
© Arndt von Staa PersistenceLibrary-Project-2002-07.doc 17 julho 2002

Projeto Persistência

A.v. Staa

LES - Laboratório de Engenharia de Software
Departamento de Informática

Pontifícia Universidade Católica
22453-900 Rio de Janeiro,

Brasil

Relatório LES

MCC-

1

Projeto Persistência

A.v. Staa
arndt@inf.puc-rio.br

Laboratório de Engenharia de Software
Departamento de Informática

Pontifícia Universidade Católica
22453-900 Rio de Janeiro,

Brasil

Julho 2002

Relatório LES xx/xxxx

Resumo
Neste documento

Palavras chave:

Abstract
In this document

Keywords:

Projeto Persistência

2

1. Introdução

Bases de dados relacionais são consideradas inadequadas para aplicações do gênero CAD e
CAE [bases OO]. Nestes casos recorre-se a bases de dados orientadas a objetos. Embora
exista uma proposta de padrão da OMG [sgbdoo] as implementações nem sempre aderem a
estes padrões. Além disso, os sistemas de gerência de bases de dados OO tendem a ser caros
e complexos, tornando elevados os custos de institucionalização e distribuição.
Freqüentemente deseja-se simplesmente dispor de uma infra-estrutura de persistência local
ao invés de utilizar um sistema de gerência de bases de dados capaz de atender
simultaneamente diversos usuários. Torna-se interessante, então, desenvolver uma biblioteca
de persistência simples e facilmente instanciável para diferentes aplicações. Embora uma tal
biblioteca não implemente uma parte significativa das funcionalidades de um sistema de
gerência de bases de dados, a sua virtude reside na simplicidade de sua interface e na
simplificação dos contratos de distribuição do software que as usa.

2. Arquitetura

API

Virtual machine Test support

Virtual memory

PagesData elements

Figura 1. Arquitetura da biblioteca de persistência

A Figura 1 esboça a macro-arquitetura da biblioteca de persistência. A seguir descreveremos,
em linhas gerais, cada um dos elementos.

2.1. Virtual machine

A Máquina Virtual estabelece a interface com a plataforma real. Algumas das classes que
formam este componente podem ter que ser adaptados para assegurar que executem
corretamente em uma dada plataforma.

Projeto Persistência

3

EXC_CErrorEXC_CEscape EXC_CAssertion EXC_CFailure

EXC_CException

MSG_CMessage MSG_CMessageItem

MSG_BCD_Item

MSG_CIntegerItem

MSG_StringItem
STR_CString

LOG_CLogger SIO_CSequentialIO

BCDArit Module

n

n

Figura 2. Diagrama de classes da máquina virtual Talisman

A Figura 2 esboça a estrutura de classes da máquina virtual Talisman.

Para assegurar portatilidade dos dados armazenados, todos os números são armazenados
em formato BCD. Este formato codifica em cada 4 bits um dígito decimal. Os números
negativos são armazenados na forma de complemento de dez. Cada número BCD pode ser
tratado como uma seqüência de caracteres ASCII.

Mensagens identificam um string contido em uma tabela. Este string pode conter campos.
Cada campo será preenchido com um item de mensagem. À medida que forem surgindo
novos tipos, novas subclasses de MSG_CStringItem devem ser criadas.

A classe STR_CString implementa strings de tamanho variável armazenados de forma
otimizada em memória dinâmica. A classe provê todos os operadores convencionais de
string. Um dos construtores é capaz de buscar o valor string de uma tabela a partir de sua
identificação. As tabelas de string e as tabelas contendo os as definições das chaves de acesso
a estes strings são geradas por intermédio de ferramentas.

As exceções referenciam objetos MSG_CMensagem devidamente inicializados. Isto permite ao
tratador de exceções determinar como proceder, caso seja sensível às condições que deram
margem à sinalização da exceção. Estão definidas os tipos de exceção:

EXC_CEscape exceção interna que deve ser tratada e não gera interface com o usuário.

EXC_CErro erro devido a dados ou comandos errados fornecidos pelo usuário. Não
impedem a biblioteca de continuar operando, mas requerem uma
interação com o usuário. Advertências caem nesta categoria também.

EXC_CAssertion falhas de execução detectadas por alguma assertiva executável.
Usualmente impedem a continuação da execução da biblioteca, porém
não comprometem os dados armazenados.

EXC_CFailure falhas de execução detectadas por alguma assertiva executável. Sempre
impedem a continuação da execução da biblioteca, e é provável que os
dados armazenados estejam comprometidos.

