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ABSTRACT 

This paper extends a previously proposed algorithm for generating unstructured meshes in three-dimensional and in two-
dimensional domains to generate surface meshes.  A surface mesh is generated in parametric space and mapped to Cartesian 
space.  Finite elements may be stretched on parametric space, but they present a good-quality shape on the 3D surface.  The 
algorithm uses a metric map defined by Tristano et al. to obtain correct distances and stretches.  A background quadtree structure 
is used to store local surface metrics and to develop local guidelines for node location in an advancing-front meshing strategy. 
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1. INTRODUCTION 

This paper describes an algorithm for generating finite-
element triangular meshes on surfaces of arbitrary shape 
and with high curvatures.  It is an extension of a previously 
proposed algorithm for generating unstructured meshes in 
three-dimensional [1] and two-dimensional [2,3] domains.  
The mesh is generated in the surface’s parametric space 
and mapped to 3D space.  Finite elements may be stretched 
on parametric space, but they present a good-quality shape 
on the 3D surface.  The algorithm uses a metric map 
defined by Tristano et al. [4] to obtain correct distances and 
stretches.  A background quadtree structure is used to store 
local surface metrics and to develop local guidelines for the 
size of elements generated by means of an advancing-front 
technique. 

The proposed algorithm presents similar characteristics to 
its ancestors, which are summarized as follows.  First, the 
algorithm produces well-shaped elements, avoiding 
elements with poor aspect ratio. While it does not guarantee 
bounds on aspect ratios of elements, care is taken at each 
step to produce good-quality meshes.  Second, the mesh 
conforms to an existing discretization on the surface’s 
boundary.  This is important in the generation of finite-
element meshes because usually the mesh generated on a 
surface patch has to conform to the mesh generated on 
adjacent patches.  Third, the algorithm presents a smooth 

transition between regions with elements of highly varying 
sizes.  This a desirable feature because a finite-element 
analysis requires high element density in regions with high 
gradients of analysis response, while a low density may be 
used in other regions.  It is not uncommon in this type of 
analysis to have a difference of two or three orders of 
magnitude in element size. 

An additional requirement arises for surface mesh 
generation, especially when the surface presents high 
curvatures.  In such locations, the algorithm must locally 
refine the mesh.  Due to this fact, the smooth-transition 
characteristic described above is even more important in 
surface mesh generation. 

Tristano and collaborators [4] proposed a similar algorithm 
for surface mesh generation that basically involves three 
steps: discretizing the boundary, computing a background 
mesh [5], and applying an advancing-front technique.  This 
background mesh is generated by means of a Delaunay 
procedure.  The main difference between the referred 
algorithm and the one presented in this paper is that here no 
auxiliary triangulation is generated.  Instead, the current 
algorithm uses a quadtree structure to hold the metric 
information. 

It should be noted that the original work of Tristano et al. 
also creates a quadtree in parametric 2D space for inserting 
internal points in the background mesh.  In the present 
work, as in its ancestors [1,2,3], the quadtree is used to 



develop local guidelines for node location in an advancing-
front meshing procedure.  Here, the use of the quadtree was 
extended to store local surface metrics, avoiding the 
creation of a background triangulation.  The background 
quadtree may potentially be adjusted to insert points to take 
into account local scalar field gradients, such as in adaptive 
analysis or in boundary layers problems, although this has 
not been done yet. 

The present algorithm, as its ancestors, incorporates well-
known meshing procedures [6-12] and introduces some 
original steps.  It includes an advancing-front technique 
along with a background quadtree structure, taking special 
care to generate elements with the best possible shape.  To 
enhance the quality of the mesh’s element shape, an a 
posteriori local mesh improvement procedure is used. 

One important characteristic of the algorithm presented 
here is the generation of internal nodes simultaneously with 
the elements.  Some authors, e.g. Rassineux [12], use a 
quadtree/octree procedure to generate internal nodes prior 
to element generation.  The current algorithm also employs 
a quadtree, but only as a node-spacing function during the 
advancing-front strategy.  This approach tends to provide 
better control over the quality of the generated mesh and to 
decrease the amount of heuristic cleaning-up procedures. 

