
Computers & Graphics 26 (2002) 907–918

A modeling methodology for finite element mesh generation
of multi-region models with parametric surfaces$

William M. Liraa, Paulo Roma Cavalcantib, Luiz C.G. Coelhoa, Luiz F. Marthaa,*
aDepartment of Civil Engineering and Computer Graphics Technology Group (Tecgraf), Pontifical Catholic University of Rio de

Janeiro (PUC-Rio) 22453-900, Rua Marqu#es de S *ao Vicente, 225, Rio de Janeiro, RJ, Brazil
bDepartment of Computer Science, Federal University of Rio de Janeiro (UFRJ) 21945-970, Cidade Universit !aria, Ilha do Fund *ao,

Rio de Janeiro, RJ, Brazil

Abstract

This paper presents a description of the reorganization of a geometric modeler, MG, designed to support new

capabilities of a topological module (CGC) that allows the detection of closed-off solid regions described by surface

patches in non-manifold geometric models defined by NURBS. These patches are interactively created by the user by

means of the modeler’s graphics interface, and may result from parametric–surface intersection in which existing

surface meshes are used as a support for a discrete definition of intersection curves. The geometry of realistic

engineering objects is intrinsically complex, usually composed by several materials and regions. Therefore, automatic

and adaptive meshing algorithms have become quite useful to increase the reliability of the procedures of a FEM

numerical analysis. The present approach is concerned with two aspects of 3D FEM simulation: geometric modeling,

with automatic multi-region detection, and support to automatic finite-element mesh generation.

r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Finite-element analysis [1,2] and geometric modeling

of solids [3,4] are important items in the process of

simulating engineering problems, especially when an

analytic solution is unknown or difficult to obtain. See,

for example, the turbine disk model shown in the

Section 6 of this article.

Generally, the finite-element method (FEM) is based

on a numerical model obtained from the refinement or

‘‘discretization’’ of the problem’s domain, combined

with additional information necessary for the complete

definition of the physical problem. Such information

consists of a set of parameters, called simulation

attributes [5,6]. The discretization, denominated finite-

element mesh, consists of a group of nodes or vertices

(points with coordinates) and a group of cells, called

finite elements, with a predefined topology (triangular,

quadrilateral or tetrahedral, for example). The elements

are defined by a list of node connectivity (the sequence

of vertices that belong to each element). A finite-element

model is the association of a finite-element mesh with a

set of simulation attributes.

One important aspect of three-dimensional finite-

element simulation is mesh generation. It is a research

area that has been active since the creation of the

method. In general, the mesh-generation process is time-

consuming and quite tiresome, apart from demanding a
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certain degree of experience from the professional

responsible for this task. In this context, automatic

and adaptive meshing algorithms have revealed them-

selves quite useful to increase the reliability of the

procedures in a FEM numerical analysis [1].

Another important aspect in 3D FEM simulation is

the creation of the geometric model. There are several

issues involved in this task, ranging from user-interface

strategies to data-representation schemes. To accom-

plish this, it is necessary to use special programs, called

modelers, which can digitally reproduce common geo-

metric forms of the target objects [4]. The geometry and

shape of realistic engineering objects are intrinsically

complex, usually composed by several materials and

regions.

The modeling methodology discussed in this paper is

concerned with two aspects of 3D FEM simulation:

* geometric modeling, with automatic multi-region

detection, and
* support to automatic finite-element mesh generation.

This methodology could be implemented using

currently available solid-modeling libraries, such as

ACIS [7], Parasolids [8] and Pro/ENGINEER API

Toolkit [9]. These libraries provide topological and

geometric representation as well as application program

interface (API) functions, which are necessary for this

type of modeling. However, they are expensive, include a

large number of classes, long APIs, and, generally, the

model requires a pre-processing stage before being

adequate as input for 3D mesh generation. To tackle

these issues, the authors of the present paper have been

involved for the last decade in the development of

modeling tools that may also provide an appropriate

environment for the implementation of the target

methodology. One key aspect in this methodology is

the integration of solid modeling and automatic/

adaptive finite-element mesh generation. This integra-

tion provides a consistent conversion between the solid-

model and the finite-element representation, and allows

a fast prototyping of new concepts using relatively small

pieces of software.