Todas as linhas impressas são enviadas para a classe LOG_CLogger. Esta mantém uma lista
das última n linhas impressas. Desta forma pode-se, sempre que desejado, rolar e redesenhar

Projeto Persistência

4

janelas contendo mensagens do log. O logger imprime os resultados ou na console ou em um
arquivo controlado pela classe SIO_CSequentialIO. Podem coexistir vários loggers ao
mesmo tempo, possivelmente compartilhando um mesmo arquivo de saída físico.

2.2. Test support

O suporte aos testes provê serviços de apoio à depuração da biblioteca e, por extensão, das
aplicações que dela fazem uso.

CNT_CCounters

Debug module

GLB_CGlobal

PersistenceAPI
module

TI_CTestInterface

TAL_CTestTalisman

TST_CTestGeneric TST_CTestSpecific

LOG_CLogger

Context set up

Modules being
tested

n

SIO_SequentialIO

Figura 3. Diagrama de classes do suporte ao teste

A Figura 1 ilustra a estrutura de classes do suporte aos testes. O desenvolvimento da
biblioteca é incremental progredindo de construto para construto. Cada construto difere do
anterior por adicionar poucos (em geral 1, algumas vezes até 3) módulos. Cada módulo é
uma unidade compilável independentemente e contém uma ou mais classes fortemente
interdependentes. Na presente arquitetura o suporte aos testes prevê o desenvolvimento de
construtos formados estritamente por módulos redigidos em C++ e sem uma API bem
definida.

O módulo PersistenceAPI implementa o programa principal. Futuramente será
substituído pela API da biblioteca de persistência.

O classe TI_TestInterface gerencia o acesso aos arquivos de script de teste, bem como a
geração dos logs de execução dos testes. O processo de teste será discutido em mais detalhe
mais adiante.

A classe GLB_CGlobal cria e destrói o contexto necessário para a correta operação do
construto. O contexto a ser estabelecido evolui à medida que a biblioteca for sendo
desenvolvida.

O módulo Debug controla a alocação de memória dinâmica. O módulo registra todas as
operações de alocação e desalocação de espaços de dados e possibilita o controle da
extravasão de espaços. Facilita, desta forma, o controle e diagnóstico eventuais vazamentos
de memória.

A classe CNT_CCounters fornece funções para a contagem de passagem da execução por
pontos marcados no código. Ela tem por finalidade auxiliar na verificação da completeza dos
testes

Projeto Persistência

5

A classe TAL_TestTalisman estabelece o contexto para o teste de construtos e coordena a
interpretação dos diversos arquivos contendo script de teste.

A classe TST_CTestGeneric cria a interface abstrata do módulo de teste específico do
construto e interpreta os comandos de teste que se aplicam a todos os construtos.

A classe TST_CTestSpecific interpreta os comandos de teste específicos dos módulos a
serem testados. Esta classe precisa ser adaptada para cada construto. Para simplificar esta
adaptação existe uma ferramenta capaz de gerar um arcabouço específico para a função que
interpreta os comandos de teste.

2.3. Virtual memory.

SEG_CSegment

SEG_CSegment
Root

SEGL_CLocal
Segment

SEGR_CRemote
Segment

SEG_CSegment
Item

MSG_CMessage
Item

VM_CPageFrame

VM_CVirtualMemory
Root

PG_CPage

Aplicação

n n

Figura 4. Estrutura de classes da memória virtual

A Figura 4 esboça a estrutura de classes da memória virtual. A memória virtual disponibiliza
as classes básicas de interface entre arquivos e memória real. O esquema utilizado é similar
ao de memória virtual segmentada descrita pela primeira vez no sistema operacional Multics
[Denning 1970]. Neste esquema, ao invés de se ter um grande arquivo utilizado para
paginação e compartilhado por todas as aplicações, tem-se um número indefinido de
arquivos. Cada um destes arquivos implementa um segmento de memória virtual. Cada
segmento persiste um conjunto coeso de dados. O espaço de páginas em memória real é
compartilhado por todos os segmentos. Este esquema permite manter em memória
persistente toda a estrutura de objetos, trazendo-os para memória sob demanda e sem
precisar recorrer a maciças serializações. Isto é possível uma vez que os endereços virtuais
internos a um segmento são invariáveis de uma instância de uso para outra.

A classe singleton SEG_CSegmentRoot coordena o acesso a todos os segmentos em uso pelo
aplicação. Esta classe deve ser instanciada ao iniciar a execução.

