Also

IupGetClassAttributes, IupGetClassName, IupGetClassType, IupGetAllAttributes, IupCopyClassAttributes

IupCopyClassAttributes
Copies all registered attributes from one element to another. Both elements must be of the same class.

IUP - Portable User Interface 07-Jan-25

408/496

iupgetclassname.html
iupgetclassname.html
iupgetclasstype.html
iupgetallattributes.html
iupgetclassname.html
iupgetclasstype.html
iupgetallattributes.html
iupgetclassattributes.html
iupgetclassname.html
iupgetclasstype.html
iupgetallattributes.html
iupcopyclassattributes.html

Parameters/Return

void IupCopyClassAttributes(Ihandle* src_ih, Ihandle* dst_ih); [in C]
iup.CopyClassAttributes(src_ih, dst_ih: ihandle) [in Lua]

src_ih: identifier of the source element.
dst_ih: identifier of the destiny element.

See Also

IupGetClassAttributes, IupGetClassName, IupGetClassType, IupGetAllAttributes, IupSaveClassAttributes

IupSetClassDefaultAttribute (Since 3.0)
Changes the default value of an attribute for a class. It can be any attribute, i.e. registered attributes or user custom attributes.

Parameters/Return

void IupSetClassDefaultAttribute(const char* classname, const char *name, const char *value); [in C]
iup.SetClassDefaultAttribute(classname, name, value: string) [in Lua]

classname: name of the class
name: name of the attribute
value: new default value.

Notes

If the value is DEFAULTFONT, DLGBGCOLOR, DLGFGCOLOR, TXTBGCOLOR, TXTFGCOLOR, LINKFGCOLOR or MENUBGCOLOR then the
actual default value will be the global attribute of the same name consulted at the time the attribute is consulted.

Attributes that are not strings and attributes that have variable names, like those which has a complementary number, can NOT have a
default value. Some attributes can NOT have a default value by definition.

If the new default value is (char*)-1, then the default value is set to be the system default if any is defined.

See Also

IupGetClassName, IupGetClassType, IupGetAllAttributes

IupUpdate
IupUpdateChildren

Mark the element or its children to be redraw when the control returns to the system.

Parameters/Return

void IupUpdate(Ihandle* ih); [in C]
void IupUpdateChildren(Ihandle* ih); [in C]
iup.Update(ih: ihandle) [in Lua]
iup.UpdateChildren(ih: ihandle) [in Lua]

ih: identifier of the interface element.

See Also

IupRedraw

IupRedraw (since 3.0)
Force the element and its children to be redrawn immediately.

Parameters/Return

void IupRedraw(Ihandle* ih, int children); [in C]
iup.Redraw(ih: ihandle, children: number) [in Lua]

ih: identifier of the interface element.
children: flag to update its children. Can be 0 or 1.

IUP - Portable User Interface 07-Jan-25

409/496

iupgetclassattributes.html
iupgetclassname.html
iupgetclasstype.html
iupgetallattributes.html
iupsaveclassattributes.html
iupgetclassname.html
iupgetclasstype.html
iupgetallattributes.html
iupredraw.html

See Also

IupUpdate

IupConvertXYToPos (since 3.0)
Converts a (x,y) coordinate in an item position.

Parameters/Return

int IupConvertXYToPos(Ihandle *ih, int x, int y); [in C]
iup.ConvertXYToPos(ih: ihandle, x, y: number) -> (ret: number) [in Lua]

ih: Identifier of the element.
x: X coordinate relative to the left corner of the element.
y: Y coordinate relative to the top corner of the element.

Returns: the position starting at 0 (except for IupList that starts at 1). If fails returns -1.

Notes

It can be used for IupText and IupScintilla (returns a position in the string), IupList (returns an item), IupTree (returns a node
identifier) or IupMatrix (returns a cell position, where pos=lin*numcol + col).

See Also

IupText, IupList, IupTree, IupMatrix, IupScintilla

Resources
Resources are several auxiliary tools including menus, images, fonts and global names.

Some objects like menus and images, that are not inserted in a dialog children tree, are in fact "associated" with dialogs or controls.

Menus can be associated with dialogs only. Images can be associated with labels, buttons, toggles and menu items (this last in Windows
only).

Both images and menus to be associated use a global table of names. This exist because of the LED scripts. First you associate the image
or menu Ihandle to a name, then you associated the MENU or IMAGE attribute to the respective name.

For example, in C:

Ihandle* img = IupImage (11, 11, pixmap) ;
IupSetHandle("myImg", img);
IupSetAttribute(myButton, "IMAGE", "myImg") ;

or in LED:

myImg = image[...] (
...
)
myButton = button[IMAGE = myImg]("")

or in Lua:

myImg = iupimage {
...
}
myButton = iupbutton { title = "", image = myImg }

The IupView application is capable of converting several image formats into an IupImage, and save an IupImage as LED, Lua or ICO.

Only dialogs, timers, popup menus and images can be destroyed. Menu bars associated with dialogs are automatically destroyed.

LED
LED is a dialog-specification language whose purpose is not to be a complete programming language, but rather to make dialog
specification simpler than in C.

In LED, attributes and expressions follow this form:

name = element[attribute1=value1,attribute2=value2,...](expression)

IUP - Portable User Interface 07-Jan-25

410/496

iupupdate.html
../elem/iuptext.html
../elem/iuplist.html
../elem/iuptree.html
../ctrl/iupmatrix.html
../ctrl/iup_scintilla.html
executables.html

The element must not contain the “iup” prefix. Attribute values are always interpreted as strings, but they need to be in quotes (“…” or
'...') only when they include spaces.

Expressions are mandatory and contain parameters for creating the element. Each element constructor has a different set of parameters,
see each element documentation.

In LED there is no distinction between upper and lower case, except for attribute values.

To insert line breaks in string values use '\n'. The LED file itself can contain line breaks in DOS or Windows format, not in Mac format.

Comments start with the '#' character and goes all the way until the end of the line.

Also there is no NULL definition, but containers can be empty (since 3.28).

The IupLoad function can parse a text file and create the IUP elements defined in it. Naturally, the same file cannot be loaded more than
once, because the elements would be created again. The file parse does not map the elements to the native system, but it does create
those elements.

LED files can be dynamically loaded by the application and must be packaged together with the application’s executable. However, this
often becomes an inconvenience. To deal with it, there is the LEDC compiler that creates a C module from the LED contents.

To simply view a LED file objects use the LED Viewer application called IupView, in the applications included in the distribution. Pre-
compiled binaries are available at the Download.

IupLoad and IupLoadBuffer
Compiles a LED specification.

Parameters/Return

char *IupLoad(const char *filename); [in C]
iup.Load(filename: string) -> error: string [in Lua]

char *IupLoadBuffer(const char *buffer); [in C] (since 3.0)
iup.LoadBuffer(buffer: string) -> error: string [in Lua]

filename: name of the file containing the LED specification.
buffer: string with the LED specification.

Returns: NULL (nil in Lua) if the file was successfully compiled; otherwise it returns a pointer to a string containing the error message.

Notes

Each time the function loads a LED file, the elements contained in it are created. Therefore, the same LED file cannot be loaded several
times, otherwise the elements will also be created several times (the same applies for running Lua files several times).

IupImage, IupImageRGB, IupImageRGBA
Creates an image to be shown on a label, button, toggle, or as a cursor.

(IupImageRGB and IupImageRGBA, since 3.0)

Creation

Ihandle* IupImage(int width, int height, const unsigned char *pixels); [in C]
Ihandle* IupImageRGB(int width, int height, const unsigned char *pixels); [in C]
Ihandle* IupImageRGBA(int width, int height, const unsigned char *pixels); [in C]

iup.image{line0: table, line1: table, ...; colors = colors: table} -> (ih: ihandle) [in Lua]
iup.image{width = width: number, height = height: number, pixels = pixels: table, colors = colors: table} -> (ih: ihandle) [in Lua]
iup.imagergb {width = width: number, height = height: number, pixels = pixels: table} -> (ih: ihandle) [in Lua]
iup.imagergba{width = width: number, height = height: number, pixels = pixels: table} -> (ih: ihandle) [in Lua]

image(width, height, pixel0, pixel1, ...) [in LED]
imagergb(width, height, pixel0, pixel1, ...) [in LED]
imagergba(width, height, pixel0, pixel1, ...) [in LED]

width: Image width in pixels.
height: Image height in pixels.
pixels: Vector containing the value of each pixel. IupImage uses 1 value per pixel, IupImageRGB uses 3 values and
IupImageRGBA uses 4 values per pixel. Each value is always 8 bit. Origin is at the top-left corner and data is oriented top to bottom,
and left to right. The pixels array is duplicated internally so you can discard it after the call.

IUP - Portable User Interface 07-Jan-25

411/496

func/iupload.html
ledc.html
executables.html
download.html

pixel0, pixel1, pixel2, ...: Value of the pixels. But for IupImageRGB and IupImageRGBA in fact will be one value for each color
channel (pixel_r_0, pixel_g_0, pixel_b_0, pixel_r_1, pixel_g_1, pixel_b_1, pixel_r_2, pixel_g_2, pixel_b_2, ...).
line0, line1: unnamed tables, one for each line containing pixels values. See Notes below.
colors: table named colors containing the colors indices.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

"0" Color in index 0.
"1" Color in index 1.
"2" Color in index 2.
...
"i" Color in index i.

The indices can range from 0 to 255. The total number of colors is limited to 256 colors. Notice that in Lua the first index in
the array is "1", the index "0" is ignored in IupLua. Be careful when setting colors, since they are attributes they follow the
same storage rules for standard attributes.

The values are integer numbers from 0 to 255, one for each color in the RGB triple (For ex: "64 190 255"). If the value of a
given index is "BGCOLOR", the color used will be the background color of the element on which the image will be inserted.
The "BGCOLOR" value must be defined within an index less than 16.

Used only for images created with IupImage.

AUTOSCALE: automatically scale the image by a given real factor. Can be "DPI" or a scale factor. If not defined the global attribute
IMAGEAUTOSCALE will be used. Values are the same of the global attribute. The minimum resulted size when automatically resized is 24
pixels height (since 3.29). (since 3.16)

BGCOLOR: The color used for transparency. If not defined uses the BGCOLOR of the control that contains the image.

BPP (read-only): returns the number of bits per pixel in the image. Images created with IupImage returns 8, with IupImageRGB
returns 24 and with IupImageRGBA returns 32. (since 3.0)

CLEARCACHE (write-only): clears the internal native image cache, so WID can be dynamically changed. (since 3.24)

CHANNELS (read-only): returns the number of channels in the image. Images created with IupImage returns 1, with IupImageRGB
returns 3 and with IupImageRGBA returns 4. (since 3.0)

DPI: resolution expected for display. Used when AUTOSCALE=DPI. If not defined the global attribute IMAGESDPI will be used. (since
3.23)

HEIGHT (read-only): Image height in pixels.

HOTSPOT: Hotspot is the position inside a cursor image indicating the mouse-click spot. Its value is given by the x and y coordinates
inside a cursor image. Its value has the format "x:y", where x and y are integers defining the coordinates in pixels. Default: "0:0".

RASTERSIZE (read-only): returns the image size in pixels. (since 3.0)

RESHAPE (write-only): given a new size if format "widthxheight", allocates enough memory for the new size and changes WIDTH and
HEIGHT attributes. Image contents is ignored and it will contain trash after the reshape. (since 3.24)

RESIZE (write-only): given a new size if format "widthxheight", changes WIDTH and HEIGHT attributes, and resizes the image contents
using bilinear interpolation for RGB and RGBA images and nearest neighborhood for 8 bits. (since 3.24)

SCALED (read-only): returns Yes if the image has been resized. (since 3.25)

ORIGINALSCALE (read-only): returns the width and height before the image was scaled. (since 3.25)

WID (read-only): returns the internal pixels data pointer. (since 3.0)

WIDTH (read-only): Image width in pixels.

Notes

Application icons are usually 32x32. Toolbar bitmaps are 24x24 or smaller. Menu bitmaps and small icons are 16x16 or smaller.

Images created with the IupImage* constructors can be reused in different elements.

The images should be destroyed when they are no longer necessary, by means of the IupDestroy function. To destroy an image, it
cannot be in use, i.e the controls where it is used should be destroyed first. Images that were associated with controls by names are
automatically destroyed in IupClose.

Please observe the rules for creating cursor images: CURSOR.

In GTK uses GdkPixbuf/GdkCursor, in Windows uses HBITMAP/HICON, and in Motif uses Pixmap/Cursor.

Usage

IUP - Portable User Interface 07-Jan-25

412/496

../attrib/iup_globals.html#IMAGEAUTOSCALE
../attrib/iup_globals.html#IMAGESDPI
../attrib/iup_cursor.html

Images are used in elements such as buttons and labels by attributes that points to names registered with IupSetHandle. You can also use
IupSetAttributeHandle to shortcut the set of an image as an attribute. For example:

Ihandle* image = IupImage(width, height, pixels);

IupSetHandle("MY_IMAGE_NAME", image);
IupSetAttribute(label, "IMAGE", "MY_IMAGE_NAME");
or
IupSetAttributeHandle(label, "IMAGE", image); // an automatic name will be created internally

In Windows, names of resources in RC files linked with the application are also accepted. In GTK, names of GTK Stock Items are also
accepted. In Motif, names of bitmaps installed on the system are also accepted. For example:

IupSetAttribute(label, "IMAGE", "TECGRAF_BITMAP"); // available in the "etc/iup.rc" file
or
IupSetAttribute(label, "IMAGE", "gtk-open"); // available in the GTK Stock Items

In all drivers, a path to a file name can also be used as the attribute value (since 3.0). But the available file formats supported are system
dependent. The Windows driver supports BMP, ICO and CUR. The GTK driver supports the formats supported by the GDK-PixBuf library,
such as BMP, GIF, JPEG, PCX, PNG, TIFF and many others. The Motif driver supports the X-Windows bitmap. For example:

IupSetAttribute(label, "IMAGE", "../etc/tecgraf.bmp");

A more format independent approach can be reached using the IUP-IM Functions.

Colors

In Motif, the alpha channel in RGBA images is always composed with the control BGCOLOR by IUP prior to setting the image at the
control. In Windows and in GTK, the alpha channel is composed internally by the system. But in Windows for some controls the alpha
must be composed a priori also, it includes: IupItem and IupSubmenu always; and IupToggle when NOT using Visual Styles. This
implies that if the control background is not uniform then probably there will be a visible difference where it should be transparent.

For IupImage, if a color is not set, then it is used a default color for the 16 first colors. The default color table is the same for Windows,
GTK and Motif:

 0 = 0, 0, 0 (black)
 1 = 128, 0, 0 (dark red)
 2 = 0,128, 0 (dark green)
 3 = 128,128, 0 (dark yellow)
 4 = 0, 0,128 (dark blue)
 5 = 128, 0,128 (dark magenta)
 6 = 0,128,128 (dark cian)
 7 = 192,192,192 (gray)
 8 = 128,128,128 (dark gray)
 9 = 255, 0, 0 (red)
10 = 0,255, 0 (green)
11 = 255,255, 0 (yellow)
12 = 0, 0,255 (blue)
13 = 255, 0,255 (magenta)
14 = 0,255,255 (cian)
15 = 255,255,255 (white)

For images with more than 16 colors, and up to 256 colors, all the color indices must be defined up to the maximum number of colors.
For example, if the biggest image index is 100, then all the colors from i=16 up to i=100 must be defined even if some indices are not
used.

Samples

You can obtain several images from the IupImageLib, a library of pre-defined images. To view the images you can use the IupView in the
applications included in the distribution, available at the Download. IupView is also capable of converting several image formats into an
IupImage, and save IUP images as LED, Lua or ICO.

IupLua Old Constructor

In Lua, the 8 bpp image can also be created using an unnamed table, using a series of tables for each line. Width and height will be
guessed from the tables sizes. For example:

img = iup.image{
 { 1,2,3,3,3,3,3,3,3,2,1 },
 { 2,1,2,3,3,3,3,3,2,1,2 },
 { 3,2,1,2,3,3,3,2,1,2,3 },
 { 3,3,2,1,2,3,2,1,2,3,3 },
 { 3,3,3,2,1,2,1,2,3,3,3 },
 { 3,3,3,3,2,1,2,3,3,3,3 },
 { 3,3,3,2,1,2,1,2,3,3,3 },
 { 3,3,2,1,2,3,2,1,2,3,3 },
 { 3,2,1,2,3,3,3,2,1,2,3 },

IUP - Portable User Interface 07-Jan-25

413/496

../func/iupsethandle.html
../iupim.html
../iupimglib.html
../executables.html
../download.html
../executables.html

 { 2,1,2,3,3,3,3,3,2,1,2 },
 { 1,2,3,3,3,3,3,3,3,2,1 };
 colors = {
 "0 1 0", -- index 1
 "255 0 0", -- index 2
 "255 255 0" -- index 3
 }
}

Using this constructor the image data can NOT has 0 indices. Notice that the indexing of the unamed tables is different than the colors
table. The first value in the colors table is relative to the color index 1, but the first value of the unamed tables is relative to the pixel 0.

After the image is created in Lua, the unnamed tables are not accessible anymore, since "img[1]" will return the attribute "1" value which
is the color "0 1 0". To access the original table values you must use "raawget" function, for example:

lin0 = rawget(img, 1) -- line index 0
lin1 = rawget(img, 2) -- line index 1
lin2 = rawget(img, 3) -- line index 2
...
pixel0 = lin0[1] -- column index 0
pixel1 = lin0[2] -- column index 1
pixel3 = lin0[3] -- column index 3
...

IupLua New Constructors

The new constructors since IUP 3 are different and must contains explicit values for width, height and pixels. A lso the indexing of the
colors table is the same of the pixels table, the first value is the color index 0. For example:

img = iup.image{
 width = 11,
 height = 11,
 pixels = {
 1,2,0,0,0,0,0,0,0,2,1,
 2,1,2,0,0,0,0,0,2,1,2,
 0,2,1,2,0,0,0,2,1,2,0,
 0,0,2,1,2,0,2,1,2,0,0,
 0,0,0,2,1,2,1,2,0,0,0,
 0,0,0,0,2,1,2,0,0,0,0,
 0,0,0,2,1,2,1,2,0,0,0,
 0,0,2,1,2,0,2,1,2,0,0,
 0,2,1,2,0,0,0,2,1,2,0,
 2,1,2,0,0,0,0,0,2,1,2,
 1,2,0,0,0,0,0,0,0,2,1},
 colors = {
 "255 255 0" -- index 0
 "0 1 0", -- index 1
 "255 0 0", -- index 2
 }
}

Although in Lua they are still referenced as index 1, so img.colors[1] returns the color of the index 0 in the image.

Here is the same image but using 24 bpp:

img = iup.imagergb{
 width = 11,
 height = 11,
 pixels = {
 0,255,0, 255, 0,0, 255,255,0, 255,255,0, 255,255,0, 255,255,0, 255,255,0, 255,255,0, 255,255,0, 255, 0,0, 0,255,0,
 255, 0,0, 0,255,0, 255, 0,0, 255,255,0, 255,255,0, 255,255,0, 255,255,0, 255,255,0, 255, 0,0, 0,255,0, 255, 0,0,
 255,255,0, 255, 0,0, 0,255,0, 255, 0,0, 255,255,0, 255,255,0, 255,255,0, 255, 0,0, 0,255,0, 255, 0,0, 255,255,0,
 255,255,0, 255,255,0, 255, 0,0, 0,255,0, 255, 0,0, 255,255,0, 255, 0,0, 0,255,0, 255, 0,0, 255,255,0, 255,255,0,
 255,255,0, 255,255,0, 255,255,0, 255, 0,0, 0,255,0, 255, 0,0, 0,255,0, 255, 0,0, 255,255,0, 255,255,0, 255,255,0,
 255,255,0, 255,255,0, 255,255,0, 255,255,0, 255, 0,0, 0,255,0, 255, 0,0, 255,255,0, 255,255,0, 255,255,0, 255,255,0,
 255,255,0, 255,255,0, 255,255,0, 255, 0,0, 0,255,0, 255, 0,0, 0,255,0, 255, 0,0, 255,255,0, 255,255,0, 255,255,0,
 255,255,0, 255,255,0, 255, 0,0, 0,255,0, 255, 0,0, 255,255,0, 255, 0,0, 0,255,0, 255, 0,0, 255,255,0, 255,255,0,
 255,255,0, 255, 0,0, 0,255,0, 255, 0,0, 255,255,0, 255,255,0, 255,255,0, 255, 0,0, 0,255,0, 255, 0,0, 255,255,0,
 255, 0,0, 0,255,0, 255, 0,0, 255,255,0, 255,255,0, 255,255,0, 255,255,0, 255,255,0, 255, 0,0, 0,255,0, 255, 0,0,
 0,255,0, 255, 0,0, 255,255,0, 255,255,0, 255,255,0, 255,255,0, 255,255,0, 255,255,0, 255,255,0, 255, 0,0, 0,255,0}
}

Then at the pixels table we have:

r0 = img.pixels[1] g0 = img.pixels[2] b0 = img.pixels[3]
r1 = img.pixels[4] g1 = img.pixels[5] b1 = img.pixels[6]
r3 = img.pixels[7] g3 = img.pixels[8] b3 = img.pixels[9]
...

If the image was created in C then there is no way to access its pixels values in Lua, except as an userdata using the WID attribute.

IUP - Portable User Interface 07-Jan-25

414/496

Examples

Browse for Example Files

See Also

IupLabel, IupButton, IupToggle, IupDestroy.

IupImageLib
A library of pre-defined stock images for buttons and labels.

Initialization

To generate an application that uses this function, the program must be linked to the functions library (iupimglib.lib on Windows and
libiupimglib.a on Unix).

Reference

void IupImageLibOpen(void); [in C]
iup.ImageLibOpen() [in Lua]

This function register the names but do not load the images. The images will be loaded only if they are used in a control. The loaded
images will be automatically released at IupClose.

In Lua, when require"iupluaimglib" is used this function will be automatically called.

Usage

The following names can be used after the library initialization. The names are NOT registered using IupSetHandle, they will be
automatically loaded when associated with a control.

Base Library Group

These bitmaps are 16x16-8bpp (Motif) and 32x32-32bpp (Windows) pixels size images that can be used in Buttons, usually inside
toolbars. GTK has several image sizes available: 16x16, 18x18, 20x20, 24x24, 32x32, and 48x48. GTK images displayed here are just a
sample with the 24x24-32bpp pixels size, they actually depends on the current GTK theme used by the system. Since GTK 3.10 access to
stock images directly becomes deprecated, so starting in IUP 3.23 the IupImageLib in GTK3 will contain the base set of GTK images and
they will be not affected by the current GTK theme.

In Windows and GTK, to force a specific height for the images use the IMAGESTOCKSIZE global attribute (since 3.16), it can have the
following values 24, 32 and 48. In GTK if the system does not provides the image in that size it will be automatically resized from an
existing size. In Windows if the image is not 32x32 then it will be automatically resized. The default size depends on the screen resolution:
144 DPI or less = 24, 192 DPI = 32, 288 DPI = 48. The minimum resulted size when automatically resized is 24 pixels height (since
3.29).

Name Image
(Motif)

Image
(GTK)

Image
(Windows)

"IUP_ActionCancel"

"IUP_ActionOk"

"IUP_ArrowDown"

"IUP_ArrowLeft"

"IUP_ArrowRight"

"IUP_ArrowUp"

"IUP_EditCopy"

"IUP_EditCut"

"IUP_EditErase"

"IUP_EditFind"

IUP - Portable User Interface 07-Jan-25

415/496

../../examples/
iuplabel.html
iupbutton.html
iuptoggle.html
../func/iupdestroy.html
func/iupclose.html

"IUP_EditPaste"

"IUP_EditRedo"

"IUP_EditUndo"

"IUP_FileClose"

"IUP_FileNew"

"IUP_FileOpen"

"IUP_FileProperties"

"IUP_FileSave"

"IUP_MediaForward"

"IUP_MediaGoToBegin"

"IUP_MediaGoToEnd"

"IUP_MediaPause"

"IUP_MediaPlay"

"IUP_MediaRecord"

"IUP_MediaReverse"

"IUP_MediaRewind"

"IUP_MediaStop"

"IUP_MessageError"

"IUP_MessageHelp"

"IUP_MessageInfo"

"IUP_NavigateHome"

"IUP_NavigateRefresh"

"IUP_Print"

"IUP_PrintPreview"

"IUP_ToolsColor"

"IUP_ToolsSettings"

"IUP_ToolsSortAscend"

"IUP_ToolsSortDescend"

"IUP_ViewFullScreen"

"IUP_Webcam"

"IUP_ZoomActualSize"

"IUP_ZoomIn"

"IUP_ZoomOut"

IUP - Portable User Interface 07-Jan-25

416/496

"IUP_ZoomSelection"

The following images were removed from the pre-compiled library (since 3.16): "IUP_FileCloseAll", "IUP_FileSaveAll", "IUP_FileText",
"IUP_FontBold", "IUP_FontDialog", "IUP_FontItalic", "IUP_WindowsCascade", "IUP_WindowsTile", "IUP_Zoom". Although their C source
code is still available.

"IUP_CircleProgressAnimation" animation added in version 3.17. To be used in IupAnimatedLabel to show indefinite progress. It has
12 frames of 32x32 with 32bpp, and FRAMETIME is set to 83ms (approximately 1 second for a full turn).

Logo Group 32x32

These images are 32x32-32bpp pixels size (or just 32 pixels height) images that can be used in Labels, usually inside toolbars. These
images are not automatically resized when loaded (since 3.25).

Name Image
(Generic)

"IUP_Tecgraf"

"IUP_PUC-Rio"

"IUP_BR"

"IUP_Lua"

Name Image
(Generic)

"IUP_TecgrafPUC-Rio"

"IUP_Petrobras"

Logo Group 48x48 (since 3.3)

These images are 48x48-32bpp pixels size (or just 48 pixels height) images that can be used in Labels, usually inside dialogs. These
images are not automatically resized when loaded (since 3.25).

NOT included in the pre-compiled library, but available as C source code.

Name Image
(Generic)

"IUP_LogoTecgraf"

"IUP_LogoPUC-Rio"

"IUP_LogoBR"

"IUP_LogoLua"

Name Image
(Generic)

"IUP_LogoTecgrafPUC-Rio"

"IUP_LogoPetrobras"

Icon Group 48x48 (since 3.3)

Here are other images available in the IUP stock library, commonly used by the respective systems. All images are 48x48-32bpp pixels
size. These images are not automatically resized when loaded (since 3.25).

IUP_Device* images are NOT included in the pre-compiled library, but available as C source code (since 3.26).

Name Image
(Windows)

"IUP_DeviceCamera"

"IUP_DeviceCD"

"IUP_DeviceCellPhone"

IUP - Portable User Interface 07-Jan-25

417/496

Name Image
(Windows)

Image
(GTK)

Image
(GTK3)

"IUP_IconMessageSecurity"

"IUP_IconMessageWarning"

"IUP_IconMessageInfo"

"IUP_IconMessageError"

"IUP_IconMessageHelp"

"IUP_DeviceComputer"

"IUP_DeviceFax"

"IUP_DeviceHardDrive"

"IUP_DeviceMP3"

"IUP_DeviceNetwork"

"IUP_DevicePDA"

"IUP_DevicePrinter"

"IUP_DeviceScanner"

"IUP_DeviceSound"

"IUP_DeviceVideo"

Icon Group 32x32 () (since 3.16)

Here are other images available in the IUP stock library, commonly used in Windows. All images are 32x32-32bpp pixels size.

NOT included in the pre-compiled library, and NOT available as C source code. The image files are available for download here:

Image
(Windows)

Notes

All images are available as PNG files in the "iup/html/en/imglib/*" folder.

Use the IupView application can import images in several formats, and can export images to C, LED or Lua.

All 8 bpp images are from the old ImageLib and since Motif does not have any stock images, we selected this set to be used in Motif.
A lthough the IUP Motif driver supports 32 bpp images.

The pre-compiled library does not include images larger than 48x48 (inclusive). If you want to use them you must include their source
code, or re-compile the library defining USE_IUP_IMGLIB_LARGE during compilation, for example: "make USE_IUP_IMGLIB_LARGE=1".

All "Windows" images copyright Microsoft and were extracted from the Visual Studio 2013 Image Library. Their use must be used
consistently with their description in the Visual Studio Image Library, and so consistently with the IUP name. These files are available for
free on the link: Visual Studio Image Library. You can find a copy of the license terms here: "Visual Studio 2013 Image Library

IUP - Portable User Interface 07-Jan-25

418/496

imglib
executables.html
http://www.microsoft.com/en-us/download/details.aspx?id=35825
imglib/Visual Studio 2013 Image Library EULA.docx

EULA.docx". The most important statement on this document is: "Media Elements. You may copy and use images in the Image Library
provided with the software and identified for such use in documents and projects that you create."

GTK stock images are released under the GTK license.

PUC-Rio, Tecgraf/PUC-Rio, Petrobras and Lua images are copyright of the respective companies or owners. The Petrobras logo images
follow the company established rules.

Lua image graphic design by A. Nakonechnyj. Copyright © 1998. All rights reserved.

See Also

IupImage

IUP-IM Functions
Functions to load/save an IupImage from/to a file using the IM library. The function can load or save the formats: BMP, JPEG, GIF, TIFF,
PNG, PNM, PCX, ICO and others. For more information about the IM library see http://www.tecgraf.puc-rio.br/im.

Initialization and Usage

To generate an application that uses this function, the program must be linked with the IM library and with the function library (im and
iupim libraries). The "iupim.h" file must also be included in the source code.

To make the functions available in Lua use require"iupluaim" or manually call the initialization function in C, iupimlua_open, after calling
iuplua_open. When manually calling the function the iupluaim.h file must also be included in the source code and the program must be
linked to the iupluaim library.

Load

Ihandle* IupLoadImage(const char* file_name); [in C]
iup.LoadImage(file_name: string) -> (elem: ihandle) [in Lua]

file_name: Name of the file to be loaded.

Returns: the identifier of the created image, or NULL if an error occurs. When failed the global attribute "IUPIM_LASTERROR" is set with a
message describing the error.

Save

int IupSaveImage(Ihandle* ih, const char* file_name, const char* format); [in C]
iup.SaveImage(ih: ihandle, file_name, format: string) -> (ret: boolean) [in Lua]

ih: handle of the IupImage.
file_name: Name of the file to be loaded.
format: format descriptor for IM. For ex: "BMP", "JPEG", "GIF", "TIFF", "PNG", "PNM", "PCX", "ICO", etc.

Returns: zero if failed. When failed the global attribute "IUPIM_LASTERROR" is set with a message describing the error.

LoadAnimation (since 3.17)

Ihandle* IupLoadAnimation(const char* file_name); [in C]
iup.LoadAnimation(file_name: string) -> (elem: ihandle) [in Lua]

file_name: Name of the file to be loaded.

Returns: the identifier of the created animation, or NULL if an error occurs. When failed the global attribute "IUPIM_LASTERROR" is set
with a message describing the error.

An animation is simply an IupUser element with several IupImage elements as children. The total number of images can be obtained
using IupGetChildCount. The time between frames is defined by the FRAMETIME attribute if FPS is present on the file.

IM supports loading of multiple images from the same file for the following formats: GIF, TIFF, AVI (additional library) and WMV
(additional library).

LoadAnimationFrames (since 3.17)

Ihandle* IupLoadAnimationFrames(const char** file_name_list, int file_count); [in C]
iup.LoadAnimationFrames(file_name_list: table of strings, file_count: number) -> (elem: ihandle) [in Lua]

file_name_list: List of file names to be loaded.

IUP - Portable User Interface 07-Jan-25

419/496

https://marca.petrobras.com.br/portal/marca/pt_br/identidade-visual/regras-de-uso-da-marca-4.htm
elem/iupimage.html
http://www.tecgraf.puc-rio.br/im

file_count: number of file names in the list.

Returns: the identifier of the created animation, or NULL if an error occurs. When failed the global attribute "IUPIM_LASTERROR" is set
with a message describing the error. The FRAMETIME attribute is not set.

Native Handle to imImage

imImage* IupGetNativeHandleImage(void* handle); [in C]
iup.GetNativeHandleImage(handle: userdata) -> (image: imImage) [in Lua]

handle: image native handle. In Win32 is a HANDLE of a DIB. In GTK is a GdkPixbuf*. In Motif is a Pixmap. Its memory is released
after the imImage is created. In Lua is a light user data.

Returns: the imImage* handle. Useful when pasting data from a IupClipboard.

You must include the "im_image.h" header before the "iupim.h" to enable these functions.

imImage to Native Handle

imImage* IupGetImageNativeHandle(imImage* image); [in C]
iup.GetImageNativeHandle(image: imImage) -> (handle: userdata) [in Lua]

image: the imImage* handle. Must be a bitmap image.

Returns: the image native handle. In Win32 is a HANDLE for a DIB. In GTK is a GdkPixbuf*. In Motif is a Pixmap. Usefull when
copying data to a IupClipboard. In Lua is a light user data.

You must include the "im_image.h" header before the "iupim.h" to enable these functions.

imImage to IupImage (since 3.10)

Ihandle* IupImageFromImImage(imImage* image); [in C]
iup.ImageFromImImage(image: imImage) -> (elem: ihandle) [in Lua]

image: the imImage* handle. Must be a bitmap image.

Returns: the IupImage handle.

You must include the "im_image.h" header before the "iupim.h" to enable these functions.

IupImage to imImage (since 3.22)

imImage* IupImageToImImage(Ihandle* elem); [in C]
iup.ImageToImImage(elem: ihandle) -> (image: imImage) [in Lua]

elem: handle of the IupImage. Must be manually created with the IupImage* constructors, can NOT be an image loaded from system
resources or from native stock images.

Returns: the imImage* handle.

You must include the "im_image.h" header before the "iupim.h" to enable these functions.

See Also

IupImage, IupSaveImageAsText, IupClipboard

IupSaveImageAsText (since 3.0)
Saves the IupImage as a text file to be reused in other programs.

It does NOT depends on the IM library.

Parameters/Return

int IupSaveImageAsText(Ihandle* ih, const char* file_name, const char* format, const char* name); [in C]
iup.SaveImageAsText(ih: ihandle, file_name, format[, name]: string) -> (ret: boolean) [in Lua]

ih: handle of the IupImage.
file_name: Name of the file to be loaded.
format: text format. Can be: "LED", "LUA" or "C".
name: name of the image. Can be NULL.

IUP - Portable User Interface 07-Jan-25

420/496

elem/iupimage.html
func/iupsaveimageastext.html
elem/iupclipboard.html

Returns: zero if failed, non zero value if success.

Notes

If name is NULL and the IupImage is associated with a name then that name is used, if no name is associated then "image" will be used.

See Also

IupImage, IUP-IM Functions

IupImageGetHandle (since 3.28)
Returns an IupImage handle from a name.

It does NOT depends on the IM library.

Parameters/Return

Ihandle* IupImageGetHandle(const char* name); [in C]
iup.ImageGetHandle(name: string) -> (ret: ihandle) [in Lua]

name: name of the image.

Returns: handle of the IupImage or NULL if failed.

Notes

Name can be a global name set with IupSetHandle, defined in LED or the name of a stock image from IupImageLib. In this case the
function just returns the existing element.

Name can also be the a file name that will be loaded from disk. But the available file formats supported are system dependent. The
Windows driver supports BMP. The GTK driver supports the formats supported by the GDK-PixBuf library, such as BMP, GIF, JPEG, PCX,
PNG, TIFF and many others. The Motif driver supports the X-Windows bitmap. In this case the function returns a new image handle and
associates the name with that handle, so in the next call it will returns the existing handle.

