
LuaCOM User Manual
(Version 1.3b2)

Vinicius Almendra Renato Cerqueira Fabio Mascarenhas

11th February 2005

Contents

1 Introduction 3
1.1 Features. 3
1.2 Who Should Read What (or About the Manual). 4

2 Tutorial 5
2.1 Using The LuaCOM library. 5
2.2 Locating COM Objects. 6
2.3 Creating Objects . 6
2.4 Getting Help about an Object. 6
2.5 Methods and Properties. 7
2.6 Releasing Objects. 7

3 LuaCOM Elements 9
3.1 LuaCOM API . 9
3.2 LuaCOM objects . 13

3.2.1 Object Disposal. 14
3.3 Automation binding. 15

3.3.1 Implementingdispinterfaces in Lua 15
3.3.2 Using Methods and Properties. 16
3.3.3 Connection Points: handling events. 19
3.3.4 Parameter Passing. 21
3.3.5 Exception Handling . 23

3.4 Type Conversion . 24
3.4.1 Boolean values. 24
3.4.2 Pointers toIDispatch and LuaCOM objects. 25
3.4.3 Pointers toIUnknown . 25
3.4.4 Arrays and Tables. 25
3.4.5 CURRENCYtype . 26
3.4.6 DATEtype . 26
3.4.7 Variants. 26
3.4.8 Error Handling. 26

3.5 Other Objects. 26
3.5.1 The Enumerator Object. 26
3.5.2 The Connection Point Container Object. 27
3.5.3 The Typelib and Typeinfo Objects. 27

1

4 Implementing COM objects and controls in Lua 28
4.1 Introduction. 28
4.2 Is it really useful?. 28
4.3 Terminology. 29
4.4 Building a LuaCOM COM server. 30

4.4.1 Specify the component. 30
4.4.2 Objects to be exported. 30
4.4.3 Building the type library. 30
4.4.4 Registration Information. 30
4.4.5 Registering the Component Object. 31
4.4.6 Implementing and Exposing the Component. 31
4.4.7 Initialization and Termination. 31

4.5 Running the COM server. 31
4.6 Generating Events. 32
4.7 Full Example . 32
4.8 Building a Lua OLE control . 33

5 Release Information 35
5.1 Limitations . 35
5.2 Known bugs. 35
5.3 Future Enhancements. 36
5.4 Important issues about LuaCOM. 36

5.4.1 Problems instantiating COM objects. 36
5.4.2 Releasing COM objects from memory. 36
5.4.3 Receiving events. 37
5.4.4 Extensible Interfaces. 37
5.4.5 Visual Basicc© issue . 37

5.5 History . 38

6 Reference 41
6.1 The C/C++ API. 41
6.2 The Lua Standard API. 46
6.3 Lua Extended API. 61
6.4 Enumerator Object. 61
6.5 Type Library Object. 61
6.6 Type Information Object. 61

7 Credits 63

2

Chapter 1

Introduction

LuaCOM is an add-on library to the Lua language that allows Lua programs to use and implement ob-
jects that follow Microsoft’sComponent Object Model(COM) specificationand use the Automation
technology for property access and method calls.

1.1 Features

Currently, the LuaCOM library supports the following features:

• dynamic instantiation of COM objects registered in the system registry, via theCreateObject
method;

• dynamic access to running COM objects viaGetObject ;

• COM method calls as normal Lua function calls and property accesses as normal table field
accesses;

• ability to read type libraries and to generate HTML documentation on-the-fly for COM objects;

• use of COM objects without type information;

• type conversion between OLE Automation types and Lua types;

• object disposal using Lua garbage collection mechanism;

• implementation of COM interfaces and objects using Lua tables;

• implementation of OLE controls using Lua tables (needs a Lua GUI toolkit that can create
in-place windows, like IUP);

• use of COM connection point mechanism for bidirectional communication and event handling;

• fully compatible with Lua 5 and with Lua 4;

• log mechanism to ease the debugging of applications.

3

1.2 Who Should Read What (or About the Manual)

This manual is mostly a reference manual. Here we document the behavior of LuaCOM in a variety
of situations, some implementation decisions that affect the end-user of the library and its limitations.
When facing some strange behavior in an application built using LuaCOM, the first step is to read all
the chapter5, where the majority of possible problems are documented. There can be found references
to other sections of the manual, where more detailed information is provided.

Newbies For those who are newcomers, we provide a tutorial section (chapter2) with a step-by-step
guide to start using LuaCOM. More help and samples can be found in LuaCOM’s home page. Notice
that VBScript code can be easily converted to Lua with LuaCOM.

This manual does not provide information for developers who need deeper technical information
about LuaCOM or who are willing to modify it for some reason. For this kind of information, please
contact the authors.

Knowledge required This manual presumes some knowledge of COM and Automation. We don’t
intend to explain in detail how these technologies work or how they can be used to solve particular
problems. This information can be found easily in the web or in good books.

Some information about samples

The sample codes shown in this documentation are all for Lua 5, although most of them should also
run in Lua 4. Anyway, Lua 4 specific samples can be found in the documentation for the previous
version of LuaCOM.