A classe SEG_CSegment é uma classe abstrata que define a interface das classes de acesso
aos dados contidos em arquivos específicos. Implementa, também, uma série de métodos
comuns a todos os segmentos.

A classe SEG_CSegmentItem gera os nomes de segmentos utilizados em campos de
mensagens.

A classe SEGL_CLocalSegment implementa o acesso a segmentos visíveis ao sistema de
arquivos da estação de trabalhos. Objetos segmento local ou remoto devem ser criados
diretamente pela aplicação. Na aplicação estes objetos são conhecidos por um identificador
usualmente chamado idSeg.

A classe SEGR_CRemoteSegment implementa o acesso a segmentos via Internet.

Projeto Persistência

6

A classe singleton VM_CVirtualMemoryRoot coordena a criação do conjunto de portadores
de páginas residentes em memória real. O objeto deve ser criado ao iniciar a execução da
aplicação.

A classe VM_CPageFrame implementa as operações de acesso a determinado portador de
página. Uma página contida em um segmento é copiada para um portador. Este portador
pode estar sendo acessado por um objeto página. Enquanto estiver em uso por um objeto
página o conteúdo do portador não é removido da memória real. Caso um objeto página
altere o conteúdo de um portador, deve sinalizar que a página foi alterada. Isto ativará o
processo de gravação do conteúdo da página.

2.4. Pages

PG_CPage

PG_CSegmentRoot
Page

PG_CFreePage LSP_CListPage

LL_CListListPageLSR_CListSegment
Root

PageType module

DAT_CData

Application

Figura 5. Estrutura de classes acesso a elementos

A Figura 5 Ilustra a estrutura de classes atual. Esta estrutura está parcialmente
implementada. No entanto, pretendo modificá-la para que se aproxime mais dos requisitos
de uma base dados orientada a objetos.

A classe PG_CPage instancia objetos referenciando páginas em memória real. Não é feita
cópia do conteúdo, ao invés disso o objeto página referencia a página contida num portador
de memória virtual. Para evitar ambigüidade utilizamos o termo objeto página para denotar
objetos em memória real que referenciam alguma página contida em algum segmento. E
utilizamos o termo valor página para denotar o vetor de caracteres que corresponde a uma
página contida no segmento.

Objetos página podem estar preenchidos ou não. Quando preenchido, um objeto página
referencia um valor página contido em um portador da memória virtual, sendo que, ao
preencher o objeto (métodos Build…), é sempre verificado se o tipo do objeto é consistente
com o tipo do valor, gerando uma exceção erro caso não o seja. Enquanto existir pelo menos
um objeto página referenciando um determinado portador, este não será desalocado.
Diversos objetos página podem referenciar um mesmo portador. Por enquanto não está
disponível um sistema de bloqueio para evitar conflitos de atualização.

Do ponto de vista de um segmento, páginas são vetores de caracteres de TAL_PageSize
caracteres. Todos os dados de um segmento são armazenadas em páginas. Para assegurar
corretude de tipos, cada página possui um identificador de tipo. Estes tipos correspondem às

Projeto Persistência

7

classes da estrutura de classes na Figura 5. Ou seja, a estrutura de classes evidencia tanto a
organização dos objetos em memória real, como a organização do segmento.

O módulo PageType possui uma função que atua como fábrica de objetos, criando os
objetos consistentes com o tipo do valor página a ser utilizada para preenche-lo.
Internamente a uma página os dados podem ser organizados de qualquer forma, sempre
observando que o primeiro par de bytes identifica o tipo do valor página.

A primeira página de um segmento é a raiz do segmento e contém informações de controle
do segmento como um todo, além das referências para as estruturas de dados armazenadas
no segmento. A raiz é, portanto, a cabeça de todas as estruturas armazenadas no segmento.
Segmentos podem ser utilizados para diversas finalidades, consequentemente existe uma
estrutura de herança com origem em PG_CSegmentRootPage e que identifica as possíveis
raízes de segmento. Isto permite o desenvolvimento incremental da estrutura de segmentos.
Cabe salientar que a estrutura de dados de uma determinada classe raiz é formada pela
concatenação das estruturas de dados das raízes de que herda.