Name can also be the name of a resource image defined in a RC file in Windows. In this case the function returns a new image handle and
associates the name with that handle, so in the next call it will returns the existing handle.

See Also

IupImage, IUP-IM Functions, IupImageLib

Keyboard
The application can control the focus using the functions IupGetFocus and IupSetFocus. When the focus is changed the application is
notified trough the callbacks GETFOCUS_CB and KILLFOCUS_CB.

Keyboard navigation in the dialog uses the "Tab" and "Shilf+Tab" keys to change the keyboard focus from one control to another. The
exception is when the focus is at an IupMultiline control, to change focus the combination "Ctrl+Tab" must be used, because "Tab" is a
valid input for the text. A ll IUP interactive controls have Tab stops, but the navigation order is related to the order the controls are placed
in the dialog and can not be changed. The order is the same implemented by the functions IupNextField and IupPreviousField. To
remove the Tab stop from a control use the CANFOCUS attribute.

Arrows can also be used for navigation between buttons and toggles. This is necessary because when an IupToggle is inside an
IupRadio the "Tab" keys will navigate only to the selected toggle.

In Windows, the focus feedback only appears after the user presses a key (except for the IupText where the feedback is the caret).
Before pressing a key if you click in a control the focus feedback will be NOT be shown although it will be in focus. IupMatrix and other
additional controls will always show their focus feedback. In GTK and Motif the focus feedback is always shown for the control that has the
focus.

Two keys are also important in keyboard navigation: "Enter" and "Esc". But they are only effective if the application register the attributes
DEFAULTENTER and DEFAULTESC of the IupDialog. These attributes configure buttons to be activated when the respective key is
pressed. Again "Enter" is a valid key for the Multiline so the combination "Ctrl+Enter" must be used instead. If the focus is at a button
then the Enter key will activate that button independent from the DEFAULTENTER attribute.

Usualy the application will process keyboard input in the IupCanvas using the KEYPRESS_CB callback. But there is also the K_ANY
callback that can be used for all the controls, but it does not have control of the press state, it is called only when the key is pressed. Both
callbacks use the key codification explained in Keyboard Codes. These codes are also used in the ACTION callbacks of IupText and
IupMultiline, and in shortcuts using the KEY attribute of IupItem and IupSubmenu. Finally all the keyboard codes can be used as
callback names to implement application hot keys.

Keyboard Codes

IUP - Portable User Interface 07-Jan-25

421/496

../elem/iupimage.html
../iupim.html
../elem/iupimage.html
../iupim.html
../iupimglib.html
dlg/iupdialog.html
elem/iupcanvas.html#Callbacks
call/iup_k_any.html
attrib/key.html

The table below shows the IUP codification of common keys in a keyboard. Each key is represented by an integer value, defined in the
"iupkey.h" file header, which should be included in the application to use the key definitions. These keys are used in K_ANY and
KEYPRESS_CB callbacks to inform the key that was pressed in the keyboard.

From the definition in the table, change the prefix to K_s*, K_c*, K_m* and K_y* to add the respective modifier (Shift, Control, A lt and
Sys). Sys in Windows is the Windows key and in Mac is the Apple key. Check the "iupkey.h" file header for all the definitions.

IUP provides definitions only for common control keys and ASCii characters. Other key combinations are accessed using the macros
described bellow. Also the global attribute "MODKEYSTATE" can be used to detect the combination of two or more modifiers. Notice that
some key combinations are never available because they are restricted by the system. Notice that all of this does not affect the IupText
and IupMultiline text input.

The iup_isprint(key) macro informs if a key can be directly used as a printable character. The iup_isXkey(key) macro informs if a
given key is an extended code. The iup_isShiftXkey(key) macro informs if a given key is an extended code using the Shift modifier, the
iup_isCtrlXkey(key) macro for the Ctrl modifier, the iup_isAltXkey(key) macro for the Alt modifier, and the iup_isSysXkey(key)
macro for the Sys modifier. To obtain a key code for a generic combination you can start with the base key from the table and combine it
repeated times using the macros iup_XkeyShift(key), iup_XkeyCtrl(key), iup_XkeyAlt(key) and iup_XkeySys(key).

These macros are also available in Lua as a function with the same name (iup.isprint(key), iup.isXkey(key), and so on) and returning a
boolean.

Note: GTK in Windows does not generates the Win modifier key, the K_Print and the K_Pause keys (up to GTK version 2.8.18).

Key Code /
Callback

Space K_SP

! K_exclam

" K_quotedbl

K_numbersign

$ K_dollar

% K_percent

& K_ampersand

' K_apostrophe

(K_parentleft

) K_parentright

* K_asterisk

+ K_plus

, K_comma

- K_minus

. K_period

/ K_slash

0 K_0

1 K_1

2 K_2

3 K_3

4 K_4

5 K_5

6 K_6

7 K_7

8 K_8

9 K_9

: K_colon

; K_semicolon

< K_less

= K_equal

> K_greater

? K_question

@ K_at

A K_A

IUP - Portable User Interface 07-Jan-25

422/496

B K_B

C K_C

D K_D

E K_E

F K_F

G K_G

H K_H

I K_I

J K_J

K K_K

L K_L

M K_M

N K_N

O K_O

P K_P

Q K_Q

R K_R

S K_S

T K_T

U K_U

V K_V

W K_W

X K_X

Y K_Y

Z K_Z

[K_bracketleft

\ K_backslash

] K_bracketright

^ K_circum

_ K_underscore

` K_grave

a K_a

b K_b

c K_c

d K_d

e K_e

f K_f

g K_g

h K_h

i K_i

j K_j

k K_k

l K_l

m K_m

n K_n

o K_o

p K_p

q K_q

r K_r

s K_s

IUP - Portable User Interface 07-Jan-25

423/496

t K_t

u K_u

v K_v

w K_w

x K_x

y K_y

z K_z

{ K_braceleft

| K_bar

} K_braceright

~ K_tilde

Esc K_ESC

Enter K_CR

BackSpace K_BS

Insert K_INS

Del K_DEL

Tab K_TAB

Home K_HOME

Up Arrow K_UP

PgUp K_PGUP

Left Arrow K_LEFT

Middle K_MIDDLE

Right Arrow K_RIGHT

End K_END

Down Arrow K_DOWN

PgDn K_PGDN

Pause K_PAUSE

Print Screen K_Print

Context Menu K_Menu

´ K_acute

ç K_ccedilla

¨ K_diaeresis

F1 K_F1

F2 K_F2

F3 K_F3

F4 K_F4

F5 K_F5

F6 K_F6

F7 K_F7

F8 K_F8

F9 K_F9

F10 K_F10

F11 K_F11

F12 K_F12

Left Shift K_LSHIFT

Right Shift K_RSHIFT

Left Ctrl K_LCTRL

Right Ctrl K_RCTRL

Left Alt K_LALT

Right Alt K_RALT

IUP - Portable User Interface 07-Jan-25

424/496

Scroll Lock K_SCROLL
Num Lock K_NUM

Caps Lock K_CAPS

IupNextField
Shifts the focus to the next element that can have the focus. It is relative to the given element and does not depend on the element
currently with the focus.

It will search for the next element first in the children, then in the brothers, then in the uncles and their children, and so on.

This sequence is not the same sequence used by the Tab key, which is dependent on the native system.

Parameters/Return

Ihandle* IupNextField(Ihandle* ih); [in C]
iup.NextField(ih: ihandle) -> (next: ihandle) [in Lua]

ih: identifier of the interface element.

Returns: the element that received the focus or NULL if not found.

See Also

IupPreviousField.

IupPreviousField
Shifts the focus to the previous element that can have the focus. It is relative to the given element and does not depend on the element
currently with the focus.

Parameters/Return

Ihandle* IupPreviousField(Ihandle* ih); [in C]
iup.PreviousField(ih: ihandle) -> (previous: ihandle) [in Lua]

ih: identifier of the interface element.

Returns: the element that received the focus or NULL if not found.

See Also

IupNextField.

IupGetFocus
Returns the identifier of the interface element that has the keyboard focus, i.e. the element that will receive keyboard events.

Parameters/Return

Ihandle* IupGetFocus(void); [in C]
iup.GetFocus() -> ih: ihandle [in Lua]

Returns: the element with focus or NULL if no element has the focus.

See Also

IupSetFocus

IupSetFocus
Sets the interface element that will receive the keyboard focus, i.e., the element that will receive keyboard events. But this will be
processed only after the control actually receive the focus.

Parameters/Return

Ihandle *IupSetFocus(Ihandle *ih); [in C]

IUP - Portable User Interface 07-Jan-25

425/496

iuppreviousfield.html
iupnextfield.html
iupsetfocus.html

iup.SetFocus(ih: ihandle) -> ih: ihandle [in Lua]

ih: identifier of the interface element that will receive the keyboard focus. Only elements that can have the keyboard focus, are mapped,
active and visible can be used, other elements are ignored.

Returns: the identifier of the interface element that previously had the keyboard focus.

Notes

The value returned by IupGetFocus will be updated only after the main loop regain the control and the control actually receive the focus.
So if you call IupGetFocus right after IupSetFocus the return value will be different. You could call IupFlush between the two
functions to obtain the same value in both calls.

See Also

IupGetFocus.

IupItem
Creates an item of the menu interface element. When selected, it generates an action.

Creation

Ihandle* IupItem(const char *title, const char *action); [in C]
iup.item{[title = title: string]} -> ih: ihandle [in Lua]
item(title, action) [in LED]

title: Text to be shown on the item. It can be NULL. It will set the TITLE attribute.
action: Name of the action generated when the item is selected. It can be NULL.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

AUTOTOGGLE (non inheritable): enables the automatic toggle of VALUE state when the item is activated. Default: NO. (since 3.0)

KEY (non inheritable): Underlines a key character in the submenu title. It is updated only when TITLE is updated. Deprecated (since
3.0), use the mnemonic support directly in the TITLE attribute.

HIDEMARK [Motif and GTK Only]: If enabled the item cannot be checked, since the check box will not be shown. If all items in a menu
enable it, then no empty space will be shown in front of the items. Normally the unmarked check box will not be shown, but since GTK
2.14 the unmarked check box is always shown. If your item will not be marked you must set HIDEMARK=YES, since this is the most
common case we changed the default value to YES for this version of GTK, but if VALUE is defined the default goes back to NO. Default:
NO. (since 3.0)

IMAGE [Windows and GTK Only] (non inheritable): Image name of the check mark image when VALUE=OFF. In Windows, an item in a
menu bar cannot have a check mark. Ignored if item in a menu bar. A recommended size would be 16x16 to fit the image in the menu
item. In Windows, if larger than the check mark area it will be cropped.

IMPRESS [Windows and GTK Only] (non inheritable): Image name of the check mark image when VALUE=ON.

TITLE (non inheritable): Item text. The "&" character can be used to define a mnemonic, the next character will be used as key. Use "&&"
to show the "&" character instead on defining a mnemonic. When in a menu bar an item that has a mnemonic can be activated from any
control in the dialog using the "Alt+key" combination.

The text also accepts the control character '\t' to force text alignment to the right after this character. This is used to add shortcut keys
to the menu, aligned to the right, ex: "Save\tCtrl+S", but notice that the shortcut key (also known as Accelerator or Hot Key) still has
to be implemented. To implement a shortcut use the K_* callbacks in the dialog.

TITLEIMAGE (non inheritable): Image name of the title image. In Windows, it appears before of the title text and after the check mark
area (so both title and title image can be visible). In Motif, it must be at least defined during map, it replaces the text, and only images will
be possible to set (TITLE will be hidden). In GTK, it will appear on the check mark area. (since 3.0)

VALUE (non inheritable): Indicates the item's state. When the value is ON, a mark will be displayed to the left of the item. Default: OFF.
An item in a menu bar cannot have a check mark. When IMAGE is used, the checkmark is not shown. See the item AUTOTOGGLE
attribute and the menu RADIO attribute.

WID (non inheritable): In Windows, returns the HMENU of the parent menu.

ACTIVE, THEME: also accepted.

Callbacks

IUP - Portable User Interface 07-Jan-25

426/496

iupgetfocus.html
../attrib/iup_key.html
../attrib/iup_title.html
iupmenu.html#RADIO
../attrib/iup_wid.html
../attrib/iup_active.html
../attrib/iup_theme.html

ACTION: Action generated when the item is selected. IUP_CLOSE will be processed. Even if inside a popup menu when IUP_CLOSE is
returned, the current popup dialog or the main loop will be closed.

HIGHLIGHT_CB: Action generated when the item is highlighted.

MAP_CB, UNMAP_CB, DESTROY_CB, HELP_CB: common callbacks are supported.

Notes

Menu items are activated using the Enter key.

In Motif and GTK, the text font will be affected by the dialog font when the menu is mapped.

Since GTK 2.14 to have a menu item that can be marked you must set the VALUE attribute to ON or OFF, or set HIDEMARK=NO, before
mapping the control.

In GTK uses GtkMenuItem/GtkImageMenuItem/GtkRadioMenuItem/GtkCheckMenuItem, in Windows uses InsertMenuItem, and in Motif
uses xmCascadeButton/xmToggleButton.

Examples

Browse for Example Files

See the IupMenu element for screenshots.

See Also

IupSeparator, IupSubmenu, IupMenu.

IupMenu
Creates a menu element, which groups 3 types of interface elements: item, submenu and separator. Any other interface element defined
inside a menu will be an error.

Creation

Ihandle* IupMenu(Ihandle *child, ...); [in C]
Ihandle* IupMenuV(Ihandle* child,va_list arglist); [in C]
Ihandle* IupMenuv(Ihandle **children); [in C]
iup.menu{child, ...: ihandle} -> (ih: ihandle) [in Lua]
menu(child, ...) [in LED]

child, ... : List of identifiers that will be grouped by the menu. NULL must be used to mark the end of the list in C. It can be empty in C
or Lua, not in LED.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

BGCOLOR: the background color of the menu, affects all items in the menu. (since 3.0)

POPUPALIGN (non inheritable): alignment of the popup menu relative to the given point in the format "horiz_align:vert_align". Where
horiz_align can be: ALEFT, ACENTER or ARIGHT; and vert_align can be ATOP, ACENTER or ABOTTOM. Default: ALEFT:ATOP. (since
3.28)

RADIO (non inheritable): enables the automatic toggle of one child item. When a child item is selected the other item is automatically
deselected. The menu acts like a IupRadio for its children. Submenus and their children are not affected.

WID (non inheritable): In Windows, returns the HMENU of the menu.

Callbacks

OPEN_CB: Called just before the menu is opened.

MENUCLOSE_CB: Called just after the menu is closed.

MAP_CB, UNMAP_CB, DESTROY_CB : common callbacks are supported.

Notes

A menu can be a menu bar of a dialog, defined by the dialog's MENU attribute, or a popup menu.

IUP - Portable User Interface 07-Jan-25

427/496

../call/iup_action.html
../call/iup_highlight_cb.html
../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../call/iup_help_cb.html
../../examples/
iupseparator.html
iupsubmenu.html
iupmenu.html
../attrib/iup_bgcolor.html
../attrib/iup_wid.html
../call/iup_open_cb.html
../call/iup_menuclose_cb.html
../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html

A popup menu is displayed for the user using the IupPopup function (usually on the mouse position) and disappears when an item is
selected.

IupDestroy should be called only for popup menus. Menu bars associated with dialogs are automatically destroyed when the dialog is
destroyed. But if you change the menu of a dialog for another menu, the previous one should be destroyed using IupDestroy. If you
replace a menu bar of a dialog, the previous menu is unmapped.

Any item inside a menu bar can retrieve attributes from the dialog using IupGetAttribute. It is not necessary to call IupGetDialog.

The menu can be created with no elements and be dynamic filled using IupAppend or IupInsert.

In GTK uses GtkMenuBar/GtkMenu/GtkMenu, in Windows uses CreateMenu/CreatePopupMenu/CreatePopupMenu, and in Motif uses
xmRowColumn/xmPulldownMenu/xmPopupMenu, for Menu Bar/Regular Menu/Popup Menu.

Lua Binding

Offers a "cleaner" syntax than LED for defining menu, submenu and separator items. The list of elements in the menu is described as a
string, with one element after the other, separated by commas.

Each element can be:

{"<item_name>"} - menu item
{"<submenu_name>", <menu>} - submenu
{} - separator

For example:

mnu = iup.menu
{
 iup.submenu
 {
 iup.menu
 {
 iup.item{title="IupItem 1 Checked",value="ON"},
 iup.separator{},
 iup.item{title="IupItem 2 Disabled",active="NO"}
 }
 ;title="IupSubMenu 1"
 },
 iup.item{title="IupItem 3"},
 iup.item{title="IupItem 4"}
}:popup(iup.CENTER, iup.CENTER)

The same example using the cleaner syntax:

mnu = iup.menu
{
 {
 "IupSubMenu 1",
 iup.menu
 {
 {"IupItem 1 Checked";value="ON"},
 {},
 {"IupItem 2 Disabled";active="NO"}
 }
 },
 {"IupItem 3"},
 {"IupItem 4"}
}:popup(iup.CENTER, iup.CENTER)

It is also possible to mix the cleaner syntax with the normal syntax or with already create elements.

Examples

Browse for Example Files

Windows
Classic

Windows
w/ Styles

IUP - Portable User Interface 07-Jan-25

428/496

../func/iupappend.html
../func/iupinsert.html
../../examples/

Motif GTK

The IupItem check is affected by the RADIO attribute in IupMenu:

Windows
Classic

Windows
XP Style

Motif GTK

See Also

IupDialog, IupItem, IupSeparator, IupSubmenu, IupPopup, IupDestroy

IupSeparator
Creates the separator interface element. It shows a line between two menu items.

Creation

Ihandle* IupSeparator(void); [in C]
iup.separator{} -> (ih: ihandle) [in Lua]
separator() [in LED]

Returns: the identifier of the created element, or NULL if an error occurs.

Notes

The separator is ignored when it is part of the definition of the items in a bar menu.

In GTK uses GtkSeparatorMenuItem, in Windows uses InsertMenuItem, and in Motif uses xmSeparator.

Examples

IUP - Portable User Interface 07-Jan-25

429/496

../dlg/iupdialog.html
iupitem.html
iupseparator.html
iupsubmenu.html
../func/iuppopup.html
../func/iupdestroy.html

Browse for Example Files

See Also

IupItem, IupSubMenu, IupMenu.

IupSubmenu
Creates a menu item that, when selected, opens another menu.

Creation

Ihandle* IupSubmenu(const char *title, Ihandle *menu); [in C]
iup.submenu{menu: ihandle[; title = title: string]} -> (ih: ihandle) [in Lua]
submenu(title, menu) [in LED]

title: String containing the text to be shown on the item. It can be NULL (nil in Lua), not optional in LED. It will set the TITLE attribute.
menu: optional child menu identifier. It can be NULL (nil in Lua), or empty in LED.

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

IMAGE [Windows and GTK Only] (non inheritable): Image name of the submenu image. In Windows, an item in a menu bar cannot have
a check mark. Ignored if submenu in a menu bar. A recommended size would be 16x16 to fit the image in the menu item. In Windows, if
larger than the check mark area it will be cropped. (since 3.0)

KEY (non inheritable): Underlines a key character in the submenu title. It is updated only when TITLE is updated. Deprecated, use the
mnemonic support directly in the TITLE attribute.

TITLE (non inheritable): Submenu Text. The "&" character can be used to define a mnemonic, the next character will be used as key. Use
"&&" to show the "&" character instead on defining a mnemonic.

WID (non inheritable): In Windows, returns the HMENU of the parent menu and it is actually created only when its child menu is mapped.

ACTIVE, THEME: also accepted.

Callbacks

HIGHLIGHT_CB: Action generated when the submenu is highlighted.

MAP_CB, UNMAP_CB, DESTROY_CB: common callbacks are supported.

Notes

In Motif and GTK, the text font will be affected by the dialog font when the menu is mapped.

In GTK uses GtkSeparatorMenuItem, in Windows uses InsertMenuItem, and in Motif uses xmSeparator.

Examples

Browse for Example Files

See the IupMenu element for more screenshots.

See Also

IupItem, IupSeparator, IupMenu.

IUP - Portable User Interface 07-Jan-25

430/496

../../examples/
iupitem.html
iupsubmenu.html
iupmenu.html
../attrib/iup_key.html
../attrib/iup_title.html
../attrib/iup_wid.html
../attrib/iup_active.html
../attrib/iup_theme.html
../call/iup_highlight_cb.html
../call/iup_map_cb.html
../call/iup_unmap_cb.html
../call/iup_destroy_cb.html
../../examples/
iupitem.html
iupseparator.html
iupmenu.html

KEY
Associates a key to a menu item or submenu. Such key works as a shortcut when the menu is open, this is not a hot key.

Value

String containing a key description. Its is a string representation of an IUP key code. Please refer to the Keyboard Codes table for a list of
the possible values.

Default: NULL

Notes

IUP automatically underlines the first appearance of the chosen menu letter. For such, the chosen letter must necessarily be a part of the
menu text.

In Windows, when used will also set an underscore on the respective letter of the submenu title.

The key will be used when navigating in the parent menu that contains the item. If the same character key is present in the title, then it
will be underlined.

In the menu bar, some systems automatically associate the ALT+<letter> combination for the chosen letter. This is valid for the Windows
driver, but not for the Motif driver.

Be careful not to misuse this attribute in relation to K_ANY or K_* callbacks.

Affects

IupItem, IupSubMenu.

HIGHLIGHT_CB
Callback triggered every time the user selects an IupItem or IupSubmenu.

Callback

int function(Ihandle *ih); [in C]
elem:highlight_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

Affects

IupItem, IupSubmenu

OPEN_CB
Called just before the menu is opened.

Callback

int function(Ihandle *ih); [in C]
ih:open_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

Affects

IupMenu

MENUCLOSE_CB
Called just after the menu is closed.

Callback

int function(Ihandle *ih); [in C]
ih:menuclose_cb() -> (ret: number) [in Lua]

IUP - Portable User Interface 07-Jan-25

431/496

key.html
../call/iup_k_any.html
../elem/iupitem.html
../elem/iupsubmenu.html
../elem/iupitem.html
../elem/iupsubmenu.html
../elem/iupmenu.html

ih: identifier of the element that activated the event.

Affects

IupMenu

IupSetHandle
Associates a name with an interface element.

Parameters/Return

Ihandle *IupSetHandle(const char *name, Ihandle *ih); [in C]
iup.SetHandle(name: string, ih: ihandle) -> old_ih: ihandle [in Lua]

name: name of the interface element.
ih: identifier of the interface element. Use NULL to remove the association.

Returns: the identifier of the interface element previously associated to the parameter name.

Notes

This function is used so it is possible to set attributes values that are in fact other elements that were created in C. For example:

IupSetHandle("test_image", image);
IupSetAttribute(button, "IMAGE", "test_image");

But this code can be replaced by a more convenient function call:

IupSetAttributeHandle(button, "IMAGE", image);

In Lua this is not necessary, you can simply do:

button.image = image

that the association will be automatically made.

In fact, any pointer can be stored and retrieved with IupSetHandle and IupGetHandle, not only Ihandle*.

Also IupSetHandle can be called several times with the same pointer and different names. There is no restriction for the number of
names a pointer can have, but IupGetName will return only the last name set.

When IupSetHandle is called, the control will have a HANDLENAME attribute with the last name set. (since 3.17)

See Also

IupGetHandle, IupSetAttributeHandle

IupGetHandle
Returns the identifier of an interface element that has an associated name using IupSetHandle or using LED.

Parameters/Return

Ihandle *IupGetHandle(const char *name); [in C]
iup.GetHandle(name: string) -> ih: ihandle [in Lua]

name: name of an interface element.

Returns: the element handle or NULL if not found.

Notes

This function is used for integrating IUP and LED. To manipulate an interface element defined in LED, first capture its identifier using
function IupGetHandle, passing the name of the interface element as parameter, then use this identifier on the calls to IUP functions –
for example, a call to the function that verifies the value of an attribute using IupGetAttribute.

See Also

IUP - Portable User Interface 07-Jan-25

432/496

../elem/iupmenu.html
iupgethandle.html
iupsetattributehandle.html

IupSetHandle.

IupGetName
Returns a name of an interface element, if the element has an associated name using IupSetHandle or using LED (which calls
IupSetHandle when parsed).

Notice that a handle can have many names. IupGetName will return the last name set.

Parameters/Return

char* IupGetName(Ihandle* ih); [in C]
iup.GetName(ih: ihandle) -> (name: string) [in Lua]

ih: Identifier of the interface element.

Returns: the name.

Notes

This name is not associated with the Lua variable name; this was inherited from LED and is needed for some functions.

See Also

IupSetHandle, IupGetHandle, IupGetAllNames.

IupGetAllNames
Returns the names of all interface elements that have an associated name using IupSetHandle or using LED.

Parameters/Return

int IupGetAllNames(char** names, int max_n); [in C]
iup.GetAllNames([max_n: number]) -> (names: table, n: number) [in Lua]

names: table receiving the names. Only the list of names need to be allocated. Each name will point to an internal string.
max_n: maximum number of names the table can receive. Can be omitted in Lua.

Returns: the number of names loaded to the table. If names==NULL or max_n==0 or -1 then returns the actual number of names.

Notes

This name is not associated to the name of the Lua variable – this was inherited from LED and is needed for some functions.

See Also

IupSetHandle, IupGetHandle, IupGetName, IupGetAllDialogs.

IupGetAllDialogs
Returns the names of all dialogs that have an associated name using IupSetHandle or using LED. Other dialogs will not be returned.

Parameters/Return

int IupGetAllDialogs(char** names, int max_n); [in C]
iup.GetAllDialogs([max_n: number]) -> (names: table, n: number) [in Lua]

names: table receiving the names. Only the list of names need to be allocated. Each name will point to an internal string.
max_n: maximum number of names the table can receive. Can be omitted in Lua.

Returns: the number of names loaded to the table. If names==NULL or max_n==0 or -1 then returns the actual number of names.

Notes

This name is not associated to the name of the Lua variable – this was inherited from LED and is needed for some functions.

See Also

IUP - Portable User Interface 07-Jan-25

433/496

iupsethandle.html
iupsethandle.html
iupgethandle.html
iupgetallnames.html
iupsethandle.html
iupgethandle.html
iupgetname.html
iupgetalldialogs.html

IupSetHandle, IupGetHandle, IupGetName, IupGetAllNames.

IupSetLanguage
Sets the language name used by some pre-defined dialogs. Can also be changed using the global attribute LANGUAGE.

Parameters/Return

void IupSetLanguage(const char *name); [in C]

iup.SetLanguage(name: string) [in Lua]

name: Language name to be used. Can have one of the following values:

"ENGLISH"
"PORTUGUESE"
"SPANISH" (since 3.22)

default: "ENGLISH".

Affects

All elements that have pre-defined texts. The pre-defined texts will be stored using IupSetLanguageString.

The native dialogs like IupFileDlg will always be displayed in the system language.

Even if the language is not supported (meaning its pack of pre-defined strings are not defined) the new language name will be
successfully stored so you can set your own strings and return a coherent value, and the current defined string will not be changed.

Here is a list of the pre-defined string names:

IUP_ERROR
IUP_ATTENTION (since 3.22)
IUP_YES
IUP_NO
IUP_INVALIDDIR
IUP_FILEISDIR
IUP_FILENOTEXIST
IUP_FILEOVERWRITE
IUP_CREATEFOLDER
IUP_NAMENEWFOLDER
IUP_SAVEAS
IUP_OPEN
IUP_SELECTDIR
IUP_OK
IUP_CANCEL
IUP_RETRY
IUP_APPLY
IUP_RESET
IUP_GETCOLOR
IUP_HELP
IUP_RED
IUP_GREEN
IUP_BLUE
IUP_HUE
IUP_SATURATION
IUP_INTENSITY
IUP_OPACITY
IUP_PALETTE
IUP_TRUE
IUP_FALSE
IUP_FAMILY
IUP_STYLE
IUP_SIZE
IUP_SAMPLE
IUP_ERRORFILEOPEN (since 3.22)
IUP_ERRORFILESAVE (since 3.22)

Examples

#include "iup.h"

void main(void)
{
 IupOpen();
 IupSetLanguage("ENGLISH");
 IupMessage("IUP Language", IupGetLanguage());
 IupClose();
}

IUP - Portable User Interface 07-Jan-25

434/496

iupsethandle.html
iupgethandle.html
iupgetname.html
iupgetallnames.html
iupsetlanguagestring.html

See Also

IupGetLanguage, IupSetLanguageString, LANGUAGE

IupGetLanguage
Returns the language used by some pre-defined dialogs. Returns the same value as the LANGUAGE global attribute.

Parameters/Return

char* IupGetLanguage(void); [in C]
iup.GetLanguage() -> (language: string) [in Lua]

Returns: the language.

See Also

IupSetLanguage, LANGUAGE.

IupSetLanguageString
Associates a name with a string as an auxiliary method for Internationalization of applications.

Parameters/Return

void IupSetLanguageString(const char *name, const char *value); [in C]
void IupStoreLanguageString(const char *name, const char *value);

iup.SetLanguageString(name, value: string) [in Lua]

name: name of the string.
value: string value.

Notes

IupStoreLanguageString will duplicate the string internally. IupSetLanguageString will store the pointer.

Elements that have pre-defined texts use this function when the current language is changed using IupSetLanguage.

IUP will not store strings for several languages at the same time, it will store only for the current language. When IupSetLanguage is
called only the internal pre-defined strings are replace in the internal database. The application must register again all its strings for the
new language.

If a dialog is created with string names associations and the associations are about to be changed, then the dialog must be destroyed
before the associations are changed, then created again.

Associations are retrieved using the IupGetLanguageString function. But to simplify the usage of the string names associations
attributes set with regular IupSetStr* functions can use the prefix "_@" to indicate a string name and not the actual string. This includes
any attributes set in LED or in Lua. IupSetAttribute* functions can not be used because they simply store a pointer that may not be a
string.

Examples

// If Language is Englih
IupSetLanguageString("IUP_CANCEL", "Cancel");
 or
// If Language is Portuguese
IupSetLanguageString("IUP_CANCEL", "Cancelar");

// Then when setting a button title use:
Ihandle* button_cancel = IupButton(IupGetLanguageString("IUP_CANCEL"), NULL);
 or
Ihandle* button_cancel = IupButton("_@IUP_CANCEL", NULL);
 or
IupSetStrAttribute(button_cancel, "TITLE", "_@IUP_CANCEL");

See Also

IupGetLanguageString, IupSetLanguagePack

IUP - Portable User Interface 07-Jan-25

435/496

iupgetlanguage.html
iupsetlanguagestring.html
../attrib/iup_globals.html#LANGUAGE
iupsetlanguage.html
../attrib/iup_globals.html#LANGUAGE
iupgetlanguagestring.html
iupsetlanguagepack.html

IupGetLanguageString
Returns a language dependent string. The string must have been associated with the name using the IupSetLanguageString or
IupSetLanguagePack functions.

Parameters/Return

char* IupGetLanguageString(const char* name); [in C]
iup.GetLanguageString(name: string) -> (value: string) [in Lua]

Returns: a string associated with the name.

Notes

If the association is not found returns the name itself.

See IupSetLanguageString for an example.

See Also

IupSetLanguageString, IupSetLanguagePack.

IupSetLanguagePack
Sets a pack of associations between names and string values. Internally will call IupSetLanguageString for each name in the pack.

Parameters/Return

void IupSetLanguagePack(Ihandle* ih); [in C]

iup.SetLanguagePack(ih: ihandle) [in Lua]

ih: pack of name-value association. It is simply a IupUser element with several attributes set.

Notes

After setting the pack it can be destroyed.

The existent associations will not be removed. But if the new ones have the same names, the old ones will be replaced. If set to NULL will
remove all current associations.

Examples

 pack = iup.user{}
pack["IUP_RED"] = "Vermelho"
pack["MY_ITEMCOLORTEST"] = "Teste de Cor"
iup.SetLanguagePack(pack)
iup.Destroy(pack)

See Also

IupGetLanguageString, IupSetLanguageString, IupUser

IupClipboard (since 3.0)
Creates an element that allows access to the clipboard. Each clipboard should be destroyed using IupDestroy, but you can use only one
for the entire application because it does not store any data inside. Or you can simply create and destroy every time you need to copy or
paste.

Creation

Ihandle* IupClipboard(void); [in C]
iup.clipboard{} -> (ih: ihandle) [in Lua]
clipboard() [in LED]

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

IUP - Portable User Interface 07-Jan-25

436/496

iupsetlanguagestring.html
iupsetlanguagestring.html
iupsetlanguagepack.html
iupgetlanguagestring.html
iupsetlanguagestring.html
../elem/iupuser.html
../func/iupdestroy.html

ADDFORMAT (write-only): register a custom format for clipboard data given its name. The registration remains valid even after the
element is destroyed. A new format must be added before used. (since 3.7)

EMFAVAILABLE (read-only) [Windows Only]: informs if there is a Windows Enhanced Metafile available at the clipboard. (Since 3.2)

FORMAT: set the current format to be used by the FORMATAVAILABLE and FORMATDATA attributes. This is a custom format string.
The application copy and paste functions must know what it is copying and pasting in FORMATDATA based on that string. (since 3.7)

FORMATAVAILABLE (read-only): informs if there is a data in the FORMAT available at the clipboard. If FORMAT is not set returns
NULL. (since 3.7)

FORMATDATA: sets or retrieves the data from the clipboard in the format defined by the FORMAT attribute. If FORMAT is not set
returns NULL. If set to NULL clears the clipboard data. When set the FORMATDATASIZE attribute must be set before with the data size.
When retrieved FORMATDATASIZE will be set and available after data is retrieved. (since 3.7)

FORMATDATASTRING [Windows and GTK Only]: sets/gets FORMATDATA and FORMATDATASIZE considering data being a string in
the system format. (since 3.29)

FORMATDATASIZE: size of the data on the clipboard. Used by the FORMATDATA attribute processing. (since 3.7)

IMAGE (write-only): name of an image to copy to the clipboard. If set to NULL clears the clipboard data. (GTK 2.6)

IMAGEAVAILABLE (read-only): informs if there is an image available at the clipboard. (GTK 2.6)

NATIVEIMAGE: native handle of an image to copy or paste, to or from the clipboard. In Win32 is a HANDLE of a DIB. In GTK is a
GdkPixbuf*. In Motif is a Pixmap. If set to NULL clears the clipboard data. The returned handle in a paste must be released after used
(GlobalFree(handle), g_object_unref(pixbuf) or XFreePixmap(display, pixmap)). After copy, do NOT release the given handle. See IUP-IM
Functions for utility functions on image native handles. (GTK 2.6)

SAVEEMF (write-only) [Windows Only]: saves the EMF from the clipboard to the given filename. (Since 3.2)

SAVEWMF (write-only) [Windows Only]: saves the WMF from the clipboard to the given filename. (Since 3.2)

TEXT: copy or paste text to or from the clipboard. If set to NULL clears the clipboard data.

TEXTAVAILABLE (read-only): informs if there is a text available at the clipboard.

WMFAVAILABLE (read-only) [Windows Only]: informs if there is a Windows Metafile available at the clipboard. (Since 3.2)

Notes

In Windows when "TEXT" format data is copied to the clipboard, the system will automatically store other text formats too if those
formats are not already stored. This means that when copying "TEXT" Windows will also store "Unicode Text" and "OEM Text", but only if
those format were not copied before. So to make sure the system will copy all the other text formats clear the clipboard before copying
you own data (you can simply set TEXT=NULL before setting the actual value).

Examples

Ihandle* clipboard = IupClipboard();
IupSetAttribute(clipboard, "TEXT", IupGetAttribute(text, "VALUE"));
IupDestroy(clipboard);

Ihandle* clipboard = IupClipboard();
IupSetAttribute(text, "VALUE", IupGetAttribute(clipboard, "TEXT"));
IupDestroy(clipboard);

IupTimer
Creates a timer which periodically invokes a callback when the time is up. Each timer should be destroyed using IupDestroy.