4

Chapter 2

Tutorial

2.1 Using The LuaCOM library

LuaCOM is an add-on to the Lua language. To be used, either the binary library of LuaCOM must
be linked with the host program, just like the Lua library and other add-ons, or you should load a
LuaCOMdynamic library through Lua 5’s require/loadlib mechanism. To use dynamic loading in Lua
4 you should implement a similar mechanism. There are different versions of the LuaCOM binary for
the different versions of the Lua library, so pay attention to link the right one.

If you are linking LuaCOMto your program, the next step is to modify the source code of the host
program to call LuaCOM’sand COM initialization and termination functions, which are part of the
C/C++ API. To do so, include the LuaCOM’s header —luacom.h — and call these functions in
the proper order: LuaCOM must be initialize after COM and after Lua; it must be terminated before
Lua; COM must be terminated AFTER Lua1. Here is an example of a simpleChost program program
using LuaCOM.

/*
* Sample C program using luacom
*/

#include <stdio.h>
#include <ole2.h> // needed for CoInitialize and CoUninitialize
#include <lua.h>

#include "luacom.h"

int main (int argc, char *argv[]) {
/* COM initialization */
CoInitialize(NULL);
/* library initialization */
lua_State *L = lua_open();
luacom_open(L);
if(lua_dofile("luacom_sample.lua") != 0) {

puts("Error running sample!");
exit(1);

}

1Notice that COM must be initialized in each thread that will use it. To use LuaCOM in this situation, it’s not safe
to share a single Lua state among several threads; one should create a new Lua state for each thread and then initialize
LuaCOM with this state.

5

luacom_close(L);
lua_close(L);
CoUninitialize(NULL);
return 0;

}

Notice that it’s necessary to initialize COM beforelua_open and to terminate it only after the last
lua_close , otherwise fatal errors may occur.

Using Lua 5 to dynamically load LuaCOM is simpler. Just callrequire("luacom") in your
Lua script, and make sure the fileluacom.lua is in yourLUA_PATHenvironment variable, and the
Lua and LuaCOM DLLs (lua-5.0.dll , lualib-5.0.dll andluacom-lua5-1.3b2.dll ,
respectively) are in yourPATH. Then run your script with the Lua standalone interpreter.

2.2 Locating COM Objects

The first step to use a COM object is to find it. COM objects are registered in the system registry and
are associated with an unique Class Identifier, known as CLSID. A CLSID may also be associated with
a string known as Programmatic Identifier or ProgID. This last one is the easiest way to reference a
COM object. E.g., the ProgID for Microsoftc©Word c© is “Word.Application ”.

If one do not know in advance what is the CLSID or the ProgID of the object of interest, them it’s
possible to use tools like OleView to find the object, although the best place to find it is in the object’s
documentation.

2.3 Creating Objects

With the ProgID or the CLSID of an object, it’s now possible to create a new instance of it or to get a
running instance. To do so, the easiest way is to use the method CreateObject of the Lua API:

word = luacom.CreateObject("Word.Application")
assert(word)
word.Visible = true

If there is an already running instance of the object you want,GetObject must be used to use
it. The following code illustrates this:

-- If there is an instance of Word(r) running,
-- it will end it
word = luacom.GetObject("Word.Application")
if word then

word:Quit()
word = nil

end

2.4 Getting Help about an Object

To use a COM object, the first thing one must know is itsinterface, that is, its set of methods and
properties. This information normally is available in the documentation of the object, but some-
times one do not have access to this documentation. LuaCOM can offer some help if the object has

6

type information. If the object has an associated help file, LuaCOM can launch it using the method
ShowHelp :

word = luacom.CreateObject("Word.Application")
assert(word)
luacom.ShowHelp(word)

If the object has an associated type library, LuaCOM can generate and display an HTML file
describing it. This information can also be read using other type library browsers, as OleView.

The methodDumpTypeInfo can be used in console applications to list the methods and prop-
erties of the interface. It does not give much information, but can be helpful when playing with an
object.

2.5 Methods and Properties

After creating an object, the next step is to use it. This is primarily done throughmethod callsand
property accesses. To call a method of the object, do it as if the method was a function stored in a Lua
table whose key is the method name:

-- Here we call the method ’Show’ of the COM object
myobj:Show()
-- A method with a return value
result = myobj:CheckState()
-- A method with parameters
file = myobj:LoadFile("test.xyz", 1)
-- A method with output values
x, y = myobj:UpdatePosition(x, y)

To read or write simple properties, one must simply use them as if they were normal table fields.

-- Reading properties
value1 = obj1.Value
value1 = obj2.Value
-- writing a property
obj3.Value = value1 + value2

Automation includes support toparametrized properties. These can be accessed (or written) using
accessor functions.

value = obj:getMatrixValue(1,1)
value = value*0,125
obj:setMatrixValue(1, 1, value)

2.6 Releasing Objects

Objects are automatically released using Lua’s garbage collection mechanism, that is, when there are
no references to them in Lua. However, some objects may demand an explicit termination method
call, like “Quit”.

