© Arndt von Staa

Projeto Persisténcia

A.v. Staa

LES - Laboratério de Engenharia de Software
Departamento de Informatica
Pontificia Universidade Catdlica
22453-900 Rio de Janeiro,

Brasil

Relatério LES

MCC-

PersistenceLibrary-Project-2002-07.doc

17 julho 2002

Neste documento

Palavras chave:

In this document

Keywords:

Projeto Persisténcia

A.v. Staa

arndt@inf.puc-rio.br

Laboratério de Engenharia de Software
Departamento de Informatica
Pontificia Universidade Catdlica
22453-900 Rio de Janeiro,

Brasil

Julho 2002

Relatorio LES xx/xxxx

Resumo

Abstract

Projeto Persisténcia

1. Introducao

Bases de dados relacionais sdo consideradas inadequadas para aplica¢6es do género CAD e
CAE [bases OQ]. Nestes casos recorre-se a bases de dados orientadas a objetos. Embora
exista uma proposta de padrdo da OMG [sgbdoo] as implementa¢Bes nem sempre aderem a
estes padrdes. Além disso, os sistemas de geréncia de bases de dados OO tendem a ser caros
e complexos, tornando elevados o0s custos de institucionalizacdo e distribuicéo.
Freqlentemente deseja-se simplesmente dispor de uma infra-estrutura de persisténcia local
ao invés de utilizar um sistema de geréncia de bases de dados capaz de atender
simultaneamente diversos usuarios. Torna-se interessante, entdo, desenvolver uma biblioteca
de persisténcia simples e facilmente instanciavel para diferentes aplicagdes. Embora uma tal
biblioteca ndo implemente uma parte significativa das funcionalidades de um sistema de
geréncia de bases de dados, a sua virtude reside na simplicidade de sua interface e na
simplificagdo dos contratos de distribui¢édo do software que as usa.

2. Arquitetura

API
Data elements Pages
Virtual memory
Virtual machine Test support

Figura 1. Arquitetura da biblioteca de persisténcia

A Figura 1 esboca a macro-arquitetura da biblioteca de persisténcia. A seguir descreveremos,
em linhas gerais, cada um dos elementos.

2.1. Virtual machine

A Maguina Virtual estabelece a interface com a plataforma real. Algumas das classes que
formam este componente podem ter que ser adaptados para assegurar que executem
corretamente em uma dada plataforma.

Projeto Persisténcia

EXC_CEscape EXC_CError EXC_CAssertion EXC_CkFailure

l l BCDArit Module

EXC_CException
/ MSG_BCD_ltem

MSG_CMessage oM MSG_CMessageltem /——— MSG_Clntegerltem

v

MSG_Stringltem

STR_CString

ln

LOG_CLogger

SIO_CSequentiallO

) 4

Figura 2. Diagrama de classes da maquina virtual Talisman

A Figura 2 eshoca a estrutura de classes da maquina virtual Talisman.

Para assegurar portatilidade dos dados armazenados, todos os nimeros sdo armazenados
em formato BCD. Este formato codifica em cada 4 bits um digito decimal. Os nimeros
negativos séo armazenados na forma de complemento de dez. Cada niumero BCD pode ser
tratado como uma sequéncia de caracteres ASCII.

Mensagens identificam um string contido em uma tabela. Este string pode conter campos.
Cada campo sera preenchido com um item de mensagem. A medida que forem surgindo
novos tipos, novas subclasses de MSG CStringItem devem ser criadas.

A classe STR_CString implementa strings de tamanho variavel armazenados de forma
otimizada em memoria dinamica. A classe prové todos os operadores convencionais de
string. Um dos construtores é capaz de buscar o valor string de uma tabela a partir de sua
identificacdo. As tabelas de string e as tabelas contendo os as defini¢bes das chaves de acesso
a estes strings sdo geradas por intermédio de ferramentas.