Creation

Ihandle* IupTimer(void); [in C]
iup.timer{} -> (ih: ihandle) [in Lua]
timer() [in LED]

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

TIME: The time interval in milliseconds. In Windows the minimum value is 10ms.

RUN: Starts and stops the timer. Possible values: "YES" or "NO". Returns the current timer state. If you have multiple threads start the
timer in the main thread.

IUP - Portable User Interface 07-Jan-25

437/496

../iupim.html
../func/iupdestroy.html

WID (read-only): Returns the native serial number of the timer. Returns -1 if not running. A timer is mapped only when it is running.

Callbacks

ACTION_CB: Called every time the defined time interval is reached. To stop the callback from being called simply stop de timer with
RUN=NO. Inside the callback the attribute ELAPSEDTIME returns the time elapsed since the timer was started in milliseconds (since 3.15).

int function(Ihandle *ih); [in C]
ih:action_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

Returns: IUP_CLOSE will be processed.

Notes

In GTK uses g_timeout_add, in Windows uses SetTimer, and in Motif uses XtAppAddTimeOut.

Examples

Browse for Example Files

IupTuioClient (since 3.3)
Implements an interface to the TUIO protocol client that allows the use of multi-touch devices. It can use any TUIO server, but it was
tested with the Community Core Vision (CCV) from the NUI Group. The TUIO 1.1 client library has a LGPL license.

Since IUP 3.30 using TUIO from https://github.com/mkalten/TUIO11_CPP.

Initialization and usage

The IupTuioOpen function must be called after a IupOpen, so that the control can be used. The iuptuio.h file must also be included in
the source code. The program must be linked to the controls library (iuptuio). There is no external dependencies, the TUIO client library
is already included.

To make the control available in Lua use require"iupluatuio" or manually call the initialization function in C, iuptuiolua_open, after
calling iuplua_open. When manually calling the function the iupluatuio.h file must also be included in the source code and the program
must be linked to the respective Lua control library (iupluatuio).

Creation

Ihandle* IupTuioClient(int port); [in C]
iup.tuioclient{[port: number]} -> (ih: ihandle) [in Lua]
tuioclient(port) [in LED]

port: the UDP port used to connect to the TUIO server. If 0 is specified then the default value of 3333 will be used (in Lua it can be
simply omitted).

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

CONNECT: connects (YES) or disconnects (NO) to the TUIO server. Returns the connected state. If LOCKED is used when connected the
IupSetAttribute will not return until it is disconnected (not recommended).

DEBUG: when set will enable a print a log of TUIO cursor messages on standard output.

TARGETCANVAS: name of a handle to an IupCanvas that will be used to receive the events.

Callbacks

TOUCH_CB: Action generated when a touch event occurred. Multiple touch events will trigger several calls.

int function(Ihandle* ih, int id, int x, int y, char* state); [in C]
ih:touch_cb(id, x, y: number, state: string) -> (ret: number) [in Lua]

ih: identifies the element that activated the event. If TARGETCANVAS is not defined then it is the IupTuioClient control.
id: identifies the touch point.
x, y: position in pixels, relative to the top-left corner of the canvas, or the screen if TARGETCANVAS is not defined.
state: the touch point state. Can be: DOWN, MOVE or UP. If the point is a "primary" point then "-PRIMARY" is appended to the
string.

IUP - Portable User Interface 07-Jan-25

438/496

../../examples/
http://www.tuio.org
http://ccv.nuigroup.com/
tuio.txt
https://github.com/mkalten/TUIO11_CPP

Returns: IUP_CLOSE will be processed.

MULTITOUCH_CB: Action generated when multiple touch events occurred.

int function(Ihandle *ih, int count, int* pid, int* px, int* py, int* pstate) [in C]
ih:multitouch_cb(count: number, pid, px, py, pstate: table) -> (ret: number) [in Lua]

ih: identifier of the element that activated the event. If TARGETCANVAS is not defined then it is the IupTuioClient control.
count: Number of touch points in the array.
pid: Array of touch point ids.
px: Array of touch point x coordinates in pixels, relative to the top-left corner of the canvas, or the screen if TARGETCANVAS is not
defined.
py: Array of touch point y coordinates in pixels, relative to the top-left corner of the canvas, or the screen if TARGETCANVAS is not
defined.
pstate: Array of touch point states. Can be 'D' (DOWN), 'U' (UP) or 'M' (MOVE).

Returns: IUP_CLOSE will be processed.

Notes

The cursor ID used in the callbacks is the session ID. In TUIO when a cursor is destroyed another cursor can be created with the same ID,
the difference between them is the session ID that is always incremented every time a cursor is added or removed. We consider the
primary cursor the existing cursor with the smaller session ID.

The native support for multi-touch in Windows 7 uses the same callbacks described here without the need of a IupTuioClient control. So
the application will work without change. But the attribute TOUCH=YES must be set on the IupCanvas, and coordinates will be always
relative to the top-left corner of the canvas.

The IupTuioClient does not emulates a mouse for single touch events. But as you can see from the example a mouse emulator can be
easily implemented.

To learn more about TUIO:

http://www.tuio.org

Examples

Browse for Example Files (see canvas1.c)

IupThread (since 3.28)
Creates a thread element in IUP, which is not associated to any interface element. It is a very simple support to create and manage
threads in a multithread environment.

It inherits from IupUser.

In non Windows systems uses the pthreads library.

Creation

Ihandle* IupThread(void); [in C]
iup.thread{} -> (ih: ihandle) [in Lua]
thread() [in LED]

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

START (write-only, non inheritable): starts the thread and calls the callback. Can be YES only. The thread exits when the callback is
terminated.

EXIT (write-only, non inheritable): exit the current thread. Value contains the exit code.

ISCURRENT (read-only, non inheritable): returns if the started thread is the current thread.

YIELD (write-only, non inheritable): yield execution to another thread. value is ignored.

JOIN (write-only, non inheritable): Waits until thread finishes. value is ignored.

LOCK (non inheritable): uses a mutex to create a lock to allow access to shared data. Can be YES or NO. When set to YES the mutex will
be locked, when set to NO the mutex will be unlocked. It does not depends if the thread is started or not.

Callbacks

IUP - Portable User Interface 07-Jan-25

439/496

http://www.microsoft.com/com
http://www.tuio.org
../../examples/
../../examples/C/canvas1.c
iupuser.html

THREAD_CB: Action generated when the thread is started. If this callback returns or does not exist the thread is terminated.

int function(Ihandle* ih); [in C]
ih:thread_cb() -> (ret: number) [in Lua]

ih: identifier of the element that activated the event.

IupUser
Creates a user element in IUP, which is not associated to any interface element. It is used to map an external element to a IUP element.
Its use is usually for additional elements, but you can use it to create an Ihandle* to store private attributes.

It is also a void container. Its children can be dynamically added using IupAppend or IupInsert.

Creation

Ihandle* IupUser(void); [in C]
iup.user{} -> (ih: ihandle) [in Lua]
user() [in LED]

Returns: the identifier of the created element, or NULL if an error occurs.

Attributes

CLEARATTRIBUTES (write-only, non inheritable): it will clear all attributes stored internally and remove all references. (since 3.0)

IupConfig (since 3.12)
A group of functions to load, store and save application configuration variables. For example, the list of Recent Files, the last position and
size of a dialog, last used parameters in dialogs, etc.

To use the functions in C/C++ you must include the "iup_config.h" header. The functions are NOT available in LED. Binding Lua since
3.15.

Each variable has a key name, a value and a group that it belongs to. The file is based on a simple configuration file like ".ini" or ".cfg".
Each ground can has more than one key, but all keys in the same group must have different names. Group and Key names can NOT have
a period ".". The file syntax is such as:

[Group]
Key=Value
Key=Value
...

Guide

First create a new configuration database using the IupConfig constructor. To destroy it use the IupDestroy function. Then when the
application is started call IupConfigLoad and when the application is about to close, call IupConfigSave.

To retrieve variables use the IupConfigGetVariable* functions and after they where changed store them using the
IupConfigSetVariable* functions.

Creation

Ihandle* IupConfig(void); [in C]
iup.config{}-> ih: ihandle [in Lua]

[not available in LED]

Returns a new database where the variables will be stored.

File Storage

int IupConfigLoad(Ihandle* ih); [in C]
iup.ConfigLoad(ih: ihandle) -> (ret: number) [in Lua]
or ih:Load() -> (ret: number) [in Lua]

int IupConfigSave(Ihandle* ih); [in C]
iup.ConfigSave(ih: ihandle) -> (ret: number) [in Lua]
or ih:Save() -> (ret: number) [in Lua]

IUP - Portable User Interface 07-Jan-25

440/496

../func/iupappend.html
../func/iupinsert.html

ih: Identifier of the configuration database

Returns: an error code. 0= no error; -1=error opening the file; -2=error accessing the file; -3=error during filename construction

Loads or saves the configuration file.

The filename (with path) can be set using a regular attribute called APP_FILENAME.

But the most interesting is to let the filename to be dynamically constructed using the APP_NAME attribute. In this case APP_FILENAME
must not be defined. The file name creation will depend on the system and on its usage.

There are two defined usages. First, for a User Configuration File, it will be stored on the user Home folder. Second, as an
Application Configuration File, it will be stored in the same folder of the executable. The Home folder is always preferred, but you
may need to just load a configuration file saved by the installation for instance.

The User Configuration File is the most common usage. In UNIX, the filename will be "<HOME>/.<APP_NAME>", where "<HOME>"
is replaced by the "HOME" environment variable contents, and <APP_NAME> replaced by the APP_NAME attribute value. In Windows, the
filename will be "<HOMEDRIVE><HOMEPATH>\<APP_NAME>.cfg", where HOMEDRIVE and HOMEPATH are also obtained from
environment variables. If the attribute APP_SYSTEMPATH is set to Yes, then it will use the system defined folder for application files
(since 3.28), in Windows will be the same folder given by the environment variables with "Application Data\" or "AppData\Roaming\"
appended.

The Application Configuration File is defined by setting the attribute APP_CONFIG to Yes (default is No). In this case the attribute
APP_PATH must also be set. In UNIX, the filename will be "<APP_PATH>.<APP_NAME>", and in Windows will be "<APP_PATH>
<APP_NAME>.cfg". Notice that the attribute APP_PATH must contains a folder separator "/" at the end.

After the functions are called the attribute FILENAME is set reflecting the constructed filename.

So usually at start up, an application will do:

Ihandle* config = IupConfig();
IupSetAttribute(config, "APP_NAME", "MyAppName");
IupConfigLoad(config);

Variables

void IupConfigSetVariableStr(Ihandle* ih, const char* group, const char* key, const char* value); [in C]
void IupConfigSetVariableStrId(Ihandle* ih, const char* group, const char* key, int id, const char* value);
void IupConfigSetVariableInt(Ihandle* ih, const char* group, const char* key, int value);
void IupConfigSetVariableIntId(Ihandle* ih, const char* group, const char* key, int id, int value);
void IupConfigSetVariableDouble(Ihandle* ih, const char* group, const char* key, double value);
void IupConfigSetVariableDoubleId(Ihandle* ih, const char* group, const char* key, int id, double value);
iup.ConfigSetVariable(ih: ihandle, group, key: string, value: string or number) [in Lua]
or ih:SetVariable(group, key: string, value: string or number) [in Lua]
iup.ConfigSetVariable(ih: ihandle, group, key: string, id: number, value: string or number) [in Lua]
or ih:SetVariable(group, key: string, id: number, value: string or number) [in Lua]

const char* IupConfigGetVariableStr(Ihandle* ih, const char* group, const char* key); [in C]
const char* IupConfigGetVariableStrId(Ihandle* ih, const char* group, const char* key, int id);
int IupConfigGetVariableInt(Ihandle* ih, const char* group, const char* key);
int IupConfigGetVariableIntId(Ihandle* ih, const char* group, const char* key, int id);
double IupConfigGetVariableDouble(Ihandle* ih, const char* group, const char* key);
double IupConfigGetVariableDoubleId(Ihandle* ih, const char* group, const char* key, int id);
iup.ConfigGetVariable(ih: ihandle, group, key: string) -> (value: string) [in Lua]
or ih:GetVariable(ih: ihandle, group, key: string) -> (value: string) [in Lua]
iup.ConfigGetVariable(ih: ihandle, group, key: string, id: number) -> (value: string) [in Lua]
or ih:GetVariable(ih: ihandle, group, key: string, id: number) -> (value: string) [in Lua]

const char* IupConfigGetVariableStrDef(Ihandle* ih, const char* group, const char* key, const char* def); [in C]
const char* IupConfigGetVariableStrIdDef(Ihandle* ih, const char* group, const char* key, int id, const char* def);
int IupConfigGetVariableIntDef(Ihandle* ih, const char* group, const char* key, int def);
int IupConfigGetVariableIntIdDef(Ihandle* ih, const char* group, const char* key, int id, int def);
double IupConfigGetVariableDoubleDef(Ihandle* ih, const char* group, const char* key, double def);
double IupConfigGetVariableDoubleIdDef(Ihandle* ih, const char* group, const char* key, int id, double def);
iup.ConfigGetVariableDef(ih: ihandle, group, key: string, def: string or number) -> (value: string) [in Lua]
or ih:GetVariableDef(group, key: string, def: string or number) -> (value: string) [in Lua]
iup.ConfigGetVariableDef(ih: ihandle, group, key: string, id: number, def: string or number) -> (value: string) [in Lua]
or ih:GetVariableDef(group, key: string, id: number, def: string or number) -> (value: string) [in Lua]

ih: Identifier of the configuration database
group: group name of the variable
key: key name of the variable
id: used when the variable has a sequential number
value: value of the variable
def: default value of the variable

Returns: the variable value or NULL (or 0 for integer and double) if the variable is not set or does not exist. When the variable may not
exist you can use the functions with def to use a default value.

IUP - Portable User Interface 07-Jan-25

441/496

These functions are very similar to the IupSetAttribute and IupGetAttribute functions. Internally the variables are stored as attributes
using a "<GROUP>.<KEY>" combination, that's why group and key names can not have periods ".".

void IupConfigCopy(Ihandle* ih1, Ihandle* ih2, const char* exclude_prefix); (since 3.23)

Copy all the variables from config ih1 to ih2, but excludes groups that start with the given prefix (it can be NULL).

Recent File Menu/List

void IupConfigRecentInit(Ihandle* ih, Ihandle* menu_list, Icallback recent_cb, int max_recent);
iup.ConfigRecentInit(ih, menu_list: ihandle, max_recent: number) [in Lua]
or ih:RecentInit(menu_list: ihandle, max_recent: number) [in Lua]
ih:recent_cb() -> (ret: number) [in Lua]

void IupConfigRecentUpdate(Ihandle* ih, const char* filename);
iup.ConfigRecentUpdate(ih: ihandle, filename: string) [in Lua]
or ih:RecentUpdate(filename: string) [in Lua]

ih: Identifier of the configuration database
menu_list: menu or list where the recent file items will be listed. Sets the internal RECENTMENU or RECENTLIST attributes. (list support
since 3.28)
recent_cb: callback that will be called when a recent file item is selected on the menu. Sets the internal RECENT_CB callback.
max_recent: the maximum number of recent file items. Sets the internal RECENTMAX attribute.
filename: name of the file that where just saved or open

These functions store and manage a "Recent Files" menu or list for the application. Call IupConfigRecentInit once to initialize the menu
or the list. Then every time a file is open or saved call IupConfigRecentUpdate so that the menu or list is updated. The last file will be
always on the top of the list.

Inside the RECENT_CB callback the RECENTFILENAME attribute contains the filename, but the ih handle is not the menu or list, it is the
IupConfig handle. But also inside the callback the IupConfig will inherit attributes from the menu or list as if it was its parent. (since 3.15)

The recent file list is stored by default in the group "Recent" in the configuration file. To change the default set the internal attribute
RECENTNAME, when set all other internal attributes will be stored with this value as a prefix. (since 3.23)

Dialog Position and Size

void IupConfigDialogShow(Ihandle* ih, Ihandle* dialog, const char* name);
iup.ConfigDialogShow(ih, dialog: ihandle, name: string) [in Lua]
or ih:DialogShow(dialog: ihandle, name: string) [in Lua]

void IupConfigDialogClosed(Ihandle* ih, Ihandle* dialog, const char* name);
iup.ConfigDialogClosed(ih, dialog: ihandle, name: string) [in Lua]
or ih:DialogClosed(dialog: ihandle, name: string) [in Lua]

ih: Identifier of the configuration database
dialog: the dialog to manage the size and position
name: a name for this dialog

These functions store and manage the position and size of a dialog. So when the application is run again the dialog can be show at its last
position and last size. Use the function IupConfigDialogShow to show the dialog adjusting its size and position. And use the function
IupConfigDialogClosed to save the last dialog position and size when the dialog is about to be closed, usually inside the dialog
CLOSE_CB callback.

IupConfigDialogShow does no adjustments if the dialog is already visible, just call IupShow. If the dialog was closed maximized it will
be shown maximized. The default size, at the first time ever the dialog is shown, is maximized. The dialog size is set only if RESIZE=Yes.
(since 3.16)

The position is saved in the variables "X" and "Y" of the given group name. The size is saved in the variables "Width" and "Height" of the
given group name.

If your dialog is resizable and you want to avoid the last size usage because you changed the dialog layout, then reset the "Width" and
"Height" variables before calling IupConfigDialogShow.

To avoid the dialog size to be maximized, set the variable "Maximized" to 0 before calling IupConfigDialogShow. (since 3.16)

To use IupConfigDialogShow for a modal dialog, call it before calling IupPopup with IUP_CURRENT. (since 3.16)

See Also

IupDestroy, IupSetAttribute, IupGetAttribute

IupExecute (since 3.17)
Runs the executable with the given parameters.

IUP - Portable User Interface 07-Jan-25

442/496

iupdestroy.html
iupsetattribute.html
iupgetattribute.html

It is a non synchronous operation, i.e. the function will return just after execute the command and it will not wait for its result.

In Windows, there is no need to add the ".exe" file extension.

Used by the IupHelp function.

Parameters/Return

int IupExecute(const char* filename, const char* parameters); [in C]
iup.Execute(filename[, parameters]: string) -> (ret: number) [in Lua]

filename: name of the executable. Can contains a path.
parameters: optional parameters. Can be NULL.

Returns: 1 if successful, -1 if failed. In Windows and GTK can return -2 if file not found.

IupExecuteWait (since 3.20)
Runs the executable with the given parameters.

It is a synchronous operation, i.e. the function will wait the command to terminate before it returns.

In Windows, there is no need to add the ".exe" file extension.

Parameters/Return

int IupExecuteWait(const char* filename, const char* parameters); [in C]
iup.ExecuteWait(filename[, parameters]: string) -> (ret: number) [in Lua]

filename: name of the executable. Can contains a path.
parameters: optional parameters. Can be NULL.

Returns: 1 if successful, -1 if failed. In Windows and GTK can return -2 if file not found.

IupHelp
Opens the given URL. In UNIX executes Netscape, Safari (MacOS) or Firefox (in Linux) passing the desired URL as a parameter. In
Windows executes the shell "open" operation on the given URL.

In UNIX you can change the used browser setting the environment variable IUP_HELPAPP or using the global attribute "HELPAPP".

It is a non synchronous operation, i.e. the function will return just after execute the command and it will not wait for its result.

Since IUP 3.17, it will use the IupExecute function.

Parameters/Return

int IupHelp(const char* url); [in C]
iup.Help(url: string) -> (ret: number) [in Lua]

url: may be any kind of address accepted by the Browser, that is, it can include 'http://', or be just a file name, etc.

Returns: 1 if successful, -1 if failed. In Windows can return -2 if file not found.

IupLog (since 3.23)
Writes a message to the system log.

In Windows, writes to the "Application" event log. Except if type is DEBUG, in this case uses OutputDebugString to write to the
current debugger. If the application has no debugger and the system debugger is not active, it does nothing. When running from Visual
Studio the message is displayed in the Output panel only when when debugging the application. To view the other messages run the
Event Viewer management console in Administrative Tools.

In Linux, write to the Syslog. When type is DEBUG, it will also write to the calling process' Standard Error stream. If fails to submit a
message to Syslog writes the message instead to system console. To view the messages in Ubuntu use the File Log Viewer application,
or you can directly read the content of the /var/log/syslog file. It is common to grab the last lines of the file using "tail -n 10
/var/log/syslog". You can also filter messages using grep and the filename of the application.

Parameters/Return

void IupLog(const char* type, const char* format, ...); [in C]

IUP - Portable User Interface 07-Jan-25

443/496

iuphelp.html
iupexecute.html

void IupLogV(const char* type, const char* format, va_list arglist); [in C]
iup.Log(type, str: string) -> (ret: number) [in Lua]

type: type of the log. Can be DEBUG, INFO, ERROR and WARNING.
format: uses the same format specification as the sprintf function in C.
str: the message string in Lua

Internal SDK
Introduction

Internal SDK documentation of the IUP library, automatically generated using Doxygen (http://www.doxygen.org/).

Code Standards

Function Names (prefix format)

IupFunc - User API, implemented in the core
iupFunc - Internal Core API, implemented in the core, used in the core or in driver
iupxxxFunc - Windows Internal API, implemented in driver xxx, used in driver xxx
iupdrvFunc - Driver API, implemented in driver, used in the core or driver
xxxFunc - Driver xxx local functions

Global Variables (lower case format)

iupxxx_var

Local Variables (lower case format, using module name)

iyyy_var

File Names

iupyyy.h - public headers
iup_yyy.h/c - core
iupxxx_yyy.h/c - driver

Structures

Iyyy

File Comments (at start)

Check an existent file for example.

Defines

__IUPXXX_H (for include file, same file name, upper case, "__" prefix and replace "." by "_")
IUP_XXX (for global enumerations)
IXXX_YYY (for local enumerations)
iupXXX (for macros, complement with Function Names rules)

Documentation

In the header, using Doxygen commands.
Check an existent header for example.

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Modules

Control SDK
Collaboration diagram for Control SDK:

IUP - Portable User Interface 07-Jan-25

444/496

http://www.doxygen.org/
http://www.doxygen.org/index.html

Modules

 Attribute Environment

 Ihandle Class

 List of Dialogs

 Keyboard Focus

 Key Coding and Key Callbacks

 Ihandle Object

 Class Registration

Detailed Description

Control Creation Guide

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Data Structures | Modules | Defines | Typedefs | Enumerations | Functions

Ihandle Object
[Control SDK]

Collaboration diagram for Ihandle Object:

Data Structures

struct Ihandle_

Modules

 Child Tree Utilities

Defines

#define IUP_EXPAND_WIDTH (IUP_EXPAND_W1 | IUP_EXPAND_W0)

#define IUP_EXPAND_HEIGHT (IUP_EXPAND_H1 | IUP_EXPAND_H0)

#define IUP_EXPAND_BOTH (IUP_EXPAND_WIDTH | IUP_EXPAND_HEIGHT)

#define iupALLOCCTRLDATA() ((IcontrolData*)calloc(1, sizeof(IcontrolData)))

IUP - Portable User Interface 07-Jan-25

445/496

group__attrib.html
group__iclass.html
group__dlglist.html
group__focus.html
group__key.html
group__object.html
group__register.html
../en/cpi.html
http://www.doxygen.org/index.html
group__cpi.html
structIhandle__.html
group__childtree.html
group__object.html#ga8bdac61454ae4f7978f374476d4053ef
group__object.html#gab9573223b5d92c33cddc014216f593aa
group__object.html#gaf4fd481165c48015c6afc1af83add899
group__object.html#gafced58389390d39e6db0697bbbaac610
group__object.html#gaee338a7267ac8c43aa454203dbe548b6
group__object.html#gaee338a7267ac8c43aa454203dbe548b6

Typedefs

typedef struct
_InativeHandle InativeHandle

typedef struct
_IcontrolData IcontrolData

Enumerations

enum Iexpand {
 IUP_EXPAND_NONE = 0x00, IUP_EXPAND_H0 = 0x01, IUP_EXPAND_H1 = 0x02,
IUP_EXPAND_W0 = 0x04,
 IUP_EXPAND_W1 = 0x08, IUP_EXPAND_HFREE = 0x10, IUP_EXPAND_WFREE = 0x20
}

enum Iflags {
 IUP_FLOATING = 0x01, IUP_FLOATING_IGNORE = 0x02, IUP_MAXSIZE = 0x04, IUP_MINSIZE = 0x08,
 IUP_INTERNAL = 0x10
}

Functions

IUP_SDK_API void ** iupObjectGetParamList (void *first, va_list arglist)

IUP_SDK_API int iupObjectCheck (Ihandle *ih)

Detailed Description

Object handle for all the elements.

See iup_object.h

Define Documentation

#define IUP_EXPAND_WIDTH (IUP_EXPAND_W1 | IUP_EXPAND_W0)

Expand configuration

#define IUP_EXPAND_HEIGHT (IUP_EXPAND_H1 | IUP_EXPAND_H0)

Expand configuration

#define IUP_EXPAND_BOTH (IUP_EXPAND_WIDTH | IUP_EXPAND_HEIGHT)

Expand configuration

#define iupALLOCCTRLDATA () ((IcontrolData*)calloc(1, sizeof(IcontrolData)))

IcontrolData allocation utility.

Typedef Documentation

typedef struct _InativeHandle InativeHandle

A simple definition that do not depends on the native system, but helps a lot when writing native code. See iup_object.h for definitions.

typedef struct _IcontrolData IcontrolData

Each control may define its own structure in its private module.

Enumeration Type Documentation

enum Iexpand

Expand configuration

IUP - Portable User Interface 07-Jan-25

446/496

group__object.html#gad7c818b0280c1947556ca9cb3ce948b8
group__object.html#gaee338a7267ac8c43aa454203dbe548b6
group__object.html#ga8847554c4c3b42b8c7b1d036962fdbd7
group__object.html#ga90c505ffa41ed824f0ec6d2dfe9f5f97
group__object.html#gga90c505ffa41ed824f0ec6d2dfe9f5f97a135fd6e011af66d96475fe544608e582
group__object.html#gga90c505ffa41ed824f0ec6d2dfe9f5f97a2254bef37bc7a23cb4faaec6a03ad820
group__object.html#gga90c505ffa41ed824f0ec6d2dfe9f5f97ab03e527f9dfc307cd9b70d4d59477ae2
group__object.html#gga90c505ffa41ed824f0ec6d2dfe9f5f97a7d882802a99b94002f9649b45f77ce41
group__object.html#gga90c505ffa41ed824f0ec6d2dfe9f5f97a07a72054d62c68d3eb7d364d759de525
group__object.html#ga2566d81bfacac5ae39a9a059bf8a2bc1
group__object.html#gade3a85dec57cab15b8985d536ad97ec7
iup__object_8h.html
group__object.html#gaee338a7267ac8c43aa454203dbe548b6
group__object.html#gaee338a7267ac8c43aa454203dbe548b6
group__object.html#gad7c818b0280c1947556ca9cb3ce948b8
iup__object_8h.html
group__object.html#gaee338a7267ac8c43aa454203dbe548b6
group__object.html#ga8847554c4c3b42b8c7b1d036962fdbd7

enum Iflags

General flags.

Enumerator:
IUP_FLOATING

is a floating element. FLOATING=Yes

IUP_FLOATING_IGNORE
is a floating element. FLOATING=Ignore. Do not compute layout.

IUP_MAXSIZE
has the MAXSIZE attribute set

IUP_MINSIZE
has the MAXSIZE attribute set

IUP_INTERNAL
it is an internal element of the container

Function Documentation

IUP_SDK_API void** iupObjectGetParamList (void * first,

va_list arglist

)

Utility that returns an array of parameters. Must call free for the returned value after usage. Used by the creation functions of objects that
receives a NULL terminated array of parameters.

IUP_SDK_API int iupObjectCheck (Ihandle * ih)

Checks if the handle is still valid based on the signature. But if the handle was destroyed still can access invalid memory.

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Data Structures | Modules | Typedefs | Enumerations | Functions

Ihandle Class
[Control SDK]

Collaboration diagram for Ihandle Class:

Data Structures

struct Iclass_

Modules

 Class Object Functions

 Base Class

Typedefs

typedef enum
_InativeType InativeType

typedef enum
_IchildType IchildType

typedef char *(* IattribGetFunc)(Ihandle *ih)

IUP - Portable User Interface 07-Jan-25

447/496

group__object.html#ga90c505ffa41ed824f0ec6d2dfe9f5f97
http://www.doxygen.org/index.html
group__cpi.html
structIclass__.html
group__iclassobject.html
group__iclassbase.html
group__iclass.html#ga0f5cb77c63587912ac792fbc6b5bf727
group__iclass.html#gae8a98499641bdc02bc239e9f7c87e159
group__iclass.html#gaad356bf53064378264c4fc792533c3d6
group__iclass.html#ga99f2e766ea0443ab61bb00154f6e4390
group__iclass.html#ga597f3c4e31ea8bbe458f995940fbfca9

typedef char *(* IattribGetIdFunc)(Ihandle *ih, int id)

typedef char *(* IattribGetId2Func)(Ihandle *ih, int id1, int id2)

typedef int(* IattribSetFunc)(Ihandle *ih, const char *value)

typedef int(* IattribSetIdFunc)(Ihandle *ih, int id, const char *value)

typedef int(* IattribSetId2Func)(Ihandle *ih, int id1, int id2, const char *value)

typedef enum
_IattribFlags IattribFlags

Enumerations

enum _InativeType {
 IUP_TYPEVOID, IUP_TYPECONTROL, IUP_TYPECANVAS, IUP_TYPEDIALOG,
 IUP_TYPEIMAGE, IUP_TYPEMENU, IUP_TYPEOTHER
}

enum _IchildType { IUP_CHILDNONE, IUP_CHILDMANY }

enum _IattribFlags {
 IUPAF_DEFAULT = 0, IUPAF_NO_INHERIT = 1, IUPAF_NO_DEFAULTVALUE = 2, IUPAF_NO_STRING = 4,
 IUPAF_NOT_MAPPED = 8, IUPAF_HAS_ID = 16, IUPAF_READONLY = 32, IUPAF_WRITEONLY = 64,
 IUPAF_HAS_ID2 = 128, IUPAF_CALLBACK = 256, IUPAF_NO_SAVE = 512, IUPAF_NOT_SUPPORTED = 1024,
 IUPAF_IHANDLENAME = 2048, IUPAF_IHANDLE = 4096
}

Functions

IUP_SDK_API
Iclass * iupClassNew (Iclass *ic_parent)

IUP_SDK_API
void iupClassRelease (Iclass *ic)

IUP_SDK_API int iupClassMatch (Iclass *ic, const char *classname)

IUP_SDK_API
void

iupClassRegisterAttribute (Iclass *ic, const char *name, IattribGetFunc get, IattribSetFunc set, const char
*default_value, const char *system_default, int flags)

IUP_SDK_API
void iupClassRegisterAttributeId (Iclass *ic, const char *name, IattribGetIdFunc get, IattribSetIdFunc set, int flags)

IUP_SDK_API
void iupClassRegisterAttributeId2 (Iclass *ic, const char *name, IattribGetId2Func get, IattribSetId2Func set, int flags)

IUP_SDK_API
void

iupClassRegisterGetAttribute (Iclass *ic, const char *name, IattribGetFunc *get, IattribSetFunc *set, const char
**default_value, const char **system_default, int *flags)

IUP_SDK_API
void iupClassRegisterReplaceAttribFunc (Iclass *ic, const char *name, IattribGetFunc _get, IattribSetFunc _set)

IUP_SDK_API
void

iupClassRegisterReplaceAttribDef (Iclass *ic, const char *name, const char *_default_value, const char
*_system_default)

IUP_SDK_API
void iupClassRegisterReplaceAttribFlags (Iclass *ic, const char *name, int _flags)

IUP_SDK_API
void iupClassRegisterCallback (Iclass *ic, const char *name, const char *format)

IUP_SDK_API char
* iupClassCallbackGetFormat (Iclass *ic, const char *name)

Detailed Description

See iup_class.h

Typedef Documentation

typedef enum _InativeType InativeType

Known native types.

typedef enum _IchildType IchildType

Possible number of children.

