
Computer GraphicsComputer Graphics

for Engineeringfor Engineering
Numerical simulation
in technical sciences

Computational GeometryComputational Geometry

Luiz Fernando Martha

André Pereira

Graz, Austria

June 2014

Computational GeometryComputational Geometry

Contents
• References and sources

• Introduction and scope

• The need for data structures

• Definitions and notations

• Oriented Area of PolygonsOriented Area of Polygons

• Polygons Tessellation

• Geometric Predicates

• Exact and Adaptive Arithmetic

• Closest Point at a Straight Segment

• Segment Intersection

• Point in Polygon Verification
2

References and SourcesReferences and Sources

References and Sources

[OROURKE98]

Joseph O’Rourke

Computational Geometry in C

Cambridge University Press, 1998

[BERG97][BERG97]

M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf

Computational Geometry - Algorithms and Applications

Springer, 1997

[PREPARATA85]

Franco P. Preparata, Michael Ian Shamos

Computational Geometry – An Introduction

Springer-Verlag, 1985

4

[SCHNEIDER03]

Philip Schneider and David Eberly

Geometric Tools for Computer Graphics

Elsevier, 2003

[SKIENA02]

References and Sources

[SKIENA02]

Steven S. Skiena, Miguel A. Revilla

Programming Challenges

Springer, 2002

[GHALI08]

Sherif Ghali

Introduction to Geometric Computing

Springer, 2008

[VINCE05]

John Vince

Geometry for Computer Graphics

Springer, 2005

5

Introduction and ScopeIntroduction and Scope

Computational geometry broadly construed is the study of algorithms for

solving geometric problems on a computer. The emphasis in this course is on the

design of such algorithms, with somewhat less attention paid to analysis of

performance.

There are many brands of geometry, and what has become known as

Introduction and Scope
Fonte: [OROURKE98]

There are many brands of geometry, and what has become known as

“computational geometry” is primarily discrete and combinatorial geometry.

Thus polygons play a much larger role in this course than do regions with curved

boundaries. Much of the work on continuous curves and surfaces falls under the

rubrics of “geometric modeling” or “solid modeling”, a field with its own

conferences and text, distinct from computational geometry. Of course there is

substantial overlap, and there is no fundamental reason for the fields to be

partitioned this way; indeed they seem to be merging to some extent [

7

Computational geometry emerged from the field of algorithms design and

analysis in the late 1970s. It has grown into a recognized discipline with its own

journals, conferences, and a large community of active researchers. The success

of the field as a research discipline can on the one hand be explained from the

beauty of the problems studied and the solutions obtained, and, on the other

hand, by the many application domains— computer graphics, geographic

Fonte: [BERG97]

Introduction and Scope

hand, by the many application domains— computer graphics, geographic

information systems (GIS), robotics, and others—in which geometric algorithms

play a fundamental role.

For many geometric problems the early algorithmic solutions were either

slow or difficult to understand and implement. In recent years a number of new

algorithmic techniques have been developed that improved and simplified many

of the previous approaches. In this textbook we have tried to make these modern

algorithmic solutions accessible to a large audience.

A large number of applications areas have been the incubation bed of the

discipline nowadays recognized as Computational Geometry, since they provide

inherently geometric problems for which efficient algorithms have to be

developed. Algorithmic studies of these and other problems have appeared in

the past century in the scientific literature, with an increasing intensity in the

past two decades. Only very recently, however, systematic studies of geometric

Fonte: [PREPARATA85]

Introduction and Scope

past two decades. Only very recently, however, systematic studies of geometric

algorithms have been undertaken, and a growing number of researchers have

been attracted to this discipline, christened "Computational Geometry" in a

paper by M. I. Shamos (1975a).