As excegOes referenciam objetos MSG_CMensagem devidamente inicializados. Isto permite ao
tratador de excecBes determinar como proceder, caso seja sensivel as condi¢des que deram
margem a sinalizacdo da excecdo. Estdo definidas os tipos de excecao:

EXC CEscape excecao interna que deve ser tratada e ndo gera interface com o usuério.

EXC _CErro erro devido a dados ou comandos errados fornecidos pelo usuario. N&do
impedem a biblioteca de continuar operando, mas requerem uma
interacdo com o usuario. Adverténcias caem nesta categoria também.

EXC CAssertion falhas de execucdo detectadas por alguma assertiva executavel.
Usualmente impedem a continuagdo da execucdo da biblioteca, porém
ndo comprometem os dados armazenados.

EXC CFailure falhas de execucéo detectadas por alguma assertiva executavel. Sempre
impedem a continuacdo da execuc¢do da biblioteca, e é provavel que os
dados armazenados estejam comprometidos.

Todas as linhas impressas sdo enviadas para a classe LOG_CLogger. Esta mantém uma lista
das ultima n linhas impressas. Desta forma pode-se, sempre que desejado, rolar e redesenhar

Projeto Persisténcia

janelas contendo mensagens do log. O logger imprime os resultados ou na console ou em um
arquivo controlado pela classe SIO_CSequentialIO. Podem coexistir varios loggers ao
mesmo tempo, possivelmente compartilhando um mesmo arquivo de saida fisico.

2.2. Test support

O suporte aos testes prové servicos de apoio a depuracgdo da biblioteca e, por extensao, das
aplicacdes que dela fazem uso.

PersistenceAPI
module

l

SIO_SequentiallO
GLB_CGlobal TI_CTestinterface —
?n: l / Debug module
LOG_CLogger TAL_CTestTalisman
s — Yo 1 \ CNT_CCounters
i Contextsetup
TST_CTestGeneric »| TST_CTestSpecific

Modules being
tested

Figura 3. Diagrama de classes do suporte ao teste

A Figura 1 ilustra a estrutura de classes do suporte aos testes. O desenvolvimento da
biblioteca é incremental progredindo de construto para construto. Cada construto difere do
anterior por adicionar poucos (em geral 1, algumas vezes até 3) moédulos. Cada médulo é
uma unidade compilavel independentemente e contém uma ou mais classes fortemente
interdependentes. Na presente arquitetura o suporte aos testes prevé o desenvolvimento de
construtos formados estritamente por médulos redigidos em C++ e sem uma APl bem
definida.

O modulo PersistenceAPI implementa o programa principal. Futuramente sera
substituido pela API da biblioteca de persisténcia.

O classe TI TestInterface gerencia 0 acesso aos arquivos de script de teste, bem como a
geracgdo dos logs de execucao dos testes. O processo de teste sera discutido em mais detalhe
mais adiante.

A classe GLB CGlobal cria e destrGi o contexto necessario para a correta operagdo do
construto. O contexto a ser estabelecido evolui a medida que a biblioteca for sendo
desenvolvida.

O modulo Debug controla a alocagdo de memodria dinamica. O médulo registra todas as
operagbes de alocacdo e desalocagdo de espacos de dados e possibilita o controle da
extravasao de espacos. Facilita, desta forma, o controle e diagnostico eventuais vazamentos
de memoria.

A classe CNT cCcCounters fornece funcbes para a contagem de passagem da execugao por
pontos marcados no codigo. Ela tem por finalidade auxiliar na verificacdo da completeza dos
testes

Projeto Persisténcia

A classe TAL_TestTalisman estabelece o contexto para o teste de construtos e coordena a
interpretacdo dos diversos arquivos contendo script de teste.

A classe TST CTestGeneric cria a interface abstrata do médulo de teste especifico do
construto e interpreta os comandos de teste que se aplicam a todos 0s construtos.

A classe TST CTestSpecific interpreta os comandos de teste especificos dos modulos a
serem testados. Esta classe precisa ser adaptada para cada construto. Para simplificar esta
adaptacdo existe uma ferramenta capaz de gerar um arcabougo especifico para a funcédo que
interpreta os comandos de teste.