IUP - Portable User Interface 07-Jan-25

448/496

group__iclass.html#ga4f5b9ec1ab2b69ab59b10edc96e257a6
group__iclass.html#ga8e1d3261eb5e0251105befeb5a2a0512
group__iclass.html#gab639016b16ee60389dbf205263158d45
group__iclass.html#gad4097dba8714215a1afd2a271cf240af
group__iclass.html#ga1a3da35c5cc95e961cde3fe224a4a74b
group__iclass.html#gac6a80970b4883f9c6d4dc765cb016f8a
group__iclass.html#ga0186bc0e429de8323bed3583bbdb48ae
group__iclass.html#ga0f5cb77c63587912ac792fbc6b5bf727
group__iclass.html#gga0f5cb77c63587912ac792fbc6b5bf727a804aa89977b63d7d2ed5976da1118246
group__iclass.html#gga0f5cb77c63587912ac792fbc6b5bf727a0c70deb3ec00cdb9b6c14aaaeeaa1406
group__iclass.html#gga0f5cb77c63587912ac792fbc6b5bf727aab5cdd9128cd24568728e3bcfbf579df
group__iclass.html#gga0f5cb77c63587912ac792fbc6b5bf727a0429abdc1403c7bfa3726ac9073187c2
group__iclass.html#gga0f5cb77c63587912ac792fbc6b5bf727a33889bb933eea247d162cfeb3f9b92c2
group__iclass.html#gga0f5cb77c63587912ac792fbc6b5bf727a6a4dc717d9d881dd462c0e454ffc721a
group__iclass.html#gga0f5cb77c63587912ac792fbc6b5bf727a86b42ea15d4cdbcee8e00b15660354c8
group__iclass.html#gaad356bf53064378264c4fc792533c3d6
group__iclass.html#ggaad356bf53064378264c4fc792533c3d6af1d85f75e6f0afce6ac5c6069158f9d9
group__iclass.html#ggaad356bf53064378264c4fc792533c3d6ac4a9a6b108cf9c09335ff2e4c27adfb8
group__iclass.html#gac6a80970b4883f9c6d4dc765cb016f8a
group__iclass.html#ggac6a80970b4883f9c6d4dc765cb016f8aa36be993c62846a28cef718810791aa4e
group__iclass.html#ggac6a80970b4883f9c6d4dc765cb016f8aafdc0f45db748184bf52f94506df6716f
group__iclass.html#ggac6a80970b4883f9c6d4dc765cb016f8aa085cfae8ecff278a4a4c0650f50691da
group__iclass.html#ggac6a80970b4883f9c6d4dc765cb016f8aa9015f4881e0bb0660fed19e3954b56b7
group__iclass.html#ggac6a80970b4883f9c6d4dc765cb016f8aac5aede7db387345abc32d8466141faea
group__iclass.html#ggac6a80970b4883f9c6d4dc765cb016f8aa413ff910e0fead787d53becc5bf31d0c
group__iclass.html#ggac6a80970b4883f9c6d4dc765cb016f8aa2526320eea138980b86d86ada46f8192
group__iclass.html#ggac6a80970b4883f9c6d4dc765cb016f8aac3db13126f480806ad611cab94fc4401
group__iclass.html#ggac6a80970b4883f9c6d4dc765cb016f8aa9e31ca571193c77d63d6481171af662a
group__iclass.html#ggac6a80970b4883f9c6d4dc765cb016f8aa9d9c5eabca625583becb0efeac6e25d4
group__iclass.html#ggac6a80970b4883f9c6d4dc765cb016f8aa347ab38298dfa9b3c39cc54a54e66edc
group__iclass.html#ggac6a80970b4883f9c6d4dc765cb016f8aafcf2bea4498d50cdb61b19e7ced0eb3a
group__iclass.html#ggac6a80970b4883f9c6d4dc765cb016f8aad2c32378acd6636ff779769a035ac07a
group__iclass.html#ggac6a80970b4883f9c6d4dc765cb016f8aa94a8501a131de28c28a42f1920e19b18
structIclass__.html
group__iclass.html#gac0997edb6c0b1a5c939831aa6ef54370
structIclass__.html
group__iclass.html#ga17b6bc7326a66db0f65f772cba24917c
structIclass__.html
group__iclass.html#gafaa88da2499c814c049df36220b096cb
structIclass__.html
group__iclass.html#ga28ac77f298e6d91686f4918099efb297
structIclass__.html
group__iclass.html#ga597f3c4e31ea8bbe458f995940fbfca9
group__iclass.html#gab639016b16ee60389dbf205263158d45
group__iclass.html#ga1c558ff2096d3ce422902dced4db2501
structIclass__.html
group__iclass.html#ga4f5b9ec1ab2b69ab59b10edc96e257a6
group__iclass.html#gad4097dba8714215a1afd2a271cf240af
group__iclass.html#ga5810e750953f883c127ccf0d3f75f57f
structIclass__.html
group__iclass.html#ga8e1d3261eb5e0251105befeb5a2a0512
group__iclass.html#ga1a3da35c5cc95e961cde3fe224a4a74b
group__iclass.html#ga11ef6a8b67db5f3169f4568961f45a04
structIclass__.html
group__iclass.html#ga597f3c4e31ea8bbe458f995940fbfca9
group__iclass.html#gab639016b16ee60389dbf205263158d45
group__iclass.html#gad79f7c5680fd55f7f346df9f6a022101
structIclass__.html
group__iclass.html#ga597f3c4e31ea8bbe458f995940fbfca9
group__iclass.html#gab639016b16ee60389dbf205263158d45
group__iclass.html#gaece95899ccff45f66924d445880cd771
structIclass__.html
group__iclass.html#gaec84603eb79dac319a2589196ad0072a
structIclass__.html
group__iclass.html#gae2c8e4c1a70aeec4a5af0e002809eac9
structIclass__.html
group__iclass.html#ga0851dffbbf332ae04cd8e961e0c48305
structIclass__.html
iup__class_8h.html
group__iclass.html#ga0f5cb77c63587912ac792fbc6b5bf727
group__iclass.html#gae8a98499641bdc02bc239e9f7c87e159
group__iclass.html#gaad356bf53064378264c4fc792533c3d6
group__iclass.html#ga99f2e766ea0443ab61bb00154f6e4390

typedef char*(* IattribGetFunc)(Ihandle *ih)

GetAttribute called for a specific attribute. Used by iupClassRegisterAttribute.

typedef char*(* IattribGetIdFunc)(Ihandle *ih, int id)

GetAttribute called for a specific attribute when has_attrib_id is 1.
Same as IattribGetFunc but handle attribute names with number ids at the end.
When calling iupClassRegisterAttribute just use a typecast.
-1 is used for invalid ids.
Pure numbers are translated into IDVALUEid. Used by iupClassRegisterAttribute.

typedef char*(* IattribGetId2Func)(Ihandle *ih, int id1, int id2)

GetAttribute called for a specific attribute when has_attrib_id is 1.
Same as IattribGetFunc but handle attribute names with number ids at the end.
When calling iupClassRegisterAttribute just use a typecast.
-1 is used for invalid ids.
Pure numbers are translated into IDVALUEid. Used by iupClassRegisterAttribute.

typedef int(* IattribSetFunc)(Ihandle *ih, const char *value)

SetAttribute called for a specific attribute.
If returns 0, the attribute will not be stored in the hash table (except inheritble attributes that are always stored in the hash table).
When IupSetAttribute is called using value=NULL, the default_value is passed to this function. Used by iupClassRegisterAttribute.

typedef int(* IattribSetIdFunc)(Ihandle *ih, int id, const char *value)

SetAttribute called for a specific attribute when has_attrib_id is 1.
Same as IattribSetFunc but handle attribute names with number ids at the end.
When calling iupClassRegisterAttribute just use a typecast.
-1 is used for invalid ids.
Pure numbers are translated into IDVALUEid, ex: "1" = "IDVALUE1". Used by iupClassRegisterAttribute.

typedef int(* IattribSetId2Func)(Ihandle *ih, int id1, int id2, const char *value)

SetAttribute called for a specific attribute when has_attrib_id is 2.
Same as IattribSetFunc but handle attribute names with number ids at the end.
When calling iupClassRegisterAttribute just use a typecast.
-1 is used for invalid ids.
Pure numbers are translated into IDVALUEid, ex: "1" = "IDVALUE1". Used by iupClassRegisterAttribute.

typedef enum _IattribFlags IattribFlags

Attribute flags. Used by iupClassRegisterAttribute.

Enumeration Type Documentation

enum _InativeType

Known native types.

Enumerator:
IUP_TYPEVOID

No native representation - HBOX, VBOX, ZBOX, FILL, RADIO (handle==(void*)-1 always)

IUP_TYPECONTROL
Native controls - BUTTON, LABEL, TOGGLE, LIST, TEXT, MULTILINE, FRAME, others

IUP_TYPECANVAS
Drawing canvas, also used as a base control for custom controls.

IUP_TYPEDIALOG
DIALOG

IUP_TYPEIMAGE
IMAGE

IUP_TYPEMENU
MENU, SUBMENU, ITEM, SEPARATOR

IUP - Portable User Interface 07-Jan-25

449/496

group__iclass.html#ga597f3c4e31ea8bbe458f995940fbfca9
group__iclass.html#ga28ac77f298e6d91686f4918099efb297
group__iclass.html#ga4f5b9ec1ab2b69ab59b10edc96e257a6
group__iclass.html#ga28ac77f298e6d91686f4918099efb297
group__iclass.html#ga8e1d3261eb5e0251105befeb5a2a0512
group__iclass.html#ga28ac77f298e6d91686f4918099efb297
group__iclass.html#gab639016b16ee60389dbf205263158d45
group__iclass.html#ga28ac77f298e6d91686f4918099efb297
group__iclass.html#gad4097dba8714215a1afd2a271cf240af
group__iclass.html#ga28ac77f298e6d91686f4918099efb297
group__iclass.html#ga1a3da35c5cc95e961cde3fe224a4a74b
group__iclass.html#ga28ac77f298e6d91686f4918099efb297
group__iclass.html#gac6a80970b4883f9c6d4dc765cb016f8a
group__iclass.html#ga0186bc0e429de8323bed3583bbdb48ae
group__iclass.html#ga28ac77f298e6d91686f4918099efb297
group__iclass.html#ga0f5cb77c63587912ac792fbc6b5bf727

IUP_TYPEOTHER Other resources - TIMER, CLIPBOARD, USER, etc

enum _IchildType

Possible number of children.

Enumerator:
IUP_CHILDNONE

can not add children using Append/Insert

IUP_CHILDMANY
can add any number of children. /n IUP_CHILDMANY+n can add n children.

enum _IattribFlags

Attribute flags. Used by iupClassRegisterAttribute.

Enumerator:
IUPAF_DEFAULT

inheritable, can has a default value, is a string, can call the set/get functions only if mapped, no ID

IUPAF_NO_INHERIT
is not inheritable

IUPAF_NO_DEFAULTVALUE
can not has a default value

IUPAF_NO_STRING
is not a string

IUPAF_NOT_MAPPED
will call the set/get functions also when not mapped

IUPAF_HAS_ID
can has an ID at the end of the name, automatically set by iupClassRegisterAttributeId

IUPAF_READONLY
is read-only, can not be changed

IUPAF_WRITEONLY
is write-only, usually an action

IUPAF_HAS_ID2
can has two IDs at the end of the name, automatically set by iupClassRegisterAttributeId2

IUPAF_CALLBACK
is a callback, not an attribute

IUPAF_NO_SAVE
can NOT be directly saved, should have at least manual processing

IUPAF_NOT_SUPPORTED
not supported in that driver

IUPAF_IHANDLENAME
is an Ihandle* name, associated with IupSetHandle

IUPAF_IHANDLE
is an Ihandle*

Function Documentation

IUP_SDK_API Iclass* iupClassNew (Iclass * ic_parent)

Allocates memory for the Iclass structure and initializes the attribute handling functions table.
If parent is specified then a new instance of the parent class is created and set as the actual parent class.

IUP - Portable User Interface 07-Jan-25

450/496

group__iclass.html#gaad356bf53064378264c4fc792533c3d6
group__iclass.html#gac6a80970b4883f9c6d4dc765cb016f8a
group__iclass.html#ga28ac77f298e6d91686f4918099efb297
group__iclass.html#ga1c558ff2096d3ce422902dced4db2501
group__iclass.html#ga5810e750953f883c127ccf0d3f75f57f
structIclass__.html
structIclass__.html

IUP_SDK_API void iupClassRelease (Iclass * ic)

Release the memory allocated by the class. Calls the Iclass::Release method.
Called from iupRegisterFinish.

IUP_SDK_API int iupClassMatch (Iclass * ic,

const char * classname

)

Check if the class name match the given name.
Parent classes are also checked.

IUP_SDK_API void iupClassRegisterAttribute (Iclass * ic,

const char * name,

IattribGetFunc get,

IattribSetFunc set,

const char * default_value,

const char * system_default,

int flags

)

Register attribute handling functions, defaults and flags. get, set and default_value can be NULL. default_value should point to a constant
string, it will not be duplicated internally.
Notice that when an attribute is not defined then default_value=NULL, is inheritable can has a default value and is a string.
Since there is only one attribute function table per class tree, if you register the same attribute in a child class, then it will replace the
parent registration.
If an attribute is not inheritable or not a string then it MUST be registered. Internal attributes (starting with "_IUP") can never be
registered.

IUP_SDK_API void iupClassRegisterAttributeId (Iclass * ic,

const char * name,

IattribGetIdFunc get,

IattribSetIdFunc set,

int flags

)

Same as iupClassRegisterAttribute for attributes with Ids.

IUP_SDK_API void iupClassRegisterAttributeId2 (Iclass * ic,

const char * name,

IattribGetId2Func get,

IattribSetId2Func set,

int flags

)

Same as iupClassRegisterAttribute for attributes with two Ids.

IUP_SDK_API void iupClassRegisterGetAttribute (Iclass * ic,

const char * name,

IattribGetFunc * get,

IattribSetFunc * set,

const char ** default_value,

const char ** system_default,

int * flags

)

Returns the attribute handling functions, defaults and flags.

IUP_SDK_API void iupClassRegisterReplaceAttribFunc (Iclass * ic,

const char * name,

IUP - Portable User Interface 07-Jan-25

451/496

structIclass__.html
structIclass__.html#a0a3cb142e49500a6e004a1edc2e6e2f0
structIclass__.html
structIclass__.html
group__iclass.html#ga597f3c4e31ea8bbe458f995940fbfca9
group__iclass.html#gab639016b16ee60389dbf205263158d45
structIclass__.html
group__iclass.html#ga4f5b9ec1ab2b69ab59b10edc96e257a6
group__iclass.html#gad4097dba8714215a1afd2a271cf240af
group__iclass.html#ga28ac77f298e6d91686f4918099efb297
structIclass__.html
group__iclass.html#ga8e1d3261eb5e0251105befeb5a2a0512
group__iclass.html#ga1a3da35c5cc95e961cde3fe224a4a74b
group__iclass.html#ga28ac77f298e6d91686f4918099efb297
structIclass__.html
group__iclass.html#ga597f3c4e31ea8bbe458f995940fbfca9
group__iclass.html#gab639016b16ee60389dbf205263158d45
structIclass__.html

IattribGetFunc _get,

IattribSetFunc _set

)

Replaces the attribute handling functions of an already registered attribute.

IUP_SDK_API void iupClassRegisterReplaceAttribDef (Iclass * ic,

const char * name,

const char * _default_value,

const char * _system_default

)

Replaces the attribute handling default of an already registered attribute.

IUP_SDK_API void iupClassRegisterReplaceAttribFlags (Iclass * ic,

const char * name,

int _flags

)

Replaces the attribute handling functions of an already registered attribute.

IUP_SDK_API void iupClassRegisterCallback (Iclass * ic,

const char * name,

const char * format

)

Register the parameters of a callback.
Format follows the iupcbs::h header definitions.
Notice that these definitions are similar to the class registration but have several differences and conflicts, for backward compatibility
reasons.
It can have none, one or more of the following.

"c" = (unsigned char) - byte
"i" = (int) - integer
"I" = (int*) - array of integers or pointer to integer
"f" = (float) - real
"d" = (double) - real
"s" = (char*) - string
"V" = (void*) - generic pointer
"C" = (struct _cdCanvas*) - cdCanvas* structure, used along with the CD library
"n" = (Ihandle*) - element handle The default return value for all callbacks is "i" (int), but a different return value can be specified
using one of the above parameters, after all parameters using "=" to separate it from them.

IUP_SDK_API char* iupClassCallbackGetFormat (Iclass * ic,

const char * name

)

Returns the format of the parameters of a registered callback. If NULL then the default callback definition is assumed.

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Functions

Class Object Functions
[Ihandle Class]

Collaboration diagram for Class Object Functions:

Functions

IUP_SDK_API int iupClassObjectCreate (Ihandle *ih, void **params)

IUP_SDK_API int iupClassObjectMap (Ihandle *ih)

IUP - Portable User Interface 07-Jan-25

452/496

group__iclass.html#ga597f3c4e31ea8bbe458f995940fbfca9
group__iclass.html#gab639016b16ee60389dbf205263158d45
structIclass__.html
structIclass__.html
structIclass__.html
structIclass__.html
http://www.doxygen.org/index.html
group__iclass.html
group__iclassobject.html#gaddd16b52030aaa46150cb3201cf31442
group__iclassobject.html#ga071ede8f85fcf820038ac680226ab8d7

IUP_SDK_API void iupClassObjectUnMap (Ihandle *ih)

IUP_SDK_API void iupClassObjectDestroy (Ihandle *ih)

IUP_SDK_API void * iupClassObjectGetInnerNativeContainerHandle (Ihandle *ih, Ihandle *child)

IUP_SDK_API void iupClassObjectChildAdded (Ihandle *ih, Ihandle *child)

IUP_SDK_API void iupClassObjectChildRemoved (Ihandle *ih, Ihandle *child, int pos)

IUP_SDK_API void iupClassObjectLayoutUpdate (Ihandle *ih)

IUP_SDK_API void iupClassObjectComputeNaturalSize (Ihandle *ih, int *w, int *h, int *children_expand)

IUP_SDK_API void iupClassObjectSetChildrenCurrentSize (Ihandle *ih, int shrink)

IUP_SDK_API void iupClassObjectSetChildrenPosition (Ihandle *ih, int x, int y)

IUP_SDK_API int iupClassObjectDlgPopup (Ihandle *ih, int x, int y)

IUP_SDK_API int iupClassObjectHasDlgPopup (Ihandle *ih)

Detailed Description

Stubs for the class methods. They implement inheritance and check if method is NULL.

See iup_class.h

Function Documentation

IUP_SDK_API int iupClassObjectCreate (Ihandle * ih,

void ** params

)

Calls Iclass::Create method.

IUP_SDK_API int iupClassObjectMap (Ihandle * ih)

Calls Iclass::Map method.

IUP_SDK_API void iupClassObjectUnMap (Ihandle * ih)

Calls Iclass::UnMap method.

IUP_SDK_API void iupClassObjectDestroy (Ihandle * ih)

Calls Iclass::Destroy method.

IUP_SDK_API void* iupClassObjectGetInnerNativeContainerHandle (Ihandle * ih,

Ihandle * child

)

Calls Iclass::GetInnerNativeContainerHandle method. Returns ih->handle if there is no inner parent. The parent class is ignored. If
necessary the child class must handle the parent class internally.

IUP_SDK_API void iupClassObjectChildAdded (Ihandle * ih,

Ihandle * child

)

Calls Iclass::ChildAdded method.

IUP_SDK_API void iupClassObjectChildRemoved (Ihandle * ih,

Ihandle * child,

int pos

)

Calls Iclass::ChildRemoved method.

IUP_SDK_API void iupClassObjectLayoutUpdate (Ihandle * ih)

Calls Iclass::LayoutUpdate method.

IUP - Portable User Interface 07-Jan-25

453/496

group__iclassobject.html#ga2594d4e870bdb135a339cd7a5856210d
group__iclassobject.html#ga233701662a81fa80406a509de5b866b1
group__iclassobject.html#gadf5edf55c89c07e1db738b9c09c3c8e9
group__iclassobject.html#ga2ede7a294a65c1b00afef7ecafd9948b
group__iclassobject.html#gac22c2da7c72b6056b15c07ad7af3b837
group__iclassobject.html#ga38e78ee09383ecdf83d677f214adaf54
group__iclassobject.html#ga2789c3dbcb8d240406d75df7a5466ff3
group__iclassobject.html#ga7bf74fbf0cc80fe573bde302625aebd1
group__iclassobject.html#ga34bc4ad41aa28d9488b5de9320936815
group__iclassobject.html#ga63bd9eaedd7d3e492b12f62181825309
group__iclassobject.html#ga1218d5a406bb0df09d1570470cfdac46
iup__class_8h.html
structIclass__.html#abd68546d41d197991a4f9504469960b1
structIclass__.html#ac31f888d1530bc5995d13befc87b78e1
structIclass__.html#a772289d3d72fe942471d86ffdf3fc5a9
structIclass__.html#a0d239f17ee4baceb8139f42472bfccb2
structIclass__.html#a1a7b4fbc138c525735ba55df0ba0e646
structIclass__.html#aa3810de6939ffc11631ee83a888b453e
structIclass__.html#a33c66272cf9dea77fed483484f5be1e0
structIclass__.html#a8aaf7138a7fb1a1d2c598187797ac162

IUP_SDK_API void iupClassObjectComputeNaturalSize (Ihandle * ih,

int * w,

int * h,

int * children_expand

)

Calls Iclass::ComputeNaturalSize method.

IUP_SDK_API void iupClassObjectSetChildrenCurrentSize (Ihandle * ih,

int shrink

)

Calls Iclass::SetChildrenCurrentSize method.

IUP_SDK_API void iupClassObjectSetChildrenPosition (Ihandle * ih,

int x,

int y

)

Calls Iclass::SetChildrenPosition method.

IUP_SDK_API int iupClassObjectDlgPopup (Ihandle * ih,

int x,

int y

)

Calls Iclass::DlgPopup method.

IUP_SDK_API int iupClassObjectHasDlgPopup (Ihandle * ih)

Checks if class has the Iclass::DlgPopup method.

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Modules | Functions

Base Class
[Ihandle Class]

Collaboration diagram for Base Class:

Modules

 Base Class Methods

 Base Class Attribute Functions

 Base Class Utilities

Functions

IUP_SDK_API void iupBaseRegisterCommonAttrib (Iclass *ic)

IUP_SDK_API void iupBaseRegisterVisualAttrib (Iclass *ic)

IUP_SDK_API void iupBaseRegisterBaseCallbacks (Iclass *ic)

IUP_SDK_API void iupBaseRegisterCommonCallbacks (Iclass *ic)

IUP - Portable User Interface 07-Jan-25

454/496

structIclass__.html#abe6c7a0bca124f4ddb5dfee8893e31a3
structIclass__.html#a30d2a704d200c2d012978cdf4ca49c0f
structIclass__.html#af3c6532de362bfa9e726b813d994aa1b
structIclass__.html#a16618413679f31e168c9e2bdeea89ffb
structIclass__.html#a16618413679f31e168c9e2bdeea89ffb
http://www.doxygen.org/index.html
group__iclass.html
group__iclassbasemethod.html
group__iclassbaseattribfunc.html
group__iclassbaseutil.html
group__iclassbase.html#ga69d5953d29a41a5801c371306deb4eec
structIclass__.html
group__iclassbase.html#gaeb8bfef8e7dcf9d783739fafedb633e3
structIclass__.html
group__iclassbase.html#ga6e3261fb16335fa53bcedb65d873b073
structIclass__.html
group__iclassbase.html#gae5afa7af0bf7c2426e7d6c73d89d00c7
structIclass__.html

IUP_SDK_API void iupBaseContainerUpdateExpand (Ihandle *ih)

IUP_SDK_API void iupBaseComputeNaturalSize (Ihandle *ih)

IUP_SDK_API void iupBaseSetCurrentSize (Ihandle *ih, int w, int h, int shrink)

IUP_SDK_API void iupBaseSetPosition (Ihandle *ih, int x, int y)

Detailed Description

See iup_classbase.h

Function Documentation

IUP_SDK_API void iupBaseRegisterCommonAttrib (Iclass * ic)

Register all common base attributes:
WID
SIZE, RASTERSIZE, POSITION
FONT (and derived)

All controls that are positioned inside a dialog must register all common base attributes.

IUP_SDK_API void iupBaseRegisterVisualAttrib (Iclass * ic)

Register all visual base attributes:
VISIBLE, ACTIVE
ZORDER, X, Y
TIP (and derived)

All controls that are positioned inside a dialog must register all visual base attributes.

IUP_SDK_API void iupBaseRegisterBaseCallbacks (Iclass * ic)

Register all base callbacks:
MAP_CB, UNMAP_CB, DESTROY_CB, LDESTROY_CB.

IUP_SDK_API void iupBaseRegisterCommonCallbacks (Iclass * ic)

Register all base and common callbacks:
MAP_CB, UNMAP_CB, DESTROY_CB, LDESTROY_CB, GETFOCUS_CB, KILLFOCUS_CB, ENTERWINDOW_CB, LEAVEWINDOW_CB,
K_ANY, HELP_CB.

IUP_SDK_API void iupBaseContainerUpdateExpand (Ihandle * ih)

Updates the expand member of the IUP object from the EXPAND attribute. Should be called in the beginning of the ComputeNaturalSize
for a container.

IUP_SDK_API void iupBaseComputeNaturalSize (Ihandle * ih)

Initializes the natural size using the user size, then if a container then update the "expand" member from the EXPAND attribute, then call
iupClassObjectComputeNaturalSize for containers if they have children or call iupClassObjectComputeNaturalSize for non-containers if
user size is not defined. Must be called for each children in the container.
First call is in iupLayoutCompute.

IUP_SDK_API void iupBaseSetCurrentSize (Ihandle * ih,

int w,

int h,

int shrink

)

Update the current size from the available size, the natural size, expand and shrink. Call iupClassObjectSetChildrenCurrentSize for
containers if they have children. Must be called for each children in the container.
First call is in iupLayoutCompute.

IUP_SDK_API void iupBaseSetPosition (Ihandle * ih,

int x,

int y

)

IUP - Portable User Interface 07-Jan-25

455/496

group__iclassbase.html#gae3fa546a65db370c04235e9a5909c3d1
group__iclassbase.html#ga12562165a8a933daa348593dda4d9f51
group__iclassbase.html#ga9bed5fb8fa43100c3c126b1a5002be15
group__iclassbase.html#ga31184573bec1fac3d163b2eab34bdc51
iup__classbase_8h.html
structIclass__.html
structIclass__.html
structIclass__.html
structIclass__.html
group__iclassobject.html#ga2789c3dbcb8d240406d75df7a5466ff3
group__iclassobject.html#ga2789c3dbcb8d240406d75df7a5466ff3
group__iclassobject.html#ga7bf74fbf0cc80fe573bde302625aebd1

Set the current position and update children position for containers. Call iupClassObjectSetChildrenPosition for containers if they have
children. Must be called for each children in the container.
First call is in iupLayoutCompute.

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Functions

Base Class Methods
[Base Class]

Collaboration diagram for Base Class Methods:

Functions

IUP_SDK_API void iupdrvBaseLayoutUpdateMethod (Ihandle *ih)

IUP_SDK_API void iupdrvBaseUnMapMethod (Ihandle *ih)

IUP_SDK_API int iupBaseTypeVoidMapMethod (Ihandle *ih)

Detailed Description

See iup_classbase.h

Function Documentation

IUP_SDK_API void iupdrvBaseLayoutUpdateMethod (Ihandle * ih)

Driver dependent Iclass::LayoutUpdate method.

IUP_SDK_API void iupdrvBaseUnMapMethod (Ihandle * ih)

Driver dependent Iclass::UnMap method.

IUP_SDK_API int iupBaseTypeVoidMapMethod (Ihandle * ih)

Native type void Iclass::Map method.

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Functions

Base Class Attribute Functions
[Base Class]

Collaboration diagram for Base Class Attribute Functions:

Functions

IUP_SDK_API char * iupBaseGetWidAttrib (Ihandle *ih)

IUP_SDK_API int iupBaseSetNameAttrib (Ihandle *ih, const char *value)

IUP_SDK_API int iupBaseSetRasterSizeAttrib (Ihandle *ih, const char *value)

IUP_SDK_API int iupBaseSetSizeAttrib (Ihandle *ih, const char *value)

IUP_SDK_API char * iupBaseGetSizeAttrib (Ihandle *ih)

IUP_SDK_API char * iupBaseGetCurrentSizeAttrib (Ihandle *ih)

IUP_SDK_API char * iupBaseGetRasterSizeAttrib (Ihandle *ih)

IUP_SDK_API char * iupBaseGetClientOffsetAttrib (Ihandle *ih)

IUP - Portable User Interface 07-Jan-25

456/496

group__iclassobject.html#ga34bc4ad41aa28d9488b5de9320936815
http://www.doxygen.org/index.html
group__iclassbase.html
group__iclassbasemethod.html#gacd5e40e33e60d950cde8b1115790355e
group__iclassbasemethod.html#ga1df4d56c14042a9cb22f472e95e0c6d5
group__iclassbasemethod.html#ga48488f8ef60054551a24091c26351ea6
iup__classbase_8h.html
structIclass__.html#a8aaf7138a7fb1a1d2c598187797ac162
structIclass__.html#a772289d3d72fe942471d86ffdf3fc5a9
structIclass__.html#ac31f888d1530bc5995d13befc87b78e1
http://www.doxygen.org/index.html
group__iclassbase.html

IUP_SDK_API char * iupBaseGetClientSizeAttrib (Ihandle *ih)

IUP_SDK_API char * iupBaseCanvasGetClientOffsetAttrib (Ihandle *ih)

IUP_SDK_API char * iupBaseCanvasGetClientSizeAttrib (Ihandle *ih)

IUP_SDK_API int iupBaseSetMaxSizeAttrib (Ihandle *ih, const char *value)

IUP_SDK_API int iupBaseSetMinSizeAttrib (Ihandle *ih, const char *value)

IUP_SDK_API char * iupBaseGetExpandAttrib (Ihandle *ih)

IUP_SDK_API int iupBaseSetExpandAttrib (Ihandle *ih, const char *value)

IUP_SDK_API char * iupBaseGetVisibleAttrib (Ihandle *ih)

IUP_SDK_API int iupBaseSetVisibleAttrib (Ihandle *ih, const char *value)

IUP_SDK_API char * iupBaseGetActiveAttrib (Ihandle *ih)

IUP_SDK_API int iupBaseSetActiveAttrib (Ihandle *ih, const char *value)

IUP_SDK_API int iupdrvBaseSetZorderAttrib (Ihandle *ih, const char *value)

IUP_SDK_API int iupdrvBaseSetTipAttrib (Ihandle *ih, const char *value)

IUP_SDK_API int iupdrvBaseSetTipVisibleAttrib (Ihandle *ih, const char *value)

IUP_SDK_API char * iupdrvBaseGetTipVisibleAttrib (Ihandle *ih)

IUP_SDK_API int iupdrvBaseSetBgColorAttrib (Ihandle *ih, const char *value)

IUP_SDK_API int iupdrvBaseSetFgColorAttrib (Ihandle *ih, const char *value)

IUP_SDK_API char * iupBaseNativeParentGetBgColorAttrib (Ihandle *ih)

IUP_SDK_API int iupBaseSetCPaddingAttrib (Ihandle *ih, const char *value)

IUP_SDK_API char * iupBaseGetCPaddingAttrib (Ihandle *ih)

IUP_SDK_API int iupBaseSetCSpacingAttrib (Ihandle *ih, const char *value)

IUP_SDK_API char * iupBaseGetCSpacingAttrib (Ihandle *ih)

IUP_SDK_API char * iupBaseContainerGetExpandAttrib (Ihandle *ih)

IUP_SDK_API int iupdrvBaseSetCursorAttrib (Ihandle *ih, const char *value)

IUP_SDK_API void iupdrvRegisterDragDropAttrib (Iclass *ic)

IUP_SDK_API int iupBaseNoSaveCheck (Ihandle *ih, const char *name)

Detailed Description

Used by the controls for iupClassRegisterAttribute.

See iup_classbase.h

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Defines | Enumerations | Functions

Base Class Utilities
[Base Class]

Collaboration diagram for Base Class Utilities:

Defines

#define iupMAX(_a, _b) ((_a)>(_b)?(_a):(_b))

#define iupMIN(_a, _b) ((_a)<(_b)?(_a):(_b))

#define iupROUND(_x) ((int)((_x)>0? (_x)+0.5: (_x)-0.5))

#define iupCOLOR8TO16(_x) ((unsigned short)(_x*257))

#define iupCOLOR16TO8(_x) ((unsigned char)(_x/257))

#define iupBYTECROP(_x) ((unsigned char)((_x)<0?0:((_x)>255)?255:(_x)))

#define IUP_ALIGN_ABOTTOM IUP_ALIGN_ARIGHT

#define IUP_ALIGN_ATOP IUP_ALIGN_ALEFT

IUP - Portable User Interface 07-Jan-25

457/496

structIclass__.html
iup__classbase_8h.html
http://www.doxygen.org/index.html
group__iclassbase.html

Enumerations

enum { IUP_ALIGN_ALEFT , IUP_ALIGN_ACENTER, IUP_ALIGN_ARIGHT }

enum { IUP_SB_NONE, IUP_SB_HORIZ, IUP_SB_VERT }

Functions

IUP_SDK_API int iupRound (double x)

IUP_SDK_API int iupBaseGetScrollbar (Ihandle *ih)

IUP_SDK_API char * iupBaseNativeParentGetBgColor (Ihandle *ih)

IUP_SDK_API void iupBaseCallValueChangedCb (Ihandle *ih)

Detailed Description

See iup_classbase.h

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Functions

Class Registration
[Control SDK]

Collaboration diagram for Class Registration:

Functions

IUP_SDK_API Iclass * iupRegisterFindClass (const char *name)

IUP_SDK_API void iupRegisterClass (Iclass *ic)

Detailed Description

All controls are registered so the creation using IupCreate can work.

See iup_register.h

Function Documentation

IUP_SDK_API Iclass* iupRegisterFindClass (const char * name)

Returns a class instance from a class name. The class name must be previously registered using iupRegisterClass.

IUP_SDK_API void iupRegisterClass (Iclass * ic)

Register a class.

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Defines | Functions

Attribute Environment
[Control SDK]

Collaboration diagram for Attribute Environment:

Defines

IUP - Portable User Interface 07-Jan-25

458/496

iup__classbase_8h.html
http://www.doxygen.org/index.html
group__cpi.html
structIclass__.html
group__register.html#ga514a1ac9572abc2b458a4089dd552008
group__register.html#ga08f8e5e26904dc78813eac9149092c84
structIclass__.html
iup__register_8h.html
structIclass__.html
group__register.html#ga08f8e5e26904dc78813eac9149092c84
structIclass__.html
http://www.doxygen.org/index.html
group__cpi.html

#define iupATTRIB_ISINTERNAL(_name) ((_name[0] == '_' && _name[1] == 'I' && _name[2] == 'U' && _name[3] ==
'P')? 1: 0)

Functions

IUP_SDK_API int iupAttribIsNotString (Ihandle *ih, const char *name)

IUP_SDK_API int iupAttribIsIhandle (Ihandle *ih, const char *name)

IUP_SDK_API void iupAttribSet (Ihandle *ih, const char *name, const char *value)

IUP_SDK_API void iupAttribSetStr (Ihandle *ih, const char *name, const char *value)

IUP_SDK_API void iupAttribSetStrf (Ihandle *ih, const char *name, const char *format,...)

IUP_SDK_API void iupAttribSetInt (Ihandle *ih, const char *name, int num)

IUP_SDK_API void iupAttribSetId (Ihandle *ih, const char *name, int id, const char *value)

IUP_SDK_API void iupAttribSetStrId (Ihandle *ih, const char *name, int id, const char *value)

IUP_SDK_API void iupAttribSetId2 (Ihandle *ih, const char *name, int lin, int col, const char *value)

IUP_SDK_API void iupAttribSetStrId2 (Ihandle *ih, const char *name, int lin, int col, const char *value)

IUP_SDK_API void iupAttribSetIntId (Ihandle *ih, const char *name, int id, int num)

IUP_SDK_API void iupAttribSetIntId2 (Ihandle *ih, const char *name, int lin, int col, int num)

IUP_SDK_API void iupAttribSetFloat (Ihandle *ih, const char *name, float num)

IUP_SDK_API void iupAttribSetFloatId (Ihandle *ih, const char *name, int id, float num)

IUP_SDK_API void iupAttribSetFloatId2 (Ihandle *ih, const char *name, int lin, int col, float num)

IUP_SDK_API void iupAttribSetDouble (Ihandle *ih, const char *name, double num)

IUP_SDK_API void iupAttribSetDoubleId (Ihandle *ih, const char *name, int id, double num)

IUP_SDK_API void iupAttribSetDoubleId2 (Ihandle *ih, const char *name, int lin, int col, double num)

IUP_SDK_API char
* iupAttribGet (Ihandle *ih, const char *name)

IUP_SDK_API char
* iupAttribGetStr (Ihandle *ih, const char *name)

IUP_SDK_API int iupAttribGetInt (Ihandle *ih, const char *name)

IUP_SDK_API int iupAttribGetIntInt (Ihandle *ih, const char *name, int *i1, int *i2, char sep)

IUP_SDK_API int iupAttribGetBoolean (Ihandle *ih, const char *name)

IUP_SDK_API float iupAttribGetFloat (Ihandle *ih, const char *name)

IUP_SDK_API
double iupAttribGetDouble (Ihandle *ih, const char *name)

IUP_SDK_API char
* iupAttribGetId (Ihandle *ih, const char *name, int id)

IUP_SDK_API int iupAttribGetIntId (Ihandle *ih, const char *name, int id)

IUP_SDK_API int iupAttribGetBooleanId (Ihandle *ih, const char *name, int id)

IUP_SDK_API float iupAttribGetFloatId (Ihandle *ih, const char *name, int id)

IUP_SDK_API
double iupAttribGetDoubleId (Ihandle *ih, const char *name, int id)

IUP_SDK_API char
* iupAttribGetId2 (Ihandle *ih, const char *name, int lin, int col)

IUP_SDK_API int iupAttribGetIntId2 (Ihandle *ih, const char *name, int lin, int col)

IUP_SDK_API int iupAttribGetBooleanId2 (Ihandle *ih, const char *name, int lin, int col)

IUP_SDK_API float iupAttribGetFloatId2 (Ihandle *ih, const char *name, int lin, int col)

IUP_SDK_API char
* iupAttribGetInherit (Ihandle *ih, const char *name)

IUP_SDK_API char
* iupAttribGetInheritNativeParent (Ihandle *ih, const char *name)

IUP_SDK_API char
* iupAttribGetLocal (Ihandle *ih, const char *name)

IUP_SDK_API void iupAttribParse (Ihandle *ih, const char *str, int save_led_info)

IUP_SDK_API int iupAttribGetAllSaved (Ihandle *ih, char **names, int n)

IUP - Portable User Interface 07-Jan-25

459/496

group__attrib.html#gaec501e88b119f146429c7d77bca29dc8
group__attrib.html#ga79abdddfb43e75a9311c22551d56e08e
group__attrib.html#gad1ebd30b13f795d565a1be65036e85b6
group__attrib.html#ga60263e6e8471d9bddaa3150c9fd02cf4
group__attrib.html#ga5fb68bc351408877dd2cec89981d930a
group__attrib.html#gac706bae7138fb221dff256f86078e152
group__attrib.html#ga5f042abac4511a34469a672dd1256a34
group__attrib.html#ga19895a325d267278bd5bbecaef01c0cf
group__attrib.html#ga8b635ea5a3d621615d87544c83c5501e
group__attrib.html#gaaf87acedde732d71e747c4b4d56d8be4
group__attrib.html#ga6fc645371ad56798f3253c159d61c33e
group__attrib.html#ga143ee6ef82068ff23483b94e32515bec
group__attrib.html#gaa59fbc31b9568c712c6f39e4bf8c3304
group__attrib.html#ga559a3baed11175c114fc3deda923c7c2
group__attrib.html#ga99f0dd8ade88e42167199eb05d5756b0
group__attrib.html#gaff9f98d1216698ccca4a6d1c35067050
group__attrib.html#ga3eb4533d7023adf876c972be0e1d8e4d
group__attrib.html#gad5fa99a0680e84c93d871a2887c43604
group__attrib.html#ga3957a06d0dcf8356f48f819dadbb210c
group__attrib.html#ga8af6d7f2556b9524143ecd968de92535
group__attrib.html#gad6bb86bd78c3156c2cc9a9789e7f558d
group__attrib.html#gab02c3310ed7ad2b6620a64f3866b0390
group__attrib.html#ga29cb8fbdb5224fd527216644d6a51061
group__attrib.html#gafb1be3db99b8d32551765bcd4b11c1ec
group__attrib.html#gabc50098c613694908996925c409711a3
group__attrib.html#ga324a618ec527dffc93f603b482265243
group__attrib.html#gad85e1c680b2f7104459d58afddc8c63f
group__attrib.html#ga9fafb0e89f651fedde4548229f0d1e1d
group__attrib.html#gaf5d6781737913c32caaf99cadb6fb77c
group__attrib.html#gac8cff4e891af8ae96b33ddbee91efb01
group__attrib.html#ga83d5001a923232c02cd7e30d20012988
group__attrib.html#ga5dea876f931eecab838483b49e576f6a
group__attrib.html#ga6cab5a209992dd53cfb69112625a0f47
group__attrib.html#gaac9c778e32f923cae997286ab4444636
group__attrib.html#ga4dbb37e07198c8bdf89e3dc9851e87c3
group__attrib.html#gafdae5373da93540725c99dd9ed4621eb
group__attrib.html#gaa46709449e040a603f43953c9749780e
group__attrib.html#ga40c35f4973f58bc4cc2db6ce5e3f5318
group__attrib.html#gaec5abc162b6e40873c9a654a33e72e08
group__attrib.html#ga37b4e66f821763e26cfbe8a1aed5fd55

IUP_SDK_API void iupAttribSetHandleName (Ihandle *ih)

IUP_SDK_API char
* iupAttribGetHandleName (Ihandle *ih)

IUP_SDK_API void iupAttribSetClassObject (Ihandle *ih, const char *name, const char *value)

Detailed Description

When attributes are not stored at the control they are stored in a hash table (see Hash Table).

