
←Back

OpenGL Transformation
Related Topics: OpenGL Pipeline, OpenGL Projection Matrix, OpenGL Matrix Class

Download: matrixModelView.zip, matrixProjection.zip

Overview

OpenGL Transform Matrix

Example: GL_MODELVIEW Matrix

Example: GL_PROJECTION Matrix

Overview
Geometric data such as vertex positions and normal vectors are transformed via Vertex Operation and Primitive

Assembly operation in OpenGL pipeline before raterization process.

OpenGL vertex transformation

Object Coordinates

It is the local coordinate system of objects and is initial position and orientation of objects before any transform is

applied. In order to transform objects, use glRotatef(), glTranslatef(), glScalef().

Eye Coordinates

It is yielded by multiplying GL_MODELVIEW matrix and object coordinates. Objects are transformed from object

space to eye space using GL_MODELVIEW matrix in OpenGL. GL_MODELVIEW matrix is a combination of

Model and View matrices (). Model transform is to convert from object space to world space.

And, View transform is to convert from world space to eye space.

Note that there is no separate camera (view) matrix in OpenGL. Therefore, in order to simulate transforming the

camera or view, the scene (3D objects and lights) must be transformed with the inverse of the view transformation.

In other words, OpenGL defines that the camera is always located at (0, 0, 0) and facing to -Z axis in the eye

space coordinates, and cannot be transformed. See more details of GL_MODELVIEW matrix in ModelView Matrix.

Normal vectors are also transformed from object coordinates to eye coordinates for lighting calculation. Note that

normals are transformed in different way as vertices do. It is mutiplying the tranpose of the inverse of

GL_MODELVIEW matrix by a normal vector. See more details in Normal Vector Transformation.

Clip Coordinates

The eye coordinates are now multiplied with GL_PROJECTION matrix, and become the clip coordinates. This

GL_PROJECTION matrix defines the viewing volume (frustum); how the vertex data are projected onto the screen

(perspective or orthogonal). The reason it is called clip coordinates is that the transformed vertex (x, y, z) is clipped

by comparing with ±w.

See more details of GL_PROJECTION matrix in Projection Matrix.

OpenGL Transformation http://www.songho.ca/opengl/gl_transform.html

1 of 7 19/04/2014 12:26

OpenGL Transform Matrix

Normalized Device Coordinates (NDC)

It is yielded by dividing the clip coordinates by w. It is called perspective division. It is more like window (screen)

coordinates, but has not been translated and scaled to screen pixels yet. The range of values is now normalized

from -1 to 1 in all 3 axes.

Window Coordinates (Screen Coordinates)

It is yielded by applying normalized device coordinates (NDC) to viewport transformation. The NDC are scaled and

translated in order to fit into the rendering screen. The window coordinates finally are passed to the raterization

process of OpenGL pipeline to become a fragment. glViewport() command is used to define the rectangle of the

rendering area where the final image is mapped. And, glDepthRange() is used to determine the z value of the

window coordinates. The window coordinates are computed with the given parameters of the above 2 functions;

glViewport(x, y, w, h);

glDepthRange(n, f);

The viewport transform formula is simply acquired by the linear relationship between NDC and the window

coordinates;

OpenGL Transformation Matrix
OpenGL uses 4 x 4 matrix for transformations. Notice that 16 elements in the matrix

are stored as 1D array in column-major order. You need to transpose this matrix if you

want to convert it to the standard convention, row-major format.

OpenGL has 4 different types of matrices; GL_MODELVIEW, GL_PROJECTION,

GL_TEXTURE, and GL_COLOR. You can switch the current type by using

glMatrixMode() in your code. For example, in order to select GL_MODELVIEW

matrix, use glMatrixMode(GL_MODELVIEW).

Model-View Matrix (GL_MODELVIEW)

GL_MODELVIEW matrix combines viewing matrix and modeling matrix into one matrix. In order to transform the

view (camera), you need to move whole scene with the inverse transformation. gluLookAt() is particularly used to

set viewing transform.

The 3 matrix elements of the rightmost column (m
12

, m
13

, m
14

) are for the translation transformation,

glTranslatef(). The element m
15

 is the homogeneous coordinate. It is specially used for projective transformation.

3 elements sets, (m
0
, m

1
, m

2
), (m

4
, m

5
, m

6
) and (m

8
, m

9
, m

10
) are for Euclidean and affine transformation, such as

rotation glRotatef() or scaling glScalef(). Note that these 3 sets are actually representing 3 orthogonal axes;

OpenGL Transformation http://www.songho.ca/opengl/gl_transform.html

2 of 7 19/04/2014 12:26

4 columns of GL_MODELVIEW matrix

(m
0
, m

1
, m

2
) : +X axis, left vector, (1, 0, 0) by

default

(m
4
, m

5
, m

6
) : +Y axis, up vector, (0, 1, 0) by

default

(m
8
, m

9
, m

10
) : +Z axis, forward vector, (0, 0, 1) by

default

We can directly construct GL_MODELVIEW matrix from

angles or lookat vector without using OpenGL transform

functions. Here are some useful codes to build

GL_MODELVIEW matrix:

Angles to Axes

Lookat to Axes

Matrix4 class

Note that OpenGL performs matrices multiplications in reverse order if multiple transforms are applied to a vertex.