2.3. Virtual memory.

MSG_CMessage SEG_CSegment \VM_CVirtualMemory
Item Root Root
? ?n ?n
SEG_ﬁeSrtre]gment »| SEG_CSegment |« VM_CPageFrame
SEGR_CRemote SEGL_ClLocal 5 PG_CPage
Segment Segment
Aplicacéo

Figura 4. Estrutura de classes da memoria virtual

A Figura 4 esboga a estrutura de classes da memoria virtual. A memoria virtual disponibiliza
as classes bésicas de interface entre arquivos e memoria real. O esquema utilizado é similar
ao de memoaria virtual segmentada descrita pela primeira vez no sistema operacional Multics
[Denning 1970]. Neste esquema, ao invés de se ter um grande arquivo utilizado para
paginacdo e compartilhado por todas as aplicacdes, tem-se um numero indefinido de
arquivos. Cada um destes arquivos implementa um segmento de memdria virtual. Cada
segmento persiste um conjunto coeso de dados. O espaco de paginas em memoria real é
compartilhnado por todos os segmentos. Este esquema permite manter em memdria
persistente toda a estrutura de objetos, trazendo-os para memoéria sob demanda e sem
precisar recorrer a macicgas serializagfes. Isto é possivel uma vez que os enderecos virtuais
internos a um segmento séo invariaveis de uma instancia de uso para outra.

A classe singleton SEG CSegmentRoot coordena o acesso a todos os segmentos em uso pelo
aplicacdo. Esta classe deve ser instanciada ao iniciar a execucao.

A classe SEG_CSegment é uma classe abstrata que define a interface das classes de acesso
aos dados contidos em arquivos especificos. Implementa, também, uma série de métodos
comuns a todos 0s segmentos.

A classe SEG CSegmentItem gera 0s nomes de segmentos utilizados em campos de
mensagens.

A classe SEGL CLocalSegment implementa o acesso a segmentos visiveis ao sistema de
arquivos da estacdo de trabalhos. Objetos segmento local ou remoto devem ser criados
diretamente pela aplicacdo. Na aplicacdo estes objetos sdo conhecidos por um identificador
usualmente chamado idSeg.

A classe SEGR_CRemoteSegment implementa o acesso a segmentos via Internet.

Projeto Persisténcia

A classe singleton VM_CVirtualMemoryRoot coordena a criagdo do conjunto de portadores
de péaginas residentes em memoria real. O objeto deve ser criado ao iniciar a execu¢do da
aplicacéo.

A classe VM_CPageFrame implementa as operacdes de acesso a determinado portador de
pagina. Uma péagina contida em um segmento é copiada para um portador. Este portador
pode estar sendo acessado por um objeto pagina. Enquanto estiver em uso por um objeto
pagina o contetudo do portador ndo é removido da memdria real. Caso um objeto pagina
altere o conteido de um portador, deve sinalizar que a pagina foi alterada. Isto ativara o
processo de gravacdo do contetido da pagina.

2.4. Pages

PG_CPage

VA HE

PG_CSegmentRoot
Page

| [

LSR_CListSegment o LL_CListListPage
Root -

PG_CFreePage LSP_CListPage |—» DAT_CData

PageType module

A I """""" 3

Application

Figura 5. Estrutura de classes acesso a elementos

A Figura 5 llustra a estrutura de classes atual. Esta estrutura estd parcialmente
implementada. No entanto, pretendo modifica-la para que se aproxime mais dos requisitos
de uma base dados orientada a objetos.

A classe PG_CPage instancia objetos referenciando paginas em memoria real. Néo é feita
copia do contedido, ao invés disso o objeto pagina referencia a pagina contida num portador
de memoria virtual. Para evitar ambiguidade utilizamos o termo objeto pagina para denotar
objetos em memodria real que referenciam alguma péagina contida em algum segmento. E
utilizamos o termo valor pagina para denotar o vetor de caracteres que corresponde a uma
pagina contida no segmento.