As a general rule use:

IupGetAttribute, IupSetAttribute, ... : when care about control implementation, hash table, inheritance and default value
iupAttribGetStr,Int,Float: when care about inheritance, hash table and default value
iupAttribGet,... : ONLY access the hash table These different functions have very different performances and results. So use
them wiselly.

See iup_attrib.h

Define Documentation

#define
iupATTRIB_ISINTERNAL (_name) ((_name[0] == '_' && _name[1] == 'I' && _name[2] == 'U' && _name[3] == 'P')?

1: 0)

Returns true if the attribute name if in the internal format "_IUP...".

Function Documentation

IUP_SDK_API int iupAttribIsNotString (Ihandle * ih,

const char * name

)

Returns true if the attribute name is a known pointer.

IUP_SDK_API int iupAttribIsIhandle (Ihandle * ih,

const char * name

)

Returns true if the attribute name is a known Ihandle*.

IUP_SDK_API void iupAttribSet (Ihandle * ih,

const char * name,

const char * value

)

Sets the attribute only in the hash table as a pointer.
Only generic pointers and constant strings can be set as value.
It ignores children.

IUP_SDK_API void iupAttribSetStr (Ihandle * ih,

const char * name,

const char * value

)

Sets the attribute only in the hash table as a string.
The string is internally duplicated.
It ignores children.

IUP_SDK_API void iupAttribSetStrf (Ihandle * ih,

const char * name,

const char * format,

 ...

)

Sets the attribute only in the hash table as a string.

IUP - Portable User Interface 07-Jan-25

460/496

group__attrib.html#gab4deeedbae05c696d6358a03855a35e7
group__attrib.html#ga07ef1560ad6a4a6eb580b0abd574b67e
group__attrib.html#gab1c8c197a344c73cd1c1eda6675aebee
group__table.html
iup__attrib_8h.html

Sets the attribute only in the hash table as a string.
Use same format as sprintf.
It ignores children.
This is not supposed to be used for very large strings, just for combinations of numeric data or constant strings.

IUP_SDK_API void iupAttribSetInt (Ihandle * ih,

const char * name,

int num

)

Sets an integer attribute only in the hash table.
It will be stored as a string.
It ignores children.

IUP_SDK_API void iupAttribSetId (Ihandle * ih,

const char * name,

int id,

const char * value

)

Same as iupAttribSet with an id.

IUP_SDK_API void iupAttribSetStrId (Ihandle * ih,

const char * name,

int id,

const char * value

)

Same as iupAttribSetStr with an id.

IUP_SDK_API void iupAttribSetId2 (Ihandle * ih,

const char * name,

int lin,

int col,

const char * value

)

Same as iupAttribSet with lin and col.

IUP_SDK_API void iupAttribSetStrId2 (Ihandle * ih,

const char * name,

int lin,

int col,

const char * value

)

Same as iupAttribSetStr with lin and col.

IUP_SDK_API void iupAttribSetIntId (Ihandle * ih,

const char * name,

int id,

int num

)

Same as iupAttribSetInt with an id.

IUP_SDK_API void iupAttribSetIntId2 (Ihandle * ih,

const char * name,

int lin,

int col,

IUP - Portable User Interface 07-Jan-25

461/496

group__attrib.html#ga60263e6e8471d9bddaa3150c9fd02cf4
group__attrib.html#ga5fb68bc351408877dd2cec89981d930a
group__attrib.html#ga60263e6e8471d9bddaa3150c9fd02cf4
group__attrib.html#ga5fb68bc351408877dd2cec89981d930a
group__attrib.html#ga5f042abac4511a34469a672dd1256a34

int num

)

Same as iupAttribSetInt with lin and col.

IUP_SDK_API void iupAttribSetFloat (Ihandle * ih,

const char * name,

float num

)

Sets an floating point attribute only in the hash table.
It will be stored as a string.
It ignores children.

IUP_SDK_API void iupAttribSetFloatId (Ihandle * ih,

const char * name,

int id,

float num

)

Same as iupAttribSetFloat with an id.

IUP_SDK_API void iupAttribSetFloatId2 (Ihandle * ih,

const char * name,

int lin,

int col,

float num

)

Same as iupAttribSetFloat with lin and col.

IUP_SDK_API void iupAttribSetDouble (Ihandle * ih,

const char * name,

double num

)

Sets an floating point attribute only in the hash table.
It will be stored as a string.
It ignores children.

IUP_SDK_API void iupAttribSetDoubleId (Ihandle * ih,

const char * name,

int id,

double num

)

Same as iupAttribSetDouble with an id.

IUP_SDK_API void iupAttribSetDoubleId2 (Ihandle * ih,

const char * name,

int lin,

int col,

double num

)

Same as iupAttribSetDouble with lin and col.

IUP_SDK_API char* iupAttribGet (Ihandle * ih,

const char * name

)

IUP - Portable User Interface 07-Jan-25

462/496

group__attrib.html#ga5f042abac4511a34469a672dd1256a34
group__attrib.html#ga559a3baed11175c114fc3deda923c7c2
group__attrib.html#ga559a3baed11175c114fc3deda923c7c2
group__attrib.html#ga3eb4533d7023adf876c972be0e1d8e4d
group__attrib.html#ga3eb4533d7023adf876c972be0e1d8e4d

Returns the attribute from the hash table only.
NO inheritance, NO control implementation, NO defalt value here.

IUP_SDK_API char* iupAttribGetStr (Ihandle * ih,

const char * name

)

Returns the attribute from the hash table as a string, but if not defined then checks in its parent tree if allowed by the control
implementation, if still not defined then returns the registered default value if any. NO control implementation, only checks inheritance
and default value from it.

IUP_SDK_API int iupAttribGetInt (Ihandle * ih,

const char * name

)

Same as iupAttribGetStr but returns an integer number. Checks also for boolean values.

IUP_SDK_API int iupAttribGetIntInt (Ihandle * ih,

const char * name,

int * i1,

int * i2,

char sep

)

Same as iupAttribGetInt but returns two integer numbers.
Returns the number of valid integers: 0, 1 or 2.

IUP_SDK_API int iupAttribGetBoolean (Ihandle * ih,

const char * name

)

Same as iupAttribGetStr but checks for boolean values. Use iupStrBoolean.

IUP_SDK_API float iupAttribGetFloat (Ihandle * ih,

const char * name

)

Same as iupAttribGetStr but returns an floating point number.

IUP_SDK_API double iupAttribGetDouble (Ihandle * ih,

const char * name

)

Same as iupAttribGetStr but returns an floating point number.

IUP_SDK_API char* iupAttribGetId (Ihandle * ih,

const char * name,

int id

)

Same as iupAttribGet but with an id.

IUP_SDK_API int iupAttribGetIntId (Ihandle * ih,

const char * name,

int id

)

Same as iupAttribGetInt but with an id.

IUP_SDK_API int iupAttribGetBooleanId (Ihandle * ih,

const char * name,

int id

IUP - Portable User Interface 07-Jan-25

463/496

group__attrib.html#gad6bb86bd78c3156c2cc9a9789e7f558d
group__attrib.html#gab02c3310ed7ad2b6620a64f3866b0390
group__attrib.html#gad6bb86bd78c3156c2cc9a9789e7f558d
group__str.html#gaafe1b5cc259297d47418cda1f7848e00
group__attrib.html#gad6bb86bd78c3156c2cc9a9789e7f558d
group__attrib.html#gad6bb86bd78c3156c2cc9a9789e7f558d
group__attrib.html#ga8af6d7f2556b9524143ecd968de92535
group__attrib.html#gab02c3310ed7ad2b6620a64f3866b0390

)

Same as iupAttribGetBoolean but with an id.

IUP_SDK_API float iupAttribGetFloatId (Ihandle * ih,

const char * name,

int id

)

Same as iupAttribGetFloat but with an id.

IUP_SDK_API double iupAttribGetDoubleId (Ihandle * ih,

const char * name,

int id

)

Same as iupAttribGetDouble but with an id.

Same as iupAttribGetDouble but with lin and col.

IUP_SDK_API char* iupAttribGetId2 (Ihandle * ih,

const char * name,

int lin,

int col

)

Same as iupAttribGet but with an lin and col.

IUP_SDK_API int iupAttribGetIntId2 (Ihandle * ih,

const char * name,

int lin,

int col

)

Same as iupAttribGetInt but with lin and col.

IUP_SDK_API int iupAttribGetBooleanId2 (Ihandle * ih,

const char * name,

int lin,

int col

)

Same as iupAttribGetBoolean but with lin and col.

IUP_SDK_API float iupAttribGetFloatId2 (Ihandle * ih,

const char * name,

int lin,

int col

)

Same as iupAttribGetFloat but with lin and col.

IUP_SDK_API char* iupAttribGetInherit (Ihandle * ih,

const char * name

)

Returns the attribute from the hash table only, but if not defined then checks in its parent tree.
NO control implementation, NO defalt value here.
Used for EXPAND and internal attributes inside a dialog.

IUP_SDK_API char* iupAttribGetInheritNativeParent (Ihandle * ih,

IUP - Portable User Interface 07-Jan-25

464/496

group__attrib.html#gafb1be3db99b8d32551765bcd4b11c1ec
group__attrib.html#gabc50098c613694908996925c409711a3
group__attrib.html#ga324a618ec527dffc93f603b482265243
group__attrib.html#ga324a618ec527dffc93f603b482265243
group__attrib.html#ga8af6d7f2556b9524143ecd968de92535
group__attrib.html#gab02c3310ed7ad2b6620a64f3866b0390
group__attrib.html#gafb1be3db99b8d32551765bcd4b11c1ec
group__attrib.html#gabc50098c613694908996925c409711a3

const char * name

)

Returns the attribute from the hash table of a native parent. Don't check for default values. Don't check at the element. Used for BGCOLOR
and BACKGROUND attributes.

IUP_SDK_API char* iupAttribGetLocal (Ihandle * ih,

const char * name

)

Returns the attribute from the hash table as a string, but if not defined then checks in the control implementation, if still not defined then
returns the registered default value if any.
NO inheritance here. Used only in the IupLayoutDialog.

IUP_SDK_API void iupAttribParse (Ihandle * ih,

const char * str,

int save_led_info

)

Parse a string of attributes.

IUP_SDK_API int iupAttribGetAllSaved (Ihandle * ih,

char ** names,

int n

)

Return all saved attributes.

IUP_SDK_API void iupAttribSetHandleName (Ihandle * ih)

Set an internal name to a handle.

IUP_SDK_API char* iupAttribGetHandleName (Ihandle * ih)

Returns the internal name if set.

IUP_SDK_API void iupAttribSetClassObject (Ihandle * ih,

const char * name,

const char * value

)

Sets the attribute only at the element.
If set method is not defined will not be set, neither will be stored in the hash table.
Only generic pointers and constant strings can be set as value.
It ignores children.

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Functions

Child Tree Utilities
[Ihandle Object]

Collaboration diagram for Child Tree Utilities:

Functions

IUP_SDK_API Ihandle * iupChildTreeGetNativeParent (Ihandle *ih)

IUP_SDK_API InativeHandle * iupChildTreeGetNativeParentHandle (Ihandle *ih)

IUP_SDK_API void iupChildTreeAppend (Ihandle *parent, Ihandle *child)

IUP_SDK_API int iupChildTreeIsParent (Ihandle *ih, Ihandle *parent)

IUP - Portable User Interface 07-Jan-25

465/496

http://www.doxygen.org/index.html
group__object.html
group__childtree.html#ga7d9dfeaf3c360a766b743798f0a4904a
group__object.html#gad7c818b0280c1947556ca9cb3ce948b8
group__childtree.html#ga7ca11f10c7a356ee9c51c8d115feeda7
group__childtree.html#gaa25ed3a7a725a938e3421b90e4d40fae
group__childtree.html#ga88eb07a00a75be4fdee069d959dbd619

IUP_SDK_API Ihandle * iupChildTreeGetPrevBrother (Ihandle *ih)

Detailed Description

Some native containers have an internal native child that will be the actual container for the children. This native container is returned
by iupClassObjectGetInnerNativeContainerHandle and it is used in iupChildTreeGetNativeParentHandle.

Some native elements need an extra parent, the ih->handle points to the main element itself, NOT to the extra parent. This extra
parent is stored as "_IUP_EXTRAPARENT". In this case the native parent of ih->handle is the extra parent, and the extra parent is
added as child to the element actual native parent.

See iup_childtree.h

Function Documentation

IUP_SDK_API Ihandle* iupChildTreeGetNativeParent (Ihandle * ih)

Returns the native parent. It simply skips parents that are from IUP_TYPEVOID classes.

IUP_SDK_API InativeHandle* iupChildTreeGetNativeParentHandle (Ihandle * ih)

Returns the native parent handle. Uses iupChildTreeGetNativeParent and iupClassObjectGetInnerNativeContainerHandle.

IUP_SDK_API void iupChildTreeAppend (Ihandle * parent,

Ihandle * child

)

Adds the child directly to the parent tree.

IUP_SDK_API int iupChildTreeIsParent (Ihandle * ih,

Ihandle * parent

)

Checks if the element is in the parent tree.
Which means the element is a grand-parent of parent.

IUP_SDK_API Ihandle* iupChildTreeGetPrevBrother (Ihandle * ih)

Returns the previous brother if any.

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Functions

List of Dialogs
[Control SDK]

Collaboration diagram for List of Dialogs:

Functions

IUP_SDK_API void iupDlgListAdd (Ihandle *ih)

IUP_SDK_API void iupDlgListRemove (Ihandle *ih)

IUP_SDK_API int iupDlgListCount (void)

IUP_SDK_API Ihandle * iupDlgListFirst (void)

IUP_SDK_API Ihandle * iupDlgListNext (void)

IUP_SDK_API void iupDlgListVisibleInc (void)

IUP_SDK_API void iupDlgListVisibleDec (void)

IUP_SDK_API int iupDlgListVisibleCount (void)

IUP - Portable User Interface 07-Jan-25

466/496

group__childtree.html#ga9311e7bb3f13958179edc41edda0a778
group__iclassobject.html#gadf5edf55c89c07e1db738b9c09c3c8e9
iup__childtree_8h.html
group__object.html#gad7c818b0280c1947556ca9cb3ce948b8
group__childtree.html#ga7d9dfeaf3c360a766b743798f0a4904a
group__iclassobject.html#gadf5edf55c89c07e1db738b9c09c3c8e9
http://www.doxygen.org/index.html
group__cpi.html
group__dlglist.html#ga424d8d4841048eeee0636c15b29fc137
group__dlglist.html#ga787e58d735991cbeb63093532bb41a0f
group__dlglist.html#gaf02a037dff6b86ea56a8e2e4651500ee
group__dlglist.html#ga53e9cd6f7eb3cb407b1a79f84a9e343f
group__dlglist.html#ga442e78723c7fed0e0c17fc9637378739
group__dlglist.html#ga3c6cd189529a306052486d1325db2c48
group__dlglist.html#ga0b8ef4f7b897d36bdff6fd67944fbec3
group__dlglist.html#gabaa5dc765ae226c46bfd9776b6ba5920

Detailed Description

See iup_dlglist.h

Function Documentation

IUP_SDK_API void iupDlgListAdd (Ihandle * ih)

Adds a dialog to the list. Used only in IupDialog.

IUP_SDK_API void iupDlgListRemove (Ihandle * ih)

Removes a dialog from the list. Used only in IupDestroy.

IUP_SDK_API int iupDlgListCount (void)

Returns the number of dialogs.

IUP_SDK_API Ihandle* iupDlgListFirst (void)

Starts a loop for all the created dialogs.

IUP_SDK_API Ihandle* iupDlgListNext (void)

Retrieve the next dialog on the list. Must call iupDlgListFirst first.

IUP_SDK_API void iupDlgListVisibleInc (void)

Increments the number of visible dialogs.

IUP_SDK_API void iupDlgListVisibleDec (void)

Decrements the number of visible dialogs.

IUP_SDK_API int iupDlgListVisibleCount (void)

Returns the number of visible dialogs.

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Functions

Keyboard Focus
[Control SDK]

Collaboration diagram for Keyboard Focus:

Functions

IUP_SDK_API int iupFocusCanAccept (Ihandle *ih)

IUP_SDK_API void iupCallGetFocusCb (Ihandle *ih)

IUP_SDK_API void iupCallKillFocusCb (Ihandle *ih)

IUP_SDK_API Ihandle * iupFocusNextInteractive (Ihandle *ih)

Detailed Description

See iup_focus.h

Function Documentation

IUP_SDK_API int iupFocusCanAccept (Ihandle * ih)

Utility to check if a control can have the keyboard input focus. To receive the focus must be interactive, has CANFOCUS=YES, is mapped,

IUP - Portable User Interface 07-Jan-25

467/496

iup__dlglist_8h.html
http://www.doxygen.org/index.html
group__cpi.html
group__focus.html#ga004e81010133a1f6553c21ea000ea33a
group__focus.html#ga9613c6828f184fe7964ca1376c606446
group__focus.html#ga4032fcfe959956bac84958308d1139fd
group__focus.html#ga99fb83c2610f74848d3eb6b42e0f029e
iup__focus_8h.html

Utility to check if a control can have the keyboard input focus. To receive the focus must be interactive, has CANFOCUS=YES, is mapped,
is visible and is active.

IUP_SDK_API void iupCallGetFocusCb (Ihandle * ih)

Call GETFOCUS_CB and FOCUS_CB.

IUP_SDK_API void iupCallKillFocusCb (Ihandle * ih)

Call KILLFOCUS_CB and FOCUS_CB.

IUP_SDK_API Ihandle* iupFocusNextInteractive (Ihandle * ih)

Returns the next interactive brother. Independs if it can receive the focus.

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Functions

Key Coding and Key Callbacks
[Control SDK]

Collaboration diagram for Key Coding and Key Callbacks:

Functions

IUP_SDK_API char * iupKeyCodeToName (int code)

IUP_SDK_API void iupKeyForEach (void(*func)(const char *name, int code, void *user_data), void *user_data)

IUP_SDK_API int iupKeyCallKeyCb (Ihandle *ih, int c)

IUP_SDK_API int iupKeyCallKeyPressCb (Ihandle *ih, int code, int press)

IUP_SDK_API int iupKeyProcessNavigation (Ihandle *ih, int code, int shift)

IUP_SDK_API int iupKeyProcessMnemonic (Ihandle *ih, int code)

IUP_SDK_API void iupKeySetMnemonic (Ihandle *ih, int code, int pos)

Detailed Description

See iup_key.h

Function Documentation

IUP_SDK_API char* iupKeyCodeToName (int code)

Returns the key name from its code. Returns NULL if code not found.

IUP_SDK_API void iupKeyForEach (void(*)(const char *name, int code, void *user_data) func,

void * user_data

)

Calls a function for each defined key.
Used only by the IupLua binding.

IUP_SDK_API int iupKeyCallKeyCb (Ihandle * ih,

int c

)

Calls the K_ANY or K_* callbacks. Should be called when a keyboard event occurred.

IUP_SDK_API int iupKeyCallKeyPressCb (Ihandle * ih,

int code,

int press

IUP - Portable User Interface 07-Jan-25

468/496

http://www.doxygen.org/index.html
group__cpi.html
group__key.html#gabdb702f93ce99100104eb724d89fec7c
group__key.html#ga9ed0a994f1a8435264c8eaa02547c0ee
group__key.html#gab94a91d6002153655e352835fedda9e6
group__key.html#ga2bcdb0481b4fe60ec0383f80fdeef5d0
group__key.html#ga035be26116be6d28752a8e8ec207aaa2
group__key.html#ga157cd1bd0868be30c0f2a18ab6507f5e
group__key.html#ga36e86fe253f905cbfe1ba29f2f7c1f20
iup__key_8h.html

)

Calls the KEYPRESS_CB callback. Should be called when a keyboard event occurred.

IUP_SDK_API int iupKeyProcessNavigation (Ihandle * ih,

int code,

int shift

)

Process Tab, DEFAULTENTER and DEFAULTESC in key press events.

IUP_SDK_API int iupKeyProcessMnemonic (Ihandle * ih,

int code

)

Process mnemonics (Used only in Windows and Motif).

IUP_SDK_API void iupKeySetMnemonic (Ihandle * ih,

int code,

int pos

)

Set a mnemonic (Used only in Windows and Motif).

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Modules | Functions

Driver Interface
Collaboration diagram for Driver Interface:

Modules

 Driver Font Interface

 Driver Information Interface

Functions

IUP_SDK_API int iupdrvSetGlobal (const char *name, const char *value)

IUP_SDK_API char * iupdrvGetGlobal (const char *name)

IUP_SDK_API void iupdrvSetIdleFunction (Icallback func)

IUP_SDK_API void iupdrvScreenToClient (Ihandle *ih, int *x, int *y)

IUP_SDK_API void iupdrvClientToScreen (Ihandle *ih, int *x, int *y)

IUP_SDK_API int iupdrvIsVisible (Ihandle *ih)

IUP_SDK_API int iupdrvIsActive (Ihandle *ih)

IUP_SDK_API void iupdrvSetFocus (Ihandle *ih)

IUP_SDK_API void iupdrvSetVisible (Ihandle *ih, int enable)

IUP_SDK_API void iupdrvSetActive (Ihandle *ih, int enable)

IUP_SDK_API void iupdrvPostRedraw (Ihandle *ih)

IUP_SDK_API void iupdrvRedrawNow (Ihandle *ih)

IUP_SDK_API void iupdrvReparent (Ihandle *ih)

IUP_SDK_API int iupdrvGetScrollbarSize (void)

IUP_SDK_API void iupdrvActivate (Ihandle *ih)

IUP - Portable User Interface 07-Jan-25

469/496

http://www.doxygen.org/index.html
group__drvfont.html
group__drvinfo.html
group__drv.html#ga59895ca76ec6ddcf0045c8f7e43f0a2b
group__drv.html#ga86e18594b6564fb5ca0393474e893ce4
group__drv.html#gaf04d3d6635d3dc170e3d4ebc0b388d24
group__drv.html#ga4b7b7796a08f2ab0142de6b1805cb2c8
group__drv.html#gaeed913ca919d2ae91b5e0745e0a54226
group__drv.html#gac3b6b1b54656a4f19e9bfbc66cb8c1c0
group__drv.html#ga3fde3a485f0bbb7b291d3d7ebef08535
group__drv.html#gaa813529e058a92946eba400ecbcc5d4c
group__drv.html#ga49f65b767d89cb9e03bc577d853ec77f
group__drv.html#gaf31634fe26f088b92fa11e6adbbea9e8
group__drv.html#ga4fdd5fb9bbb04d1a9a9cbf1e48bf9695
group__drv.html#ga8c708a02ebdcca003d980f1a6d2d52c9
group__drv.html#ga4a67c1a19a9a74fd1ad4ab449f743b73
group__drv.html#gadd2d596d70ae6ec122a35ecc3b70df96
group__drv.html#ga2a2760e8a20d835801fac381b588d543

IUP_SDK_API int iupdrvMenuGetMenuBarSize (Ihandle *ih)

IUP_SDK_API void iupdrvSendKey (int key, int press)

IUP_SDK_API void iupdrvSendMouse (int x, int y, int bt, int status)

IUP_SDK_API void iupdrvWarpPointer (int x, int y)

IUP_SDK_API void iupdrvKeyEncode (int key, unsigned int *keyval, unsigned int *state)

IUP_SDK_API void iupdrvSleep (int time)

IUP_SDK_API void iupdrvSetAccessibleTitle (Ihandle *ih, const char *title)

Detailed Description

Each driver must export the symbols defined here.

See iup_drv.h

Function Documentation

IUP_SDK_API int iupdrvSetGlobal (const char * name,

const char * value

)

Sets a global environment attribute. Called from IupSetGlobal and IupStoreGlobal. Must return 1 is process the attribute, or 0 is not.

IUP_SDK_API char* iupdrvGetGlobal (const char * name)

Returns a global environment attribute. Called from IupGetGlobal.

IUP_SDK_API void iupdrvSetIdleFunction (Icallback func)

Changes the idle callback. Called from IupSetFunction.

IUP_SDK_API void iupdrvScreenToClient (Ihandle * ih,

int * x,

int * y

)

Convert the coordinates from screen relative to client area.

IUP_SDK_API void iupdrvClientToScreen (Ihandle * ih,

int * x,

int * y

)

Convert the coordinates from relative client area to screen.

IUP_SDK_API int iupdrvIsVisible (Ihandle * ih)

Returns true if the element is visible.

IUP_SDK_API int iupdrvIsActive (Ihandle * ih)

Returns true if the element is active.

IUP_SDK_API void iupdrvSetFocus (Ihandle * ih)

Actually changes the focus to the given element.

IUP_SDK_API void iupdrvSetVisible (Ihandle * ih,

int enable

)

Changes the visible state of an element. Not used for dialogs.

IUP_SDK_API void iupdrvSetActive (Ihandle * ih,

IUP - Portable User Interface 07-Jan-25

470/496

group__drv.html#ga41ddd6a272e3328cae4fa4a3f80e50d0
group__drv.html#gae7877771ee57e5ad7a297a756115b95b
group__drv.html#ga18182885cde9816419b0c587c71a9b83
group__drv.html#ga38d701aa115a69a8a92551fe8ab3d204
group__drv.html#ga3ac6bc0074570a7ecf696a95d9f484c2
group__drv.html#ga7abc2fe48c30407e32b222e2bad31881
group__drv.html#gacb70f1a5cd22438b6179b597dca52f70
iup__drv_8h.html

int enable

)

Changes the active state of an element.

IUP_SDK_API void iupdrvPostRedraw (Ihandle * ih)

Post a redraw of a control and children.

IUP_SDK_API void iupdrvRedrawNow (Ihandle * ih)

Force a redraw of a control and children.

IUP_SDK_API void iupdrvReparent (Ihandle * ih)

Reparent the native control.

IUP_SDK_API int iupdrvGetScrollbarSize (void)

Size of the scrollbar.

IUP_SDK_API void iupdrvActivate (Ihandle * ih)

Activates a button or toggle.

IUP_SDK_API int iupdrvMenuGetMenuBarSize (Ihandle * ih)

Returns the height of a menu bar.

IUP_SDK_API void iupdrvSendKey (int key,

int press

)

Sends a global keyboard message.

IUP_SDK_API void iupdrvSendMouse (int x,

int y,

int bt,

int status

)

Sends a global mouse message. status: 2=double pressed, 1=pressed, 0=released, -1=move

IUP_SDK_API void iupdrvWarpPointer (int x,

int y

)

Moves the cursor on screen.

IUP_SDK_API void iupdrvKeyEncode (int key,

unsigned int * keyval,

unsigned int * state

)

Translates an IUP key definition into a system definition.

IUP_SDK_API void iupdrvSleep (int time)

Suspends execution for the specified number of milliseconds.

IUP_SDK_API void iupdrvSetAccessibleTitle (Ihandle * ih,

const char * title

)

Sets the accessibility text for screen readers.

IUP - Portable User Interface 07-Jan-25

471/496

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Functions

Driver Font Interface
[Driver Interface]

Collaboration diagram for Driver Font Interface:

Functions

IUP_SDK_API void iupdrvFontGetCharSize (Ihandle *ih, int *charwidth, int *charheight)

IUP_SDK_API int iupdrvFontGetStringWidth (Ihandle *ih, const char *str)

IUP_SDK_API void iupdrvFontGetMultiLineStringSize (Ihandle *ih, const char *str, int *w, int *h)

IUP_SDK_API void iupdrvFontGetTextSize (const char *font, const char *str, int len, int *w, int *h)

IUP_SDK_API void iupdrvFontGetFontDim (const char *font, int *max_width, int *line_height, int *ascent, int *descent)

IUP_SDK_API char
* iupdrvGetSystemFont (void)

IUP_SDK_API int iupdrvSetFontAttrib (Ihandle *ih, const char *value)

IUP_SDK_API char
* iupGetFontValue (Ihandle *ih)

IUP_SDK_API int iupGetFontInfo (const char *font, char *typeface, int *size, int *is_bold, int *is_italic, int *is_underline, int
*is_strikeout)

IUP_SDK_API int iupFontParsePango (const char *value, char *typeface, int *size, int *bold, int *italic, int *underline, int *strikeout)

IUP_SDK_API int iupFontParseWin (const char *value, char *typeface, int *size, int *bold, int *italic, int *underline, int *strikeout)

IUP_SDK_API int iupFontParseX (const char *value, char *typeface, int *size, int *bold, int *italic, int *underline, int *strikeout)

Detailed Description

Each driver must export the symbols defined here.

See iup_drvfont.h

Function Documentation

IUP_SDK_API void iupdrvFontGetCharSize (Ihandle * ih,

int * charwidth,

int * charheight

)

Retrieve the character size for the selected font. Should be used only to calculate the SIZE attribute.

IUP_SDK_API int iupdrvFontGetStringWidth (Ihandle * ih,

const char * str

)

Retrieve the string width for the selected font.

IUP_SDK_API void iupdrvFontGetMultiLineStringSize (Ihandle * ih,

const char * str,

int * w,

int * h

)

Retrieve the multi-lined string size for the selected font.
Width is the maximum line width.
Height is charheight*number_of_lines (this will avoid line size variations).

IUP - Portable User Interface 07-Jan-25

472/496

http://www.doxygen.org/index.html
group__drv.html
group__drvfont.html#ga44747680000f12ac74a5e81561bde487
group__drvfont.html#gad40ff54a2a869e59657615916d326e72
group__drvfont.html#gaeec33226469af4692dda45ef41db8931
group__drvfont.html#gae35048e4f47b591ed53a445306545a7d
group__drvfont.html#gad9850d20cbac822e2408681368b28802
group__drvfont.html#gac080be60e09ae8f4ed883fcbfa526319
group__drvfont.html#ga6e93a454acf388daa4a535db97fbcc52
group__drvfont.html#gaab250b85df5d00ed7482f0ca1b07db2c
group__drvfont.html#ga0509dd4082159171ef53c86b32fafd1f
group__drvfont.html#gad445f5c7f69ca6d308ff84e96423ab76
group__drvfont.html#ga8a6e39d08936b3e5903ebead8b707d1b
group__drvfont.html#ga593979402b60bd1dac287b6877ed1223
iup__drvfont_8h.html

IUP_SDK_API void iupdrvFontGetTextSize (const char * font,

const char * str,

int len,

int * w,

int * h

)

Same as iupdrvFontGetMultiLineStringSize but not associated with a control. Used in IupDraw.

IUP_SDK_API void iupdrvFontGetFontDim (const char * font,

int * max_width,

int * line_height,

int * ascent,

int * descent

)

Returns information about the font.

IUP_SDK_API char* iupdrvGetSystemFont (void)

Returns the System default font.

IUP_SDK_API int iupdrvSetFontAttrib (Ihandle * ih,

const char * value

)

FONT attribute set function.

IUP_SDK_API char* iupGetFontValue (Ihandle * ih)

Compensates IupMatrix limitation in Get FONT.

IUP_SDK_API int iupGetFontInfo (const char * font,

char * typeface,

int * size,

int * is_bold,

int * is_italic,

int * is_underline,

int * is_strikeout

)

Parse the font format description. Returns a non zero value if successful.

IUP_SDK_API int iupFontParsePango (const char * value,

char * typeface,

int * size,

int * bold,

int * italic,

int * underline,

int * strikeout

)

Parse the Pango font format description. Returns a non zero value if successful.

IUP_SDK_API int iupFontParseWin (const char * value,

char * typeface,

int * size,

int * bold,

int * italic,

IUP - Portable User Interface 07-Jan-25

473/496

group__drvfont.html#gaeec33226469af4692dda45ef41db8931

int * underline,

int * strikeout

)

Parse the old IUP Windows font format description. Returns a non zero value if successful.

IUP_SDK_API int iupFontParseX (const char * value,

char * typeface,

int * size,

int * bold,

int * italic,

int * underline,

int * strikeout

)

Parse the X-Windows font format description. Returns a non zero value if successful.