7

obj = luacom.CreateObject("MyApp.MyObj")
-- Here we force an immediate release of the object
obj = nil
collectgarbage()

Notice that if there is any references to the COM object alive in Lua then the application (or
library) that implements it will not exit.

8

Chapter 3

LuaCOM Elements

LuaCOM is composed by the following elements:

• LuaCOM objects, which make COM objects available in Lua;

• LuaCOM API, a set of functions used to do a variety of tasks (library initialization, object
creation, implementation of Automation interfaces in Lua, manipulation of connection points
etc.);

• Automation binding, which translates accesses on LuaCOM objects to COM interface calls and
COM accesses on an interface implemented in Lua to Lua function calls or table accesses;

• LuaCOM type conversion rules, which govern the type conversion between Lua and Automa-
tion types;

• LuaCOM parameter passing rules, which describe how LuaCOM translate a Lua parameter list
to a COM one and vice versa;

• other objects, like typelib, typeinfo, enumerator etc.

3.1 LuaCOM API

The LuaCOM API is divided in two parts: the standard API and the extended API. The standard
API comprises the core functionality needed to use COM objects. The extended API includes more
advanced features to Lua API that simplify the development of applications using LuaCOM. This
distinction has been made due to the possible unbounded growth of features, which could end up
cluttering the library and making it bigger and bigger and more and more difficult to use. For now, the
extended API is entirely implemented in Lua 5 and can be easily removed without trouble.

The standard API is further divided in two classes: the Lua API and the C/C++ API. The C/C++
API is used primarily for initialization of the library and for low-level construction of LuaCOM ob-
jects. It is declared in the header fileluacom _h. The Lua API permits Lua programs to access all
the functionality of LuaCOM. It is implemented as a set of functions inside a global table named
luacom ; hereafter these functions will be called LuaCOMmethods. This table is created and popu-
lated when the C/C++ API functionluacom open is called. Notice that the extended API lies in a
different table, calledluacomE . Below there is summary of the LuaCOM API. Detailed information
on these methods is available in chapter6.

9

Standard Lua API
Method Description

CreateObject Creates a LuaCOM object.

NewObject Creates a LuaCOM object implemented in
Lua.

NewControl Creates a LuaCOM OLE control
implemented in Lua.

GetObject Creates a LuaCOM object associated with an
instance of an already running COM object.

ExposeObject Exposes a LuaCOM object or OLE control,
so that other applications can get a reference
to it.

RevokeObject Undoes the operation ofExposeObject .

RegisterObject Fills in the registry entries necessary for
exposing a COM object or OLE control.

UnRegisterObject Removes the registry entries necessary for
exposing a COM object or OLE control.

Connect Creates a connection point between an object
and a Lua table.

ImplInterface Implements an IDispatch interface using a
Lua table.

ImplInterfaceFromTypelib Implements an IDispatch interface described
in a Type Library using a Lua table.

addConnection Connects two LuaCOM objects.

releaseConnection Disconnects a LuaCOM object from its
connection point.

isMember Checks whether a name correspond to a
method or a property of an LuaCOM object.

ProgIDfromCLSID Gets the ProgID associated with a CLSID.

CLSIDfromProgID Gets the CLSID associated with a ProgID.

GetIUnknown Returns anIUnknown interface to a
LuaCOM object as a full userdata.

DumpTypeInfo Dumps to the console the type information of
the specified LuaCOM object. This method
should be used only for debugging purposes.

10

Standard Lua API (continued)
Method Description

GetCurrentDirectory Returns the current directory.

CreateLuaCOM Transforms an IUnknown full userdata into a
LuaCOM object.

ImportIUnknown Converts a light userdata (pointer) to an
IUnknown full userdata.

DetectAutomation Used to implement COM servers. Looks in
the command-line for /Register or
/UnRegister /Automation (not case-sensitive)
and calls user-defined functions to register,
unregister, or expose objects, entering a
message loop in the latter case. If there is no
command-line then assume it is being run
in-process, calls the expose function and
returns.

11

Extended Lua API
Method Description

CreateLocalObject Creates a LuaCOM object as an
out-of-process server.

CreateInprocObject Creates a LuaCOM object as an in-process
server.

ExportConstants Exports all the constants of a type library
(standalone or bound to a LuaCOM object)
to the global environment (or optionally to a
table).

DumpTypeLib Creates an HTML file describing a type
library.

GetType Returns a string describing the type of object,
in the case its an object belonging to the
LuaCOM library.

ViewTypeLib Runs DumpTypeLib and shows the created
file using Internet Explorerc©.

pairs Does the same as pairs for COM
Enumerators.

FillTypeLib Creates a table describing a type library.

FillTypeInfo Creates a table describing a type info.