One fundamental feature of this discipline is the realization that classical

characterizations of geometric objects are frequently not amenable to the design

of efficient algorithms. To obviate this inadequacy, it is necessary to identify the

useful concepts and to establish their properties, which are conducive to efficient

computations. In a nutshell, computational geometry must reshape-whenever

necessary-the classical discipline into its computational incarnation.

9

The field of computational geometry is quite large and is one of the most

rapidly advancing fields in recent times. This chapter is by no means

comprehensive. The general topics covered are binary space-partitioning (BSP)

trees in two and three dimensions, point-in-polygon and point-in-polyhedron

tests, convex hulls of finite point sets, Delaunay triangulation in two and three

dimensions, partitioning of polygons into convex pieces or triangles, containment

Fonte: [SCHNEIDER03]

Introduction and Scope

dimensions, partitioning of polygons into convex pieces or triangles, containment

of point sets by circles or oriented boxes in two dimensions and by spheres or

oriented boxes in three dimensions, area calculations of polygons, and volume

calculations of polyhedra.

The emphasis is, of course, on algorithms to implement the various ideas.

However, attention is given to the issues of computation when done within a

floating point number system. Particular themes arising again and again are

determining when points are collinear, coplanar, cocircular, or cospherical. This is

easy to do when the underlying computational system is based on integer

arithmetic, but quite problematic when floating-point arithmetic is used.

10

The Need for Data StructuresThe Need for Data Structures

Source: Will Thacker . Lecture notes on Data Structures at Winthrop University

The Need for Data Structures

• Data structures organize data

– This gives more efficient programs.

• More powerful computers encourage more complex

applications.applications.

• More complex applications demand more

calculations.

• Complex computing tasks are unlike our everyday

experience.

Organization

• Any organization for a collection of records can be

searched, processed in any order, or modified.

– The choice of data structure and algorithm can make the

difference between a program running in a few seconds or

many days.

• A solution is said to be efficient if it solves the problem

within its resource constraints.

– Space

– Time

• The cost of a solution is the amount of resources that

the solution consumes.

Selecting a Data Structure

• Select a data structure as follows

1 Analyze the problem to determine the resource constraints

a solution must meet.

2 Determine basic operations that must be supported.

Quantify resource constraints for each operation.

3 Select the data structure that best meets these 3 Select the data structure that best meets these

requirements.

• Some questions to ask:

– Are all the data inserted into the structure at the beginning

or are insertions interspersed with other operations?

– Can data be deleted?

– Are the data processed in some well-defined order, or is

random access allowed?

Data Structure Philosophy

• Each data structure has costs and benefits.

• Rarely is one data structure better than another in all

situations.

• A data structure requires:

– space for each data item it stores,– space for each data item it stores,

– time to perform each basic operation,

– programming effort.

• Each problem has constraints on available time and

space.

• Only after a careful analysis of problem characteristics

can we know the best data structure for the task.

Geometric algorithms involve the manipulation of objects which are not

handled at the machine language level. The user must therefore organize these

complex objects by means of the simpler data types directly representable by the

computer. These organizations are universally referred to as data structures.

The most common complex objects encountered in the design of geometric

algorithms are sets and sequences (ordered sets). Data structures particularly

suited to these complex combinatorial objects are well described in the standard

literature on algorithms. Suffice it here to review the classification of these data

The Need for Data Structures

literature on algorithms. Suffice it here to review the classification of these data

structures, along with their functional capabilities and computational

performance.

Let S be a set represented in a data structure and let u be an arbitrary

element of a universal set of which S is a subset. The fundamental operations

occurring in set manipulation are:

1. MEMBER(u,S). Is u ∈ S? (YES/NO answer.)

2. INSERT(u,S). Add u to S.

3. DELETE(u,S). Remove u from S.

Fonte: [PREPARATA85]

16

Supose now that {S1, S2, . . . , Sk} is a collection of sets (with pairwise empty

intersection). Useful operations on this collection are:

4. FIND(u). Report j, if u ∈ S.

5. UNION(Si,Sj; Sk). Form the union of Si and Sj and call it Sk.

When the universal set is totally ordered, the following operations are very

important:

6. MIN(S). Report the minimum element of S.

7. SPLIT(u,S). Partition S into{S1,S2}, so that S1 = {v: v ∈ S and v ≤ u} and S2 = S

- S1.