The proposed modeling methodology was implemen-

ted in an existing finite-element modeler called MG,

which is a finite-element pre-processor that was origin-

ally devised for the generation of surface (shell) finite-

element models [10]. Later on, the system was extended

to also consider solid meshes [11]. MG’s modeling

capabilities address two important issues in 3D finite-

element modeling. The first is related to user-interface

and interactive-graphics procedures to generate surface

meshes [12], and the second is the intersection between

surface finite-element meshes, such as the ones shown in

Fig. 1.

The algorithm for intersecting surface meshes [10] is

actually a scheme for parametric–surface intersection in

which existing surface meshes are used as a support for

the definition of intersection curves. These curves have

representations in the Cartesian space and in the

parametric space of each intersecting parametric surface

(trimming curves). These geometric representations

consist of B-splines defined by interpolation points that

result from the existing support surface meshes. Only

these interpolation points are considered in the geo-

metric solution of the intersection problem. A numerical

iterative scheme defines the location of an interpolation

point according to the parametric representations of the

intersecting surfaces. In this sense, intersection curves

are defined in a discrete fashion, as opposed to represent

them analytically. This discrete scheme avoids problems

experienced by most modelers, such as inconsistencies

between parametric representations of a point in the

intersection of two or more surface patches. The

searches required for computing the intersection curves

and for surface re-meshing are supported by an auxiliary

topological data structure whose main feature is that

topological entities are stored in spatial-indexing trees,

instead of linked lists. These spatial-indexing structures

play a major role in the overall efficiency of the

algorithm. The auxiliary data structure is defined in

the parametric space of each intersecting surface.

The original version of MG is powerful in model

representation, and has a relatively simple and efficient

interface. However, its data structure was not based on

any formal geometric-modeling concept. Therefore, in

many situations, the geometric consistency of a model

relies on user intervention. For example, there is no

capability to automatically detect when a volume in

space is enclosed off by a set of surface patches. The user

Fig. 1. Example of intersection of surface meshes.
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must explicitly indicate this, which may be a hard task in

a realistic engineering model. This capability is particu-

larly important for finite-element mesh generation, as

sometimes it is desirable to have several regions, each

one meshed by a different algorithm.

The formalism necessary for modeling capabilities

that allow automatic recognition of created solid regions

is beyond the scope of this paper. The methodology

adopted here has been previously devised by the authors

[13] and is based on a complete topological representa-

tion of a space subdivision, called complete geometry

complex (CGC), which is summarized in Section 2.

This paper describes in Sections 3–5 a class organiza-

tion, in the context of Object-Oriented Programming

(OOP), of a new version of the MG modeler that, still

keeping the simple and efficient user-interface character-

istics, provides capabilities for automatic region detec-

tion with surface patches represented by non-uniform

rational B-splines (NURBS) [14]. To achieve this, a

hybrid approach was adopted in which a full CGC

representation of the model is not maintained at every

step of the modeling process. In this approach, surface

intersection is accomplished using an algorithm imple-

mented in the MG modeler [10], while CGC module is

just responsible for multi-region recognition. The pre-

vious MG data structure was extended so that a CGC

model can be created at any moment when the user

requires region detection. Three-dimensional geometric

modeling is a difficult task that might involve a series of

intermediate steps in which automatic intersection

computation is not desirable. Depending on the model’s

complexity, maintaining consistency between geometry

and topology after every step of the modeling process

might be very inefficient. It would be very difficult to

achieve a reasonable degree of user-interface efficiency if

this consistency were enforced after each user-interface

task.

The new class organization also provides support for

automatic surface- and solid-mesh generation. It is not

the purpose here to describe meshing algorithms. It

suffices to say that surface-mesh generation is performed

in the parametric space of each surface and that the

algorithms provided in MG are described elsewhere

[10,11,15]. The support for automatic mesh generation is

accomplished by the creation of two new topological

entities (Segment and Patch2d) and by the concept of use

of a topological entity by a surface.