Objetos pagina podem estar preenchidos ou ndo. Quando preenchido, um objeto pagina
referencia um valor pagina contido em um portador da memoéria virtual, sendo que, ao
preencher o objeto (métodos Build...), é sempre verificado se o tipo do objeto é consistente
com o tipo do valor, gerando uma excegao erro caso nao o seja. Enquanto existir pelo menos
um objeto péagina referenciando um determinado portador, este ndo sera desalocado.
Diversos objetos pagina podem referenciar um mesmo portador. Por enquanto ndo esta
disponivel um sistema de blogueio para evitar conflitos de atualizagao.

Do ponto de vista de um segmento, paginas sdo vetores de caracteres de TAL PageSize
caracteres. Todos os dados de um segmento sdo armazenadas em paginas. Para assegurar
corretude de tipos, cada pagina possui um identificador de tipo. Estes tipos correspondem as

Projeto Persisténcia

classes da estrutura de classes na Figura 5. Ou seja, a estrutura de classes evidencia tanto a
organizacdo dos objetos em memaria real, como a organiza¢do do segmento.

O moédulo PageType possui uma fungdo que atua como fabrica de objetos, criando os
objetos consistentes com o tipo do valor pagina a ser utilizada para preenche-lo.
Internamente a uma péagina os dados podem ser organizados de qualquer forma, sempre
observando que o primeiro par de bytes identifica o tipo do valor pagina.

A primeira pagina de um segmento € a raiz do segmento e contém informacdes de controle
do segmento como um todo, além das referéncias para as estruturas de dados armazenadas
no segmento. A raiz é, portanto, a cabeca de todas as estruturas armazenadas no segmento.
Segmentos podem ser utilizados para diversas finalidades, consequentemente existe uma
estrutura de heranga com origem em PG _CSegmentRootPage e que identifica as possiveis
raizes de segmento. Isto permite o desenvolvimento incremental da estrutura de segmentos.
Cabe salientar que a estrutura de dados de uma determinada classe raiz é formada pela
concatenacao das estruturas de dados das raizes de que herda.

Um segmento pode ser entendido como sendo um vetor de paginas. Desta forma o
identificador de pagina (1dPag) nada mais € do que um indice deste vetor. Potencialmente
um segmento pode crescer até 2**32*TAL PageSize bytes. Uma vez adicionada uma
pagina a um segmento, ela ndo pode mais ser removida, ja que ndo existe um ordenamento
das operacbes de insercdo e exclusdo de péaginas. Cada segmento mantém uma lista de
paginas livres. Esta lista contém as zero ou mais paginas que foram desalocadas. Sempre que
for solicitada a alocacdo, primeiro tenta-se retirar uma pagina da lista livre, somente é
adicionada uma nova pagina ao segmento se e a lista estiver vazia. Evita-se, assim 0
crescimento descontrolado do segmento. No entanto, cabe & aplicac@o cliente desalocar as
paginas que se tornarem desnecessarias. O controle da lista livre é realizado pela classe
PG CFreePage.

A classe LST CListPage implementa listas genéricas. Cada lista possui um nome e deve
ser registrada na classe LI, CListListPage. Desta forma cada lista podera ser recuperada
pelo seu nome simbdlico. Uma lista podera conter valores de qualquer tipo e de tamanho
variavel, sendo que cada elemento pode em principio ter um tipo diferente dos demais
elementos. A classe fornece diversos operadores necessarios para a exploracao sequiencial de
uma lista. Cabe ao cliente identificar o tipo do objeto a ser acessado. O enderego virtual de
um elemento de lista é <segmento, idPag, inxElems>, ho qual:

segmento identifica 0 segmento que contém a lista;
idpag identifica a pagina que contém o elemento;
inxElem identifica o indice do elemento dentro da péagina.

Na atual implementacédo este endereco é efémero pois podera deixar de valer caso a lista seja
alterada. Isto porque ao altera uma lista elementos podem ser movimentados entre paginas
afim de assegurar suficiente espaco para acomodar o hovo elemento.