12

Standard C/C++ API
Function Description

luacom_open Initializes the LuaCOM library in a
Lua state. It must be called before any
use of LuaCOM features.

luacom_close LuaCOM’s termination function.

luacom_detectAutomation This function is a helper to create
COM servers. It looks in the command
line for the switches “/Automation”
and “/Register” and call some
user-defined Lua functions
accordingly.

luacom_IDispatch2LuaCOM Takes an IDispatch interface and
creates a LuaCOM object to expose it,
pushing the object on the Lua stack.

3.2 LuaCOM objects

LuaCOM deals withLuaCOM objects, which are no more than a Lua table with the LuaCOM metat-
able and a reference to the LuaCOM C++ object; this one is, in turn, a proxy for the COM object:
it holds anIDispatch pointer to the object and translates Lua accesses to Automation calls and
property accesses. Here is a sample where a LuaCOM object is used:

-- Instantiate a Microsoft(R) Calendar Object
calendar = luacom.CreateObject("MSCAL.Calendar")
-- Error check
if calendar == nil then

print("Error creating object")
exit(1)

end
-- Method call
calendar:AboutBox()
-- Property Get
current_day = calendar.Day
-- Property Put
calendar.Month = calendar.Month + 1
print(current_day)
print(calendar.Month)

Every time LuaCOM needs to convert anIDispatch pointer to Lua it creates a LuaCOM object.
There are two situations where this happens:

• when calling LuaCOM API functions that return COM objects (CreateObject , GetObject ,
NewObject , Connect etc.) and

13

• when receiving return values from COM, where some of the values areIDispatch pointers.

Follows a sample of these situations:

-- First, we get a luacom object using LuaCOM API
excel = luacom.CreateObject("Excel.Application")
assert(luacomE.GetType(excel) == "LuaCOM")
-- now we get one from a method call
sheets = excel.Sheets
assert(luacomE.GetType(sheets) == "LuaCOM")

A LuaCOM object may be passed as a parameter to method calls on other LuaCOM objects, if
these methods expect an argument of typedispinterface . Here is a sample to illustrate this
situation:

-- Gets a running instance of Excel
excel = luacom.GetObject("Excel.Application")
-- Gets the set of worksheets
sheets = excel.Worksheets
-- gets the first two sheets
sheet1 = sheets:Item(1)
sheet2 = sheets:Item(2)
-- Exchange them (here we pass the second sheet as a parameter
-- to a method)
sheet1:Move(nil, sheet2)

There are two kinds of LuaCOM objects:typedandgenericones. The typed ones are those whose
COM object has type information. The generic ones are those whose COM object does not supply
any type information. This distinction is important in some situations.

3.2.1 Object Disposal

LuaCOM objects are released through Lua’s garbage collection mechanism, so there isn’t any explicit
API method to destroy them.

Caution LuaCOM only tracks references to COM objects. It does not work with the concepts of
“application”, “component”, “process” etc. It does not know even which objects are part of the same
component or application. This has some consequences on the object disposal:

• a component may only consider as “finished” its relationship with LuaCOM when all references
to its objects are released, not only the one created withCreateObject ;

• some components have a “Quit” method. This may close the component’s interface, but it could
remain running if there are any references to it. Nevertheless, these references cannot be reliably
used after the “Quit” method has been called. To release the component, one must assignnil
to all references to the component (and its sub-objects) and then callcollectgarbage .

14

3.3 Automation binding

The Automation binding is responsible for translating the table accesses to the LuaCOM object into
COM interface calls. Besides that, it also provides a mechanism for implementingdispinterfaces
using ordinary Lua tables.

3.3.1 Implementingdispinterfaces in Lua

The Automation binding has aC++class calledtLuaDispatch that implements a genericIDispatch
interface. The implementation of this class translates the method calls and property accesses done on
the objects of this class to Lua calls and table accesses. So, one may implement adispinterface
entirely in Lua, provided it has a type library describing it. This type library may be a stand-alone one
(referenced by its location on the file system) or may be associated with some registered component.
In this case, it may be referenced by theProgID of the component.

The C++ objects of this class can be used in any place where anIDispatch or IUnknown
interface is expected. LuaCOM takes care of these conversion. Follows a sample implementation of a
dispinterface in Lua.

-- Creates and fills the Lua table that will implement the
-- COM interface
events_table = {}
function events_table:AfterUpdate()

print("AfterUpdate called!")
end
-- Here we implement the interface DCalendarEvents, which is part
-- of the Microsoft(R) Calendar object, whose ProgID is MSCAL.Calendar
events_obj = luacom.ImplInterface(

events_table,
"MSCAL.Calendar",
"DCalendarEvents")

-- Checks for errors
--
if events_obj == nil then

print("Implementation failed")
exit(1)

end
-- Tests the interface: this must generate a call to the events:AfterUpdate
-- defined above
--
events_obj:AfterUpdate()

If the interface to be implemented is described in a stand-alone type library, the methodImplInterfaceFromTypelib
must be used instead:

-- Creates and fills the Lua table that will implement the
-- Automation interface
hello_table = {}
function hello:Hello()

15

print("Hello World!")
end
-- Here we implement the interface IHello
--
hello_obj = luacom.ImplInterfaceFromTypelib("hello.tlb","IHello")
-- Checks for errors
--
if hello_obj == nil then

print("Implementation failed")
os.exit(1)

end
-- Tests the interface
--
hello_obj:Hello()

Both methods return a LuaCOM object, whose correspondingIDispatch interface is imple-
mented by the supplied table. This LuaCOM object can be passed as an argument to COM methods
who expect adispinterface or to LuaCOM API methods (likeaddConnection).