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Functions

Driver Draw API
[Utilities]

Collaboration diagram for Driver Draw API:

Functions

IUP_SDK_API
IdrawCanvas * iupdrvDrawCreateCanvas (Ihandle *ih)

IUP_SDK_API void iupdrvDrawKillCanvas (IdrawCanvas *dc)

IUP_SDK_API void iupdrvDrawFlush (IdrawCanvas *dc)

IUP_SDK_API void iupdrvDrawUpdateSize (IdrawCanvas *dc)

IUP_SDK_API void iupdrvDrawGetSize (IdrawCanvas *dc, int *w, int *h)

IUP_SDK_API void iupdrvDrawLine (IdrawCanvas *dc, int x1, int y1, int x2, int y2, long color, int style, int line_width)

IUP_SDK_API void iupdrvDrawRectangle (IdrawCanvas *dc, int x1, int y1, int x2, int y2, long color, int style, int line_width)

IUP_SDK_API void iupdrvDrawArc (IdrawCanvas *dc, int x1, int y1, int x2, int y2, double a1, double a2, long color, int style, int
line_width)

IUP_SDK_API void iupdrvDrawPolygon (IdrawCanvas *dc, int *points, int count, long color, int style, int line_width)

IUP_SDK_API void iupdrvDrawText (IdrawCanvas *dc, const char *text, int len, int x, int y, int w, int h, long color, const char *font,
int flags, double text_orientation)

IUP_SDK_API void iupdrvDrawImage (IdrawCanvas *dc, const char *name, int make_inactive, const char *bgcolor, int x, int y, int w,
int h)

IUP_SDK_API void iupdrvDrawSetClipRect (IdrawCanvas *dc, int x1, int y1, int x2, int y2)

IUP_SDK_API void iupdrvDrawResetClip (IdrawCanvas *dc)

IUP_SDK_API void iupdrvDrawGetClipRect (IdrawCanvas *dc, int *x1, int *y1, int *x2, int *y2)

IUP_SDK_API void iupdrvDrawSelectRect (IdrawCanvas *dc, int x1, int y1, int x2, int y2)

IUP_SDK_API void iupdrvDrawFocusRect (IdrawCanvas *dc, int x1, int y1, int x2, int y2)

Detailed Description

See iup_drvdraw.h

Function Documentation

IUP - Portable User Interface 07-Jan-25

474/496

http://www.doxygen.org/index.html
group__util.html
group__drvdraw.html#ga4bf25a42d02cd50209c87532c9c0c891
group__drvdraw.html#ga8ff7a7c4ad7ff0848daa695192a82021
group__drvdraw.html#ga26bf1e7f9672bc05d6f36ab6e0e8f7bf
group__drvdraw.html#ga748c4d83cfcc585f94895db255918a58
group__drvdraw.html#ga87924422436eb284dcf419890e3a5b21
group__drvdraw.html#ga5ad58ad680b0c354759b85908cfd0291
group__drvdraw.html#ga643d060319f4ece04277fa32f0523df9
group__drvdraw.html#ga6c889c04dfcd39d090944925290b6d96
group__drvdraw.html#gaba1cce21901e9ebff2479e60ee6a4332
group__drvdraw.html#ga1938e44983f8c7439a7a01b1d7cf7046
group__drvdraw.html#ga4097065594e2866addd4226ee7a64fd3
group__drvdraw.html#ga25d5b014a56dc03b3dce88d0588cedcf
group__drvdraw.html#ga2f1ca11bfc4ae6368687c1d3be976641
group__drvdraw.html#ga4c21a935cb2fff62eb0ba74ccfa77232
group__drvdraw.html#ga0a33b8995ac4df2f0f084d6e55b31944
group__drvdraw.html#ga0019f9bca918bc5c1d79a7b151986d11
iup__drvdraw_8h.html

IUP_SDK_API IdrawCanvas* iupdrvDrawCreateCanvas (Ihandle * ih)

Creates a draw canvas based on an IupCanvas. This will create an image for offscreen drawing.

IUP_SDK_API void iupdrvDrawKillCanvas (IdrawCanvas * dc)

Destroys the IdrawCanvas.

IUP_SDK_API void iupdrvDrawFlush (IdrawCanvas * dc)

Draws the ofscreen image on the screen.

IUP_SDK_API void iupdrvDrawUpdateSize (IdrawCanvas * dc)

Rebuild the offscreen image if the canvas size has changed. Automatically done in iupdrvDrawCreateCanvas.

IUP_SDK_API void iupdrvDrawGetSize (IdrawCanvas * dc,

int * w,

int * h

)

Returns the canvas size available for drawing.

IUP_SDK_API void iupdrvDrawLine (IdrawCanvas * dc,

int x1,

int y1,

int x2,

int y2,

long color,

int style,

int line_width

)

Draws a line.

IUP_SDK_API void iupdrvDrawRectangle (IdrawCanvas * dc,

int x1,

int y1,

int x2,

int y2,

long color,

int style,

int line_width

)

Draws a filled/hollow rectangle.

IUP_SDK_API void iupdrvDrawArc (IdrawCanvas * dc,

int x1,

int y1,

int x2,

int y2,

double a1,

double a2,

long color,

int style,

int line_width

)

Draws a filled/hollow arc.

IUP - Portable User Interface 07-Jan-25

475/496

IUP_SDK_API void iupdrvDrawPolygon (IdrawCanvas * dc,

int * points,

int count,

long color,

int style,

int line_width

)

Draws a filled/hollow polygon. points are arranged xyxyxy...

IUP_SDK_API void iupdrvDrawText (IdrawCanvas * dc,

const char * text,

int len,

int x,

int y,

int w,

int h,

long color,

const char * font,

int flags,

double text_orientation

)

Draws a text. x,y is at left,top corner of the text.

IUP_SDK_API void iupdrvDrawImage (IdrawCanvas * dc,

const char * name,

int make_inactive,

const char * bgcolor,

int x,

int y,

int w,

int h

)

Draws an image. x,y is at left,top corner of the image.

IUP_SDK_API void iupdrvDrawSetClipRect (IdrawCanvas * dc,

int x1,

int y1,

int x2,

int y2

)

Sets a rectangle clipping area.

IUP_SDK_API void iupdrvDrawResetClip (IdrawCanvas * dc)

Removes clipping.

IUP_SDK_API void iupdrvDrawGetClipRect (IdrawCanvas * dc,

int * x1,

int * y1,

int * x2,

int * y2

)

IUP - Portable User Interface 07-Jan-25

476/496

Returns the last rectangle set in iupdrvDrawSetClipRect.

IUP_SDK_API void iupdrvDrawSelectRect (IdrawCanvas * dc,

int x1,

int y1,

int x2,

int y2

)

Draws a selection rectangle.

IUP_SDK_API void iupdrvDrawFocusRect (IdrawCanvas * dc,

int x1,

int y1,

int x2,

int y2

)

Draws a focus rectangle.

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Functions

Driver Information Interface
[Driver Interface]

Collaboration diagram for Driver Information Interface:

Functions

IUP_SDK_API void iupdrvGetFullSize (int *width, int *height)

IUP_SDK_API void iupdrvGetScreenSize (int *width, int *height)

IUP_SDK_API void iupdrvAddScreenOffset (int *x, int *y, int add)

IUP_SDK_API int iupdrvGetScreenDepth (void)

IUP_SDK_API double iupdrvGetScreenDpi (void)

IUP_SDK_API char * iupdrvGetSystemVersion (void)

IUP_SDK_API char * iupdrvGetSystemName (void)

IUP_SDK_API char * iupdrvGetComputerName (void)

IUP_SDK_API char * iupdrvGetUserName (void)

IUP_SDK_API void iupdrvGetKeyState (char *key)

IUP_SDK_API void iupdrvGetCursorPos (int *x, int *y)

IUP_SDK_API void * iupdrvGetDisplay (void)

IUP_SDK_API char * iupdrvLocaleInfo (void)

IUP_SDK_API int iupdrvGetPreferencePath (char *filename, int use_system)

IUP_SDK_API int iupdrvSetCurrentDirectory (const char *dir)

IUP_SDK_API char * iupdrvGetCurrentDirectory (void)

Detailed Description

Each driver must export the symbols defined here. But in this case the functions are shared by different drivers in the same system.

For example, the GTK driver and the Windows driver share the same implementation of these functions when the GTK driver is
compiled in Windows. The GTK driver and the Motif driver share the same implementation of these functions when the GTK driver is
compiled in UNIX.

IUP - Portable User Interface 07-Jan-25

477/496

http://www.doxygen.org/index.html
group__drv.html
group__drvinfo.html#ga9881657b1115e103ab4159d5151b8b15
group__drvinfo.html#ga6d75e67b94090289c9287acffa760e9b
group__drvinfo.html#ga0d68e8a614332447db4775564cc945fc
group__drvinfo.html#ga68b4e5701768c41f1039d6aa17d2f319
group__drvinfo.html#ga059f2ce7f383ec3245733577ac43b4d9
group__drvinfo.html#gaa7f55b46c5cc69dbb58144b22079e929
group__drvinfo.html#ga1013f28650a5ce9c23d2d649ae2491cd
group__drvinfo.html#ga2bb0f77aa6f4530572f0910e521e3b13
group__drvinfo.html#ga94d5f2f170514a546e0fa5dffc46a9dc
group__drvinfo.html#ga34ebbe1028d45ae56bf552a4270dac38
group__drvinfo.html#gacedb5231afba4fbcecc04ac052f1ee40
group__drvinfo.html#ga5333d5784f8c03ea52331709ccee6282
group__drvinfo.html#gaefac580c40b92b78b138ddb2e578ae1b
group__drvinfo.html#gab4bb39374bdcf0c086993fb3f5b11c50
group__drvinfo.html#gaa508512ebebc88763676d1663bd4ea9c
group__drvinfo.html#gadb086afd4e389c3ae2d28dbec947bfc6

See iup_drvinfo.h

Function Documentation

IUP_SDK_API void iupdrvGetFullSize (int * width,

int * height

)

Retrieve the main desktop full size (size of the main monitor).

IUP_SDK_API void iupdrvGetScreenSize (int * width,

int * height

)

Retrieve the main desktop available size (full size less taskbar/menubar space).

IUP_SDK_API void iupdrvAddScreenOffset (int * x,

int * y,

int add

)

Adds the main desktop offset because of a taskbar/menubar positioning. Only useful in Windows. In X-Windows the position of the origin
0,0 is already adjusted to be after the taskbar/menubar.

IUP_SDK_API int iupdrvGetScreenDepth (void)

Retrieve the default desktop bits per pixel.

IUP_SDK_API double iupdrvGetScreenDpi (void)

Retrieve the default desktop resolution in dpi (dots or pixels per inch).

IUP_SDK_API char* iupdrvGetSystemVersion (void)

Returns a string with the system version number.

IUP_SDK_API char* iupdrvGetSystemName (void)

Returns a string with the system name.

IUP_SDK_API char* iupdrvGetComputerName (void)

Returns a string with the computer name.

IUP_SDK_API char* iupdrvGetUserName (void)

Returns a string with the user name.

IUP_SDK_API void iupdrvGetKeyState (char * key)

Returns the key state for Shift, Ctrl, A lt and sYs, in this order. Left and right keys are considered. Should declare "char key[5]". Values
could be space (" ") or "SCAY".

IUP_SDK_API void iupdrvGetCursorPos (int * x,

int * y

)

Returns the current position of the mouse cursor.

IUP_SDK_API void* iupdrvGetDisplay (void)

Returns the driver "Display" in UNIX and NULL in Windows. Must be implemented somewhere else.

IUP_SDK_API char* iupdrvLocaleInfo (void)

Returns the current locale name.

IUP - Portable User Interface 07-Jan-25

478/496

iup__drvinfo_8h.html

IUP_SDK_API int iupdrvGetPreferencePath (char * filename,

int use_system

)

Returns the path to the preference directory. Path will always have a trailing slash. Return 1 on success, 0 on failure.

IUP_SDK_API int iupdrvSetCurrentDirectory (const char * dir)

Changes the current directory.

IUP_SDK_API char* iupdrvGetCurrentDirectory (void)

Returns the current directory.

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Modules

Utilities
Collaboration diagram for Utilities:

Modules

 Simple Array

 Assert Utilities

 Auxiliary Draw API

 Driver Draw API

 Line Base Text File Load API

 Text Mask

 String Utilities

 Hash Table

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Defines

Assert Utilities
[Utilities]

Collaboration diagram for Assert Utilities:

IUP - Portable User Interface 07-Jan-25

479/496

http://www.doxygen.org/index.html
group__iarray.html
group__assert.html
group__auxdraw.html
group__drvdraw.html
group__linefile.html
group__mask.html
group__str.html
group__table.html
http://www.doxygen.org/index.html
group__util.html

Defines

#define iupASSERT(_expr) ((_expr)? (void)0: iupAssert(#_expr, __FILE__, __LINE__, NULL))

#define iupERROR(_msg) iupError(_msg)

Detailed Description

All functions of the main API (Iup***) calls iupASSERT to check the parameters.

The IUP main library must be recompiled with the IUP_ASSERT define to enable these checks. iupASSERT is not called inside driver
dependent functions nor in each control implementation, it is used only in the functions of the main API and in some utilities.

See iup_assert.h

Define Documentation

#define iupASSERT (_expr) ((_expr)? (void)0: iupAssert(#_expr, __FILE__, __LINE__, NULL))

If the expression if false, displays a message with information of the source code where the assert happen.

Parameters:
_expr The evaluated expression.

It is a macro that calls a function only if IUP_ASSERT is defined.

#define iupERROR (_msg) iupError(_msg)

Displays an error message. Also used by the iupASSERT.

It is a macro that calls a function only if IUP_ASSERT is defined.

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Defines

Auxiliary Draw API
[Utilities]

Collaboration diagram for Auxiliary Draw API:

Defines

#define iupDrawCheckSwapCoord(_c1, _c2) { if (_c1 > _c2) { int t = _c2; _c2 = _c1; _c1 = t; } }

Detailed Description

See iup_draw.h

Define Documentation

#define iupDrawCheckSwapCoord (_c1,

 _c2

) { if (_c1 > _c2) { int t = _c2; _c2 = _c1; _c1 = t; } }

Swap integer coordinates if c1 > c2.

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Typedefs | Enumerations | Functions

Hash Table

IUP - Portable User Interface 07-Jan-25

480/496

group__assert.html#gab6b8170febd161e6a73b363e1fab441e
group__assert.html#gab29ff60804b38f114b8a75efe564ee7f
iup__assert_8h.html
http://www.doxygen.org/index.html
group__util.html
group__auxdraw.html#gaba17c662d8d7116370980613ae3646cf
iup__draw_8h.html
http://www.doxygen.org/index.html

[Utilities]

Collaboration diagram for Hash Table:

Typedefs

typedef enum _Itable_IndexTypes Itable_IndexTypes

typedef enum _Itable_Types Itable_Types

Enumerations

enum _Itable_IndexTypes { IUPTABLE_POINTERINDEXED = 10, IUPTABLE_STRINGINDEXED }

enum _Itable_Types { IUPTABLE_POINTER, IUPTABLE_STRING, IUPTABLE_FUNCPOINTER }

Functions

IUP_SDK_API Itable * iupTableCreate (Itable_IndexTypes indexType)

IUP_SDK_API Itable * iupTableCreateSized (Itable_IndexTypes indexType, unsigned int initialSizeIndex)

IUP_SDK_API void iupTableDestroy (Itable *it)

IUP_SDK_API void iupTableClear (Itable *it)

IUP_SDK_API int iupTableCount (Itable *it)

IUP_SDK_API void iupTableSet (Itable *it, const char *key, void *value, Itable_Types itemType)

IUP_SDK_API void iupTableSetFunc (Itable *it, const char *key, Ifunc func)

IUP_SDK_API void * iupTableGet (Itable *it, const char *key)

IUP_SDK_API Ifunc iupTableGetFunc (Itable *it, const char *key, void **value)

IUP_SDK_API void * iupTableGetTyped (Itable *it, const char *key, Itable_Types *itemType)

IUP_SDK_API void iupTableRemove (Itable *it, const char *key)

IUP_SDK_API char * iupTableFirst (Itable *it)

IUP_SDK_API char * iupTableNext (Itable *it)

IUP_SDK_API void * iupTableGetCurr (Itable *it)

IUP_SDK_API int iupTableGetCurrType (Itable *it)

IUP_SDK_API void iupTableSetCurr (Itable *it, void *value, Itable_Types itemType)

IUP_SDK_API char * iupTableRemoveCurr (Itable *it)

Detailed Description

The hash table can be indexed by strings or pointer address, and each value can contain strings, pointers or function pointers.

See iup_table.h

Typedef Documentation

typedef enum _Itable_IndexTypes Itable_IndexTypes

How the table key is interpreted.

typedef enum _Itable_Types Itable_Types

How the value is interpreted.

Enumeration Type Documentation

enum _Itable_IndexTypes

IUP - Portable User Interface 07-Jan-25

481/496

group__util.html
group__table.html#gaf820ec3a8fd1c3c46b1eb2b77cdf98de
group__table.html#ga0cbf84fe9da3037805094d91d3d4801d
group__table.html#gaf2d7d504765bc5a3c20cfa01ff4b130b
group__table.html#gaf34e46c7cc30e15cef05f9fcb2b2244c
group__table.html#gaf820ec3a8fd1c3c46b1eb2b77cdf98de
group__table.html#ggaf820ec3a8fd1c3c46b1eb2b77cdf98dea4a4a1d105cb01b0c968972f8253da25d
group__table.html#ggaf820ec3a8fd1c3c46b1eb2b77cdf98dea00170e928fe64ac7108b55afd39c84bc
group__table.html#gaf2d7d504765bc5a3c20cfa01ff4b130b
group__table.html#ggaf2d7d504765bc5a3c20cfa01ff4b130baf096addeeae77f553551e0dcb4c7fc3f
group__table.html#ggaf2d7d504765bc5a3c20cfa01ff4b130bae310d5a6443b9989a0501da09aff294f
group__table.html#ggaf2d7d504765bc5a3c20cfa01ff4b130ba33627204336c8d055cd04c7f4bdc2285
group__table.html#gaa97dd8581ca41889688ad64272ca78e8
group__table.html#ga0cbf84fe9da3037805094d91d3d4801d
group__table.html#gaac0e410414b892cf62f61997826a8f93
group__table.html#ga0cbf84fe9da3037805094d91d3d4801d
group__table.html#ga0de9084f23791376af7de7867f28bc75
group__table.html#ga1420eb5125f2f15d9b3886bbbcb923e2
group__table.html#gac5f3f13685eabfd32091667dc5a5d89a
group__table.html#ga697a021d8a1fcaf44aa9e832bdb0de0c
group__table.html#gaf34e46c7cc30e15cef05f9fcb2b2244c
group__table.html#ga1afdaa804006829ed725169ed8acc227
group__table.html#ga4023a5b6fa227dce5835f0398200ad99
group__table.html#ga2f4cd20c21e54d74aa6061bfde50aa7b
group__table.html#gaac0afdfa06e169e400657cbcd8adbf57
group__table.html#gaf34e46c7cc30e15cef05f9fcb2b2244c
group__table.html#ga9c95bcf51ecc3d2286db8dbc964f047e
group__table.html#ga60351c28b7750fa6c2a434da6c12d32b
group__table.html#ga9a0044256b299b7f9c9052185a2b0ff4
group__table.html#ga058c97630b8a2eeb6b0e1c484adff047
group__table.html#ga572d602b5f4ae59e1784e5f480bca805
group__table.html#gab34f597231da4e21677a659416977b73
group__table.html#gaf34e46c7cc30e15cef05f9fcb2b2244c
group__table.html#gac940ca7896826ee4569dc38fdbc370b6
iup__table_8h.html
group__table.html#gaf820ec3a8fd1c3c46b1eb2b77cdf98de
group__table.html#ga0cbf84fe9da3037805094d91d3d4801d
group__table.html#gaf2d7d504765bc5a3c20cfa01ff4b130b
group__table.html#gaf34e46c7cc30e15cef05f9fcb2b2244c
group__table.html#gaf820ec3a8fd1c3c46b1eb2b77cdf98de

How the table key is interpreted.

Enumerator:
IUPTABLE_POINTERINDEXED

a pointer address is used as key.

IUPTABLE_STRINGINDEXED
a string as key

enum _Itable_Types

How the value is interpreted.

Enumerator:
IUPTABLE_POINTER

regular pointer for strings and other pointers

IUPTABLE_STRING
string duplicated internally

IUPTABLE_FUNCPOINTER
function pointer

Function Documentation

IUP_SDK_API Itable* iupTableCreate (Itable_IndexTypes indexType)

Creates a hash table with an initial default size. This function is equivalent to iupTableCreateSized(0);

IUP_SDK_API Itable* iupTableCreateSized (Itable_IndexTypes indexType,

unsigned int initialSizeIndex

)

Creates a hash table with the specified initial size. Use this function if you expect the table to become very large. initialSizeIndex is an
array into the (internal) list of possible hash table sizes. Currently only indexes from 0 to 8 are supported. If you specify a higher value
here, the maximum allowed value will be used.

IUP_SDK_API void iupTableDestroy (Itable * it)

Destroys the Itable. Calls iupTableClear.

IUP_SDK_API void iupTableClear (Itable * it)

Removes all items in the table. This function does also free the memory of strings contained in the table!!!!

IUP_SDK_API int iupTableCount (Itable * it)

Returns the number of keys stored in the table.

IUP_SDK_API void iupTableSet (Itable * it,

const char * key,

void * value,

Itable_Types itemType

)

Store an element in the table.

IUP_SDK_API void iupTableSetFunc (Itable * it,

const char * key,

Ifunc func

)

Store a function pointer in the table. Type is set to IUPTABLE_FUNCPOINTER.

IUP_SDK_API void* iupTableGet (Itable * it,

IUP - Portable User Interface 07-Jan-25

482/496

group__table.html#gaf2d7d504765bc5a3c20cfa01ff4b130b
group__table.html#ga0cbf84fe9da3037805094d91d3d4801d
group__table.html#ga0cbf84fe9da3037805094d91d3d4801d
group__table.html#ga1420eb5125f2f15d9b3886bbbcb923e2
group__table.html#gaf34e46c7cc30e15cef05f9fcb2b2244c

const char * key

)

Retrieves an element from the table. Returns NULL if not found.

IUP_SDK_API Ifunc iupTableGetFunc (Itable * it,

const char * key,

void ** value

)

Retrieves a function pointer from the table. If not a function or not found returns NULL. value always contains the element pointer.

IUP_SDK_API void* iupTableGetTyped (Itable * it,

const char * key,

Itable_Types * itemType

)

Retrieves an element from the table and its type.

IUP_SDK_API void iupTableRemove (Itable * it,

const char * key

)

Removes the entry at the specified key from the hash table and frees the memory used by it if it is a string...

IUP_SDK_API char* iupTableFirst (Itable * it)

Key iteration function. Returns a key. To iterate over all keys call iupTableFirst at the first and call iupTableNext in a loop until 0 is
returned... Do NOT change the content of the hash table during iteration. During an iteration you can use context with iupTableGetCurr()
to access the value of the key very fast.

IUP_SDK_API char* iupTableNext (Itable * it)

Key iteration function. See iupTableNext.

IUP_SDK_API void* iupTableGetCurr (Itable * it)

Returns the value at the current position.
The current context is an iterator that is filled by iupTableNext().
iupTableGetCur() is faster then iupTableGet(), so when you want to access an item stored at a key returned by iupTableNext(), use this
function instead of iupTableGet().

IUP_SDK_API int iupTableGetCurrType (Itable * it)

Returns the type at the current position.
Same as iupTableGetCurr but returns the type. Returns -1 if failed.

IUP_SDK_API void iupTableSetCurr (Itable * it,

void * value,

Itable_Types itemType

)

Replaces the data at the current position.

IUP_SDK_API char* iupTableRemoveCurr (Itable * it)

Removes the current element and returns the next key. Use this function to remove an element during an iteration.

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Functions

Line Base Text File Load API
[Utilities]

Collaboration diagram for Line Base Text File Load API:

IUP - Portable User Interface 07-Jan-25

483/496

group__table.html#gaf34e46c7cc30e15cef05f9fcb2b2244c
group__table.html#ga058c97630b8a2eeb6b0e1c484adff047
group__table.html#ga9a0044256b299b7f9c9052185a2b0ff4
group__table.html#ga9a0044256b299b7f9c9052185a2b0ff4
group__table.html#ga4023a5b6fa227dce5835f0398200ad99
group__table.html#ga9a0044256b299b7f9c9052185a2b0ff4
group__table.html#ga4023a5b6fa227dce5835f0398200ad99
group__table.html#ga058c97630b8a2eeb6b0e1c484adff047
group__table.html#gaf34e46c7cc30e15cef05f9fcb2b2244c
http://www.doxygen.org/index.html
group__util.html

Functions

IUP_SDK_API IlineFile * iupLineFileOpen (const char *filename)

IUP_SDK_API void iupLineFileClose (IlineFile *line_file)

IUP_SDK_API int iupLineFileReadLine (IlineFile *line_file)

IUP_SDK_API const char * iupLineFileGetBuffer (IlineFile *line_file)

IUP_SDK_API int iupLineFileEOF (IlineFile *line_file)

Detailed Description

See iup_linefile.h

Function Documentation

IUP_SDK_API IlineFile* iupLineFileOpen (const char * filename)

Opens an existing file. Returns NULL if failed.

IUP_SDK_API void iupLineFileClose (IlineFile * line_file)

Closes the file.

IUP_SDK_API int iupLineFileReadLine (IlineFile * line_file)

Reads a line from the file. Returns -1 if failed, otherwise returns the line size.

IUP_SDK_API const char* iupLineFileGetBuffer (IlineFile * line_file)

Returns the buffer used to read the line.

IUP_SDK_API int iupLineFileEOF (IlineFile * line_file)

Returns a non zero value if reached the end of the file.

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Functions

Simple Array
[Utilities]

Collaboration diagram for Simple Array:

Functions

IUP_SDK_API Iarray * iupArrayCreate (int start_max_count, int elem_size)

IUP_SDK_API void iupArrayDestroy (Iarray *iarray)

IUP_SDK_API void * iupArrayGetData (Iarray *iarray)

IUP_SDK_API void * iupArrayReleaseData (Iarray *iarray)

IUP_SDK_API void * iupArrayInc (Iarray *iarray)

IUP_SDK_API void * iupArrayAdd (Iarray *iarray, int add_count)

IUP_SDK_API void * iupArrayInsert (Iarray *iarray, int index, int insert_count)

IUP_SDK_API void iupArrayRemove (Iarray *iarray, int index, int remove_count)

IUP_SDK_API int iupArrayCount (Iarray *iarray)

IUP - Portable User Interface 07-Jan-25

484/496

group__linefile.html#gabc2e1169c7c402443b1ddb013c97c9ee
group__linefile.html#ga2628e5811cd70d58a8f8d7edd1518bb2
group__linefile.html#gadd0f02a559f076cb2f64eba6e6811043
group__linefile.html#gaa60376589df51b7e23806dc1b2709846
group__linefile.html#ga3f2740685c66d456b6d2318aee004a07
iup__linefile_8h.html
http://www.doxygen.org/index.html
group__util.html
group__iarray.html#ga847e0da8e571d6d669e1bc97fbb923a0
group__iarray.html#gad30748c9c2b7b716371d62c6af5c827a
group__iarray.html#gaf1f145a494b810f050a331d287f638eb
group__iarray.html#gad28e128efaf8b4cbb37c9df9bb1c1e9c
group__iarray.html#ga7be196a335b33a44698f25d4f0849f09
group__iarray.html#ga0455eb7a0acabd8b772b565252b7e2c5
group__iarray.html#ga0ae8737f1e372341a23701a5119c6b9f
group__iarray.html#ga2cbaf775416e77defb09e79a9c5f6b78
group__iarray.html#gae3f7bcbdcac5e25f0655e261f447f803

Detailed Description

Expandable array using a simple pointer.

See iup_array.h

Function Documentation

IUP_SDK_API Iarray* iupArrayCreate (int start_max_count,

int elem_size

)

Creates an array with an initial room for elements, and the element size. The array count starts at 0. And the maximum number of
elements starts at the given count. The maximum number of elements is increased by the start_max_count, every time it needs more
memory. Data is always initialized with zeros. Must call iupArrayInc, iupArrayAdd or iupArrayInsert to properly increase the number of
elements.

IUP_SDK_API void iupArrayDestroy (Iarray * iarray)

Destroys the array.

IUP_SDK_API void* iupArrayGetData (Iarray * iarray)

Returns the pointer that contains the array.

IUP_SDK_API void* iupArrayReleaseData (Iarray * iarray)

Returns the pointer that contains the array, but also release it to be used elsewhere.

IUP_SDK_API void* iupArrayInc (Iarray * iarray)

Increments the number of elements in the array. The array count starts at 0. If the maximum number of elements is reached, the memory
allocated is increased by the initial start count. Data is always initialized with zeros. Returns the pointer that contains the array.

IUP_SDK_API void* iupArrayAdd (Iarray * iarray,

int add_count

)

Increments the number of elements in the array by a given count. New space is allocated at the end of the array. If the maximum number
of elements is reached, the memory allocated is increased by the given count. Data is always initialized with zeros. Returns the pointer that
contains the array.

IUP_SDK_API void* iupArrayInsert (Iarray * iarray,

int index,

int insert_count

)

Increments the number of elements in the array by a given count and moves the data so the new space starts at index. If the maximum
number of elements is reached, the memory allocated is increased by the given count. Data is always initialized with zeros. Returns the
pointer that contains the array.

IUP_SDK_API void iupArrayRemove (Iarray * iarray,

int index,

int remove_count

)

Remove the number of elements from the array. Memory allocation remains the same.

IUP_SDK_API int iupArrayCount (Iarray * iarray)

Returns the actual number of elements in the array.

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Defines | Enumerations | Functions

String Utilities

IUP - Portable User Interface 07-Jan-25

485/496

iup__array_8h.html
group__iarray.html#ga7be196a335b33a44698f25d4f0849f09
group__iarray.html#ga0455eb7a0acabd8b772b565252b7e2c5
group__iarray.html#ga0ae8737f1e372341a23701a5119c6b9f
http://www.doxygen.org/index.html

[Utilities]

Collaboration diagram for String Utilities:

Defines

#define iup_isdigit(_c) (_c>='0' && _c<='9')

#define iup_toupper(_c) ((_c >= 'a' && _c <= 'z')? (_c - 'a') + 'A ': _c)

#define iup_tolower(_c) ((_c >= 'A ' && _c <= 'Z')? (_c - 'A ') + 'a': _c)

#define IUP_FLOAT2STR "%.9f"

#define IUP_DOUBLE2STR "%.18f"

Enumerations

enum { IUP_CASE_UPPER, IUP_CASE_LOWER, IUP_CASE_TOGGLE, IUP_CASE_TITLE }

Functions

IUP_SDK_API int iupStrEqual (const char *str1, const char *str2)

IUP_SDK_API int iupStrEqualNoCase (const char *str1, const char *str2)

IUP_SDK_API int iupStrEqualNoCaseNoSpace (const char *str1, const char *str2)

IUP_SDK_API int iupStrEqualPartial (const char *str1, const char *str2)

IUP_SDK_API int iupStrEqualNoCasePartial (const char *str1, const char *str2)

IUP_SDK_API int iupStrBoolean (const char *str)

IUP_SDK_API int iupStrFalse (const char *str)

IUP_SDK_API int iupStrLineCount (const char *str, int len)

IUP_SDK_API const char * iupStrNextLine (const char *str, int *len)

IUP_SDK_API const char * iupStrNextValue (const char *str, int str_len, int *len, char sep)

IUP_SDK_API int iupStrCountChar (const char *str, char c)

IUP_SDK_API char * iupStrDup (const char *str)

IUP_SDK_API char * iupStrDupUntil (const char **str, char c)

IUP_SDK_API void iupStrCopyN (char *dst_str, int dst_max_size, const char *src_str)

IUP_SDK_API char * iupStrGetMemory (int size)

IUP_SDK_API char * iupStrGetLargeMem (int *size)

IUP_SDK_API void iupStrLower (char *dstr, const char *sstr)

IUP_SDK_API void iupStrUpper (char *dstr, const char *sstr)

IUP_SDK_API int iupStrHasSpace (const char *str)

IUP_SDK_API int iupStrIsAscii (const char *str)

IUP_SDK_API char * iupStrReturnStrf (const char *format,...)

IUP_SDK_API char * iupStrReturnStr (const char *str)

IUP_SDK_API char * iupStrReturnBoolean (int i)

IUP_SDK_API char * iupStrReturnChecked (int i)

IUP_SDK_API char * iupStrReturnInt (int i)

IUP_SDK_API char * iupStrReturnUInt (unsigned int i)

IUP_SDK_API char * iupStrReturnFloat (float f)

IUP_SDK_API char * iupStrReturnDouble (double d)

IUP_SDK_API char * iupStrReturnRGB (unsigned char r, unsigned char g, unsigned char b)

IUP_SDK_API char * iupStrReturnRGBA (unsigned char r, unsigned char g, unsigned char b, unsigned char a)

IUP_SDK_API char * iupStrReturnStrStr (const char *str1, const char *str2, char sep)

IUP_SDK_API char * iupStrReturnIntInt (int i1, int i2, char sep)

IUP - Portable User Interface 07-Jan-25

486/496

group__util.html
group__str.html#ga8bfc12f02463bb4b843ee7d580441195
group__str.html#ga38c695866adcf6e2c4253f798406f280
group__str.html#ga54286fd8d3ed76577d7258f5bceb2c6c
group__str.html#ga4b501af92deb6a79047183827e1e085b
group__str.html#ga62c092307ec64c69d4d336792ccd81d7
group__str.html#ga00ca707e5fac2609580c902056dd4a08
group__str.html#ga22beb52b3592c694a5fab72583c92439
group__str.html#ga55022a701d2de566241900134ff04048
group__str.html#ga7852b30ed35fc5adca0ecc6e61bcb59e
group__str.html#ga3b9389ec4a2abba15257e1cb249edb3c
group__str.html#gaafe1b5cc259297d47418cda1f7848e00
group__str.html#gae01ceb64dfc3ff8d827c8d49729434dd
group__str.html#ga2dcade2d31e969e9337166acb399a8a5
group__str.html#gaa008bae4e2fe1bfa41c0a0d7506f6ea0
group__str.html#gaa52d7fae8068d640a6f43a5699f2a167
group__str.html#ga93ba39944e2e46e3497c79654a51869b
group__str.html#ga27d536aba9e2766b586433258b7ba220
group__str.html#ga4ab5a34ed880a83e0a0c92b7ffd79062
group__str.html#gadb2fbc4399ef18d31d3853a3f9017273
group__str.html#ga8b9bf257fd506f05cd4af992f594ecec
group__str.html#gae80e1887bc1d66bbe9b0fde5df56285a
group__str.html#gab7f52fe9c251f1ed8cf42a46c772cec2
group__str.html#ga1647690acd2dd09f818e3fbe7a8fa4c1
group__str.html#ga9824b697588bfd0d497962d6600236af
group__str.html#ga8cead1eccea8c72fa8975ae1c3849f1a
group__str.html#ga859b5e84b0afcfe4cba750f6dea2f9ca
group__str.html#ga1eb30361fe032b7f4eea3fe7d0d059c8
group__str.html#gae5b3213886247ca3629b903387583f2c
group__str.html#gaade1f7eb8cd376390bacb9d7c4a52068
group__str.html#ga15176deaeb16fc1e3daaf518d1e46d94
group__str.html#gaf312044a6428088e305de0dedc127701
group__str.html#ga97a6f1a84d36f7dc3e320e2bf5a97f85
group__str.html#ga99731cc36eecc7e86a84050bfbb1ddca
group__str.html#ga36b3fb2922720c126a926ce98ba6e739
group__str.html#ga0e561c5e5ca3025961b800a95209f16e
group__str.html#ga57a36757b9a246ff627c657207ce9511
group__str.html#ga8cbf3300757f07dca0beb966b18c7095

IUP_SDK_API int iupStrGetFormatPrecision (const char *format)

IUP_SDK_API void iupStrPrintfDoubleLocale (char *str, const char *format, double d, const char *decimal_symbol)

IUP_SDK_API int iupStrToRGB (const char *str, unsigned char *r, unsigned char *g, unsigned char *b)

IUP_SDK_API int iupStrToRGBA (const char *str, unsigned char *r, unsigned char *g, unsigned char *b, unsigned char *a)

IUP_SDK_API int iupStrToInt (const char *str, int *i)

IUP_SDK_API int iupStrToUInt (const char *str, unsigned int *i)

IUP_SDK_API int iupStrToIntInt (const char *str, int *i1, int *i2, char sep)

IUP_SDK_API int iupStrToFloat (const char *str, float *f)

IUP_SDK_API int iupStrToDouble (const char *str, double *d)

IUP_SDK_API int iupStrToDoubleLocale (const char *str, double *d, const char *decimal_symbol)

IUP_SDK_API int iupStrToFloatFloat (const char *str, float *f1, float *f2, char sep)

IUP_SDK_API int iupStrToDoubleDouble (const char *str, double *f1, double *f2, char sep)

IUP_SDK_API int iupStrToStrStr (const char *str, char *str1, char *str2, char sep)

IUP_SDK_API char * iupStrFileGetExt (const char *filename)

IUP_SDK_API char * iupStrFileGetTitle (const char *filename)

IUP_SDK_API char * iupStrFileGetPath (const char *filename)

IUP_SDK_API char * iupStrFileMakeFileName (const char *path, const char *title)

IUP_SDK_API char * iupStrFileMakeURL (const char *filename)

IUP_SDK_API void iupStrFileNameSplit (const char *filename, char *path, char *title)

IUP_SDK_API int iupStrTmpFileName (char *filename, const char *prefix)

IUP_SDK_API int iupStrReplace (char *str, char src, char dst)

IUP_SDK_API void iupStrReplaceReserved (char *str, char c)

IUP_SDK_API void iupStrToUnix (char *str)

IUP_SDK_API void iupStrToMac (char *str)

IUP_SDK_API char * iupStrToDos (const char *str)

IUP_SDK_API char * iupStrConvertToC (const char *str)

IUP_SDK_API void iupStrRemove (char *value, int start, int end, int dir, int utf8)

IUP_SDK_API char * iupStrInsert (const char *value, const char *insert_value, int start, int end, int utf8)

IUP_SDK_API char * iupStrProcessMnemonic (const char *str, char *c, int action)

IUP_SDK_API int iupStrFindMnemonic (const char *str)

IUP_SDK_API int iupStrCompare (const char *str1, const char *str2, int casesensitive, int utf8)

IUP_SDK_API int iupStrCompareEqual (const char *str1, const char *str2, int casesensitive, int utf8, int partial)

IUP_SDK_API int iupStrCompareFind (const char *str1, const char *str2, int casesensitive, int utf8)

IUP_SDK_API void iupStrChangeCase (char *dstr, const char *sstr, int case_flag, int utf8)

Detailed Description

See iup_str.h

Define Documentation

#define iup_isdigit (_c) (_c>='0' && _c<='9')

Checks if the character is a digit.