 

2. MEASUREMENT ON SURFACE 

This section describes the metric map [4] and the 
measurement of distances and angles on a surface space.  
Cuilière [13] originally devised the adopted surface metric.  
The metric of a tangent plane at every point P of a 3D 
surface is defined as: 
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in which ),( vuuσ�  and ),( vuvσ�  are the gradient vectors at 
the point P on the surface. 

The distance between two points, A and B, along the 3D 
surface can be computed using their parametric 
coordinates.  This distance, starting from A, is: 
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For a well-behaved surface, the distance can be computed 
as the average of the distances measured from A and from 
B: 
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For mesh generation on surfaces, some metrics are 
necessary to correctly compute angles and distances that 
might be stretched in parametric space.  Figure 1 shows 
these measurements in parametric space. 

The mid point mAB is computed as 
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 are the parametric coordinates of A e 

B, respectively.  The vector DN2
�

, normal to AB (in 3D 
space), is computed using the metric from equation (1): 
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where ABV
�

 is a unit vector pointing from A to B. 
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Figure 1.  Measurements in parametric space. 

 
In the advancing-front algorithm to be described in Section 
3.2, it is necessary to compute the parametric coordinates 
of point NC along the normal vector DN2

�

(see Figure 1).  A 
given distance, h3D, to point mAB, along the 3D surface, 
defines the location of this point.  The parametric 
coordinates of point NC are computed using the equations 
below: 
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3. DESCRIPTION OF THE ALGORITHM 

The input data for the present algorithm is a parametric 
description of a surface and a polygonal description of the 
boundary of the surface patch to be meshed.  This boundary 
information is given by a list of nodes defined by their 
parametric coordinates on the surface and a list of boundary 
segments (or edges) defined by their node connectivity.  
The input boundary must be defined a priori.  The 
definition of these points is not part of the proposed 
algorithm and, for better results, the boundary segment 
sizes should be consistent with surface curvatures.  Figure 2 
shows an example of a surface patch and a set of input 
boundary segments. 

 

 

Figure 2.  Surface example and 
input boundary segments. 

From the boundary segments, a background auxiliary 
quadtree structure is created to control the sizes of the finite 
elements generated by an advancing-front technique. The 
given boundary edges form the initial front that advances as 
the algorithm progresses.  At each step of this meshing 
procedure, a new triangle is generated for each base edge of 
the front. The front advances replacing the base edge with 
new triangle edges. Consequently, the domain region is 
contracted, possibly into several regions. The process stops 
when all contracted regions result in single triangles.  The 
overall algorithm is presented next. 

3.1 Quadtree Generation 
The first phase of the algorithm involves a background 
quadtree generation.  The steps in this phase are as follows: 

•  Quadtree initialization based on given boundary 
edges.  Each segment of the input boundary data is 
used to determine the local subdivision depth of the 
quadtree.  Additional procedures, described below, 

are adopted in the generation of the initial quadtree to 
take into account metric distortions in surface 
parametric space. 

•  Refinement to force maximum cell size. The quadtree 
is refined to guarantee that no cell in its interior is 
larger than the largest cell at the boundary. 

•  Refinement to provide minimum size disparity for 
adjacent cells. This additional refinement forces only 
one level of tree depth between neighboring cells and 
provides a natural transition between regions of 
different degrees of mesh refinement. 

•  

Refinement to force minimum curvature difference 
between adjacent cells. This is explained below. 

The first step has some modifications in relation to the 
original 2D algorithm [2,3].  The second and third steps 
have not changed.  The fourth step was added to take into 
account high surface curvatures. 

There are some additional procedures in the first step of the 
quadtree generation.  The algorithm creates a two-
dimensional space to store coordinates of quadtree points.  
This space is necessary to avoid excessive metric 
distortions that might occur in the parametric space of a 
surface.  Distances in the quadtree space approximate 
distances in 3D space along the surface. 