One can also use theNewObject method, which is best suited to the situation where one needs
to create a complete component in Lua and wants to export it, so that it can be accessed through COM
by any running application.

3.3.2 Using Methods and Properties

The dispinterfaces have two “types” of members: properties and methods. LuaCOM deals
with both.

Method accesses are done in the same way as calling Lua functions stored in a table and having a
“self” parameter:

obj = luacom.CreateObject("TEST.Test")
if obj == nil then

exit(1)
end
-- method call
a = obj:Teste(1,2)
-- another one
obj:Teste2(a+1)

It’s important to notice the need of using the colon – “:” – for method calls. Although LuaCOM
does not use theself parameter that Lua passes in this case, its presence is assumed, that is, LuaCOM
always skips the first parameter in the case of method calls; forgetting it may cause nasty bugs. Notice
that this rule doesn’t apply when using the default method of a LuaCOM object stored in a table or in
a property of another LuaCOM object (see section3.3.2below).

Accessing properties is much like the same of accessing fields in Lua tables:

obj = luacom.CreateObject("TEST.Test")
if obj == nil then

exit(1)

16

end
-- property access
a = obj.TestData
-- property setting
obj.TestData = a + 1

Properties may also be accessed as methods. This is mandatory when dealing with parameterized
properties, that it, ones that accept (or demand) parameters. A common example of this situation is
the “Item” property of collections.

-- property access
a = obj:TestData()
-- Parametrized property access
b = obj:TestInfo(2)
-- Accessing collections
c = obj.Files:Item(2)

Notice that the colon – “:” – must also be used in this situation.
When accessing properties with method calls, LuaCOM always translates the method call to a

read access (property get). To set the value of a property using a method call, it’s necessary append
the prefix “set”1 to the property name and the new value must be supplied as the last argument.

-- property access
a = obj:TestData()
-- Setting the property
b = obj:setTestInfo(2)
-- Setting a parametrized property
c = obj.Files:setItem(2, "test.txt")

The prefix “get” may also be used, to clarify the code, although it’s not necessary, as the default
behavior is to make a read access.

-- property access
a = obj:getTestData()
b = obj:getTestInfo(2)
c = obj.Files:getItem(2)

Extensible interfaces

LuaCOM allows the use of properties as simple Lua fields just for objects that have type information.
Nevertheless, some objects thathavetype information describing their interfaces implement proper-
ties that are not described in the type library: these objects implementextensibleinterfaces. Those
properties can only be used with accessor functions, as shown in section3.3.2. An example of such
behaviour is found in WMI objects (Windows Management Instrumentation).

1In a future version it might be allowed to change the prefix.

17

Default methods

A dispinterface can have a default method or property, that is, one that is called when the client
does not specify the method name. LuaCOM calls the default method when the object itself is used
as a function.

excel = luacom.CreateObject("Excel.Application")
excel.Visible = true
excel.Workbooks:Add()
-- Here we call the default method
-- notice we DID NOT use the colon, as
-- the object used is Sheets, not excel
sheet = excel.Sheets(1)
print(sheet.Name)
-- Here we also call the default method
-- We must supply the self parameter
sheets = excel.Sheets
sheet2 = sheets(2)
print(sheet2.Name)
-- Setting values
excel.Sheets(1).Name = "MySheet1"
excel:Quit()

This can be very useful when dealing with collections, as commonly they have a defaultItem
property.

WARNING: one must be careful not to put the colon when using default methods of LuaCOM
objects contained in table or in other LuaCOM objects (see the sample above).

Generic LuaCOM objects

To read or write properties in generic LuaCOM objects, it’s necessary access them as method calls
with the right prefix (get/set). The simpler semantic of table field access does not work here.

obj_typ = luacom.CreateObject("Some.TypedObject")
obj_untyp = luacom.CreateObject("Untyped.Object")
-- property read (get)
a = obj_typ.Value
b = obj_untyp:getValue()
-- property write (set)
obj.typ = a + 1
obj_untyp:setValue(b + 1)

Property Access in Lua

When implementing a COM interface in Lua, LuaCOM also supports the concept of property and of
indexed properties. LuaCOM translate property reads and writes to table field accesses:

interface = {}

18

interface.Test = 1
interface.TestIndex = {2,3}
obj = luacom.ImplInterface(interface, "TEST.Test", "ITest")
-- must print "1"
print(obj.Test)
-- must print nil (if there is no member named Test2)
print(obj.Test2)
-- this writes the filed Test
obj.Test = 1
-- Indexed property read. Must return 3 (remember that
-- indexed tables start at 1 in Lua)
i = obj:TestIndex(2)
-- Sets the indexed field
obj:setTestIndex(2,4)
-- Now must return 4
i = obj:TestIndex(2)

3.3.3 Connection Points: handling events

Theconnection pointsare part of a standard ActiveX mechanism whose primary objective is to allow
the ActiveX object to notify its owner of any kind of events. The connection point works as an “event
sink”, where events and notifications go through.