2.5. Data Elements

A classe abstrata DAT CData define a interface que todos os elementos devem satisfazer.
Objetos devem ser armazenados em um formato neutro com relagdo a plataforma,
tipicamente um string de caracteres ASCII codificado na forma < Tamanho , string >.

Projeto Persisténcia

3. Processo de desenvolvimento e teste

3.1. The generic build programming process

Text
editor

=
r.DEFw
Software
base Generate Generate Generate w
\f‘/ w tables w includes parameters

,
Talisman o

or

Y

Parameter
base

/’ '

. ' R v
: e

%

Figure 6. The build programming process

Figure 6 shows the standard build* development process. The process is iterative and
progresses from build to build. Each build is a working program implementing a coherent
set of the modulest. The aim of a build is assessing the quality of a very small number
(usually one) of new modules within the context of a possibly large set of already accepted
modaules. In addition to correctness, several other execution properties of the modules under
test are assessed, such as reliability, robustness, performance, absence of memory leaks,
absence of resource leaks, absence of concurrency problems, and fitness for use.

The meaning of the elements is:

e straight angled rectangle represent tools or programs developed within the Talisman
developing environment;

¢ round angled boxes represent COT? tools;

¢ ligting like boxes represent sequential files;

o diskdrivelike boxes represent direct access files;
o full linearrows represent flow of data;

e dashed arrows represent flow of control,;

*

A build is a partial implementation of a system and is used to assess the quality of its components.

A module is an independently compilable file. In some cases this file requires other files (e.g. #include), in
other cases the file must be composed prior to compilation.

¥ COT - commercial of the shelf.

Projeto Persisténcia

o full line bubble ended lines represent interdependent elements;

e puppets represent users interacting with some program.

Users develop modules using either Talisman* [Staa 1993] or some other tool (editor, IDE). In
this paper we assume that Talisman will be used.

All data involving detailed design and code of one or more modules is kept in a software
base. This is a special purpose database specifically designed to support Talisman. Due to
restrictions of the old version, the project is composed of several independent software bases,
each of which containing a small number of modules. Usually these are a production module
and its specific test module. Once developed or modified a module is linearized?, generating
implementation files, header files or script files. Talisman implements a programming
language that can be used, among others, to program a large variety of linearizers and
transformers. Rewriting linearization programs allows the composition of programs for a
variety of languages, such as C, C++ and Java. A specific linearizer has been developed for
the Talisman project itself.

Several modules interpret some form of byte-code, table, or symbolic text. The source text of
the code or tables to be interpreted is kept in .Dw files, where “Dw” identifies the type of
script file. Depending on the type of the script language, script files might be edited using
some text editor or may be generated using Talisman. An attempt is made to keep the syntax
of all script languages as simple as possible, usually in the form sequence of “command list-
of-parameters”. If more structure is required, a syntax similar to XML could be used.

Script files are transformed by tools into files to be used by a compiler or by the executable
program. The GeneratewTables tools usually transform the script file into declarations
that are compiled producing memory resident tables. However, some of these tools generate
executable code fragments to be included by specific modules. The GeneratewIncludes
tools transform the script into a file containing a list of constants. These constants are
required by the interpreters in order to access specific elements of a memory resident table or
parameter base. Finally, the GeneratewParameters tools transform the script file into a set
of directly accessible elements contained in the parameter base. When script files are
converted to data structures or byte code, specific modules must be developed to interpret
them. Each of the script languages requires the development of specific instances of these
tools.

The composition of a build is defined in a .cMP file. This script file describes the folder
structure of the project and enumerates the script files and modules that compose the build.
The plat.DAT file contains data describing how to generate make script files for a given
platform. A special tool, GMake, generates the make script file for the build. This script file
assures that all modules are compiled and all required script files are correctly transformed
into include files (. INC), memory resident table declaration files (. TAB) or added to the
parameter base.