2. Complete geometric complex representations

Usually, there are two main strategies for the

representation of a three-dimensional geometric model:

a constructive scheme and a boundary scheme. The most

common constructive scheme is constructive solid

geometry (CSG) [16], in which the target object is

constructed by a set of Boolean operations applied to

primitive objects. In the boundary scheme, the geometry

of an object is defined by its boundary elements, such as

vertices, edges and surface patches, which may be

created through an interactive graphics interface. How-

ever, the complete definition of the solid model requires

combinatorial relationships among the several surface

patches, which will result in the definition of the interior

region, model boundaries and other topological infor-

mation. This type of solid-model representation is called

boundary representation (B-REP) [3,7].

Traditional CSG and B-REP techniques apply to

objects that decompose space into three parts: interior,

exterior and boundary. This class of objects is referred

to as manifold objects, because their boundaries are

two-manifold sets in three-dimension [3]. This means

that the original techniques could not model multi-

region objects.

Many applications in Engineering need to model

multi-region objects or objects that present other non-

2D closed-manifold features, such as dangling faces or

edges. For this reason, many works in the literature

have proposed non-manifold modeling schemes

[7,13,17–23].

The generation of a consistent non-manifold B-REP

model from a set of surface patches is not a simple task

and may involve surface intersection and region detec-

tion. Considering the user-interface problems related to

this task, it is desirable that the creation of a B-REP

model from a set of surface patches be automated. The

ideal environment for the user would be to create these

patches with no explicit relationship, except for the use

of already created geometry information for the genera-

tion of a new patch. The modeler would automatically

generate surface-intersection curves and topologically

link these entities to the geometric definition.

A previous work by the present research group [13]

proposed a non-manifold approach for modeling multi-

region objects. A general methodology for creating and

manipulating spatial subdivision in cells of arbitrary

shape and geometry was developed. A spatial subdivi-

sion may be created by means of inserting planar surface

patches one by one, allowing the insertion of new

patches in real time. The object resulting from this

decomposition is classified as CGC, as it is a special case

of geometric complex [22] that occupies the entire three-

dimensional space (the unlimited outer region is also

represented in the subdivision).

Several works have presented methods to represent

spatial subdivisions. Rossignac and O’Connor [22]

addressed the general problem of representing n-dimen-

sional objects, possibly with internal structures. Some

data structures used in non-manifold solid modeling

[7,17–19,21] represent, in a general way, the adjacency

relationships of three-dimensional objects not neces-

sarily homogeneous in dimension. In the present
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implementation, the radial-edge data structure (RED),

proposed by Weiler [20,21], is adopted.

This data structure is known as radial-edge because it

explicitly stores the list of faces radially ordered around

an edge (Fig. 2). RED was conceived for non-manifold

modeling and Weiler has proven its completeness, which

means that any adjacency relationship can be extracted

from this representation.

In order to describe the topology of a spatial

subdivision, the radial-edge representation employs the

concept of use of a topological element. A use can be

seen as the occurrence of a topological element in an

adjacency relationship related to an element of higher

dimension. Thus, the radial-edge structure explicitly

stores the two uses (sides) of a face by the two regions

(not necessarily distinct) that share that face. Each face-

use is bounded by one or more loop-uses, which are

composed by an alternating sequence of edge-uses and

vertex-uses (Fig. 2). Vertex-uses are necessary to store

non-manifold conditions at vertices.

The RED structure is a hierarchical description of a

spatial subdivision, starting in higher dimension levels

(regions) and reaching the lower levels (vertices) (Fig. 3).

The topological elements are kept in doubly linked

circular lists and have pointers to their attributes.

Topological data structures are complex and should

not be directly manipulated. Weiler has introduced a set

of operators that provide a high-level method to access

the radial-edge structure. These operators are divided in

two groups. The first group has operators that act on

faces of a spatial subdivision and are analogous to the

(two-manifold) operators presented by M.antyl.a [7]. The

second group has operators that are capable of creating

wireframes and adding faces, which are attached to

specified edges or wireframes. They are referred to as

non-manifold operators. Considerations about a mini-

mal set of operators can be found in Wu’s work [24].