To establish a connection using LuaCOM, the owner of the ActiveX object must create a table
to implement the connection interface, whose description is provided by the ActiveX object (this
interface is called asourceinterface) and then call the API methodConnect , passing as arguments
the LuaCOM object for the ActiveX object and the implementation table. Doing this, LuaCOM will
automatically find the default source interface, create a LuaCOM object implemented by the supplied
table and then connect this object to the ActiveX object. Here follows a sample:

-- Creates the COM object
--
calendar = luacom.CreateObject("MSCAL.Calendar")
if calendar == nil then

os.exit(1)
end
-- Creates implementation table
--
calendar_events = {}
function calendar_events:AfterUpdate()

print("Calendar updated!")
end
-- Connects object and table
--
res, cookie = luacom.Connect(calendar, calendar_events)
if res == nil then

exit(1)
end

19

-- This should trigger the AfterUpdate event
--
calendar:NextMonth()

The cookie returned byConnect identifies this connection, and can later be used to release the
Connection. A COM object can have several event sinks connected to it simultaneously.

It’s also possible to separately create a LuaCOM object implementing the connection point source
interface and then connect it to the object usingaddConnection .

-- Instances the COM object
--
calendar = luacom.CreateObject("MSCAL.Calendar")
if calendar == nil then

print("Error instantiating calendar")
os.exit(1)

end
-- Creates implementation table
--
calendar_events = {}
function calendar_events:AfterUpdate()

print("Calendar updated!")
end
-- Creates LuaCOM object implemented by calendar_events
--
event_handler = luacom.ImplInterface(calendar_events,

"MSCAL.Calendar",
"DCalendarEvents")

if event_handler == nil then
print("Error implementing DCalendarEvents")
exit(1)

end
-- Connects both objects
--
cookie = luacom.addConnection(calendar, event_handler)
-- This should trigger the AfterUpdate event
--
calendar:NextMonth()
-- This disconnects the connection point established
--
luacom.releaseConnection(calendar, event_handler, cookie)
-- This should NOT trigger the AfterUpdate event
--
calendar:NextMonth()

Notice thataddConnection also returns a cookie. A call toreleaseConnection needs
both the event sink and the cookie to release the connection. The old (pre-1.3) syntax ofreleaseConnection
(ommiting the event sink and cookie) still works, but will only release the last connection made (but
there will not be leaks, all connections are released when the object is garbage-collected).

20

Message loop To receive events, it is necessary to have a message loop in the thread that owns the
object that is receiving the events. All events are dispatched through a Windows message queue cre-
ated during COM initialization. Without a message loop, the event objects implemented by LuaCOM
, will never receive method calls from the COM objects they are registered with. Out-of-process COM
servers implemented with LuaCOM also need a message loop to be able to service method calls (one
is provided by callingluacom.DetectAutomation).

3.3.4 Parameter Passing

LuaCOM has some policies concerning parameter passing. They specify how LuaCOM will translate
COM parameter lists to Lua and vice-versa. There are two different situations to which these policies
apply: calling a method of a COM object from Lua and calling a Lua function from COM. The main
question here is how to deal with the different types of parameters supported by COM (“in” param-
eters, “out” parameters, “in-out” parameters, “optional” parameters and “defaultvalue” parameters).
There is also a special policy concerning generic LuaCOM objects.

Calling COM from Lua

This situation happens when accessing a property or calling a method of a COM object through the
LuaCOM object. Here follows a sample:

word = luacom.GetObject("Word.Application")
-- Here we are calling the "Move" method of the Application object of
-- a running instance of Microsoft(R) Word(R)
word:Move(100,100)

In this situation, there are two steps in the parameter passing process:

1. convert Lua parameters to COM (this will be called the “lua2com” situation);

2. convert COM’s return valueand output values back to Lua (this will be called the “com2lua”
situation).

lua2com situation The translation is done based on the type information of the method (or prop-
erty); it’s done following the order the parameters appear in the type information of the method. The
Lua parameters are used in the same order. For each parameter there are three possibilities:

The parameter is an “in” parameter LuaCOM gets the first Lua parameter not yet converted and
converts it to COM using LuaCOM type conversion engine.

The parameter is an “out” parameter LuaCOM ignores this parameter, as it will only be filled by
the called method. That is, the “out” parameters SHOULD NOT appear in the Lua parameter
list.

The parameter is an “in-out” parameter LuaCOM does the same as for “in” parameters.

When the caller of the method wants to omit a parameter, it must pass thenil value; LuaCOM
then proceeds accordingly, informing the called method about the omission of the parameter. If the
parameter has a default value, it is used instead. Notice that LuaCOM does not complain when one
omits non-optional parameters. In fact, LuaCOM ignores the fact that a parameter is or isn’t optional.
It leaves the responsibility for checking this to the implementation of the called method.