A minor problem arises when attempting to compile a build for debugging purposes. The
make generators available in integrated development environments (IDE) usually do not
support user provided tools. Furthermore, due to the heavy use of instrumentation and
automatic testing, debuggers will seldom be needed. If necessary, the program might be
compiled using the tools of the process and, then, recompiled for debugging purposes using

The tool currently in use is an old embryonic MS-DOS version of Talisman. Once a workable version of the
new tool becomes available, it will replace the old one, possibly entailing a slight change in the process.

T Linearization is a process that generates sequential ASCII files from the contents of the software base.

9

Projeto Persisténcia

an appropriate IDE. This assures the generation of all non-code files required to correctly
compile and use the build. Furthermore, it entails very little extra effort when setting up a
build for debugging within the IDE.

3.2. Testing a build

Each build adds few new modules to the set of already accepted modules. These modules
must be tested in order to accept the build. Only after accepting a build one may advance to
a new one. The development process deploys a test framework that aids the automatic
testing of builds.

Console
Application driver
Java (main)
\ i S
_’/
Component Test |, — Test script
e APL T interface |.. . list
- /Generic N
C.[Osed teSter"'
cemponent Leakage ? ; Test
Specific -
tester .

Counter

/

Module to
be tested

Already developed
and accepted
modules

Module to
be tested

Figure 7. Architecture of the testing framework

Figure 7 shows the architecture of the test framework. Tests can be performed from two
perspectives. The usual perspective is to test a build considering a single language
implementation. However, Talisman will be developed as a hybrid program using Java and
C++ modules. In order to verify correct working of all modules, tests must be performed in
both contexts. The single language context eases the debugging of the modules under test.
The hybrid language context (Java) contributes to assuring the proper functioning of the
modaules in the production context.

The modules to be tested may interact with the modules that have already been accepted.
This reduces the amount of work setting up testing harnesses for modules under test.
Among the accepted modules we find two modules specifically aimed at test support. The
leakage control module permits the verification of memory leakage at specific points within a
test script. Usually test scripts control leakage only at the end of a script file, although the test
scripts may contain leakage tests in many places. The counter module counts the number of

10

Projeto Persisténcia

times execution has passed a given point in a program. These points are identified by a
name. Marking up the program with passage counters creates a simple mechanism for
controlling test coverage in a variety of degrees of resolution.

Talisman is able to linearize code inserting counters for every function or method, and every
pseudo-code block. Although this is quite a superficial counting scheme it has proved itself
reasonably effective in verifying the completeness of test scripts.

4. Plano de desenvolvimento

Durante as conversas mantidas com Antonio e Casanova concluimos que a primeira versao
poderia ser formada meramente pelo armazenamento e exploragdo de dados contidos em
listas. Para viabilizar esta versdo precisam ser feitas algumas adaptacdes no codigo existente.

4.1. Versao 1

e ajustar as classes da estrutura de acesso a listas de elementos contidos em paginas.

e criar uma versdo simplificada da classe DAT CData capaz de receber dados em uma
codificacdo binaria (struct), inserindo-os em uma dada lista, bem como recuperar
dados nesta codificacdo. Nesta versdo ndo sera feita qualquer consideracdo quanto a
portatilidade dos dados. Além disso cada linha corresponde a um struct fisico,
qualquer alteracdo na declaracdo ou em pardmetros de otimizagdo de layout de dados
levara ao mal funcionamento da biblioteca.

e assistir os programadores clientes no uso da biblioteca estatica.
o desenvolver um exemplo de uso da biblioteca.
e avaliar a usabilidade e adequacéo da biblioteca.
Resultados a serem entregues
e documentacdo da macro-arquitetura.

e documentacdo técnica incluida no codigo. Estd em desenvolvimento um sistema de
geracdo de uma documentacdo técnica exploravel remotamente. Diferente de JavaDoc,
0 sistema cria e explora um banco de dados contendo a documentacgdo. A base de
dados é povoada a partir do codigo fonte a ser documentado.

e scripts de teste.
e coOdigo fonte em C++.
o exemplo de uso.

o lista de problemas* a serem resolvidos em versfes posteriores.