The present CGC modeling was implemented as a

library of OOP classes, which provide a set of high-level

operators that manipulate a spatial subdivision. These

operators receive as input geometric information on the

surface patches that are inserted in the spatial subdivi-

sion. This geometric information is automatically

translated into topological information required by

Weiler’s non-manifold and manifold operators.

The CGC modeling capability is one of the key

aspects of the finite-element modeling scheme proposed

in this work. However, up to now the implementation of

this methodology could only treat planar (polygonal)

surface patches. One of the goals of this work is to

extend this methodology to consider parametric curved-

surface geometries using NURBS.

3. Hybrid modeling approach

As previously mentioned, the proposed data-repre-

sentation scheme, which was adopted in the new version

of the MG modeler, is based on a hybrid approach. The

basic idea is to have two separate representations of

the same model. One representation is stored in the

modeler’s data structure. This is the representation that

is actually maintained in computer memory during the

modeling process. The modeler’s data structure is also

permanently stored in disk when a model is saved. The

other representation is a temporary conversion of the

modeler’s data structure into a CGC representation. In

this conversion, the topology of the model is determined

such that different regions can be distinguished. In an

intermediate stage of this conversion, the algorithm for

intersecting surfaces is used to compute the curves and

surface patches resulting from intersection. The topolo-

gical entities in the modeler’s data structure are also

loop-use 

face-uses 

loop-use 

loop-use 

pair of radial 
edge-uses 

pair of mate 
edge-uses 

vertex-uses 

Fig. 2. Uses of topological elements in RED data structure.
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Fig. 3. Hierarchy of topological entities in RED data structure.
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updated to reflect possible changes from surface inter-

section.

The main advantage of this approach is that it

combines the meshing and intersection capability of

MG with the topological power of representation and

robustness of CGC. There is a two-way communication

between these representations, as shown in Fig. 4. CGC

may be seen as a ‘‘topological engine’’ that generates

topological information that is consistent with the

geometry of a model. The topological entities identified

by the CGC representation are passed back to the MG

representation, which includes automatically detected

regions. In Fig. 4, it can also be observed that the

geometric description of the topological entities is

common to both representations. This geometric de-

scription is stored in a separate module based on

NURBS representation.

The following steps summarize the adopted hybrid

modeling methodology:

(1) the user generates single surface patches that may

intersect each other,

(2) MG modeler computes intersections generating

curves, curve segments, and surface patches,

(3) the user selects surface patches that will be used in

the final model, removing undesirable parts,

(4) CGC module identifies the closed regions and

returns this information to MG data structure, and

(5) MG modeler computes the final mesh integrating

individual patches and solids.

The three modules shown in Fig. 4 are implemented as

OOP classes. The CGC class organization is described

by Mello and Cavalcanti [25] and MG’s class organiza-

tion is described in Section 4. The class organization

of the NURBS module is shown in Fig. 5. The

geometric representation of curves and surfaces

stored in the objects of this module uses a public-

domain OOP library [26]. This library provides the

representation of several types of curves and

surfaces, including the conic and quadric forms. There

are specific sub-classes for certain geometry types (for

example, the Arc class geometrically describes a circle

arc, and the Gordon class, a Gordon surface). The

methods in these classes manipulate the corresponding

geometric information. For example, there is a

method that, given the parametric coordinates of a

surface point, obtains the corresponding 3D Cartesian

coordinates.

Surface intersections are performed prior to region

detection. New curve segments and surface patches may

arise from this step. The basic information passed from

the modeler’s data structure to the CGC data structure

consists of a set of surface patches defined by the user by

means of MG’s graphics interface or resulting from

surface intersection. For each surface patch inserted in

the CGC representation, a radial-edge topological face is

generated. In the CGC representation, the patches only

intersect each other at their boundaries. Here, a surface

patch is represented by its boundary curves and by its

NURBS geometric description. These parameters are

sufficient to determine an input surface patch to the

CGC module.

This module processes the surface patches passed by

the MG module and generates a consistent topological

model with multi-region detection, which is then

converted back to the MG representation, updating all

the topological relationships in the MG data structure.