Um segmento pode ser entendido como sendo um vetor de páginas. Desta forma o
identificador de página (idPag) nada mais é do que um índice deste vetor. Potencialmente
um segmento pode crescer até 2**32*TAL_PageSize bytes. Uma vez adicionada uma
página a um segmento, ela não pode mais ser removida, já que não existe um ordenamento
das operações de inserção e exclusão de páginas. Cada segmento mantém uma lista de
páginas livres. Esta lista contém as zero ou mais páginas que foram desalocadas. Sempre que
for solicitada a alocação, primeiro tenta-se retirar uma página da lista livre, somente é
adicionada uma nova página ao segmento se e a lista estiver vazia. Evita-se, assim o
crescimento descontrolado do segmento. No entanto, cabe à aplicação cliente desalocar as
páginas que se tornarem desnecessárias. O controle da lista livre é realizado pela classe
PG_CFreePage.

A classe LST_CListPage implementa listas genéricas. Cada lista possui um nome e deve
ser registrada na classe LL_CListListPage. Desta forma cada lista poderá ser recuperada
pelo seu nome simbólico. Uma lista poderá conter valores de qualquer tipo e de tamanho
variável, sendo que cada elemento pode em princípio ter um tipo diferente dos demais
elementos. A classe fornece diversos operadores necessários para a exploração seqüencial de
uma lista. Cabe ao cliente identificar o tipo do objeto a ser acessado. O endereço virtual de
um elemento de lista é <segmento, idPag, inxElem>, no qual:

segmento identifica o segmento que contém a lista;

idPag identifica a página que contém o elemento;

inxElem identifica o índice do elemento dentro da página.

Na atual implementação este endereço é efêmero pois poderá deixar de valer caso a lista seja
alterada. Isto porque ao altera uma lista elementos podem ser movimentados entre páginas
afim de assegurar suficiente espaço para acomodar o novo elemento.

2.5. Data Elements

A classe abstrata DAT_CData define a interface que todos os elementos devem satisfazer.
Objetos devem ser armazenados em um formato neutro com relação à plataforma,
tipicamente um string de caracteres ASCII codificado na forma < Tamanho , string >.

Projeto Persistência

8

3. Processo de desenvolvimento e teste

3.1. The generic build programming process

LINKLIB

MAKE

Compi-
ler

Text
editor

Text
editor

Mx.HPP

Mx.CPP

Talisman

Generate
w includes

Generate w
parameters

or

Software
base

Parameter
base

Ly.LIB

z.MAK

z.EXE

z.BLD

z.CMP

Plat.DAT

GMake

Mx.OBJ

w.TAB w_r.INC

r.DEFw

Generate
w tables

or

Debugger

Figure 6. The build programming process

Figure 6 shows the standard build* development process. The process is iterative and
progresses from build to build. Each build is a working program implementing a coherent
set of the modules†. The aim of a build is assessing the quality of a very small number
(usually one) of new modules within the context of a possibly large set of already accepted
modules. In addition to correctness, several other execution properties of the modules under
test are assessed, such as reliability, robustness, performance, absence of memory leaks,
absence of resource leaks, absence of concurrency problems, and fitness for use.

The meaning of the elements is:

• straight angled rectangle represent tools or programs developed within the Talisman
developing environment;

• round angled boxes represent COT‡ tools;

• listing like boxes represent sequential files;

• disk drive like boxes represent direct access files;

• full line arrows represent flow of data;

• dashed arrows represent flow of control;

* A build is a partial implementation of a system and is used to assess the quality of its components.
† A module is an independently compilable file. In some cases this file requires other files (e.g. #include), in

other cases the file must be composed prior to compilation.
‡ COT – commercial of the shelf.

Projeto Persistência

9

• full line bubble ended lines represent interdependent elements;

• puppets represent users interacting with some program.

Users develop modules using either Talisman* [Staa 1993] or some other tool (editor, IDE). In
this paper we assume that Talisman will be used.

All data involving detailed design and code of one or more modules is kept in a software
base. This is a special purpose database specifically designed to support Talisman. Due to
restrictions of the old version, the project is composed of several independent software bases,
each of which containing a small number of modules. Usually these are a production module
and its specific test module. Once developed or modified a module is linearized†, generating
implementation files, header files or script files. Talisman implements a programming
language that can be used, among others, to program a large variety of linearizers and
transformers. Rewriting linearization programs allows the composition of programs for a
variety of languages, such as C, C++ and Java. A specific linearizer has been developed for
the Talisman project itself.

Several modules interpret some form of byte-code, table, or symbolic text. The source text of
the code or tables to be interpreted is kept in .Dw files, where “Dw” identifies the type of
script file. Depending on the type of the script language, script files might be edited using
some text editor or may be generated using Talisman. An attempt is made to keep the syntax
of all script languages as simple as possible, usually in the form sequence of “command list-
of-parameters”. If more structure is required, a syntax similar to XML could be used.