Firstly, the algorithm determines the center of the input 
boundary data in parametric coordinates (Centerx, Centery).  
From this center, the algorithm computes the longest 
horizontal and vertical distance to the boundary, using 
equations (4) and (5).  Then, it computes ratios Rx and Ry 
between the longest distance and the corresponding 
parametric distances.  These ratios are used as proportional 
factors to transform from surface parametric space to 
quadtree space.  The center of the quadtree is considered at 
the center of the input boundary data.  The initial quadtree 
cell size, which includes the whole model, is computed as 
twice the longest distance. 

Each segment of the input boundary data is used to 
determine the local depth of tree subdivision.  The midpoint 
of each input segment in parametric space (Midx, Midy) is 
obtained.  The corresponding values in quadtree space 
(Midquad_x, Midquad_y) are obtained by: 
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The quadtree cell containing the midpoint is determined.  If 
the length, computed using equations (4) and (5), of this 
cell's edge is larger than the length of the boundary edge, 
then this cell is subdivided into four smaller cells.  This 
process is repeated recursively and finishes when the length 
of the cell's edge is smaller than the length of the boundary 
segment. 

The fourth step of the quadtree generation refines the 
quadtree to force a minimum curvature difference between 
adjacent cells.  Firstly, the algorithm stores gradient vectors 
in each cell of the quadtree – equation (3) – evaluated at the 



center of the cell.  Then, it computes the vector normal to 
the 3D surface at each cell.  Finally, the algorithm obtains 
the cosine of the angle between the normal vectors, NA and 
NB, of the two adjacent cells: 
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and compares it to a minimum value, cosθmin.  If cosθ is 
less than cosθmin, then a new cell size, Hnew, is obtained 
from the current size, Hold, as: 
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This new size is used to locally refine both adjacent cells of 
the quadtree.  This process is repeated recursively to every 
cell.  After the whole quadtree is refined according to the 
curvature criterion, the third step of the algorithm is 
repeated to provide minimum size disparity for adjacent 
cells. 

Figure 3 shows the final quadtree obtained for the surface 
in Figure 2 after all four steps.  The quadtree is used as a 
node-spacing function in the advancing-front technique to 
be described in next section.  In addition, each cell of the 
quadtree stores local metric information (in this case, 
gradient vectors) that is used to compute distances and 
angles necessary for mesh generation. 

 

 

Figure 3.  Background quadtree of 
surface in Figure 2. 

3.2 Advancing-front Procedure 
The advancing-front technique starts with a boundary that 
bounds a region to be filled with a triangulation. Triangular 
elements are “extracted” or “pared” from the region one at 
a time.  As each element is extracted, the boundary is 
updated and the process is repeated.  The procedure 
terminates when the entire region is meshed.  Therefore, 
the boundary of the region to be meshed is formed by edges 
of the triangles created in the contraction process.  These 
edges are referred to as boundary edges. 

In this algorithm, as in its ancestors [1,2,3], the advancing-
front process is divided into two phases to ensure the 
generation of valid triangulations.  In the first phase, a 
geometry-based element generation is pursued to generate 
elements of optimal shapes.  After this ideal phase is 
exhausted and no more optimal elements can be generated, 
a topology-based element generation takes place, creating 
valid, but not necessarily well shaped, elements in the 
remaining region.  The required steps for the advancing-
front procedure are as follows. 

Front initialization based on given boundary edges.  The 
process starts with the creation of the initial advancing 
front, which is formed by the given boundary segments.  
The current boundary edges are stored in two separate 
doubly linked lists.  The first is a list of active edges, which 
includes all boundary edges that have not been used in an 
attempt to generate valid triangles.  The other is a list of 
rejected edges, that is, it stores the edges that failed in the 
generation of elements for the current phase.  Initially, all 
segments of the given boundary refinement are stored in 
the first list, which is the one used in the geometry-based 
generation phase. 

The initial list of active edges on the boundary is sorted by 
the length of the edges.  This has been recommended by 
other authors [11] to prevent large elements from 
penetrating regions with small-length edges.  This criterion 
is only used in the initial boundary edge list. 

It was also found convenient for some steps in the 
algorithm to have an additional data structure storing a list 
of adjacent boundary edges for each node on the current 
advancing front.  This data structure is initialized for all 
nodes of the given boundary, and is updated as the 
boundary-contraction procedure progresses. 