This conversion is performed, basically, by traversing all

regions and faces generated by the CGC module and

transforming them into entities of the MG representa-

tion. Each face in the CGC representation corresponds

to a surface patch in the MG representation. Two

patches may belong to a same geometric surface in

situations where an intersecting trimming curve has

subdivided the initial patch. Similarly, each edge in the

CGC representation corresponds to a curve segment in

the modeler’s representation, and these segments may

share the same geometric curve if they were originated

from a curve split. Finally, each region in the CGC

representation will generate a solid in the MG repre-

sentation.

MG representation CGC representation 

NURBS 

Fig. 4. General modules in proposed modeling approach.

NURBS

NURBS Curve NURBS Surface

Bilinear Coons Gordon LoftPolyLine Arc Interp SweepTrilinear Coons

NURBS

NURBS Curve NURBS Surface

Bilinear Coons Gordon LoftPolyLine Arc Interp SweepTrilinear Coons

Fig. 5. The class organization of the NURBS module.
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In situations where a geometric curve has two or more

segments associated to it, the MG modeler does not

allow manipulation of curve control points to avoid

geometric inconsistencies. The same constraint is applied

to surface control points.

4. Modeler’s class organization

The main data structure of MG was conceived with

the purpose of supporting both surface (shells) and solid

finite-element modeling. In this work, MG’s data

structure was reorganized to consider the distinction

between geometric and topological entities, which was

not made in its original version. The radial-edge scheme

could have been adopted to redesign MG’s data

structure. However, this would require enforcing con-

sistency between geometry and topology at each

modeling step. In addition, MG’s data-structure class

organization is simpler and lighter than the radial-edge

data structure. In spite of this, MG’s data structure

maintains the required adjacency among topological

entities needed to represent a non-manifold multi-region

model. Fig. 6 shows the OOP class organization in the

MG module. The class diagram shown in this figure, as

well as in other figures in this paper, follows the object

modeling technique (OMT) nomenclature [27].

The Entity class is subdivided in two sub-classes. The

first, Geometry, refers to the geometric entities of the

model. The second, Topology, represents the entities that

contain topological information.

In the MG data structure, a vertex has a topological

instance, which is represented by an object of the

VtxTop class, and a geometric instance, which is

represented by an object of the Point class. A VtxTop

object contains a list of references to adjacent curve

segments (Segment objects) and a reference to the

corresponding Point object. An object of the Point class

stores the geometric position of a vertex in the 3D

Euclidian space and has a reference to the corresponding

VtxTop object.

Similarly, a Segment object represents the topology of

a portion (segment) of a geometric curve. An object in

this class stores the topological information (pointers to

adjacent vertices, for example) and a reference to its

geometric description (Curve object). Fig. 7 illustrates

the relationship between a curve (geometry) and its two

segments (topology). In this case, curve c1 has a list of

references to Segment objects that belong to it (s1 and

s2). These Segment objects contain references to their

end vertices, (v1; v3) and (v3; v2), respectively, and to

curve c1: A Curve object must have at least one Segment

object. Curve c1 also has a reference (see Fig. 8) to its

geometric representation, which consists in an object of

the NURBS module. The sub-classes of Curve class

shown in Fig. 6 are necessary to implement methods for

creation of curves in the modeler.

Another important class in the MG data structure is

class Patch2d, which represents the topology of a

portion of a surface. An object in the Patch2d class

stores references to its boundary curves and to its

surface geometric description, which is represented by

Entity

Point

Generic

Geometry

Curve Surface

Arc Spline Polyline

Bilinear Trilinear Sweep

Segment Patch

Solid

Extrusion Sweep

Topology

VtxTop

Patch3d

Patch2d

Entity

Point

Generic

Geometry

Curve Surface

Arc Spline Polyline

Bilinear Trilinear Sweep

Segment Patch

Solid

Extrusion Sweep

Topology

VtxTop

Patch3d

Patch2d

Fig. 6. Modeler’s general OOP class organization.
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Fig. 7. Relationship curve-segment.
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an object of class Surface. A Surface object contains a

reference to its geometric representation, i.e., a pointer

to a NURBS object (see Fig. 8), and a list of references

to Patch2d objects that belong to it. Fig. 9 illustrates the

relationship between surface s1 and two corresponding

Patch2d objects, p1 and p2. Each Patch2d object

contains topological information, which mainly consists

of a list of Segment objects on its boundaries. In

addition, a Patch2d object stores a surface finite-element

mesh that is eventually generated on it. A Patch2d object

also stores a list of interior surface patches. This allows,

for example, the representation of interior loops in a

surface patch, which may occur from surface intersec-

tion.