8. CONCATENATE(S ,S). Assuming that, for arbitrary u’∈ S and u”∈ S we8. CONCATENATE(S1,S2). Assuming that, for arbitrary u’∈ S1 and u”∈ S2 we

have u' ≤ u", form the ordered set S = S1 U S2.

Data structures can be classified on the basis of the operations they support

(regardless of efficiency). Thus for ordered sets we have the following table.

17

For efficiency, each of these data structures is normally realized as a height-

balanced binary search tree (often an A VL or a 2-3-tree). With this realization,

each of the above operations is performed in time proportional to the logarithm

of the number of elements stored in the data structure; the storage is

proportional to the set size.

18

The above data structures can be viewed abstractly as a linear array of

elements (a list), so that insertions and deletions can be performed in an

arbitrary position of the array. In some cases, some more restrictive modes of

access are adequate for some applications, with the ensuing simplifications.

Such structures are: Queues, where insertions occur at one end and

deletions at the other; Stacks, where both insertions and deletions occur at one

end (the stack-top). Clearly, one and two pointers are all that is needed for

managing a stack or a queue, respectively.

Unordered sets can always be handled as ordered sets by artificially imposingUnordered sets can always be handled as ordered sets by artificially imposing

an order upon the elements (for example, by giving "names" to the elements

and using the alphabetical order). A typical data structure for this situation is the

following.

19

Definitions and NotationsDefinitions and Notations

The objects considered in Computational Geometry are normally sets of

points in Euclidean space. 3 A coordinate system of reference is assumed, so that

each point is represented as a vector of cartesian coordinates of the appropriate

dimension. The geometric objects do not necessarily consist of finite sets of

points, but must comply with the convention to be finitely specifiable (typically,

as finite strings of parameters). So we shall consider, besides individual points,

the straight line containing two given points, the straight line segment defined by

its two extreme points, the plane containing three given points, the polygon

Definitions and Notations

its two extreme points, the plane containing three given points, the polygon

defined by an (ordered) sequence or points, etc.

This section has no pretence of providing formal definitions of the geometric

concepts used in this book; it has just the objectives of refreshing notions that

are certainly known to the reader and of introducing the adopted notation.

By Ed we denote the d-dimensional Euclidean space, i.e., the space of the d-

tuples (x1,...,xd) of real numbers x1, i = 1,..., d with metric (Σd
i=1 xi

2)1/2.

We shall now review the definition of the principal objects considered by

Computational Geometry.

Fonte: [PREPARATA85]

Point. A d-tuple (x1,...,xd) denotes a point p of Ed; this point may be also

interpreted as a d-component vector applied to the origin of Ed, whose free

terminus is the point p.

Line, plane, linear variety. Given two distinct points q1 and q2 in Ed, the linear

combination

α q1 + (1 – α) q2 (α ∈ R)

is a line in Ed. More generally, given k linearly independent points q1, . . . , qk in Ed

(k ≤ d), the linear combination

α q + α q + ... + α q + (1 – α – ... – α) qα
1

q1 + α
2

q2 + ... + α
k-1

qk-1 + (1 – α
1

– ... – α
k-1

) qk

(αj ∈ R , j = 1, ... , k – 1)

is a linear variety of dimension (k – 1) in Ed.

Line segment. Given two distinct points q1 and q2 in Ed, if in the expression

αq1+(1 – α)q2 we add the condition 0 ≤ α ≤ 1, we obtain the convex combination

of q1 and q2, i.e.,

α q1 + (1 – α) q2 (α ∈ R , 0 ≤ α ≤ 1).