In addition, all nodes (from the input boundary as well as 
new internal nodes) store their corresponding gradient 
vectors, obtained from the quadtree cells, as they are 
created.  As seen in Section 2, these vectors are used in the 
surface measurements required by the advancing-front 
procedure.  This avoids excessive queries to the quadtree 
structure, which could be expensive. 

Front contraction (geometry-based element generation). 
Ideally, the entire mesh could be generated in the 
geometry-based phase.  This depends on the geometry and 
topology of the given boundary model and, as observed, is 
strongly related to the segment-size disparity of the given 
boundary refinement.  In this phase, for each base edge on 
the advancing front, the following is performed (see Figure 
4): 



 

Figure 4.  Determination of a triangle. 

•  The optimal location N1, in parametric space, for the 
vertex of the triangle to be formed is determined with 
the help of the quadtree.  The quadtree cell 
containing the midpoint M of the base edge is 
determined using equation (10).  The optimal point 
N1 lies on a line perpendicular (in the 3D space) to 
the base edge passing through this midpoint.  The 
distance from the optimal point to the base edge 
midpoint is computed using equations (6), (7), (8) 
and (9), in which h3D is equal to the quadtree cell 
size, H.  The gradient vectors of point M are 
considered as the average between the values of 
points A and B. 

•  The optimal point defines an optimal region where 
the vertex of the triangle to be generated is located.  
This region is a sector of the circle whose center is 
the optimal point and whose radius is proportional to 
the quadtree cell size. In the current implementation, 
a factor of 0.85 was adopted.  Radius and distances 
are computed using equations (4) and (5).  This circle 
defines an upper bound for the distance between the 
target vertex of the triangle and the centroid of the 
base edge.  A lower bound is defined to ensure that 
the generated triangle will have area greater than the 
smallest acceptable area.  In the current 
implementation, this lower bound is defined by a 
triangle with height equal to 1/10 of the base edge.  
The optimal region is used for two reasons: first, to 
ensure shape quality of the elements to be generated; 
and, second, to ensure that new internal nodes will be 
created only when it is strictly necessary and always 
in good positions. 

•  If no existing node is inside the optimal region, a 
new node is inserted at the optimal location N1 and 
an element is generated using this node.  The values 
of gradient vectors to point N1 are held from the 
quadtree.  If only one node exists in the region, this 
node is used to generate the element.  If more than 
one node is found in the region, they are ranked 
according to the included angle with respect to the 
base edge.  The node with the maximum included 
angle is used to generate the element.  A heap list is 
used to efficiently rank the nodes. 

•  

Additional geometric checks are performed to ensure 
that the edges of the new element do not intersect any 

existing edge of the advancing front.  If this is the 
case, the element is rejected. 

•  Once a valid triangle is generated for the current base 
edge, the list of active edges is updated.  This is done 
through the following steps: first, the base edge is 
removed from the list; then, for the other edges of the 
element, the edge is either deleted, if it coincides 
with an edge already in the list, or inserted in the list 
as a new one. 

•  

Due to geometric bounds imposed by the current 
advancing front, there are situations in which the 
algorithm fails in forming a valid triangle for the 
current boundary’s base edge.  In these cases, the 
current base edge is removed from the list of active 
edges and is stored in the separate list of rejected 
edges.  It might happen that an edge is subsequently 
removed from this latter list if it is used as part of a 
valid triangle for an adjacent base edge. 

•  When there are no more edges in the list of active 
edges, the algorithm tries to generate elements using 
the edges that were previously rejected.  It might be 
the case that base edges that previously failed may 
now work because the front has changed with the 
addition of elements.  The geometry-based element-
generation phase ends when either there are no edges 
left in the boundary-contraction lists (in which case 
an optimal mesh was generated) or when a rejected 
edge fails for a second time. 

Front contraction (topology-based element generation). 
The objective of this phase of the algorithm is to force the 
generation of valid triangles, even if the new elements do 
not satisfy the bounds used in the previous phase for 
element shapes. 