21

com2lua situation When the called method finishes, LuaCOM translates the return value and the
output values (that is, the values of the “out” and “in-out” parameters) to Lua return values. That
is, the method return value is returned to the Lua code as the first return value; the output values
are returned in the order they appear in the parameter list (notice that here we use the Lua feature of
multiple return values). If the method does not have return values, that is, is a “void ” method, the
return values will be the output values. If there are no output values either, then there will be no return
values.

The called method can omit the return value or the output values; LuaCOM them will returnnil
for each omitted value.

To illustrate these concepts, here follows a sample of these situations. First, we show an excerpt
of anODLfile describing a method of a COM object:

HRESULT TestShort(
[in] short p1, // an "in" parameter
[out] short* p2, // an "out" parameter
[in,out] short* p3, // an "in-out" parameter
[out,retval] short* retval); // the return value

Now follows a sample of what happens when calling the method:

-- assume that "com" is a LuaCOM object
-- Here we set p1 = 1, p3 = 2 and leave p2 uninitialized
-- When the method returns, r1 = retval and r2 = p2 and r3 = p3
r1, r2, r3 = com:TestShort(1,2)
-- WRONG! The are only two in/in-out parameters! Out parameters
-- are ignored in the lua2com parameter translation
r1, r2, r3 = com:TestShort(1,2,3) -- WRONG!
-- Here p1 = 1, p2 is uninitialized and p3 is omitted.
r1, r2, r3 = com:TestShort(1)
-- Here we ignore the output value p3
r1,r2 = com:TestShort(1)
-- Here we ignore all output values (including the return value)
com:TestShort(1,2)

Generic LuaCOM objects When dealing with generic LuaCOM objects, the binding adopts a dif-
ferent policy: allLua parameters are converted to COM ones as “in-out” parameters. LuaCOM
assumes that these methods always return a value; if the called method does not return anything,
LuaCOM pushes anil value2. As all parameters are set as “in-out”, all of them will be returned back
to Lua, modified or not by the called method.

Calling Lua from COM

This situation happens when one implements a COMdispinterface in Lua. The ActiveX binding
has to translate the COM method calls to Lua function calls. The policy here concerning parameter
list translation is the same as the one above, just exchanging “Lua” for “COM” and vice-versa. That

2This feature allows a clear distinction between the return value and the in-out parameters, as all parameters will end up
being returned.

22

is, all “in” an “in-out” COM parameters are translated to parameters to the Lua function call (the
output parameters are ignored). When the call finishes, the first return value is translated as the return
value of the COM method and the other return values are translated as the “in-out” and “out” values,
following the order they appear in the method’s type information. Continuing the previous example,
here we show the implementation of a method callable from COM:

implementation = {}
-- This method receives TWO in/in-out parameters
function implementation:TestShort(p1, p2)

-- the first one is the retval, the second the first out param
-- the third the second out param (in fact, an in-out param)
return p1+p2, p1-p2, p1*p2

end
-- Implements an interface
obj = luacom.ImplInterface(implementation, "TEST.Test", ITest)
-- calls the function implementation:TestShort via COM
r1, r2, r3 = obj:TestShort(1,2)

3.3.5 Exception Handling

When a run time error occurr when using LuaCOM’s methods or objects, there are two possible
actions LuaCOM can take:

• to signal the error usinglua_error ;

• ignore the error, just doing nothing or returning some kind of error value.

The run time errors can be divided into three types:

• errors inside API calls, likeCreateObject ;

• errors when using LuaCOM objects (COM method calls);

• errors inside COM objects implemented in Lua.

The third type of error is always translated into a COM exception returned to the server. To ease
debugging, these errors are also logged (if the logging facility has been activated), as the server can
silenty ignore these exceptions, specially in events.

If the LuaCOM library is compiled with VERBOSE
defined, then a lot of informative messages are logged and all errors are displayed within a dialog

box. This helps debug errors inside events on the fly, as these errors are commonly ignored by the
server. Notice that this options slows down LuaCOM and can generate very big log files.

The behaviour of LuaCOM for the other two types can be customized. There is a table called
config inside the LuaCOM table. This table holds three fields related to error handling:

abort on API error if false, LuaCOM silently fails on errors inside API calls. This is NOT true
for errors caused by supplying bad parameters: these always generate calls tolua_error .
The default value for this field isfalse.

23

abort on error if false, errors inside method calls and property accesses are also ignored, possi-
bly returnnil where a return value is expected. The default value for this field istrue.

last error every time a run time error occurr LuaCOM sets this field with the text describing the
error. This field can be used to check if some operation failed; just remember to set it tonil
before the operation of interest.

Sample

-- to make all LuaCOM errors runtime errors
luacom.config.abort_on_error = true
luacom.config.abort_on_API_error = true
-- to silently ignore all errors
luacom.config.abort_on_error = false
luacom.config.abort_on_API_error = false
-- catching an ignored error
luacom.config.last_error = nil
obj:RunMethod(x,y)
if luacom.config.last_error then

print("Error!")
exit(1)

end

All errors are also logged. Notice that some of the logged exceptions are not really errors: they
are side-effects of the extensive use of exception handling inside LuaCOM code.