This convex combination describes the straight line segment joining the two

points q1 and q2. Normally this segment is denoted as q1q2 (unordered pair).

22

Convex set. A domain D in Ed is convex if, for any two points q1 and q2 in D,

the segment q1q2 is entirely contained in D. It can be shown that the intersection

of convex domains is a convex domain.

Convex hull. The convex hull of a set of points S in Ed is the boundary of the

smallest convex domain in Ed containing S.

23

Polygon. In E2 a polygon is defined by a finite set of segments such that every

segment extreme is shared by exactly two edges and no subset of edges has the

same property. The segments are the edges and their extremes are the vertices

of the polygon. (Note that the number of vertices and edges are identical.) An n-

vertex polygon is called an n-gon.

A polygon is simple if there is no pair of nonconsecutive edges sharing a

point. A simple polygon partitions the plane into two disjoint regions, the

interior (bounded) and the exterior (unbounded) that are separated by the

polygon (Jordan curve theorem). (Note: in common parlance, the term polygonpolygon (Jordan curve theorem). (Note: in common parlance, the term polygon

is frequently used to denote the union of the boundary and of the interior.)

A simple polygon P is convex if its interior is a convex set.

A simple polygon P is star-shaped if there exists a point z not external to P

such that for all points p of P the line segment zp lies entirely within P. (Thus,

each convex polygon is also star-shaped.) The locus of the points z having the

above property is the kernel of P. (Thus, a convex polygon coincides with its own

kernel.)

24

Planar graph. A graph G = (V, E) (vertex set V, edge set E) is planar if it can be

embedded in the plane without crossings. A straight line planar embedding of a

planar graph determines a partition of the plane called planar subdivision or

map. Let v, e, and f denote respectively the numbers of vertices, edges, and

regions (including the single unbounded region) of the subdivision. These three

parameters are related by the classical Euler's formula

v - e + f = 2.

If we have the additional property that each vertex has degree ≥ 3, then it is

a simple exercise to prove the following inequalitiesa simple exercise to prove the following inequalities

v ≤ 2/3 e, e ≤ 3v - 6

e ≤ 3f - 6, f ≤ 2/3 e

v ≤ 2f - 4, f ≤ 2v - 4

which show that v, e and f are pairwise proportional. (Note that the three

rightmost inequalities are unconditionally valid.)

25

Triangulation. A planar subdivision is a triangulation if all its bounded regions

are triangles. A triangulation of a finite set S of points is a planar graph on S with

the maximum number of edges (this is equivalent to saying that the

triangulation of S is obtained by joining the points of S by nonintersecting

straight line segments so that every region internal to the convex hull if S is a

triangle).

26

Polyhedron. In E3 a polyhedron is defined by a finite set of plane polygons

such that every edge of a polygon is shared by exactly one other polygon

(adjacent polygons) and no subset of polygons has the same property. The

vertices and the edges of the polygons are the vertices and the edges of the

polyhedron; the polygons are the facets of the polyhedron.

A polyhedron is simple if there is no pair of nonadjacent facets sharing a

point. A simple polyhedron partitions the space into two disjoint domains, the

interior (bounded) and the exterior (unbounded). (Again, in common parlance

the term polyhedron is frequently used to denote the union of the boundary and

of the interior.)of the interior.)

The surface of a polyhedron (of genus zero) is isomorphic to a planar

subdivision. Thus the numbers v, e, and f of its vertices, edges, and facets obey

Euler's formula.

A simple polyhedron is convex if its interior is a convex set.

27

Oriented Area of PolygonsOriented Area of Polygons

28

We can calculate the area of a triangle, from the coordinates of its vertices,

evaluating the cross product defined below. Note that this calculation is easily

implementable..