Script files are transformed by tools into files to be used by a compiler or by the executable
program. The GeneratewTables tools usually transform the script file into declarations
that are compiled producing memory resident tables. However, some of these tools generate
executable code fragments to be included by specific modules. The GeneratewIncludes
tools transform the script into a file containing a list of constants. These constants are
required by the interpreters in order to access specific elements of a memory resident table or
parameter base. Finally, the GeneratewParameters tools transform the script file into a set
of directly accessible elements contained in the parameter base. When script files are
converted to data structures or byte code, specific modules must be developed to interpret
them. Each of the script languages requires the development of specific instances of these
tools.

The composition of a build is defined in a .CMP file. This script file describes the folder
structure of the project and enumerates the script files and modules that compose the build.
The Plat.DAT file contains data describing how to generate make script files for a given
platform. A special tool, GMake, generates the make script file for the build. This script file
assures that all modules are compiled and all required script files are correctly transformed
into include files (.INC), memory resident table declaration files (.TAB) or added to the
parameter base.

A minor problem arises when attempting to compile a build for debugging purposes. The
make generators available in integrated development environments (IDE) usually do not
support user provided tools. Furthermore, due to the heavy use of instrumentation and
automatic testing, debuggers will seldom be needed. If necessary, the program might be
compiled using the tools of the process and, then, recompiled for debugging purposes using

* The tool currently in use is an old embryonic MS-DOS version of Talisman. Once a workable version of the

new tool becomes available, it will replace the old one, possibly entailing a slight change in the process.
† Linearization is a process that generates sequential ASCII files from the contents of the software base.

Projeto Persistência

10

an appropriate IDE. This assures the generation of all non-code files required to correctly
compile and use the build. Furthermore, it entails very little extra effort when setting up a
build for debugging within the IDE.

3.2. Testing a build

Each build adds few new modules to the set of already accepted modules. These modules
must be tested in order to accept the build. Only after accepting a build one may advance to
a new one. The development process deploys a test framework that aids the automatic
testing of builds.

Module to
be tested

Module to
be tested

Already developed
and accepted

modules

Test script
list

Console
driver
(main)

Generic
tester

Specific
tester

Test
scripts

Application
Java

Test
interface

Component
API

Closed
component Leakage

control

Counter

Figure 7. Architecture of the testing framework

Figure 7 shows the architecture of the test framework. Tests can be performed from two
perspectives. The usual perspective is to test a build considering a single language
implementation. However, Talisman will be developed as a hybrid program using Java and
C++ modules. In order to verify correct working of all modules, tests must be performed in
both contexts. The single language context eases the debugging of the modules under test.
The hybrid language context (Java) contributes to assuring the proper functioning of the
modules in the production context.

The modules to be tested may interact with the modules that have already been accepted.
This reduces the amount of work setting up testing harnesses for modules under test.
Among the accepted modules we find two modules specifically aimed at test support. The
leakage control module permits the verification of memory leakage at specific points within a
test script. Usually test scripts control leakage only at the end of a script file, although the test
scripts may contain leakage tests in many places. The counter module counts the number of

Projeto Persistência

11

times execution has passed a given point in a program. These points are identified by a
name. Marking up the program with passage counters creates a simple mechanism for
controlling test coverage in a variety of degrees of resolution.

Talisman is able to linearize code inserting counters for every function or method, and every
pseudo-code block. Although this is quite a superficial counting scheme it has proved itself
reasonably effective in verifying the completeness of test scripts.

4. Plano de desenvolvimento

Durante as conversas mantidas com Antonio e Casanova concluímos que a primeira versão
poderia ser formada meramente pelo armazenamento e exploração de dados contidos em
listas. Para viabilizar esta versão precisam ser feitas algumas adaptações no código existente.

4.1. Versão 1

• ajustar as classes da estrutura de acesso a listas de elementos contidos em páginas.

• criar uma versão simplificada da classe DAT_CData capaz de receber dados em uma
codificação binária (struct), inserindo-os em uma dada lista, bem como recuperar
dados nesta codificação. Nesta versão não será feita qualquer consideração quanto à
portatilidade dos dados. Além disso cada linha corresponde a um struct físico,
qualquer alteração na declaração ou em parâmetros de otimização de layout de dados
levará ao mal funcionamento da biblioteca.

• assistir os programadores clientes no uso da biblioteca estática.