An object of the Surface class must have at least one

Patch2d object. A Surface object also contains geometric

information related to the process that was used for its

interactive generation. The sub-classes of Surface class

shown in Fig. 6 contain methods for surface generation.

Currently, a surface may be generated from boundary

curves by bilinear mapping, trilinear mapping or sweep.

Therefore, each Surface object contains information

about its creation method and a list of references to its

generating curves (curves that were used for its

creation).

A Patch2d object also contains references to adjacent

Patch3d objects. An object in the Patch3d class is the

topological representation of a solid region. A Patch3d

object has a list of references to Patch2d objects that

form its boundary and a pointer to the corresponding

Solid object. In addition, a Patch3d object stores a solid

finite-element mesh that is eventually generated in it.

The geometric version of the topological Patch3d class

is the Solid class. A Solid object contains geometric

information about the method used for its generation.

Currently, there are three methods for solid generation:

extrusion, sweep or generic generation [11]. A generic

generation of a solid may be performed either explicitly

by the user (by simply selecting surface patches on the

boundary of the target solid) or automatically by the

CGC representation when a solid region is detected.

Therefore, each Solid object contains information about

its creation method and a list of references to its

generating curves and surfaces (curves and surfaces that

were used for its creation).

An important issue addressed by this data-representa-

tion scheme is the support for automatic and adaptive

mesh generation. As previously mentioned, finite-ele-

ment mesh generation is an area of active research and is

being treated by the authors elsewhere [10,11,15,28,29].

One of the goals of the present research group is the

development of a complete system for geometric

modeling and 3D finite-element adaptive simulation.

The methodology for adaptive mesh generation has been

tested in two dimensions [30] and is based on the

refinement of each topological entity in its own

parametric space. For example, mesh generation of a

surface patch (Patch2d object), which is performed in its

parametric space, is based on a previous refinement of

its boundary segments in their own parametric spaces.

Similarly, solid-mesh generation of a 3D region requires

the previous refinement of its boundary surface patches.

The implementation of this mesh-generation metho-

dology is accomplished in the present data structure by

means of the concept of use of a topological entity by a

surface. The concept of use in the MG data structure is

quite different from its concept in the radial-edge data

structure. Here, use simply means the geometric

information of a certain entity in the parametric space

of a surface, while in the radial-edge data structure uses

are responsible for the main topological relationships. In

MG’s data structure, the above-described topological

entities hold the adjacency relationships and maintain

use entities to hold parametric coordinates. For exam-

ple, a vertex that belongs to two adjacent surfaces has

two uses. Fig. 10 illustrates this example. The single use

of topological vertex v1 refers to surface s1; with

parametric coordinates u ¼ 0 and v ¼ 0: Topological

vertex v5 has two uses, one to s1; with parametric

coordinates u ¼ 1 and v ¼ 1; and the other to s2; with

parametric coordinates u ¼ 1 and v ¼ 0: The same idea

ptr_nurbs

(Curve)

(NURBS Curve)

ptr_nurbs

(Surface)

(NURBS Surface)

(NURBS Curve)

)

ptr_nurbs

(Curve)

(NURBS Curve)

ptr_nurbs

(Surface)

(NURBS Surface)

(NURBS Curve)

)

Fig. 8. Relationship between the curve and surface classes of

the MG module and the NURBS module.
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is adopted for segments. In this case, each use of a

segment has the parametric coordinates of its end

points.