Fonte: [SKIENA02]Area Computations

double signed_triangle_area(const Point* _A, const Point* _B, const Point* _C)

{

return((_A[X]*_B[Y] - _A[Y]*_B[X] + _A[Y]*_C[X]

- _A[X]*_C[Y] + _B[X]*_C[Y] - _C[X]*_B[Y]) / 2.0);

}
29

Area Computations

We can compute the area of any triangulated polygon by summing the area of all

triangles. This is easy to implement using the routines we have already developed.

However, there is an even slicker algorithm based on the notion of signed areas for

triangles, which we used as the basis for our ccw routine. By properly summing the

signed areas of the triangles defined by an arbitrary point p with each segment of

polygon P we get the area of P, because the negatively signed triangles cancel the area

outside the polygon. This computation simplifies to the equation

Fonte: [SKIENA02]

double area(polygon *p)

{

double total = 0.0; /* total area so far */

int i, j; /* counters */

for (i=0; i<p->n; i++) {

j = (i+1) % p->n;

total += (p->p[i][X]*p->p[j][Y]) - (p->p[j][X]*p->p[i][Y]);

}

return(total / 2.0);

}

where all indices are taken modulo the number of vertices. See [O’R00] for an exposition

of why this works, but it certainly leads to a simple solution:

30

Algorithm for

Polygons Tessellation

Algorithm for

Polygons Tessellation

31

How to tessellate a face which is not convex?
Solution from SKIENA & REVILLA, 2002, Programming Challenges, p.319

v1v2

v8v3v4 v7

v1v2

v8v3 v7v4

Any polygon has at least two

ears. An EAR is defined if the

angle between the edges

emanating the vertex is lower

than 180o and the chord

connecting the two adjacent

vertexes should not intersect

any other polygon edge (i.e. no

First EAR found starting from V1 in

the CCW direction

v5 v6

Finds EAR of the polygon until remains a single triangle.

POL = 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8

Set two lists with the previous and next vertexes

L = 8 / 1 / 2 / 3 / 4 / 5 / 6 / 7

R = 2 / 3 / 4 / 5 / 6 / 7 / 8 / 1

Updates the list after the first triangle found:

L = 8 / 1 / 2 / 2 / 4 / 5 / 6 / 7

R = 2 / 4 / 4 / 5 / 6 / 7 / 8 / 1

Updates the list after the next triangle found:

L = 8 / 1 / 2 / 2 / 2 / 5 / 6 / 7

R = 2 / 5 / 4 / 5 / 6 / 7 / 8 / 1

Do until the number of triangles is lower then n-2

v5 v6

v1v2

v8v3v4

v5 v6

v7

any other polygon edge (i.e. no

other vertex should lie in the

triangle/ear).

32

Geometric PredicatesGeometric Predicates

33

Now-ancient books on computing frequently use flow charts, which conveniently

introduce predicates. At the time when FORTRAN in particular, and imperative

programming in general, were at the forefront of computing, the use of flow charts was

widespread. A flow chart illustrates rather pointedly the path that control may take

during computation. This path is sketched using straight lines that connect rectangles and

diamonds. Assignment statements appear inside rectangles and if-statements appear

inside diamonds. Other elements also exist, but we concentrate here on the parts where

the linear path of program control is broken, or branches. The functions that are

evaluated and that decide the path taken at such branches are called predicates. Flow

Introduction to Predicates

evaluated and that decide the path taken at such branches are called predicates. Flow

charts have since been replaced by pseudo-code, where changing the linear program

control appears in the form of an indentation.

System design has gone back to schematics with the advance of techniques for

object-oriented design. One such popular visual language and accompanying

methodology, the Unified Modeling Language, promotes that system design should be

tackled at a higher granularity. Objects and the messages they pass to each other are

identified, but the advance of UML did not supplant—it merely enlarged—pseudo-code

and the algorithm design that it captures.

The objective of this section is to argue that crafting good geometric predicates and

using them properly is at the center of geometric computing.