4.2. Versao 2:

e avaliar e resolver problemas.

e criar uma classe de interface (API) cuja finalidade é simplificar o uso da biblioteca e
encapsular fungdes que o programador cliente ndo necessita ter.

*

O termo problema é usado de forma abrangente, denotando coletivamente: solicitacBes de evolucéo,
melhorias e adaptacéo, além de falhas e defeitos observados.

11

Projeto Persisténcia

encapsular o conjunto de médulos em uma DLL.
desenvolver um exemplo de uso da DLL.
avaliar a usabilidade e adequacéo da DLL.

avaliacdo dos resultados desta versdo e geracdo de uma lista de problemas a serem
resolvidos em versdes posteriores.

Resultados a serem entregues:

Documentacao de uso da API.

biblioteca DLL implementando a biblioteca de persisténcia.
documentacdo técnica incluida no codigo.

Arcabouco de teste envolvendo a DLL.

scripts de teste.

codigo fonte em C++.

lista de problemas a serem resolvidos em versfes posteriores.

4.3. Versao 3:

avaliar e resolver problemas pendentes.

criar uma classe STR_CStruct capaz de definir simbolicamente a organiza¢do de uma
linha de uma tabela, fornecendo func¢bes para a insergdo e recuperagdo de atributos a
partir de seus nomes simbolicos.

criar um interpretador para expressdes légicas capaz de selecionar elementos de uma
tabela segundo uma expressao légica simples. Os algoritmos nédo procurardo otimizar a
operacao select. O select sera restrito a uma Unica tabela e produzira uma lista de
valores cuja estrutura é idéntica a estrutura da tabela sobre a qual trabalha.

implantagdo do sistema de apoio ao desenvolvimento de software open source.

ajustar a API para incorporar as novas funcionalidades.

Resultados a serem entregues

documentacdo da API ajustada para a nova versao

nova versao da biblioteca DLL

scripts de teste.

codigo fonte em C++.

sistema de apoio ao desenvolvimento de software open source.

lista de problemas a serem resolvidos em versfes posteriores.

4.4, Versao 4:

avaliar e resolver problemas pendentes.

implantacéo do sistema de apoio ao desenvolvimento de software open source.

Resultados a serem entregues

12

Projeto Persisténcia

e scripts de teste.

e codigo fonte em C++.

e sistema de apoio ao desenvolvimento de software open source.

e lista de problemas a serem resolvidos em versdes posteriores.

Referéncias bibliogréaficas

basesOO
sghdOO
[Bennet 1989]
[Brown 1989]
[Cat 1994]
[Denning 1970]
[Deux 1991]

[Dittrich 1989]

[ESW 1993]

[Kim 1990]

[Staa 1993]

Bennet, K.H. (ed.); Software Engineering Environments, Research and Practice;
Ellis Horwood; Chichester, England; 1989

Brown, A.W.; Database Support for Software Engineering; London, Kogan
Page; 1989

Cattell R.G.G.; Object Data Management, Object Oriented and Extended
Relational Database Systems; Addison Wesley; 1994

Denning, P.J.; “Virtual memory”; ACM Computing Surveys 2(3); New York;
1970; pags 153-189

Deux, O. et al.; “The O2 System”, Communications of the ACM 34(10); Oct.
1991.

Dittrich, K.R.; "The DAMOKLES Database System for Design Applications:
its Past, its Present, and its Future”; in [Bennet89]; pp 151-171

Emmerich, W.; Schafer, W.; Welsh, J.; "Databases for Software Engineering
Environments -- the Goal has not yet been attained"; in ESEC'93 4th
European Software Engineering Conference; Sommerville, 1.; Paul, M. eds;
Lecture Notes in Computer Science no. 717; Springer; 1993; pp 145-162

Kim, W.; Introduction to Object Oriented Databases; Cambride, Massachusetts,
MIT Press; 1990

Ambiente de Engenharia de Software Talisman, Manual do Usuério; Staa
Informéatica; Rio de Janeiro; 1993

13