#define iup_toupper (_c) ((_c >= 'a' && _c <= 'z')? (_c - 'a') + 'A ': _c)

Converts a character into upper case.
It will work only for character codes <128.

#define iup_tolower (_c) ((_c >= 'A ' && _c <= 'Z')? (_c - 'A ') + 'a': _c)

Converts a character into lower case.
It will work only for character codes <128.

IUP - Portable User Interface 07-Jan-25

487/496

group__str.html#ga415d13781942a0e844a35be0ee8ff5a1
group__str.html#ga69d4b10dd3ce9b46fa0a69d393527a0f
group__str.html#gae7189c6acb73735ee802c82cecdcde1a
group__str.html#ga3e35a2cc92ba247dd15d578bbe7943f8
group__str.html#ga8d912adc00774a276991db90e5d09882
group__str.html#ga41fe6e90c92e86b769de532454b9b040
group__str.html#gade43076a62a3ae42029aa9633b00f01b
group__str.html#ga13ac6163f23d46efe6f478ef844d9cd2
group__str.html#ga59ed7ea2779c181dd0dee9e7a011bfed
group__str.html#gaa0770b4758ee5a17f2cc5015d1b37aa2
group__str.html#ga026d80afbdcde61488119f8a2319998b
group__str.html#ga05d0bb72f1bdeb5c2c1a71cc6ee9f41e
group__str.html#ga6bd14af0328f875833fb1d1240cd03b2
group__str.html#ga0615e796eb9ed330b690c078f3ccc021
group__str.html#gacc5eec3f11f97f5398c9c17b08b5d6f7
group__str.html#ga41052b5c9318c3698d7c3ff0f5b7026d
group__str.html#ga77bf431a7ee1facb660a23e14672c21a
group__str.html#gac558387e07f38535cd41962e27b77905
group__str.html#ga996a988b195bca328b58bd80e30c32b0
group__str.html#gae0cb917a12298e9e3c0baea3e96e5d0b
group__str.html#gabd071cffc0f636ccc5061608155f3739
group__str.html#ga85f06333c7e70eae8cbe7cc9e8aa12c3
group__str.html#gae7aeffef8a99b3ed07b7b75b688fc525
group__str.html#ga7f6dec6385bd46ce68cb35ca6a06e53f
group__str.html#gabe72e0fe7de4173ff6c78350f2a4d824
group__str.html#ga75e05a9a0b1db44789438c5ca29002f6
group__str.html#ga2f1b66fdd8b2fb85ff77aae0105ceed7
group__str.html#ga569d83e2b80f8cb1622cf803770a86ab
group__str.html#ga5d3a3c51b0adbef5e484994dd81d8809
group__str.html#ga259ea22940c446fa6482b1ac7c7cf81a
group__str.html#ga50f8799c87341d746b5fdcfca8189fd9
group__str.html#gaf71feac77392e7f2b9230f1125ee4387
group__str.html#ga56356f42a1dcef5012fb7db755cab356
group__str.html#ga118fc11bd9126b7168488baee84f7cc4
iup__str_8h.html

#define IUP_FLOAT2STR "%.9f"

maximum float precision

#define IUP_DOUBLE2STR "%.18f"

maximum double precision

Enumeration Type Documentation

anonymous enum

Case conversion available for iupStrChangeCase.

Function Documentation

IUP_SDK_API int iupStrEqual (const char * str1,

const char * str2

)

Returns a non zero value if the two strings are equal. str1 or str2 can be NULL.

IUP_SDK_API int iupStrEqualNoCase (const char * str1,

const char * str2

)

Returns a non zero value if the two strings are equal but ignores case. str1 or str2 can be NULL. It will work only for character codes
<128.

IUP_SDK_API int iupStrEqualNoCaseNoSpace (const char * str1,

const char * str2

)

Returns a non zero value if the two strings are equal but ignores case and spaces.
str1 or str2 can be NULL.
It will work only for character codes <128.

IUP_SDK_API int iupStrEqualPartial (const char * str1,

const char * str2

)

Returns a non zero value if the two strings are equal up to a number of characters defined by the strlen of the second string.
str1 or str2 can be NULL.

IUP_SDK_API int iupStrEqualNoCasePartial (const char * str1,

const char * str2

)

Returns a non zero value if the two strings are equal but ignores case up to a number of characters defined by the strlen of the second
string.
str1 or str2 can be NULL.
It will work only for character codes <128.

IUP_SDK_API int iupStrBoolean (const char * str)

Returns 1 if the string is "YES" or "ON".
Returns 0 otherwise (including NULL or empty).

IUP_SDK_API int iupStrFalse (const char * str)

Returns 1 if the string is "NO" or "OFF".
Returns 0 otherwise (including NULL or empty).
To be used when value can be "False" or others different than "True".

IUP_SDK_API int iupStrLineCount (const char * str,

IUP - Portable User Interface 07-Jan-25

488/496

group__str.html#ga118fc11bd9126b7168488baee84f7cc4

int len

)

Returns the number of lines in a string. It works for UNIX, DOS and MAC line ends.

IUP_SDK_API const char* iupStrNextLine (const char * str,

int * len

)

Returns a pointer to the next line and the size of the current line. It works for UNIX, DOS and MAC line ends. The size does not includes
the line end. If str is NULL it will return NULL.

IUP_SDK_API const char* iupStrNextValue (const char * str,

int str_len,

int * len,

char sep

)

Returns a pointer to the next value and the size of the current value. The size does not includes the separator. If str is NULL it will return
NULL.

IUP_SDK_API int iupStrCountChar (const char * str,

char c

)

Returns the number of repetitions of the character occurs in the string.

IUP_SDK_API char* iupStrDup (const char * str)

Returns a copy of the given string. If str is NULL it will return NULL. Must free the returned string.

IUP_SDK_API char* iupStrDupUntil (const char ** str,

char c

)

Returns a new string containing a copy of the string up to the character. The string is then incremented to after the position of the
character. Must free the returned string.

IUP_SDK_API void iupStrCopyN (char * dst_str,

int dst_max_size,

const char * src_str

)

Copy the string to the buffer, but limited to the max_size of the buffer. buffer is always properly ended.

IUP_SDK_API char* iupStrGetMemory (int size)

Returns a buffer with the specified size+1.
The buffer is resused after 50 calls. It must NOT be freed. Use size=-1 to free all the internal buffers.

IUP_SDK_API char* iupStrGetLargeMem (int * size)

Returns a very large buffer to be used in unknown size string construction. Use snprintf or vsnprintf with the given size.

IUP_SDK_API void iupStrLower (char * dstr,

const char * sstr

)

Converts a string into lower case. Can be used in-place.
It will work only for character codes <128.

IUP_SDK_API void iupStrUpper (char * dstr,

const char * sstr

)

IUP - Portable User Interface 07-Jan-25

489/496

Converts a string into upper case. Can be used in-place.
It will work only for character codes <128.

IUP_SDK_API int iupStrHasSpace (const char * str)

Checks if the string has at least 1 space character.

IUP_SDK_API int iupStrIsAscii (const char * str)

Checks if the string has only ASCII codes.

IUP_SDK_API char* iupStrReturnStrf (const char * format,

 ...

)

Returns combined values in a formatted string using iupStrGetMemory. This is not supposed to be used for very large strings, just for
combinations of numeric data or constant strings.

IUP_SDK_API char* iupStrReturnStr (const char * str)

Returns a string value in a string using iupStrGetMemory.

IUP_SDK_API char* iupStrReturnBoolean (int i)

Returns a boolean value (as YES or NO) in a string.

IUP_SDK_API char* iupStrReturnChecked (int i)

Returns a checked value (as ON, OFF or NOTDEF (-1)) in a string.

IUP_SDK_API char* iupStrReturnInt (int i)

Returns an int value in a string using iupStrGetMemory.

IUP_SDK_API char* iupStrReturnUInt (unsigned int i)

Returns an unsigned int value in a string using iupStrGetMemory.

IUP_SDK_API char* iupStrReturnFloat (float f)

Returns a float value in a string using iupStrGetMemory.

IUP_SDK_API char* iupStrReturnDouble (double d)

Returns a double value in a string using iupStrGetMemory.

IUP_SDK_API char* iupStrReturnRGB (unsigned char r,

unsigned char g,

unsigned char b

)

Returns a RGB value in a string using iupStrGetMemory.

IUP_SDK_API char* iupStrReturnRGBA (unsigned char r,

unsigned char g,

unsigned char b,

unsigned char a

)

Returns a RGBA value in a string using iupStrGetMemory.

IUP_SDK_API char* iupStrReturnStrStr (const char * str1,

const char * str2,

char sep

)

Returns two string values in a string using iupStrGetMemory.

IUP - Portable User Interface 07-Jan-25

490/496

group__str.html#ga8b9bf257fd506f05cd4af992f594ecec
group__str.html#ga8b9bf257fd506f05cd4af992f594ecec
group__str.html#ga8b9bf257fd506f05cd4af992f594ecec
group__str.html#ga8b9bf257fd506f05cd4af992f594ecec
group__str.html#ga8b9bf257fd506f05cd4af992f594ecec
group__str.html#ga8b9bf257fd506f05cd4af992f594ecec
group__str.html#ga8b9bf257fd506f05cd4af992f594ecec
group__str.html#ga8b9bf257fd506f05cd4af992f594ecec
group__str.html#ga8b9bf257fd506f05cd4af992f594ecec

Returns two string values in a string using iupStrGetMemory.

IUP_SDK_API char* iupStrReturnIntInt (int i1,

int i2,

char sep

)

Returns two int values in a string using iupStrGetMemory.

IUP_SDK_API int iupStrGetFormatPrecision (const char * format)

Returns the number of decimals in a format string for floating point output.

IUP_SDK_API void iupStrPrintfDoubleLocale (char * str,

const char * format,

double d,

const char * decimal_symbol

)

Prints a double in a string using the given decimal symbol.

IUP_SDK_API int iupStrToRGB (const char * str,

unsigned char * r,

unsigned char * g,

unsigned char * b

)

Extract RGB components from the string. Returns 0 or 1.

IUP_SDK_API int iupStrToRGBA (const char * str,

unsigned char * r,

unsigned char * g,

unsigned char * b,

unsigned char * a

)

Extract RGBA components from the string. Returns 0 or 1.

IUP_SDK_API int iupStrToInt (const char * str,

int * i

)

Converts the string to an int. The string must contains only the integer value. Returns a a non zero value if successful.

IUP_SDK_API int iupStrToUInt (const char * str,

unsigned int * i

)

Converts the string to an unsigned int. The string must contains only the integer value. Returns a a non zero value if successful.

IUP_SDK_API int iupStrToIntInt (const char * str,

int * i1,

int * i2,

char sep

)

Converts the string to two int. The string must contains two integer values in sequence, separated by the given character (usually 'x' or ':').
Returns the number of converted values. Values not extracted are not changed.

IUP_SDK_API int iupStrToFloat (const char * str,

float * f

)

IUP - Portable User Interface 07-Jan-25

491/496

group__str.html#ga8b9bf257fd506f05cd4af992f594ecec

Converts the string to a float. The string must contains only the real value. Returns a a non zero value if successful.

IUP_SDK_API int iupStrToDouble (const char * str,

double * d

)

Converts the string to a double. The string must contains only the real value. Returns a a non zero value if successful.

IUP_SDK_API int iupStrToDoubleLocale (const char * str,

double * d,

const char * decimal_symbol

)

Converts the string to a double using the given decimal symbol. The string must contains only the real value. Returns a a non zero value if
successful. Returns 2 if a locale was set.

IUP_SDK_API int iupStrToFloatFloat (const char * str,

float * f1,

float * f2,

char sep

)

Converts the string to two float. The string must contains two real values in sequence, separated by the given character (usually 'x' or ':').
Returns the number of converted values. Values not extracted are not changed. ATENTION: AVOID DEFINING THIS TYPE OF
ATTRIBUTE VALUE.

IUP_SDK_API int iupStrToDoubleDouble (const char * str,

double * f1,

double * f2,

char sep

)

Converts the string to two double. The string must contains two real values in sequence, separated by the given character (usually 'x' or
':'). Returns the number of converted values. Values not extracted are not changed. ATENTION: AVOID DEFINING THIS TYPE OF
ATTRIBUTE VALUE.

IUP_SDK_API int iupStrToStrStr (const char * str,

char * str1,

char * str2,

char sep

)

Extract two strings from the string. separated by the given character (usually 'x' or ':'). Returns the number of converted values. Values not
extracted are set to empty strings.

IUP_SDK_API char* iupStrFileGetExt (const char * filename)

Returns the file extension of a file name. Supports UNIX and Windows directory separators. Must free the returned string.

IUP_SDK_API char* iupStrFileGetTitle (const char * filename)

Returns the file title of a file name. Supports UNIX and Windows directory separators. Must free the returned string.

IUP_SDK_API char* iupStrFileGetPath (const char * filename)

Returns the file path of a file name. Supports UNIX and Windows directory separators. The returned value includes the last separator.
Must free the returned string.

IUP_SDK_API char* iupStrFileMakeFileName (const char * path,

const char * title

)

Concat path and title addind '/' between if path does not have it. Must free the returned string.

IUP - Portable User Interface 07-Jan-25

492/496

IUP_SDK_API char* iupStrFileMakeURL (const char * filename)

Creates an URL for the filename by adding "file://" at start and replacing any '\' by '/'. Must free the returned string.

IUP_SDK_API void iupStrFileNameSplit (const char * filename,

char * path,

char * title

)

Split the filename in path and title using pre-allocated strings.

IUP_SDK_API int iupStrTmpFileName (char * filename,

const char * prefix

)

Returns a filename for a temporary file. A file with the result name is created and must be removed after use.

IUP_SDK_API int iupStrReplace (char * str,

char src,

char dst

)

Replace a character in a string. Returns the number of occurrences.

IUP_SDK_API void iupStrReplaceReserved (char * str,

char c

)

Replace reserved characters in a string.

IUP_SDK_API void iupStrToUnix (char * str)

Convert line ends to UNIX format in-place (one
per line).

IUP_SDK_API void iupStrToMac (char * str)

Convert line ends to MAC format in-place (one per line).

IUP_SDK_API char* iupStrToDos (const char * str)

Convert line ends to DOS/Windows format (the sequence
per line). If returned pointer different the input, it must be freed.

IUP_SDK_API char* iupStrConvertToC (const char * str)

Convert string to C format. Process \,
, and . If returned pointer different the input, it must be freed.

IUP_SDK_API void iupStrRemove (char * value,

int start,

int end,

int dir,

int utf8

)

Remove the interval from the string. Done in-place.

IUP_SDK_API char* iupStrInsert (const char * value,

const char * insert_value,

int start,

int end,

int utf8

)

IUP - Portable User Interface 07-Jan-25

493/496

Remove the interval from the string and insert the new string at the start. If returned pointer different the input, it must be freed.

IUP_SDK_API char* iupStrProcessMnemonic (const char * str,

char * c,

int action

)

Process the mnemonic in the string. If not found returns str. If returned pointer different the input, it must be freed. If found returns a
new string. Action can be:

1: replace & by c
-1: remove & and return in c
0: remove &

IUP_SDK_API int iupStrFindMnemonic (const char * str)

Returns the Mnemonic if found. Zero otherwise.

IUP_SDK_API int iupStrCompare (const char * str1,

const char * str2,

int casesensitive,

int utf8

)

Compare two strings using strcmp semantics, but using the "Alphanum Algorithm" (A1 A2 A11 A30 ...).
This means that numbers and text are sorted separately.
Also natural alphabetic order is used: 123...aAáÁ...bBcC...
Sorting and case insensitive will work only for Latin-1 characters, even when using utf8=1.

IUP_SDK_API int iupStrCompareEqual (const char * str1,

const char * str2,

int casesensitive,

int utf8,

int partial

)

Returns a non zero value if the two strings are equal.
If partial=1 the compare up to a number of characters defined by the strlen of the second string.
Case insensitive will work only for Latin-1 characters, even when using utf8=1.

IUP_SDK_API int iupStrCompareFind (const char * str1,

const char * str2,

int casesensitive,

int utf8

)

Returns a non zero value if the second string is found inside the first string.
Uses iupStrCompareEqual.

IUP_SDK_API void iupStrChangeCase (char * dstr,

const char * sstr,

int case_flag,

int utf8

)

Converts a string into upper case. Can be used in-place.
It will work only for Latin-1 characters, even when using utf8=1.

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1
Functions

Text Mask

IUP - Portable User Interface 07-Jan-25

494/496

group__str.html#gaf71feac77392e7f2b9230f1125ee4387
http://www.doxygen.org/index.html

[Utilities]

Collaboration diagram for Text Mask:

Functions

IUP_SDK_API Imask * iupMaskCreate (const char *mask_str)

IUP_SDK_API Imask * iupMaskCreateInt (int min, int max)

IUP_SDK_API Imask * iupMaskCreateFloat (float min, float max, const char *decimal_symbol)

IUP_SDK_API Imask * iupMaskCreateReal (int positive, const char *decimal_symbol)

IUP_SDK_API void iupMaskSetCaseI (Imask *mask, int casei)

IUP_SDK_API void iupMaskSetNoEmpty (Imask *mask, int noempty)

IUP_SDK_API void iupMaskDestroy (Imask *mask)

IUP_SDK_API int iupMaskCheck (Imask *mask, const char *value)

IUP_SDK_API char * iupMaskGetStr (Imask *mask)

Detailed Description

Used to filter text input in IupText.

See iup_mask.h

Function Documentation

IUP_SDK_API Imask* iupMaskCreate (const char * mask_str)

Creates a mask given a string.
If casei is true, will turn the mask case insensitive.

IUP_SDK_API Imask* iupMaskCreateInt (int min,

int max

)

Creates an integer mask with limits.

IUP_SDK_API Imask* iupMaskCreateFloat (float min,

float max,

const char * decimal_symbol

)

Creates a real mask with limits.

IUP_SDK_API Imask* iupMaskCreateReal (int positive,

const char * decimal_symbol

)

Creates a real mask.

IUP_SDK_API void iupMaskSetCaseI (Imask * mask,

int casei

)

If casei is 1, will turn the mask case insensitive. Default is case sensitive.

IUP_SDK_API void iupMaskSetNoEmpty (Imask * mask,

int noempty

)

IUP - Portable User Interface 07-Jan-25

495/496

group__util.html
group__mask.html#gacaafa5fad0021d199496d844f1fb5fee
group__mask.html#ga4a1ca5251c7280d234e780fb0891a443
group__mask.html#gab5ed6deb201c30870a01b847e8e72e60
group__mask.html#gaeba305453b90a29e4a8272748d33e73d
group__mask.html#ga06f6e4d8a0d598e76466e39aa5faabf8
group__mask.html#ga4f8ba8a38c264503e73e53a4c3cf7157
group__mask.html#ga7be75c601cfe16b04352868a11f58a77
group__mask.html#gaee1307f9e00299fe9785c64ce2fc2d91
group__mask.html#gab2653fcf34ce0361dfa99ffe527893f9
iup__mask_8h.html

If noempty is 1, the value can NOT be empty. Default can be empty.

IUP_SDK_API void iupMaskDestroy (Imask * mask)

Destroys the mask.

IUP_SDK_API int iupMaskCheck (Imask * mask,

const char * value

)

Check if the value is valid using the mask to filter it. Returns 1 if full match, -1 if partial match, and 0 otherwise.

IUP_SDK_API char* iupMaskGetStr (Imask * mask)

Returns the mask string.

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1

All
Functions
Typedefs
Enumerations
Enumerator
Defines

_
i

Here is a list of all documented functions, variables, defines, enums, and typedefs with links to the documentation:

- _ -

_IattribFlags : iup_class.h
_IchildType : iup_class.h
_InativeType : iup_class.h
_Itable_IndexTypes : iup_table.h
_Itable_Types : iup_table.h

Generated on Thu Jul 30 2020 20:49:02 for SDK by 1.7.1

IUP - Portable User Interface 07-Jan-25

496/496

http://www.doxygen.org/index.html
globals.html
globals_func.html
globals_type.html
globals_enum.html
globals_eval.html
globals_defs.html
globals.html#index__
globals_0x69.html#index_i
group__iclass.html#gac6a80970b4883f9c6d4dc765cb016f8a
group__iclass.html#gaad356bf53064378264c4fc792533c3d6
group__iclass.html#ga0f5cb77c63587912ac792fbc6b5bf727
group__table.html#gaf820ec3a8fd1c3c46b1eb2b77cdf98de
group__table.html#gaf2d7d504765bc5a3c20cfa01ff4b130b
http://www.doxygen.org/index.html

	IUP
	Project Management:

	Product
	Overview
	Availability
	Support
	Credits
	Documentation
	Publications
	Tecgraf Library License
	Download
	Tecgraf/PUC-Rio Library Download Tips
	Build Configuration
	Packaging
	Installation
	Usage
	Available Platforms

	SVN
	History of Changes
	Version 3.x
	Version 2.x
	Version 1.x

	History of Changes in Version 3.x
	Version 3.32 (06/Jan/2025)
	Version 3.31 (13/Oct/2023)
	Version 3.30 (30/Jul/2020)
	Version 3.29 (18/May/2020)
	Version 3.28 (13/Dec/2019)
	Version 3.27 (30/Apr/2019)
	Version 3.26 (07/Jan/2019)
	Version 3.25 (28/May/2018)
	Version 3.24 (22/Jan/2018)
	Version 3.23 (11/Oct/2017)
	Version 3.22 (12/Jun/2017)
	Version 3.21 (20/Jan/2017)
	Version 3.20 (30/Sep/2016)
	Version 3.19.1 (04/Jul/2016)
	Version 3.19 (20/Jun/2016)
	Version 3.18 (21/Mar/2016)
	Version 3.17 (30/Nov/2015)
	Version 3.16 (15/Sep/2015)
	Version 3.15 (06/Jul/2015)
	Version 3.14 (28/Apr/2015)
	Version 3.13 (04/Feb/2015)
	Version 3.12 (19/Nov/2014)
	Version 3.11.2 (06/Oct/2014)
	Version 3.11.1 (01/Sep/2014)
	Version 3.11 (28/Jul/2014)
	Version 3.10.1 (24/Jan/2014)
	Version 3.10 (17/Jan/2014)
	Version 3.9 (22/Nov/2013)
	Version 3.8 (08/May/2013)
	Version 3.7 (29/Nov/2012)
	Version 3.6 (23/June/2012)
	Version 3.5 (26/Apr/2011)
	Version 3.4 (15/Feb/2011)
	Version 3.3 (release2) (18/Nov/2010)
	Version 3.3 (09/Nov/2010)
	Version 3.2 (26/June/2010)
	Version 3.1 (22/Apr/2010)
	Version 3.0.1 (14/Mar/2010) (Internal)
	Version 3.0 (26/Jan/2010)
	Version 3.0 RC 4a (18/Dec/2009)
	Version 3.0 RC 4 (14/Dec/2009)
	Version 3.0 RC 3 (02/Oct/2009)
	Version 3.0 RC 2 (18/Jul/2009)
	Version 3.0 RC 1 (26/Jun/2009)
	General

	Version 3.0 BETA 3 (04/Apr/2009)
	Version 3.0 BETA 2 (26/Dec/2008)
	Version 3.0 BETA 1 (15/Dec/2008)
	General
	Common Attributes
	Global Attributes
	Common Callbacks
	Layout
	Dialogs
	Canvas
	Label, Button and Toggle
	Text and Multiline
	List
	Other Standard Controls
	Additional Controls
	Menus
	Images
	Keyboard

	History of Version 2.x

	Migration Guide IUP 2.x to IUP 3.x
	Critical Changes (from 2.x to 2.7/3.0)
	Strategic Changes (from 2.7 to 3.x)

	History of Changes in Version 2.x
	CVS (17/Jun/2009)
	General

	Version 2.7.1 (15/Dec/2008)
	General
	Motif
	IupControls

	Version 2.7 (14/Oct/2008)
	General
	Windows
	Motif
	IupControls

	Version 2.6 (26/Nov/2007)
	General
	Windows
	Motif
	IupControls
	IupMatrix
	IupLua

	Version 2.6 RC2 (10/May/2007)
	General

	Version 2.6 RC1 (15/Apr/2007)
	General
	Windows
	Motif
	IupLua
	IupMatrix
	Other IupControls
	IupGLCanvas

	Version 2.5 (31/Mar/2006)
	General
	Windows
	IupControls
	IupMatrix
	IupTree
	IupLua

	Version 2.4 (12/Dec/2005)
	General
	Windows
	Motif
	IupControls
	IupMatrix
	IupLua

	Version 2.3.1 (18/Apr/2005)
	General
	Windows
	Motif
	IupControls
	IupGLCanvas
	IupLua
	IupView

	Version 2.3 (16/Mar/2005)
	General
	Windows
	Motif
	IupControls
	IupLua

	Version 2.2.2 (07/Oct/2004)
	General
	Windows
	Motif
	IupControls
	IupMatrix
	IupLua

	Version 2.2.1 (25/Aug/2004)
	General
	Windows
	Motif
	Controls
	IupLua

	Version 2.2 (11/Aug/2004)
	INCOMPATIBILITIES
	General
	Windows
	Motif
	Controls
	Matrix
	Tree
	IupLua
	LEDC

	Version 2.1 (18/Feb/2004)
	General
	IupTree
	IupMatrix
	Windows
	IupLua 3.2, 4.0, 5.0
	IupVal
	Manual
	Distribution

	Version 2.0.1 (31/Jul/2003)
	General
	Windows
	Motif
	LEDC
	IupLua

	Version 2.0 (23/Jun/2003)
	General
	Windows
	Motif
	IupLua
	IupControls
	IupMatrix
	IupTree
	IupGL

	History of Version 1.x

	History of Changes in Version 1.x
	Version 1.9.1 (17/Oct/2002)
	General
	Windows
	Motif
	IupLua
	IupTree
	IupTabs
	IUP_REPAINT was not repainting the elements in its interior.
	IupMatrx
	IupVal

	Version 1.9.0 (18 Dec 2001)
	General
	Windows
	Motif
	iupMask
	IupMatrx
	IupTree
	IupGL
	IupCB
	IupLua

	Version 1.8.9 (07 May 2001)
	IupMatrx Control
	IupTree Control
	IupCB Control
	Windows

	Version 1.8.8 (15 Mar 2001)
	CPI
	Motif
	IupTabs Control
	IupMatrx Control
	Windows
	IupLua.exe
	IUP Manual

	Version 1.8.7 (23 Nov 2000)
	Motif
	Windows
	IupMatrix Control
	Other Extended Controls
	IupLua
	IupLua Program

	Version 1.8.6 (21 Jun 2000)
	User Manual
	Windows
	Motif
	IupLua
	Extended Controls

	Version 1.8.5 (18 Apr 2000)
	Windows
	Motif
	IupMatrix Element

	Version 1.8.4 (09 Dec 1999)
	Windows
	CPI Controls

	Version 1.8.3 (15 Jun 1999)
	Windows
	Motif

	Version 1.8.2
	Windows (12 Jan 99)
	Motif v1.8.2 (14 Aug 98)

	Version 1.8.1
	Windows v1.8.1 (17 Jul 98)
	Motif v1.8.1 (16 Jun 98)

	Version 1.8 (29 May 98)
	General (also includes changes to both drivers)
	Lua Binding
	Windows
	Motif

	Version 1.7

	To Do
	Roadmap for the Next Versions
	Version 4.0
	Next Versions (?)
	Future Versions (??)

	General
	Windows
	GTK
	Motif
	Lua Binding
	IupMatrixEx
	IupTree
	IupMglPlot
	Possible New Controls

	Comparing IUP with Other Interface Toolkits
	Why to still maintain IUP if today we have so many other popular toolkits?
	Toolkits
	Discussion
	Developing IUP

	Gallery
	Standard Controls
	IupLabel
	IupButton
	IupToggle
	IupText
	IupFrame
	IupList
	IupTree
	IupCanvas
	IupProgressBar
	IupVal
	IupTabs
	IupSplit
	IupDetachBox
	IupExpander
	IupScrollBox
	IupColorBrowser
	IupDial

	Resources
	IupMenu, IupSubmenu and IupItem
	IupImage

	Gallery
	Additional Controls
	IupMatrix
	IupGLCanvas
	IupGLControls
	IupPlot
	IupWebBrowser
	IupScintilla

	Pre-defined Dialogs
	IupAlarm
	IupMessageDlg
	IupFontDlg
	IupFileDlg
	IupColorDlg
	IupGetText
	IupListDialog
	IupGetParam

	Screenshots
	IMLAB
	FTOOL
	Nokia N800
	iRex Iliad Book Reader
	Tecgraf Applications
	Older Tecgraf Applications

	Contributions
	Distribution
	Debian Packages by Matthew Kennedy

	Drivers
	IUP WebBrowser Driver by Eric Wing & Chris Matzenbach
	IUP Android Driver by Eric Wing & Chris Matzenbach
	IUP iOS Driver by Eric Wing & Chris Matzenbach
	IUP MacOSX Driver by Eric Wing & Chris Matzenbach
	IUP MacOSX Driver by Heesob Park

	Language Bindings
	A Basic Guide to using IupLua by Steve Donovan
	Ruby-IUP by Heesob Park
	EuIup by Jeremy Cowgar
	FreeBasic Binding by AGS
	Perl Binding by Kmx
	Go-iup by Jeremy Cowgar
	ScriptBasic Binding by John Spikowski
	Component Pascal Binding by Boris Ilov
	Iup4D - D Language Binding by Heromyth
	Common Lisp Bindings by Matthew Kennedy

	Localization Strings
	C++ Wrappers
	RSSGui by Danny Reinhold. (RSS_GUI_0_5.zip)
	IupTreeUtil by Sergio Maffra and Frederico Abraham. (IupTreeUtil3.zip or IupTreeUtil3.tar.gz)
	IUP with C++ 11 and variadic templates (IUP++) by PulkoMandy

	Tools
	IupAsync by Ross Berteig

	Guide
	Getting Started
	Building Applications
	Windows
	Motif
	GTK+ (since IUP 3.0)
	Multithread
	Dynamic Loading

	Building The Library
	File Encoding
	Libraries Dependencies

	Using IUP in C++
	Memory Checking
	Building Lua, IM, CD and IUP in Linux
	System Configuration
	Source Download
	Unpacking
	Lua (from the system)
	Building
	Pre-compiled Binaries
	Installation (System Directory)
	Installation (Build Directory) [Alternative]

	Installation (Lua Modules)
	Installation (Lua Modules) [Alternative]

	Building Lua, IM, CD and IUP in Windows
	System Configuration
	Tecmake Configuration
	Source Download
	Unpacking
	Building
	Pre-compiled Binaries
	Usage

	C++ BuilderX IDE Project Options Guide
	http://www.borland.com/products/downloads/download_cbuilderx.html

	Code Blocks Project Properties Guide
	http://www.codeblocks.org/

	CodeLite IDE 10.0 Project Properties Guide
	https://www.codelite.org

	Dev-C++ IDE Project Options Guide
	http://www.bloodshed.net/devcpp.html

	Eclipse for C++ Project Properties Guide
	http://www.eclipse.org/

	NetBeans IDE 8.2 Project Properties Guide
	https://netbeans.org

	OpenWatcom C++ IDE Project Options Guide
	http://www.openwatcom.org/

	Visual C++ 7 IDE Project Properties Guide
	http://msdn2.microsoft.com/en-us/vstudio/aa700867.aspx

	Visual C++ 8 IDE Project Properties Guide
	http://msdn2.microsoft.com/en-us/vstudio/default.aspx http://msdn.microsoft.com/vstudio/express/downloads/ (free version)

	Tools
	IupView
	IupLua Console

	LED Compiler for C
	Description
	Usage
	Error Messages

	IupVisualLED (since 3.28)
	Openning a File
	Load and Unload
	Projects
	New Controls
	Tools
	Export

	IupLuaScripter (since 3.22)
	Complete Samples
	Standard Controls
	All Samples
	iupglcap
	External Samples

	Sample Results (1)
	Motif in MWM
	GTK in Gnome
	Windows Classic
	Windows with Visual Styles
	Windows Vista

	Sample Results (2)
	Motif in MWM
	GTK in Gnome
	Windows Classic
	Windows with Visual Styles
	Windows Vista

	Sample Results (3)
	Motif in MWM
	GTK in Gnome
	Windows Classic
	Windows with Visual Styles
	Windows Vista

	Sample Results (4)
	Motif in MWM
	GTK in Gnome
	Windows Classic
	Windows with Visual Styles
	Windows Vista

	Windows Shell Extensions Handlers
	Description
	Implementation
	Setup

	Custom Controls (since 3.0)
	Introduction
	Control Class Registration
	Control Class Implementation
	Control Creation
	Control Exported Functions

	Lua Binding
	Overview
	IupLua Initialization
	Embedding Lua files in the Application Executable
	LuaJIT
	More Information