34

Return Type of a Predicate

We generally think of predicates as functions with a Boolean return type. The

Boolean type might identify whether a counter has reached some bound, whether a

predetermined tolerance has been satisfied, or whether the end of a list has been

reached. Such predicates arise in geometric computing, but an additional type of test is

frequently needed. Because this geometric test has three possible outcomes, we refer

to it as a ternary branching test. Yet most often, we are interested in forming a binary

predicate from the three possible outcomes.

The need for three branches in a test can be seen when we consider an oriented

line splitting the plane. The plane is split into the points that lie on the positive line splitting the plane. The plane is split into the points that lie on the positive

halfplane, the points that lie on the negative halfplane, as well as those that lie on the

line itself. A geometric library will offer such ternary outcomes to clients, and the

application programmer will decide how the predicate should be formed.

35

An application might quite suitably need to capture only two cases, the set of points

lying on the positive halfplane or the line and the set of points lying in the negative

halfplane, for example. But the geometric tests should be offered in such a way that if

the application programmer wishes to provide different handling for each of the three

cases, it is possible to do so.

Just as we refer to an interval being open if it does not include its extremities and

refer to it as closed if it does, we can also talk about either open or closed halfspaces. A

left open halfspace consists of the points lying to the left of the line, not including the

points on the line itself. A left closed halfspace does include the points on the line.

Whether open or closed, we define the boundary of the halfspace as the points on the Whether open or closed, we define the boundary of the halfspace as the points on the

line. Thus, a closed halfspace includes its boundary and an open halfspace does not. The

interior of an interval is the corresponding open interval. A set is termed regular if it is

equal to the closure of its interior—an interval is regular if it is closed. By thinking of the

predicate as a ternary rather than as a binary predicate we simplify the design of a

predicate and leave the decision of choosing among the different representable sets to

the client.

36

The Turn Predicate (Plane Orientation)

Determining the orientation of a point with respect to the line defined by two other

points is easily defined by appealing to a function that will take us momentarily to a third

dimension.

The Cross Product

37

The Design of an Orientation 2D Predicate

SIGN orient2d(const Point* _p1, const Point* _p2, const Point* _p3);

enum SIGN {

NEGATIVE = -1,

ZERO = 0,

POSITIVE = 1

};

bool isLeftSide(const Point* _p1, const Point* _p2, const Point* _p3)

{

return orient2d(_p1,_p2,_p3) == POSITIVE;

}

bool areColinear(const Point* _p1, const Point* _p2, const Point* _p3)

{

return orient2d(_p1,_p2,_p3) == ZERO;

}

bool isRightSide(const Point* _p1, const Point* _p2, const Point* _p3)

{

return orient2d(_p1,_p2,_p3) == NEGATIVE;

} 38

Matrix Form of the Orient2D Predicate

39

Side of Circle Predicate

40

41

Numerical Precision

Exact and Adaptive

Numerical Precision

Exact and Adaptive Arithmetic

42

Why using Exact Arithmetic?

• Using hard-coded tolerances does not solve!

– A tolerance of 1e-07 can be sufficient for models with

dimensions relative small.

– However, if the model has dimensions of hundreds of

kilometers, 1e-07 is insignificant. In this case, 1e+00 is a

Source: Ricardo Marques

kilometers, 1e-07 is insignificant. In this case, 1e+00 is a

much more acceptable tolerance, representing a relative

error of 1e-05, or 1 cm.

– At the same time, a tolerance of 1e+00 may not make

sense on small models.

• Using Exact Aritmhmetic, tolerances are no longer

needed.

43

What is Exact Arithmetic?

• Exact arithmetic is a technique for performing

calculations with high level of accuracy

– Is 1e-08 zero? Is -3.1415e-10 zero?

• Avoid rounding error:

Source: Ricardo Marques

• Avoid rounding error:

– 1e+08 + 1e-16 = 1e+08 ???

– Operators in exact arithmetic, every input number

(double) is broken into two non-overlying components

(numeric) and with different order of magnitudes.