Therefore, a VtxTop object has a list of uses

associated to it in addition to the other previously

described topological information. The use of a vertex is

an object of the VtxTopUse class. A VtxTopUse object

has a reference to its corresponding VtxTop object and

another reference to the corresponding Surface object. A

VtxTopUse object also contains two variables to store

the parametric coordinates of a point on a surface.

Similarly, a Segment object has a list of uses, which

are objects of class SegmentUse. A SegmentUse object

has a reference to the corresponding Segment object and

another reference to the corresponding Surface object. It

also contains variables to hold parametric coordinates

of a curve segment on a surface.

5. Implementation of NURBS in the CGC representation

The original CGC implementation treats only planar

(polygonal) surface patches. However, one of the goals

of this work is to consider CGC models with curved

geometries, which can be achieved by incorporating

NURBS’s geometry.

The CGC module in this work is just used for region

detection and receives as input data surface patches that

only intersect each other at their boundaries. Therefore,

the extension of the CGC module was relatively simple,

because the CGC data structure does not depend on the

underlying geometry, which means that it does not make

any difference if an edge is considered as a straight line

or a curve.

In the CGC representation, objects responsible for the

definition of topological entities (regions, faces, edges

and vertices) point to objects that describe their

associated geometry and attributes (objects of classes

RegionAttr, FaceAttr, EdgeAttr and VertexAttr). In

addition, CGC implements another class called

GeomPck, that contains all geometric algorithms neces-

sary for region detection [25]. For example, the

GeomPck class has algorithms for calculating the

volume of a certain region, computing the location of

a point with respect to a region, or computing the

tangent vector at a face boundary. These methods deal

with geometric information associated to each

topological entity. Therefore, modifications caused by

the addition of a new geometry type in the

CGC implementation are limited to a small group of

classes that define and manipulate the geometry of a

model.

FaceAttr and EdgeAttr objects hold the geometric

description of faces and edges. This description is now

stored in two new classes, CGC Surface and CGC Curve,

as can be seen in Fig. 11. Since the previous implemen-

tation of the CGC module treated only planar-poly-

gonal faces, there was no need for these classes. In the

new version, the methods in these classes obtain

geometric information, from the NURBS module, that

are necessary for region detection. The connection

between the CGC representation and the NURBS

module is illustrated in Fig. 12. CGC Surface and CGC

Curve objects contain references to their corresponding

NURBS objects.
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Fig. 10. Uses of vertices in two adjacent surfaces.

CGC Object

CGC Curve CGC Surface

CGC Object
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Fig. 11. New classes implemented in the CGC representation.
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(NURBS Surface)

Fig. 12. Relationship between the curve and surface classes of

the CGC representation and the NURBS library.
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6. Application examples

This Section describes two application examples that

demonstrate the efficiency of the proposed modeling

methodology. The first one is the so-called Utah teapot

and the second is a twelve-bladed turbine disk in which a

full finite-element stress analysis is performed.

Fig. 13a shows the primitive curves that are used to

generate the initial surface patches of the teapot model.

These surface patches are shown in Fig. 13b. Fig. 13c

depicts these patches in an exploded view. The surface

patches of the teapot’s body and cap are generated by

rotational sweeping. The spout and the handle surfaces

are modeled using Gordon patches. Planar taps are used

to close off the model at the top and bottom. In fact,

Figs. 13b and c show the initial surface finite-element

meshes that are generated on the surface patches.

Figs. 13d–g are used to exemplify the surface-inter-

section and region-detection capabilities of the new

version of the MG modeler. Figs. 13d and e show a

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 13. Teapot modeling: (a) primitive curves of the teapot model; (b) surface patches of the teapot model; (c) exploded view of the

teapot model; (d) detail of the surface finite element mesh of the spout and the body of the teapot model (before treating surface

intersection); (e) detail of the original spout surface and teapot body; (f) detail of the surface finite element mesh resulting from the

intersection of the spout and the body of the teapot model; (g) automatically detected region of the teapot spout after intersection with

the body.
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detail of the connection between the spout and the body

of the teapot before treating surface intersection. In

Fig. 13e, one can observe that the original spout surface

goes inside the teapot’s body.

