
blinkdagger
an Engineering and MATLAB blog

Home
Listchecker
MATLAB
Contact
About

MATLAB GUI Tutorial - Sharing Data among
Callbacks and Sub Functions
14 Nov 2007 Quan Quach 69 comments 14,141 views

Introduction
For the majority of GUIs that you create in Matlab, you will have to be
able to share data among the component callbacks. One way of
accomplishing this is to use the handles structure to store that data. In

this tutorial, you will learn how to do so.

This tutorial is written for those with little experience creating a Matlab GUI
(Graphical User Interface). If youʼre new to creating GUIs in Matlab, you should visit
this tutorial first. Basic knowledge of Matlab is recommended. Matlab version 2007a
is used in writing this tutorial. Both earlier versions and new versions should be
compatible as well (as long as it isnʼt too outdated). Letʼs get started!

Sharing Data Between Callbacks
A simple example of sharing data among callbacks is to increment a numerical
counter on the GUI each time ANY button on the GUI is pressed. How can this be
done? This tutorial will explain how.

1. First, download the sample GUI here. Unzip the files and place them wherever
you please.

2. Now, type guide at the command prompt.

3. Choose to open the sample GUI by clicking on “Open Existing GUI”. Click on
“Browse” to locate where you saved the GUI files.

http://blinkdagger.com/
http://blinkdagger.com/
http://blinkdagger.com/install-listchecker/
http://blinkdagger.com/matlab/
http://blinkdagger.com/contact/
http://blinkdagger.com/about/
http://blinkdagger.com/matlab/matlab-gui-tutorial-sharing-data-among-callbacks-and-sub-functions/
http://blinkdagger.com/author/misterturtie/
http://blinkdagger.com/matlab/matlab-gui-tutorial-sharing-data-among-callbacks-and-sub-functions/#comments
http://www.blinkdagger.com/matlab/matlab-gui-graphical-user-interface-tutorial-for-beginners
http://www.blinkdagger.com/tutorials/matlab/GUI/basic/handles-intro/handles.zip

4. Here is what the GUI should look like when you open it:

5. Click on the icon on the GUI figure to bring up the accompanying .m file.

6. The first thing we need to do is to define a variable that will hold the value for
our numerical counter. Place the following code in
handles_tutorial_OpeningFcn.

handles.buttonCounter = 0;
set(handles.text1,'String','0');

Make sure you place it right before this line of code:

guidata(hObject, handles);

7. Notice that we defined the variable name as handles.buttonCounter, rather
than buttonCounter. If we did not define the variable within the handles
structure, then it would be considered a local variable. Being a local variable
means that the variable does not exist outside of the function where it was
defined. Thus we need to store it into the handles structure, so that it can be
accessed and modified later in the other callbacks. So, if you want data to be
available to ALL callbacks, you must store it in the handles structures.

8. Add this code to both pushbutton1_Callback and radiobutton1_Callback

handles.buttonCounter = handles.buttonCounter + 1;
set(handles.text1,'String',num2str(handles.buttonCounter));
guidata(hObject, handles); %without this line, the handles structure would not update,

%and the counter would not increment.

9. Now, save the .m file and run the GUI. Try clicking on the buttons to increment
the counter. Notice that the counter increments when you activate AND
deactivate the radio button.

Sharing Data Between Callbacks and Sub Functions
It is good practice to make your functions modular so that your code is easily
adaptable, robust, and flexible. Having said that, passing the entire handles
structures to sub functions is something that I donʼt recommend. But there might be
a time when you need to access the entire handles within a sub function. So here
goes.

function [handles] = mySubFunction(handles)
%insert code here
%
%

This function will allow you to use the handles data within the sub function, and will
also update any changes made within the sub function. You can add as many
inputs and outputs as desired.

When you call this function, make sure to call it in the following manner:

[handles] = mySubFunction(handles);

This is the end of the tutorial.

69 Responses to “MATLAB GUI Tutorial - Sharing Data among
Callbacks and Sub Functions”

1. on 20 Nov 2007 at 10:02 am 1manisree

great tutorials… indeed very helpful. thanks a lot

2. on 18 Feb 2008 at 11:36 am 2Vishal

Ive just spent the last 2 hours pulling my hair out, as im one of my functions
was reading in values for 2 variables, and i then later call a function (if desired)
to plot a PZ map, and it matlab refused to understand that the variables where
there, until i realised that they where jus local variables! I tried all sorts of
handles stuff, until i found this, man you guys are the reason i might get a good
grade for my final year project!!!

3. on 15 Mar 2008 at 10:00 am 3Brinkis

Hallo Quan Quach,

Iʼve passed though all of your tutorials. Theyʼre really great and helpfull. At first

http://del.icio.us/post?url=http://blinkdagger.com/matlab/matlab-gui-tutorial-sharing-data-among-callbacks-and-sub-functions/
http://www.stumbleupon.com/submit?url=http://blinkdagger.com/matlab/matlab-gui-tutorial-sharing-data-among-callbacks-and-sub-functions/
http://www.technorati.com/faves?add=http://blinkdagger.com/matlab/matlab-gui-tutorial-sharing-data-among-callbacks-and-sub-functions/
http://digg.com/submit?phase=2&url=http://blinkdagger.com/matlab/matlab-gui-tutorial-sharing-data-among-callbacks-and-sub-functions/
http://reddit.com/submit?url=http://blinkdagger.com/matlab/matlab-gui-tutorial-sharing-data-among-callbacks-and-sub-functions/
http://feeds.feedburner.com/Blinkdagger
http://blinkdagger.com/matlab/matlab-gui-tutorial-sharing-data-among-callbacks-and-sub-functions/#comment-127
http://blinkdagger.com/matlab/matlab-gui-tutorial-sharing-data-among-callbacks-and-sub-functions/#comment-952
http://blinkdagger.com/matlab/matlab-gui-tutorial-sharing-data-among-callbacks-and-sub-functions/#comment-1184