– By using successive operators, components can be broken

again. At the end, all the generated components are joined

by minimizing numerical error.

44

What is Adaptive/Exact Arithmetic?

45

Max K. Agoston
Computer Graphics and Geometric Modeling

Springer 2004

46

But how do we know, when starting the design of a system, whether floating

point numbers are adequate? The answer is sometimes easy. It is clear that

interactive computer games, or systems that need to run in real time in general,

cannot afford to use data types not provided by the hardware. This restricts the

usable data types to int, long, float, and/or double. It is also clear that systems that

perform Boolean operations on polygons or solids, such as the ones discussed in

Chapter 28, will need to use an exact number type. In general, however, this is an

important decision that needs to be made for each individual system. Genericity is a

powerful device at our disposal to attempt to delay the choice of number type as

Sherif Ghali

Introduction to Geometric Computing

Springer

2008

powerful device at our disposal to attempt to delay the choice of number type as

long as possible, but to generate one executable or program, the various

compromises have to be weighed and the decision has to be made.

At this time there is no silver bullet to determine whether to sacrifice

efficiency and use an exact number type. A simple rule of thumb is to consider

the compromise between speed and accuracy. If the system requirements

suggest speed, then we have to sacrifice accuracy, and vice versa. The answer is

of course easy if neither is required, but it is more often the case that both are.

47

Sherif Ghali

Introduction to Geometric Computing

Springer

2008

48

Sherif Ghali

Introduction to Geometric Computing

Springer

2008

49

Sherif Ghali

Introduction to Geometric Computing

Springer

2008

50

Closest Point at a

Straight Segment

Closest Point at a

Straight Segment

51

C

D’

NEAREST POINT IN A STRAIGHT SEGMENT USING INTERNAL PRODUCT

A B

()CC A t B A′′ = + −

dC

2C

AB AC
t

AB

′ =

���� ����

�

����

Parametric value of C’ point at AB segment:

t

0 1
C
t ′< <

Projection of C point on AB segment:

(inner product)

Closest point of C on AB segment:

P C′=

D’

C’

D()D
D A t D C′′ = + −

dD
Projection of D point on AB segment:

2D

AB AD
t

AB

′ =

���� ����

�

���� 1
D
t ′ >

Parametric value of D’ point at AB segment:

Closest point of D on AB segment:

P B=

52

Algorithms for

Segment- Segment Intersection

Algorithms for

Segment- Segment Intersection

53

Line Segments and Intersection

A line segment s is the portion of a line l which lies between two given points

inclusive. Thus line segments are most naturally represented by pairs of endpoints.

The most important geometric primitive on segments, testing whether a given

pair of them intersect, proves surprisingly complicated because of tricky special

cases that arise. Two segments may lie on parallel lines, meaning they do not

intersect at all. One segment may intersect at another’s endpoint, or the two

segments may lie on top of each other so they intersect in a segment instead of a

single point.

Fonte: [SKIENA02]

single point.

This problem of geometric special cases, or degeneracy, seriously complicates

the problem of building robust implementations of computational geometry

algorithms. Degeneracy can be a real pain in the neck to deal with. Read any

problem specification carefully to see if it promises no parallel lines or overlapping

segments. Without such guarantees, however, you had better program defensively

and deal with them.

The right way to deal with degeneracy is to base all computation on a small

number of carefully crafted geometric primitives.

54

B

A D

C

HOW TO TREAT THE INTERSECTION OF STRAIGHT LINES IN ROBUST AND EFFICIENT WAY?