For example, If a vertex is transformed by M
A
 first, and transformed by M

B
 second, then OpenGL performs M

B
 x

M
A
 first before multiplying the vertex. So, the last transform comes first and the first transform occurs last in your

code.

// Note that the object will be translated first then rotated

glRotatef(angle, 1, 0, 0); // rotate object angle degree around X-axis

glTranslatef(x, y, z); // move object to (x, y, z)

drawObject();

Projection Matrix (GL_PROJECTION)

GL_PROJECTION matrix is used to define the frustum. This frustum determines which objects or portions of

objects will be clipped out. Also, it determines how the 3D scene is projected onto the screen. (Please see more

details how to construct the projection matrix.)

OpenGL provides 2 functions for GL_PROJECTION transformation. glFrustum() is to produce a perspective

projection, and glOrtho() is to produce a orthographic (parallel) projection. Both functions require 6 parameters to

specify 6 clipping planes; left, right, bottom, top, near and far planes. 8 vertices of the viewing frustum are shown

in the following image.

OpenGL Perspective Viewing Frustum

The vertices of the far (back) plane can be simply calculated by the ratio of similar triangles, for example, the left of

the far plane is;

OpenGL Transformation http://www.songho.ca/opengl/gl_transform.html

3 of 7 19/04/2014 12:26

OpenGL Orthographic Frustum

An example of an asymmetric frustum

glPushMatrix() : push the current matrix into the current matrix stack.

glPopMatrix() : pop the current matrix from the current matrix stack.

glLoadIdentity() : set the current matrix to the identity matrix.

glLoadMatrix{fd}(m) : replace the current matrix with the matrix m.

glLoadTransposeMatrix{fd}(m) : replace the current matrix with the row-major ordered matrix m.

glMultMatrix{fd}(m) : multiply the current matrix by the matrix m, and update the result to the current matrix.

glMultTransposeMatrix{fd}(m) :

multiply the current matrix by the row-major ordered matrix m, and update the result to the current matrix.

glGetFloatv(GL_MODELVIEW_MATRIX, m) : return 16 values of GL_MODELVIEW matrix to m.

For orthographic projection, this ratio will be 1, so the left, right, bottom

and top values of the far plane will be same as on the near plane.

You may also use gluPerspective() and gluOrtho2D() functions with

less number of parameters. gluPerspective() requires only 4

parameters; vertical field of view (FOV), the aspect ratio of width to

height and the distances to near and far clipping planes. The

equivalent conversion from gluPerspective() to glFrustum() is

described in the following code.

// This creates a symmetric frustum.

// It converts to 6 params (l, r, b, t, n, f) for glFrustum()

// from given 4 params (fovy, aspect, near, far)

void makeFrustum(double fovY, double aspectRatio, double front, double back)

{

 const double DEG2RAD = 3.14159265 / 180;

 double tangent = tan(fovY/2 * DEG2RAD); // tangent of half fovY

 double height = front * tangent; // half height of near plane

 double width = height * aspectRatio; // half width of near plane

 // params: left, right, bottom, top, near, far

 glFrustum(-width, width, -height, height, front, back);

}

However, you have to use glFrustum() directly if you need to

create a non-symmetrical viewing volume. For example, if you

want to render a wide scene into 2 adjoining screens, you can

break down the frustum into 2 asymmetric frustums (left and

right). Then, render the scene with each frustum.

Texture Matrix (GL_TEXTURE)

Texture coordinates (s, t, r, q) are multiplied by GL_TEXTURE matrix before any texture mapping. By default it is

the identity, so texture will be mapped to objects exactly where you assigned the texture coordinates. By modifying

GL_TEXTURE, you can slide, rotate, stretch, and shrink the texture.

// rotate texture around X-axis

glMatrixMode(GL_TEXTURE);

glRotatef(angle, 1, 0, 0);

Color Matrix (GL_COLOR)

The color components (r, g, b, a) are multiplied by GL_COLOR matrix. It can be used for color space conversion

and color component swaping. GL_COLOR matrix is not commonly used and is required GL_ARB_imaging

extension.