The topology-based element-generation phase starts when a 
boundary edge fails twice in trying to generate an optimal 
element.  The list of rejected edges of the previous phase is 
transformed into a list of active edges and, similarly to the 
geometry-based phase, a list of rejected edges is created for 
edges that eventually fail in generating valid triangles. 

In the topology-based element-generation phase, any node 
close to the current base edge is selected and stored in the 
local heap list of candidate nodes.  The node that has the 
maximum included angle with respect to the base edge is 
chosen for the generation of the new triangle.  If the edges 
of this triangle do not intercept any other edge of the 
current advancing front, the element is created and the 
boundary is contracted accordingly.  The topology-based 
phase ends when the lists of active and rejected edges are 
empty.  This phase always generates a valid mesh (although 
not optimal) because it is always possible to triangulate a 
region defined by its boundary edges [14]. 

3.3 Local Mesh Improvement 
A smoothing technique is used to improve mesh quality by 
relocating nodes within a patch.  A general formulation for 
this technique is given by equation (13), which is a generic 
form of a weighted Laplacian function [15]: 
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In this equation, m is the number of nodes connected to 
node O, 1

0
+nX  is the parametric position of node O at 

smoothing iteration n+1, wi0 is the weighted function 
between nodes i and O, and φ is a relaxation parameter 
which is normally set in the interval (0,1].  In this work, a 
value of φ = 0.7 is defined and wi0 is adopted as the ratio 
between the 3D distance from node i to node O and the 
corresponding parametric distance.  Therefore, smoothing 
is done in parametric space but takes into account size 
distortion metrics between parametric and 3D spaces.  The 
smoothing procedure is repeated 5 times for all internal 
nodes. 

Figure 5 presents the final mesh obtained for the surface 
example in Figure 2. 

 

 

 

Figure 5.  Generated mesh of surface of Figure 2. 

4. EXAMPLES 

This section provides some examples of finite-element 
meshes generated on 3D surfaces using the proposed 
algorithm.  Figure 6 shows an example a mesh generated 
on a conic surface and its representation in parametric 
space.  It may be observed that in parametric space the 
elements are stretched, while on the 3D surface the 
elements have a good shape. 

The second example is a single-folded surface, shown in 
Figure 7.  The mesh at the top of this figure was generated 
without taking into account surface curvatures, i.e., without 
considering the fourth step of the background quadtree 
generation described in Section 3.1.  The mesh at the 
bottom of Figure 7 was generated for the same surface now 
considering the fourth step in the algorithm. 

x 

y 

z 

 

Figure 6.  Mesh generated on a conic surface and 
its representation in parametric space. 

 

 
Figure 7.  Mesh generated on a single-folded 

surface without and with consideration of 
surface curvatures. 



The third example is a double-folded surface, shown in 
Figure 8 without and with local refinement to consider high 
surface curvatures. 

 

 

Figure 8.  Meshes generated on a 
double-folded surface. 

Finally, Figure 9 illustrates the so-called Utah teapot, which 
is composed of several surface patches.  It can be seen that 
the mesh generated on a patch conforms to the meshes 
generated on adjacent patches.  This is accomplished 
because all the common curves at the patches’ boundaries 
are discretized a priori. 

5. MESH QUALITY AND PERFORMANCE 

In this section, a study on the quality of the meshes 
generated by the proposed algorithm is presented.  The 
adopted shape quality measure is a normalized ratio γ/γ* 
[2], in which γ is the ratio between the root mean square of 
the lengths (Si) of a triangle’s edges and the triangle’s area, 
and γ* is the value for the equilateral triangle: 
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Figure 9.  Surface mesh generated for the 
Utah teapot.  

The γ/γ* quality measure has a valid interval between 1.0 
and infinity, and the value for the equilateral triangle is 1.0. 
It is desirable to have elements with values close to 1.0. 

The quality of generated meshes is presented in the form of 
a histogram such as the one shown in Figure 10.  In this 
histogram, the horizontal axis corresponds to the γ/γ* 
quality measure in intervals represented by triangular 
shapes that are shown below the histogram.  The vertical 
axis corresponds to the percentage of elements in each 
interval of the quality measure. 