• desenvolver um exemplo de uso da biblioteca.

• avaliar a usabilidade e adequação da biblioteca.

Resultados a serem entregues

• documentação da macro-arquitetura.

• documentação técnica incluída no código. Está em desenvolvimento um sistema de
geração de uma documentação técnica explorável remotamente. Diferente de JavaDoc,
o sistema cria e explora um banco de dados contendo a documentação. A base de
dados é povoada a partir do código fonte a ser documentado.

• scripts de teste.

• código fonte em C++.

• exemplo de uso.

• lista de problemas* a serem resolvidos em versões posteriores.

4.2. Versão 2:

• avaliar e resolver problemas.

• criar uma classe de interface (API) cuja finalidade é simplificar o uso da biblioteca e
encapsular funções que o programador cliente não necessita ter.

* O termo problema é usado de forma abrangente, denotando coletivamente: solicitações de evolução,

melhorias e adaptação, além de falhas e defeitos observados.

Projeto Persistência

12

• encapsular o conjunto de módulos em uma DLL.

• desenvolver um exemplo de uso da DLL.

• avaliar a usabilidade e adequação da DLL.

• avaliação dos resultados desta versão e geração de uma lista de problemas a serem
resolvidos em versões posteriores.

Resultados a serem entregues:

• Documentação de uso da API.

• biblioteca DLL implementando a biblioteca de persistência.

• documentação técnica incluída no código.

• Arcabouço de teste envolvendo a DLL.

• scripts de teste.

• código fonte em C++.

• lista de problemas a serem resolvidos em versões posteriores.

4.3. Versão 3:

• avaliar e resolver problemas pendentes.

• criar uma classe STR_CStruct capaz de definir simbolicamente a organização de uma
linha de uma tabela, fornecendo funções para a inserção e recuperação de atributos a
partir de seus nomes simbólicos.

• criar um interpretador para expressões lógicas capaz de selecionar elementos de uma
tabela segundo uma expressão lógica simples. Os algoritmos não procurarão otimizar a
operação select. O select será restrito a uma única tabela e produzirá uma lista de
valores cuja estrutura é idêntica à estrutura da tabela sobre a qual trabalha.

• implantação do sistema de apoio ao desenvolvimento de software open source.

• ajustar a API para incorporar as novas funcionalidades.

Resultados a serem entregues

• documentação da API ajustada para a nova versão

• nova versão da biblioteca DLL

• scripts de teste.

• código fonte em C++.

• sistema de apoio ao desenvolvimento de software open source.

• lista de problemas a serem resolvidos em versões posteriores.

4.4. Versão 4:

• avaliar e resolver problemas pendentes.

• implantação do sistema de apoio ao desenvolvimento de software open source.

Resultados a serem entregues

Projeto Persistência

13

• scripts de teste.

• código fonte em C++.

• sistema de apoio ao desenvolvimento de software open source.

• lista de problemas a serem resolvidos em versões posteriores.

Referências bibliográficas
basesOO
sgbdOO

[Bennet 1989] Bennet, K.H. (ed.); Software Engineering Environments, Research and Practice;
Ellis Horwood; Chichester, England; 1989

[Brown 1989] Brown, A.W.; Database Support for Software Engineering; London, Kogan
Page; 1989

[Cat 1994] Cattell R.G.G.; Object Data Management, Object Oriented and Extended
Relational Database Systems; Addison Wesley; 1994

[Denning 1970] Denning, P.J.; “Virtual memory”; ACM Computing Surveys 2(3); New York;
1970; pags 153-189

[Deux 1991] Deux, O. et al.; “The O2 System”, Communications of the ACM 34(10); Oct.
1991.

[Dittrich 1989] Dittrich, K.R.; "The DAMOKLES Database System for Design Applications:
its Past, its Present, and its Future"; in [Bennet89]; pp 151-171

[ESW 1993] Emmerich, W.; Schäfer, W.; Welsh, J.; "Databases for Software Engineering
Environments -- the Goal has not yet been attained"; in ESEC'93 4th
European Software Engineering Conference; Sommerville, I.; Paul, M. eds;
Lecture Notes in Computer Science no. 717; Springer; 1993; pp 145-162

[Kim 1990] Kim, W.; Introduction to Object Oriented Databases; Cambride, Massachusetts,
MIT Press; 1990

[Staa 1993] Ambiente de Engenharia de Software Talisman, Manual do Usuário; Staa
Informática; Rio de Janeiro; 1993