Fig. 13f depicts a detail of the surface finite-element

mesh resulting from the intersection of the teapot’s

spout and body. In this case, a local remeshing was

performed, that is, only the elements close to the

Fig. 14. Turbine disk modeling: (a) primitive curves of the turbine disk model; (b) surface patches of the turbine disk model;

(c) exploded view of the turbine disk model; (d) solid finite element mesh of the turbine disk model; (e) contour plot of a stress

component of the turbine disk model.
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intersection curve are affected by the intersection. New

nodes are always generated in the parametric space of

each surface, which means that they lay exactly on the

surfaces, including the nodes of the intersection curve.

The automatically detected region of the teapot’s

spout after intersection with the body is shown in

Fig. 13g. One may observe that the portion of the

spout’s surface that was inside the body is eliminated.

This is a trivial task in the current modeling environ-

ment because this portion is automatically detected as

an independent patch. It may also be seen in Fig. 13g

that the surface patch of the body that was closed off by

the spout’s surface was optionally meshed as a whole,

instead of having its mesh changed locally.

The second example is an engineering problem of a

finite-element stress analysis of a twelve-bladed turbine

disk [31]. Fig. 14a shows the curves that are used to

generate the initial surface patches. These surfaces,

which are shown in Fig. 14b and c (exploded view), were

modeled by bilinear Coons patches. All the blade

regions were automatically detected. From this informa-

tion, MG modeler generates a solid finite-element mesh

independently in each region using J-Mesh algorithm

[11]. The MG modeler converts the meshes associated to

each region into a consistent unique mesh used as input

data for a finite-element analysis program. A contour

plot of a stress component resulting from the finite-

element analysis is shown in Fig. 14d.

7. Conclusions

This work has proposed a modeling methodology

focused on two aspects of the 3D finite-element method

simulation. The first aspect refers to non-manifold

geometric modeling with automatic region detection.

In this context, a multi-region representation, called

CGC representation [13] was generated by the insertion

of curved surface patches. The second aspect is to

provide support for automatic finite-element mesh

generation. This methodology has been implemented

in an existing finite-element modeler called MG [10].

This paper has described an OOP class organization

of a new version of MG that, while maintaining its

simple and efficient user interface, provides capabilities

for automatic region detection and finite-element mesh

generation for models with curved surface patches

represented by NURBS [26].

A hybrid approach was adopted in which a full CGC

representation of the model is not maintained in each

step of the geometric modeling. Rather, the previous

MG data structure was extended so that a CGC model

could be created at any moment, when the user requires

region detection (however, the CGC module requires

that surface intersections be performed in a previous

stage).

Surface intersection, which was inherited from the

previous version of MG, is based on a procedure in

which existing surface meshes are converted into an

auxiliary topological data structure that allows the

efficient construction of trimming curves [10]. This

auxiliary topological information is also used to locally

remesh the intersecting surface meshes. The surface-

intersection algorithm generates elements resulting from

intersections with improved geometric quality, suitable

for finite-element analysis [10].

In addition to the local remeshing resulting from

surface intersection, MG’s new modeling methodology

allows an overall remeshing of the model in a consistent

way. The CGC ‘‘topological engine’’ provides consis-

tency between topological and geometric entities of a

non-manifold multi-region model. The complete topo-

logical and geometrical information allows the mesh

generation of any surface patch or solid region

independently or globally.

Solid-mesh generation is based on an a priori

refinement of curves and surfaces [11]. Surface-mesh

generation is performed in the parametric space of each

surface. The implementation of this mesh-generation

methodology was accomplished by the creation of two

new topological entities, Segment and Patch2d, and by

means of the concept of use of a topological entity by a

surface. The use entities were added to the MG data

structure to hold parametric coordinates of a vertex or a

curve segment (which might correspond to a trimming

curve) on a surface.

Application examples have demonstrated the effi-

ciency of the proposed modeling methodology. Current

developments are related to incorporating quadrilateral

surface-mesh and hexahedral solid-mesh generation

algorithms for arbitrary domains. The final goal is to

develop a system for geometric modeling and adaptive

3D FEM simulation.
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