The results of two examples are shown in Figure 10: the 
single-folded mesh of Figure 7 and the double-folded mesh 
of Figure 8 (both considering surface curvatures).  These 
results demonstrate that the proposed algorithm generates 
meshes with good quality for the great majority of 
elements. 

An estimate of the expected performance of the 3D and 2D 
versions of the proposed algorithm has been presented in 
previous works [1,2].  Surface mesh generation requires 
additional computations of surface metrics.  Therefore, it is 
worthwhile to present timing data outlining time spent in 
each phase of the algorithm.  Table 1 shows processing 
times for the single-folded and double-folded meshes.  The 
performance of the algorithm was measured running on a 



Pentium-650MHz PC with 128 MB of RAM, under 
Windows 2000 operating system. 
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Figure 10.  Histogram of element quality. 

 

Table 1.  Processing time for single-folded and 
double-folded surfaces. 

Folded Surface Single Double 

Quadtree Generation [sec.] 0.09 0.11 

Surface Metrics [sec.] 1.95 6.59 

Boundary Contraction [sec.] 0.16 2.03 

Total Time [sec.] 2.11 8.63 

Number of Elements 1356 5669 

Number of Elements / second 641.7 657.5 

 

In Table 1, it is clear that most of the computational effort 
is spent in surface metrics calculation – equations (1), (2), 
and (3).  The computation of these metrics depends on the 
underlying surface parametric representation that provides 
surface gradients.  This is not part of the proposed meshing 
algorithm, any surface parametric representation may be 
used.  The present implementation uses a public domain 
NURBS library [16]. 

The total time of surface metric computation depends on 
the complexity of the surface.  An almost flat surface 
requires a smaller amount of quadtree refinement than a 
surface with high curvatures.  Since surface metrics are 

computed for each cell of the quadtree, a greater amount of 
metrics computation is required for a surface with high 
curvatures. 

It is also interesting to observe in Table 1 that the 
processing time for quadtree generation is minimum 
compared to the other phases of the algorithm. 

 

6. CONCLUSION 

This paper has described an algorithm for generating finite-
element triangular meshes on surfaces of arbitrary shape 
and with high curvatures.  The algorithm incorporates 
aspects of well-known meshing procedures and includes 
some original steps. 

This algorithm is an extension of a previously proposed 
algorithm for generating unstructured meshes in three-
dimensional and two-dimensional domains.  The mesh is 
generated in the surface’s parametric space and mapped to 
3D space.  Finite elements may be stretched on parametric 
space, but they present a good-quality shape on the 3D 
surface. 

Previous works have demonstrated the computational 
efficiency of the proposed meshing scheme [1,2], which 
should be maintained in the present case of surface mesh 
generation.  However, it was shown that surface metrics 
calculation is an expensive additional computation. 

The algorithm uses a metric map defined by Tristano et al. 
to obtain correct distances and stretches.  Differently from 
their work, the present algorithm uses a quadtree structure, 
instead of a background triangulation, to hold surface 
metric information.  The background quadtree is also used 
to develop local guidelines for the size of elements, which 
are generated by means of an advancing-front technique. 

The input data for the present algorithm is a parametric 
description of the surface and a polygonal description of 
the boundary of the surface patch to be meshed.  The steps 
in the algorithm are as follows: 

•  

A background quadtree is generated to control the 
distribution of node points generated in the interior.  
The quadtree refinement is defined by the given 
boundary discretization and by surface curvatures. 

•  

A two-pass advancing-front procedure is used to 
generate elements. On the first pass, elements are 
generated based on geometrical criteria, which 
produce well-shaped elements. On the second pass, 
elements are generated based only on the criterion 
that they have valid topology. 

Some examples have demonstrated the quality of the 
generated meshes and compared results with and without 
local refinement to consider high surface curvatures. 

Finally, it should be mentioned that the use of a 
background quadtree structure makes the proposed 
algorithm well suited for adaptive finite-element analysis.  
An additional step is required in the generation of the 
quadtree to account for the refinement due to estimated 



numerical errors.  This has been used in two-dimensional 
analysis [17] and the implementation for adaptive surface 
mesh generation is straightforward. 
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