	A Basic Guide to using IupLua
	Simple Output
	Simple Input
	Asking for a Filename
	Asking for Multiline Text
	Asking for a Single String, or Number

	Dialogs
	Constructing General Layouts
	Timers and Idle Processing
	Lists
	Trees
	Menus
	Plotting Data

	IupLua Advanced Guide
	Exchanging "Ihandle*" between C and Lua
	Error Handling
	The Architecture of IupLua 5

	Tutorial
	Index
	1. Introduction
	2. Hello World
	2.1 Initialization
	2.1.1 Compiling and Linking

	2.2 Creating a Dialog
	2.3 Adding Interaction
	2.4 Adding Layout Elements
	2.5 Improving the Layout

	3. Simple Notepad
	3.1 Main Dialog
	3.2 Adding a Menu
	3.3 Using Pre-defined Dialogs
	3.4 Custom Dialogs
	3.5 Adding a Toolbar and a Statusbar
	3.6 Defining Hot Keys
	3.7 Recent Files Menu and a Configuration File
	3.8 Clipboard Support
	3.9 More File Management (Drag&Drop, Command Line, ...)
	3.10 Dynamic Layout
	3.11 External Help
	3.12 Final Considerations

	4. Simple Paint
	4.1 Loading and Saving Images
	4.2 Drawing with OpenGL
	4.3 Drawing with CD and Printing
	4.4 Interactive Zoom and Scrollbars
	4.5 Canvas Interaction and a ToolBox
	4.6 Image Processing and Final Considerations

	5. Advanced Topics
	5.1 C++ Encapsulation
	5.2 C++ Modularization
	5.3 High Resolution Display
	5.4 Splash Screen, About and System Information
	5.5 Dynamic Libraries

	7GUIs Implementation in IUP
	Introduction
	The 7 Tasks
	1. Counter
	2. Temperature Converter
	3. Flight Booker
	4. Timer
	5. CRUD
	6. Circle Drawer
	7. Cells

	System
	System Guide
	Initialization

	IupOpen
	Parameters/Return
	Notes
	Environment Variables
	Lua Binding

	See Also

	IupClose
	Parameters/Return
	Notes
	See Also

	iuplua_open
	Parameters/Return
	Notes
	See Also

	IupVersion
	Parameters/Return
	Definitions

	Motif System Driver
	Environment Variables
	Default Values Resource Files
	Tips
	Dynamic Libraries in Linux
	During linking in the Solaris environment: Can not find libresolv.so.2
	TrueColor canvas
	XtAddCallback failed
	Indigo Magic look in Sgi

	Win32 System Driver
	DLL
	Tips
	Inspecting Native Controls
	Dialog Contents Zoomed by the System
	UTF-8
	LINK : warning defaultlib 'LIBCMT' conflicts with use of other libs; use /NODEFAULTLIB:library
	COM Initialization
	InitCommonCtrlEx Linker Error
	Custom IupFileDlg
	Windows Native Controls Appearance
	Help in CHM format fail to open
	Visual C++ 6
	Control ID (since 3.26)

	GTK System Driver (since 3.0)
	Tips
	Locale
	Inspecting Native Controls
	GTK 3.x (since 3.7)
	Dependencies
	X11 Dependencies (since 3.25)
	UTF-8
	Windows
	Ubuntu Unity
	MacOSX-Quartz
	MacOSX-X11
	Native Code

	Attributes
	Attributes Guide
	Using
	Inheritance
	Availability
	IupLua

	IupSetAttribute
	Parameters/Return
	Utility Functions
	Notes
	Examples
	See Also

	IupSetAttributes
	Parameters/Return
	Examples
	See Also

	IupResetAttribute (Since 3.2)
	Parameters/Return
	See Also

	IupSetAtt
	Parameters/Return
	Examples
	See Also

	IupSetAttributeHandle
	Parameters/Return
	Notes
	See Also

	IupGetAttribute
	Parameters/Return
	Utility Functions
	Notes
	IupLua

	Examples
	See Also

	IupGetAllAttributes (Since 3.0)
	Parameters/Return
	See Also

	IupGetAttributes
	Parameters/Return
	See Also

	IupCopyAttributes (since 3.26)
	Parameters/Return
	See Also

	IupGetAttributeHandle
	Parameters/Return
	See Also

	IupSetGlobal
	Parameters/Return
	Notes
	See Also

	IupGetGlobal
	Parameters/Return
	Notes
	See Also

	IupStringCompare (since 3.17)
	Parameters/Return
	Notes
	See Also

	ACTIVE
	Value
	Notes
	Affects

	BGCOLOR
	Value
	Affects
	See Also

	FGCOLOR
	Value
	Affects
	See Also

	FONT
	Value
	Windows
	Motif
	GTK
	Examples:

	Affects
	Notes
	Auxiliary Attributes
	FONTSTYLE (non inheritable)
	FONTSIZE (non inheritable)
	FONTFACE (non inheritable)
	CHARSIZE (read-only, non inheritable)
	FOUNDRY [Motif Only] (non inheritable)

	Encoding
	ISO8859-1 and Windows-1252 Displayable Characters
	UTF-8

	THEME/NTHEME (since 3.26)
	Value
	Notes
	Affects
	See Also

	VISIBLE
	Value
	Notes
	Affects

	CLIENTSIZE (read-only*) (non inheritable) (since 3.0)
	Value
	Affects
	Notes
	See Also

	CLIENTOFFSET (read-only) (non inheritable) (since 3.3)
	Value
	Affects
	Notes
	See Also

	EXPAND (non inheritable*)
	Value
	Affects

	MAXSIZE (non inheritable) (since 3.0)
	Value
	Affects
	Notes
	See Also

	MINSIZE (non inheritable) (since 3.0)
	Value
	Affects
	Notes
	See Also

	NATURALSIZE (non inheritable, read-only)
	Value
	See Also

	RASTERSIZE (non inheritable)
	Value
	Affects
	Notes
	See Also

	SIZE (non inheritable)
	Value
	Notes
	Affects
	See Also

	FLOATING (non inheritable) (since 3.0)
	Value
	Affects
	See Also

	POSITION (non inheritable)
	Value
	Affects
	See Also

	SCREENPOSITION/X/Y (read-only) (non inheritable) (since 3.4)
	Value
	Affects
	See Also

	NAME (non inheritable) (since 3.0)
	Value
	Notes
	Affects
	See Also

	TIP (non inheritable)
	Value
	Additional Tip Attributes (since 3.0)
	Additional Tip Callbacks (since 3.5)
	Affects

	TITLE (non inheritable)
	Value
	Notes
	Affects
	See Also

	VALUE (non inheritable)
	WID (read-only) (non inheritable)
	Value
	Notes
	Affects

	ZORDER (write-only) (non inheritable)
	Value
	Affects

	DRAG & DROP (since 3.6)
	Affects
	Attributes at Drag Source
	Attributes at Drop Target
	Callbacks at Drag Source (Must be set when DRAGSOURCE=Yes)
	Callbacks at Drop Target (Must be set when DROPTARGET=Yes)
	Notes
	Examples

	Global Attributes
	General
	LANGUAGE
	VERSION (read-only)
	COPYRIGHT (read-only)
	DRIVER (read-only)

	System Control
	LOCKLOOP
	EXITLOOP (since 3.23)
	CUSTOMQUITMESSAGE [Windows Only] (since 3.28)
	LASTERROR [Windows Only] (read-only) (since 3.6)
	UTF8MODE [Windows and GTK Only]
	UTF8MODE_FILE [Windows Only]
	DEFAULTPRECISION (since 3.11.2)
	DEFAULTDECIMALSYMBOL (since 3.13)
	SB_BGCOLOR [GTK and Motif Only] (since 3.25)
	SHOWMENUIMAGES [GTK Only] (since 3.5)
	OVERLAYSCROLLBAR [GTK Only] (since 3.19)
	GLOBALMENU [GTK Only] (since 3.6)
	GLOBALLAYOUTDLGKEY (since 3.17)
	GLOBALLAYOUTRESIZEKEY(since 3.17)
	IMAGEAUTOSCALE (since 3.16)
	IMAGESDPI (since 3.16)
	IMAGESTOCKAUTOSCALE (since 3.25)
	IMAGESTOCKSIZE (since 3.16)
	PROCESSWINDOWSGHOSTING [Windows Only] (since 3.28)
	IUPLUA_THREADED (since 3.6)
	SINGLEINSTANCE [Windows Only] (since 3.2)

	System Mouse and Keyboard
	CURSORPOS
	MOUSEBUTTON (write-only) (since 3.3)
	SHIFTKEY (read-only) (since 3.0)
	CONTROLKEY (read-only) (since 3.0)
	MODKEYSTATE (read-only) (since 3.0)
	KEYPRESS (write-only) (since 3.0)
	KEYRELEASE (write-only) (since 3.0)
	KEY (write-only) (since 3.0)
	AUTOREPEAT [Motif Only]
	INPUTCALLBACKS (since 3.4)

	System Information
	SYSTEM (read-only)
	SYSTEMVERSION (read-only)
	SYSTEMLANGUAGE (read-only)
	SYSTEMLOCALE (read-only) (since 3.4)
	SCROLLBARSIZE (read-only) (since 3.9)
	COMCTL32VER6 (read-only) [Windows Only] (since 3.11.1)
	GTKVERSION (read-only) [GTK Only]
	GTKDEVVERSION (read-only) [GTK Only]
	MOTIFVERSION (read-only) [Motif Only]
	MOTIFNUMBER (read-only) [Motif Only]
	COMPUTERNAME (read-only)
	TOUCHREADY (read-only) [Windows Only] (since 3.31)
	USERNAME (read-only)
	EXEFILENAME (read-only)
	GL_VERSION (read-only) (since 3.16)
	GL_VENDOR (read-only) (since 3.16)
	GL_RENDERER (read-only) (since 3.16)
	XSERVERVENDOR (read-only) [GTK and Motif Only] (since 3.0)
	XVENDORRELEASE (read-only) [GTK and Motif Only] (since 3.0)

	Screen Information
	FULLSIZE (read-only)
	SCREENSIZE (read-only)
	SCREENDEPTH (read-only)
	SCREENDPI (read-only)
	TRUECOLORCANVAS (read-only)
	DWM_COMPOSITION (read-only) [Windows Only] (since 3.10)
	VIRTUALSCREEN (read-only) [Windows and GTK Only] (since 3.0)
	MONITORSCOUNT (read-only) [Windows and GTK Only] (since 3.17)
	MONITORSINFO (read-only) [Windows and GTK Only] (since 3.0)

	System Data
	HINSTANCE (read-only) [Windows Only]
	DLL_HINSTANCE [Windows Only] (since 3.0)
	APPSHELL (read-only) [Motif Only] (since 3.0)
	XDISPLAY (read-only) [GTK and Motif Only] (since 3.0)
	XSCREEN (read-only) [GTK and Motif Only] (since 3.0)

	Default Attributes
	DLGBGCOLOR
	DLGFGCOLOR (since 3.0)
	MENUBGCOLOR [Windows Only] (since 3.0)
	MENUFGCOLOR [Windows Only] (since 3.0)
	TXTBGCOLOR (since 3.0)
	TXTFGCOLOR (since 3.0)
	TXTHLCOLOR (since 3.16)
	LINKFGCOLOR (since 3.8)
	DEFAULTFONT
	DEFAULTFONTFACE (since 3.13)
	DEFAULTFONTSIZE (since 3.0)
	DEFAULTFONTSTYLE (since 3.11)
	DEFAULTBUTTONPADDING (since 3.16)
	DEFAULTTHEME (since 3.26)

	Events and Callbacks
	Events and Callbacks Guide
	Using
	Main Loop
	IupLua

	IupMainLoop
	Parameters/Return
	Notes
	See Also

	IupMainLoopLevel (since 3.0)
	Parameters/Return
	Notes
	See Also

	IupLoopStep
	Parameters/Return
	Notes
	See Also

	IupExitLoop
	Parameters/Return

	IupPostMessage (since 3.28)
	Parameters/Return
	POSTMESSAGE_CB Callback
	Notes
	Affects

	IupFlush
	Parameters/Return
	Notes

	IupGetCallback
	Parameters/Return
	Notes
	See Also

	IupSetCallback
	Parameters/Return
	Notes
	See Also

	IupSetCallbacks
	Parameters/Return
	Notes
	See Also

	IupGetFunction
	Parameters/Return
	See Also

	IupSetFunction
	Parameters/Return
	See Also

	IupRecordInput
	Parameters/Return
	Notes
	See Also

	IupPlayInput
	Parameters/Return
	Notes
	See Also

	IDLE_ACTION
	Callback
	Notes
	Lua Binding
	Long Time Operations

	Examples
	See Also

	GLOBALCTRLFUNC_CB (since 3.20)
	Callback
	Notes
	Lua Binding

	See Also

	ENTRY_POINT (since 3.28)
	Callback
	Notes
	Lua Binding

	See Also

	EXIT_CB (since 3.28)
	Callback
	Notes
	Lua Binding

	See Also

	MAP_CB
	Callback
	Affects

	UNMAP_CB
	Callback
	Affects

	DESTROY_CB
	Callback
	Notes
	Affects

	LDESTROY_CB
	Callback
	Notes
	Affects

	GETFOCUS_CB
	Callback
	Affects
	See Also

	KILLFOCUS_CB
	Callback
	Affects
	See Also

	ENTERWINDOW_CB
	Callback
	Notes
	Affects
	See Also

	LEAVEWINDOW_CB
	Callback
	Notes
	Affects
	See Also

	K_ANY
	Callback
	Notes
	K_* callbacks

	Affects

	HELP_CB
	Callback
	Affects

	ACTION
	Callback
	Affects

	Dialogs
	IupDialog
	Creation
	Attributes
	Common
	Exclusive
	Exclusive [System Dependent]
	Exclusive [Windows and GTK Only]
	Exclusive [Windows Only]
	Exclusive [GTK Only]
	Exclusive Taskbar and Tray/Status Area [Windows and GTK Only]
	Exclusive MDI [Windows Only]

	Callbacks
	Notes
	Windows MDI
	Custom Frame

	Examples
	See Also

	CURSOR (non inheritable)
	Value
	Notes
	Affects
	See Also

	ICON
	Value
	Notes
	Affects
	See Also

	PARENTDIALOG
	Value
	Notes
	Affects

	SHRINK
	Value
	Notes
	Affects

	CONTROL
	Value
	Notes
	Affects
	See Also

	CLOSE_CB
	Callback
	Affects

	DROPFILES_CB
	Callback
	Affects

	RESIZE_CB
	Callback
	Notes
	Affects

	SHOW_CB
	Callback
	Affects

	IupPopup
	Parameters/Return
	Notes
	See Also

	IupShow
	Parameters/Return
	Notes
	See Also

	IupShowXY
	Parameters/Return
	Notes
	See Also

	IupHide
	Parameters/Return
	Notes
	See Also
	See Also

	IupNewFileDlg [Windows only] (since 3.26)
	Initialization and usage
	Creation
	Attributes
	Callbacks
	Examples
	See Also
	See Also
	See Also
	See Also
	See Also
	Console Tab & Debugger Tabs Modules (since 3.25)
	See Also

	IupAlarm
	Creation and Show
	Notes
	Examples
	See Also

	IupGetFile
	Creation and Show
	Notes
	Examples
	See Also

	IupGetColor
	Creation and Show
	Notes
	Examples
	See Also

	IupGetParam
	Creation and Show
	Notes
	Examples
	See Also

	IupParam (since 3.19)
	Creation
	Attributes
	Attributes set during creation, obtained from the format string

	Notes
	Utilities in Lua
	See Also

	IupParamBox (since 3.19)
	Creation
	Attributes
	Callbacks
	Utilities in Lua
	Notes
	See Also

	IupGetText
	Creation and Show
	Notes
	Examples
	See Also

	IupListDialog
	Creation and Show
	Notes
	Examples
	See Also

	IupMessage
	Creation and Show
	Notes
	Examples
	See Also

	IupMessageError (since 3.22)
	Creation and Show
	Notes
	Examples
	See Also

	IupMessageAlarm (since 3.22)
	Creation and Show
	Notes
	Examples
	See Also

	IupScanf
	Creation and Show
	Notes
	Examples
	See Also
	See Also
	See Also
	See Also
	See Also

	Layout Composition
	Abstract Layout
	Layout Guide
	Native Sizes (Window and Client)
	IUP Sizes
	Natural Size
	User Size
	Current Size
	EXPAND
	SHRINK

	Layout Hierarchy
	Layout Display
	Element Update

	IupAppend
	Parameters/Return
	Notes
	See Also

	IupDetach
	Parameters/Return
	Notes
	See Also

	IupInsert (Since 3.0)
	Parameters/Return
	Notes
	See Also

	IupReparent (Since 3.0)
	Parameters/Return
	Notes
	See Also

	IupGetParent
	Parameters/Return
	See Also

	IupGetChild
	Parameters/Return
	Notes
	See Also

	IupGetChildPos (since 3.0)
	Parameters/Return
	Notes
	See Also

	IupGetChildCount(since 3.0)
	Parameters/Return
	See Also

	IupGetNextChild
	Parameters/Return
	Notes
	Example
	See Also

	IupGetBrother
	Parameters/Return
	See Also

	IupGetDialog
	Parameters/Return

	IupGetDialogChild (since 3.0)
	Parameters/Return
	Notes
	See Also

	IupRefresh
	Parameters/Return
	Notes
	See Also

	IupRefreshChildren (Since 3.3)
	Parameters/Return
	Notes
	See Also

	Controls
	IupFill
	Creation
	Attributes
	Examples
	See Also

	IupSpace (since 3.25)
	Creation
	Attributes
	Notes
	Examples
	See Also
	Attributes
	Attributes (at Children)
	Notes
	Examples
	See Also
	See Also
	See Also
	See Also
	See Also

	IupZbox
	Creation
	Attributes
	Attributes (at Children)
	Notes
	Examples
	See Also

	IupRadio
	Creation
	Attributes
	Notes
	Examples
	See Also

	IupNormalizer (since 3.0)
	Creation
	Attributes
	Attributes (at any Control)
	Notes
	Examples
	See Also

	IupFlatFrame (since 3.20)
	Creation
	Attributes
	Notes
	Examples
	See Also
	Notes
	Utility Functions
	Examples
	Notes
	Utility Functions
	Examples

	FLATSCROLLBAR (since 3.22)
	Attributes (non inheritable)
	Affects
	Notes
	See Also

	IupAnimatedLabel (since 3.17)
	Creation
	Attributes
	Callbacks
	Notes
	Examples
	See Also

	IupButton
	Creation
	Attributes
	Callbacks
	Notes
	Examples
	See Also

	IupFlatButton (since 3.15)
	Creation
	Attributes
	Callbacks
	Notes
	Examples
	See Also

	IupDropButton (since 3.25)
	Creation
	Attributes
	Callbacks
	Notes
	Examples
	See Also

	IupCalendar (since 3.17)
	Creation
	Attributes
	Callbacks
	Notes
	Examples
	See Also

	IupCanvas
	Creation
	Attributes
	Callbacks
	Notes
	Using with the CD library
	Examples

	SCROLLBAR (creation only)
	Value
	Configuration Attributes (non inheritable)
	Notes
	Affects
	See Also

	DX
	Value
	Notes
	Affects
	See Also

	DY
	Value
	Notes
	Affects
	See Also

	POSX
	Value
	Notes
	Affects
	See Also

	POSY
	Value
	Notes
	Affects
	See Also

	XMIN
	Value
	Notes
	Affects
	See Also

	XMAX
	Value
	Notes
	Affects
	See Also

	YMIN
	Value
	Notes
	Affects
	See Also

	YMAX
	Value
	Notes
	Affects
	See Also

	BUTTON_CB
	Callback
	Notes
	Affects

	MOTION_CB
	Callback
	Notes
	Affects

	KEYPRESS_CB
	Callback
	Affects

	SCROLL_CB
	Callback
	Notes
	Affects

	WHEEL_CB
	Callback
	Notes
	Affects

	WOM_CB
	Callback
	Notes
	Affects

	IupDraw (since 3.19)
	Control
	Primitives
	Information
	Example
	See Also

	CD_IUPDRAW - IupDraw Driver (iupdraw_cd.h)
	Use
	Behavior of Functions
	Control
	Coordinate System and Clipping
	Primitives
	Attributes
	Colors
	Client Images
	Server Images

	IupColorbar
	Creation
	Attributes
	Callbacks
	Notes
	Examples
	See Also
	Attributes
	Callbacks
	Notes
	Examples
	See Also

	IupDatePick (since 3.17)
	Creation
	Attributes
	Callbacks
	Notes
	Examples
	See Also
	Notes
	Examples
	See Also

	IupGauge
	Creation
	Attributes
	Callbacks
	Notes
	Examples
	See Also
	See Also
	See Also
	See Also
	See Also
	See Also

	IupProgressBar (since 3.0)
	Creation
	Attributes
	Callbacks
	Notes
	Examples
	See Also
	Notes
	Examples
	See Also

	IupText
	Creation
	Attributes
	Callbacks
	Auxiliary Functions
	Notes
	Navigation, Selection and Clipboard Keys

	Examples
	See Also

	FORMATTING [Windows and GTK Only] (non inheritable) (since 3.0)
	Value
	Affects
	Auxiliary Attributes
	ADDFORMATTAG [write only] (non inheritable)
	ADDFORMATTAG_HANDLE [write only] (non inheritable)
	REMOVEFORMATTING [write only] (non inheritable)

	Format Tag
	General Format Tag Attributes
	Paragraph Format Tag Attributes
	Character Format Tag Attributes

	Examples

	MASK (non inheritable) (since 3.0)
	Value
	Notes
	Pre-Defined Masks
	Auxiliary Attributes
	MASKCASEI (non inheritable)
	MASKNOEMPTY (non inheritable) (since 3.17)
	MASKDECIMALSYMBOL (non inheritable) (since 3.13)
	MASKINT (non inheritable) (write only)
	MASKFLOAT (non inheritable) (write only)

	Auxiliary Callbacks
	Pattern Specification
	Allowed pattern characters
	Examples
	Affects

	IupMultiLine (same as IupText with MULTILINE=YES since IUP 3.0)
	Creation
	Examples

	IupToggle
	Creation
	Attributes
	Callbacks
	Notes
	Examples
	See Also

	IupFlatToggle (since 3.25)
	Creation
	Attributes
	Callbacks
	Notes
	Examples
	See Also

	IupTree Attributes
	General
	Expanders (non inheritable)
	Nodes (non inheritable)
	Toggle (non inheritable)
	Images (non inheritable)
	Focus
	Marks
	Hierarchy (non inheritable)
	Editing
	Drag&Drop
	IupTree Callbacks

	IupFlatTree Attributes
	General
	Expanders (non inheritable)
	Nodes (non inheritable)
	Toggle (non inheritable)
	Images (non inheritable)
	Focus
	Marks
	Hierarchy (non inheritable)
	Editing
	Drag&Drop
	IupFlatTree Callbacks
	Attributes
	Callbacks
	Notes
	Keyboard Mapping

	Examples
	Attributes
	Callbacks
	Notes
	Keyboard Mapping

	Examples

	IupControls
	Additional Controls Library

	IupCells
	Creation
	Attributes
	Callbacks
	Utility Functions
	Examples
	See Also
	Attributes
	See General Attributes
	See Cell Attributes
	See Column Attributes
	See Size Attributes
	See Column Size Attributes
	See Line Size Attributes
	See Number of Cells Attributes
	See Mark Attributes Attributes
	See Merge Attributes Attributes
	See Action Attributes Attributes
	See Editing Attributes Attributes
	See Text Editing Attributes Attributes
	See Canvas Attributes Attributes

	Callbacks
	Interaction
	Drawing
	Editing
	Callback Mode

	Utility Functions
	Notes
	Storage
	Callback Mode
	Number of Cells
	Titles
	Natural Size
	Virtual Size
	Edition Mode
	Keyboard Navigation
	Marks (Selected Cells)
	IupMatrixEx

	Examples
	See Also

	IupMatrix Attributes (all non inheritable, with exceptions)
	General Attributes
	Cell Attributes (no redraw)
	Column/Line Only Attributes (no redraw)
	Size Attributes
	Column Size Attributes
	Line Size Attributes
	Number of Cells Attributes
	Mark Attributes
	Merge Attributes (since 3.23)
	Action Attributes
	Editing Attributes
	Text Editing Attributes
	Canvas Attributes (inheritable)

	IupMatrix Callbacks
	Interaction
	Drawing
	Editing (not called if READONLY=Yes)
	Callback Mode
	Shortcut Keys
	Available Quantity and Units

	Examples
	See Also
	Attributes
	Other Attributes
	Callbacks
	Examples
	See Also
	Attributes
	Callbacks
	Auxiliary Functions
	Notes
	Examples
	See Also

	IupGLControls (since 3.11)
	OpenGL Controls Library
	Examples
	Attributes
	Attributes (at Children)
	Callbacks
	Examples
	See Also
	Attributes
	Callbacks
	Utilities (since 3.20)
	Notes
	See Also

	IupGLButton (since 3.11)
	Creation
	Attributes
	Callbacks
	Notes
	See Also

	IupGLExpander (since 3.11)
	Creation
	Attributes
	Callbacks
	Notes

	IupGLFrame (since 3.11)
	Creation
	Attributes
	Callbacks
	Notes

	IupGLLabel (since 3.11)
	Creation
	Attributes
	Notes
	See Also

	IupGLLink (since 3.11)
	Creation
	Attributes
	Callbacks
	Notes
	See Also

	IupGLProgressBar (since 3.11)
	Creation
	Attributes
	Notes

	IupGLScrollBox (since 3.11)
	Creation
	Attributes
	Notes
	Examples

	Scrollbar Attributes for IupGLControls (since 3.11)
	Configuration Attributes (non inheritable)
	Appearance Attributes (non inheritable)
	Notes
	Affects
	See Also

	IupGLSeparator (since 3.11)
	Creation
	Attributes
	Notes

	IupGLSizebox (since 3.11)
	Creation
	Attributes
	Notes
	Examples

	IupGLText (since 3.19)
	Creation
	Attributes
	Callbacks
	Notes
	See Also

	IupGLToggle (since 3.11)
	Creation
	Attributes
	Callbacks
	Notes
	See Also
	Attributes
	Callbacks
	Notes
	See Also
	Differences from IupPlot
	Known Issues/To Do
	See Also

	IupMglPlot DS_MODES Options
	For Linear Datasets
	LINE
	MARK
	MARKLINE
	RADAR
	AREA
	BAR
	BARHORIZONTAL
	CHART
	STEP
	STEM
	DOTS
	CRUST

	For Planar Datasets
	PLANAR_MESH
	PLANAR_FALL
	PLANAR_BELT
	PLANAR_SURFACE
	PLANAR_BOXES
	PLANAR_TILE
	PLANAR_DENSITY
	PLANAR_CONTOUR
	PLANAR_AXIALCONTOUR
	PLANAR_GRADIENTLINES

	For Volumetric Datasets
	VOLUME_ISOSURFACE
	VOLUME_DENSITY
	VOLUME_CONTOUR
	VOLUME_CLOUD

	IupMglLabel (since 3.11.1)
	Creation
	Attributes
	Notes
	Examples
	See Also

	IupOleControl [Windows only]
	Initialization and usage
	Creation
	Attributes
	Callbacks
	Additional Methods in Lua
	Notes
	Examples

	IupScintilla (since 3.8)
	Initialization and Usage
	Creation
	Auxiliary Functions
	Attributes
	General
	Text Retrieval and Modification
	Annotation
	Auto-Completion (since 3.10)
	Brace Highlighting
	Caret and Selection
	Folding
	Indicators
	Lexer
	Line Endings
	Margins
	Markers
	Printing (since 2.23)
	Scrolling
	Search and Replace (since 3.10)
	Style Definition (See Style Definition)
	Styling
	Tabs and Indentation Guides
	Undo and Redo
	White Space
	Zooming

	Callbacks
	Style Definition
	Notes
	Navigation, Selection and Clipboard Keys

	Examples
	See Also

	IupWebBrowser [GTK and Windows only] (since 3.3)
	Initialization and usage
	Creation
	Attributes
	Callbacks
	Notes
	Examples

	IupMap
	Parameters/Return
	Notes
	See Also

	IupUnmap (since 3.0)
	Parameters/Return
	Notes
	See Also

	IupCreate
	Parameters/Return
	See Also

	IupDestroy
	Parameters/Return
	Notes
	See Also

	IupGetAllClasses (Since 3.3)
	Parameters/Return
	See Also

	IupGetClassName (renamed from IupGetType in 2.7)
	Parameters/Return
	Notes
	See Also

	IupGetClassType (Since 3.0)
	Parameters/Return
	Notes
	See Also

	IupClassMatch (since 3.4)
	Parameters/Return
	See Also

	IupGetClassAttributes (Since 3.0)
	Parameters/Return
	See Also

	IupGetClassCallbacks (Since 3.3)
	Parameters/Return
	See Also

	IupSaveClassAttributes
	Parameters/Return
	Notes
	See Also

	IupCopyClassAttributes
	Parameters/Return
	See Also

	IupSetClassDefaultAttribute (Since 3.0)
	Parameters/Return
	Notes
	See Also

	IupUpdate IupUpdateChildren
	Parameters/Return
	See Also

	IupRedraw (since 3.0)
	Parameters/Return
	See Also

	IupConvertXYToPos (since 3.0)
	Parameters/Return
	Notes
	See Also

	Resources
	LED
	IupLoad and IupLoadBuffer
	Parameters/Return
	Notes

	IupImage, IupImageRGB, IupImageRGBA
	Creation
	Attributes
	Notes
	Usage
	Colors
	Samples
	IupLua Old Constructor
	IupLua New Constructors

	Examples
	See Also

	IupImageLib
	Initialization
	Reference
	Usage
	Base Library Group
	Logo Group 32x32
	Logo Group 48x48 (since 3.3)
	Icon Group 48x48 (since 3.3)
	Icon Group 32x32 () (since 3.16)
	Notes
	See Also

	IUP-IM Functions
	Initialization and Usage
	Load
	Save
	LoadAnimation (since 3.17)
	LoadAnimationFrames (since 3.17)
	Native Handle to imImage
	imImage to Native Handle
	imImage to IupImage (since 3.10)
	IupImage to imImage (since 3.22)
	See Also

	IupSaveImageAsText (since 3.0)
	Parameters/Return
	Notes
	See Also

	IupImageGetHandle (since 3.28)
	Parameters/Return
	Notes
	See Also

	Keyboard
	Keyboard Codes

	IupNextField
	Parameters/Return
	See Also

	IupPreviousField
	Parameters/Return
	See Also

	IupGetFocus
	Parameters/Return
	See Also

	IupSetFocus
	Parameters/Return
	Notes
	See Also

	IupItem
	Creation
	Attributes
	Callbacks
	Notes
	Examples
	See Also

	IupMenu
	Creation
	Attributes
	Callbacks
	Notes
	Lua Binding

	Examples
	See Also

	IupSeparator
	Creation
	Notes
	Examples
	See Also

	IupSubmenu
	Creation
	Attributes
	Callbacks
	Notes
	Examples
	See Also

	KEY
	Value
	Notes
	Affects

	HIGHLIGHT_CB
	Callback
	Affects

	OPEN_CB
	Callback
	Affects

	MENUCLOSE_CB
	Callback
	Affects

	IupSetHandle
	Parameters/Return
	Notes
	See Also

	IupGetHandle
	Parameters/Return
	Notes
	See Also

	IupGetName
	Parameters/Return
	Notes
	See Also

	IupGetAllNames
	Parameters/Return
	Notes
	See Also

	IupGetAllDialogs
	Parameters/Return
	Notes
	See Also

	IupSetLanguage
	Parameters/Return
	Affects
	Examples
	See Also

	IupGetLanguage
	Parameters/Return
	See Also

	IupSetLanguageString
	Parameters/Return
	Notes
	Examples
	See Also

	IupGetLanguageString
	Parameters/Return
	Notes
	See Also

	IupSetLanguagePack
	Parameters/Return
	Notes
	Examples
	See Also

	IupClipboard (since 3.0)
	Creation
	Attributes
	Notes
	Examples

	IupTimer
	Creation
	Attributes
	Callbacks
	Notes
	Examples

	IupTuioClient (since 3.3)
	Initialization and usage
	Creation
	Attributes
	Callbacks
	Notes
	Examples

	IupThread (since 3.28)
	Creation
	Attributes
	Callbacks

	IupUser
	Creation
	Attributes

	IupConfig (since 3.12)
	Guide
	Creation
	File Storage
	Variables
	Recent File Menu/List
	Dialog Position and Size
	See Also

	IupExecute (since 3.17)
	Parameters/Return

	IupExecuteWait (since 3.20)
	Parameters/Return

	IupHelp
	Parameters/Return

	IupLog (since 3.23)
	Parameters/Return

	Internal SDK
	Introduction
	Code Standards
	Function Names (prefix format)
	Global Variables (lower case format)
	Local Variables (lower case format, using module name)
	File Names
	Structures
	File Comments (at start)
	Defines
	Documentation

	Control SDK
	Modules
	Detailed Description
	Control Creation Guide

	Ihandle Object [Control SDK]
	Data Structures
	Modules
	Defines
	Typedefs
	Enumerations
	Functions
	Detailed Description
	Define Documentation
	Typedef Documentation
	Enumeration Type Documentation
	Function Documentation

	Ihandle Class [Control SDK]
	Data Structures
	Modules
	Typedefs
	Enumerations
	Functions
	Detailed Description
	Typedef Documentation
	Enumeration Type Documentation
	Function Documentation

	Class Object Functions [Ihandle Class]
	Functions
	Detailed Description
	Function Documentation

	Base Class [Ihandle Class]
	Modules
	Functions
	Detailed Description
	Function Documentation

	Base Class Methods [Base Class]
	Functions
	Detailed Description
	Function Documentation

	Base Class Attribute Functions [Base Class]
	Functions
	Detailed Description

	Base Class Utilities [Base Class]
	Defines
	Enumerations
	Functions
	Detailed Description

	Class Registration [Control SDK]
	Functions
	Detailed Description
	Function Documentation

	Attribute Environment [Control SDK]
	Defines
	Functions
	Detailed Description
	Define Documentation
	Function Documentation

	Child Tree Utilities [Ihandle Object]
	Functions
	Detailed Description
	Function Documentation

	List of Dialogs [Control SDK]
	Functions
	Detailed Description
	Function Documentation

	Keyboard Focus [Control SDK]
	Functions
	Detailed Description
	Function Documentation

	Key Coding and Key Callbacks [Control SDK]
	Functions
	Detailed Description
	Function Documentation

	Driver Interface
	Modules
	Functions
	Detailed Description
	Function Documentation

	Driver Font Interface [Driver Interface]
	Functions
	Detailed Description
	Function Documentation

	Driver Draw API [Utilities]
	Functions
	Detailed Description
	Function Documentation

	Driver Information Interface [Driver Interface]
	Functions
	Detailed Description
	Function Documentation

	Utilities
	Modules

	Assert Utilities [Utilities]
	Defines
	Detailed Description
	Define Documentation

	Auxiliary Draw API [Utilities]
	Defines
	Detailed Description
	Define Documentation

	Hash Table [Utilities]
	Typedefs
	Enumerations
	Functions
	Detailed Description
	Typedef Documentation
	Enumeration Type Documentation
	Function Documentation

	Line Base Text File Load API [Utilities]
	Functions
	Detailed Description
	Function Documentation

	Simple Array [Utilities]
	Functions
	Detailed Description
	Function Documentation

	String Utilities [Utilities]
	Defines
	Enumerations
	Functions
	Detailed Description
	Define Documentation
	Enumeration Type Documentation
	Function Documentation

	Text Mask [Utilities]
	Functions
	Detailed Description
	Function Documentation
	- _ -