Other Matrix Routines

OpenGL Transformation http://www.songho.ca/opengl/gl_transform.html

4 of 7 19/04/2014 12:26

Download the source and binary:

(Updated: 2013-05-20)

Example: ModelView Matrix

This demo application shows how to manipulate GL_MODELVIEW matrix with glTranslatef() and glRotatef().

matrixModelView.zip

matrixModelView_mac.zip (OS X 10.6+)

Note that all OpenGL function calls are implemented in ModelGL.h and ModelGL.cpp on both Mac and Windows

versions, and these files are identical on both packages.

This demo application uses a custom 4x4 matrix class as well as default OpenGL matrix routines in order to specify

model and camera transforms. There are 3 of matrix objects defined in ModelGL.cpp; matrixModel, matrixView and

matrixModelView. Each matrix stores the pre-computed transformation and passes the matrix elements to OpenGL by

using glLoadMatrixf(). The actual drawing routine looks like;

...

glPushMatrix();

// set view matrix for camera transform

glLoadMatrixf(matrixView.getTranspose());

// draw the grid at origin before model transform

drawGrid();

// set modelview matrix for both model and view transform

// It transforms from object space to eye space.

glLoadMatrixf(matrixModelView.getTranspose());

// draw a teapot after both view and model transforms

drawTeapot();

OpenGL Transformation http://www.songho.ca/opengl/gl_transform.html

5 of 7 19/04/2014 12:26

glPopMatrix();

...

The equivalent code using default OpenGL matrix functions is;

...

glPushMatrix();

// initialze ModelView matrix

glLoadIdentity();

// First, transform the camera (viewing matrix) from world space to eye space

// Notice all values are negated, because we move the whole scene with the

// inverse of camera transform

glRotatef(-cameraAngle[2], 0, 0, 1); // roll

glRotatef(-cameraAngle[1], 0, 1, 0); // heading

glRotatef(-cameraAngle[0], 1, 0, 0); // pitch

glTranslatef(-cameraPosition[0], -cameraPosition[1], -cameraPosition[2]);

// draw the grid at origin before model transform

drawGrid();

// transform the object (model matrix)

// The result of GL_MODELVIEW matrix will be:

// ModelView_M = View_M * Model_M

glTranslatef(modelPosition[0], modelPosition[1], modelPosition[2]);

glRotatef(modelAngle[0], 1, 0, 0);

glRotatef(modelAngle[1], 0, 1, 0);

glRotatef(modelAngle[2], 0, 0, 1);

// draw a teapot with model and view transform together

drawTeapot();

glPopMatrix();

...

Example: Projection Matrix

OpenGL Transformation http://www.songho.ca/opengl/gl_transform.html

6 of 7 19/04/2014 12:26

Download the source and binary:

(Updated: 2013-03-17)

© 2008-2013 Song Ho Ahn (안성호)

This demo application is to show how to manipulate the projection transformation with glFrustum() or glOrtho().

matrixProjection.zip

matrixProjection_mac.zip (OS X 10.6+)

Again, ModelGL.h and ModelGL.cpp are exactly same files on both packages, and all OpenGL function calls are placed

in these files.

ModelGL class has a custom matrix object, matrixProjection, and 2 member functions, setFrustum() and

setOrthoFrustum(), which are equivalent to glFrustum() and glOrtho().

///

// set a perspective frustum with 6 params similar to glFrustum()

// (left, right, bottom, top, near, far)

// Note: this is for row-major notation. OpenGL needs transpose it

///

void ModelGL::setFrustum(float l, float r, float b, float t, float n, float f)

{

 matrixProjection.identity();

 matrixProjection[0] = 2 * n / (r - l);

 matrixProjection[2] = (r + l) / (r - l);

 matrixProjection[5] = 2 * n / (t - b);

 matrixProjection[6] = (t + b) / (t - b);

 matrixProjection[10] = -(f + n) / (f - n);

 matrixProjection[11] = -(2 * f * n) / (f - n);

 matrixProjection[14] = -1;

 matrixProjection[15] = 0;

}

///

// set a orthographic frustum with 6 params similar to glOrtho()

// (left, right, bottom, top, near, far)

// Note: this is for row-major notation. OpenGL needs transpose it

///

void ModelGL::setOrthoFrustum(float l, float r, float b, float t, float n,

 float f)

{

 matrixProjection.identity();

 matrixProjection[0] = 2 / (r - l);

 matrixProjection[3] = -(r + l) / (r - l);

 matrixProjection[5] = 2 / (t - b);

 matrixProjection[7] = -(t + b) / (t - b);

 matrixProjection[10] = -2 / (f - n);

 matrixProjection[11] = -(f + n) / (f - n);

}

...

// pass projection matrx to OpenGL before draw

glMatrixMode(GL_PROJECTION);

glLoadMatrixf(matrixProjection.getTranspose());

...

Constructing 16 elements of GL_PROJECTION matrix is explained here.

←Back

OpenGL Transformation http://www.songho.ca/opengl/gl_transform.html

7 of 7 19/04/2014 12:26