A D

Source: Ricardo Marques

55

Fonte [VINCE05]

56

57

P

C

D’

C’

D

INTERSECTION BASED ON PARAMETRIC REPRESENTATION OF SEGMENTS

A B

()AB
P A t B A= + −

()CDP C t D C= + −

dC

dDdC

CD
t

D

dC0
C
d > 0

D
d <

Consider that the distances of C and D

points to the AB segment have signal:

C

CD

C D

d
t

d d
=

+

Parametric value for P point at the CD segment:

C

CD

C D

d
t

d d
=

−
0 1CDt≤ ≤

58

Signed distance can be replaced by a cross product

C

A

B

dC

C

A

B

Area

C
AB d⋅

=

����

C’

AB AC
Area

×
=

���� ����

() ()B A C A
Area

− × −
=

INTERSECTION BASED ON PARAMETRIC REPRESENTATION OF SEGMENTS

2

C
AB d

Area

⋅
=

2

AB AC
Area

×
=

() ()

2

B A C A
Area

− × −
=

2 (, ,)
C

orient d A B C
d

AB

= ����

2 (, ,) () ()orient d A B C B A C A= − × −

Definition: (double of) trianle oriented area

Analogously :
2 (, ,)

D

orient d A B D
d

AB

= ����
Note that the signs of the distances are

resolved naturally.

Therefore:

59

C

A

B

D
2 (, ,)

C

orient d A B C
d

AB

= ����

Parametric value of P point at CD segment:

C

CD

C D

d
t

d d
=

−P

2 (, ,)
D

orient d A B D
d

AB

= ����

INTERSECTION BASED ON PARAMETRIC REPRESENTATION OF SEGMENTS

()CD
P C t D C= + −

2 (, ,)

2 (, ,) 2 (, ,)
CD

orient d A B C
t

orient d A B C orient d A B D
=

−

Analogously :

Therefore:

2 (, ,)

2 (, ,) 2 (, ,)
AB

orient d C D A
t

orient d C D A orient d C D B
=

−
()AB

P A t B A= + −

60

Segment_Segment_Intersection(u, v):

if both endpoints of u are over v then

return false

end if

if both endpoints of u are under v then

return false

end if

if both endpoints of v are over u then

return false

end if

if both endpoints of v are under u then

return false

end if

if u and v are collinear then

return false

end if

B

A

D

C

B

A

D

C

2 (, ,) 0orient d C D A > 2 (, ,) 0orient d C D B >

2 (, ,) 0orient d C D A < 2 (, ,) 0orient d C D B <

2 (, ,) 0orient d A B C > 2 (, ,) 0orient d A B D >

2 (, ,) 0orient d A B C < 2 (, ,) 0orient d A B D <

2 (, ,) 0orient d C D A = 2 (, ,) 0orient d C D B =

2 (, ,) 0orient d A B C = 2 (, ,) 0orient d A B C =ou

B

A
D

C

if u and v are parallel then

return false

end if

if u touches v then (there are many cases)

return true

end if

// When get to this point, there is an intersection point

return true

D

B

A D

C
B

A

D

C
2 (, ,) 2 (, ,)orient d C D A orient d C D B=

2 (, ,) 2 (, ,)orient d A B C orient d A B D=
ou

2 (, ,) 0orient d C D A <2 (, ,) 0orient d C D B =

B

A
D

C

P
2 (, ,)

2 (, ,) 2 (, ,)
CD

orient d A B C
t

orient d A B C orient d A B D
=

−

()CD
P C t D C= + −

P B=

61

Algorithm for

Point in Polygon Verification

Algorithm for

Point in Polygon Verification

62

Ray Algorithm (or shot)
Philip Schneider and David Eberly Geometric Tools for Computer Graphics, 2003, p.70

A ray that part of any point within the polygon in one direction will cut any curves

on the edge of the polygon an odd number of times. If the ray cut the boundary

of the polygon an even number of times, the point is outside the polygon.

63

Criteria for counting intersections of the ray with a boundary edge

Intersection in the interior of the segmento: counts 1x

Horizontal segment: does not count

Intersection in the inferior point

of the segment: counts 1x

Intersection in the superior point

of the segment: does not count
64