3.4 Type Conversion

LuaCOM is responsible for converting values from COM to Lua and vice versa. Most of the types can
be mapped from COM to Lua and vice versa without trouble. But there are some types for which the
mapping is not obvious. LuaCOM then uses some predefined rules to do the type conversion. These
rules must be known to avoid misinterpretation of the conversion results and to avoid errors.

3.4.1 Boolean values

Lua 5 LuaCOM uses the boolean valuestrue and false , but does not works with the older
convention (nil and non-nil ; see paragraph below).

Lua 4 This version of Lua uses thenil value as false and non-nil values as true. As LuaCOM
gives a special meaning fornil values in the parameter list, it can’t use Lua convention for true and
false values; instead, LuaCOM uses theC convention: the true value is a number different from zero
and the false value is the number zero. Here follows a sample:

-- This function alters the state of the of the window.
-- state is a Lua boolean value
-- window is a LuaCOM object
function showWindow(window, state)

if state then

24

window.Visible = 1
-- this has the same result
windows.Visible = -10

else
window.Visible = 0

end
end
-- Shows window
showWindow(window, 1)
-- Hides window
showWindow(window, nil)

3.4.2 Pointers toIDispatch and LuaCOM objects

A pointer toIDispatch is converted to a LuaCOMobject whose implementation is provided by this
pointer. If the object is implemented by local Lua table, then the pointer is converted to this table. A
LuaCOMobject is converted to COM simply passing its interface implementation to COM.

3.4.3 Pointers toIUnknown

LuaCOM just allows passing and receivingIUnknown pointers; it does not operate on them. They
are converted from/to userdatas with a specific metatable.

3.4.4 Arrays and Tables

If the table does not have atocom tag method (for Lua 4) or__tocom metamethod (for Lua 5),
LuaCOM first checks if the table can be describing a variant. A table is a variant if it has aType
field. This field must have a string that tells how theValue field of the table must be converted.
Possible values forType arestring , bool , error , null , currency , decimal , double ,
float , int8 , uint8 , int4 , uint4 , int2 , uint2 , int1 , verb+uint1+,int , anduint . Each
corresponds to a variant type.

If the table is not describing a variant, then it may be describing a date. A table is a date if it has one
of those fields:Day, DayOfWeek, Month , Year , Hour , Minute , Second , Milliseconds .
LuaCOM initializes the date with the fields that are present; the others are kept at their default values.

If the table is not a date, LuaCOM converts Lua tables toSAFEARRAY’s and vice-versa. To be
converted, Lua tables must be “array-like”, that is, all of its elements must be or “scalars” or tables
of the same length. These tables must also be “array-like”. Here are some samples of how is this
conversion done:

Lua table Safe Array

table = {"name", "phone"} [
”name” ”phone”

]
table = {{1,2},{4,9}}

[
1 2
4 9

]

If the table has the conversion tag/metamethod, LuaCOM uses it to guide the conversion. If the
tag/metamethod is a method, LuaCOM calls it, passing the table and the COM type. The method

25

should return a COM object that LuaCOM will pass on. If the tag/metamethod is a table, LuaCOM
will look for a typelib field, aninterface field , and acoclass field, and pass those as argu-
ments to theImplInterfaceFromTypelib API call. If the table does not have atypelib field,
LuaCOM will look for aprogid field and aninterface field, and pass those to theImplInterface
API call. Either way, LuaCOM will pass the returned object to COM.

3.4.5 CURRENCYtype

The CURRENCYvalues are converted to Lua as numbers. When converting a value to COM where
a CURRENCYis expected, LuaCOM accepts both numbers and strings formatted using the current
locale for currency values. Notice that this is highly dependent on the configuration and LuaCOM just
uses the VARIANT conversion functions.

3.4.6 DATEtype

When converting from COM to Lua, the default behavior is to transformDATEvalues to strings
formatted according to the current locale. The converse is true: LuaCOM converts strings formatted
according to the current locale toDATEvalues.

The script can change the conversion from strings to tables by setting theDateFormat field
of the luacom table (the LuaCOM namespace) to the string"table" . The table will haveDay,
DayOfWeek, Month , Year , Hour , Minute , Second , andMilliseconds fields. To return the
conversion to strings, set theDateFormat field to "string" . Be careful with this feature, as it
may break compatibility with other scripts.

3.4.7 Variants

When converting from COM to Lua, the default behavior is to transform variant values to the closest
Lua type. The script can change the conversion from Lua types to a table describing the variant, by
setting theTableVariants field of the luacom table(the LuaCOM namespace) totrue . The
tables will have aType field telling the original type of the variant, and aValue field containing the
conversion to the closest Lua type. Be careful with this feature, as it may break compatibility with
other scripts.

3.4.8 Error Handling

When LuaCOM cannot convert a value from or to COM it issues an exception, that may be translated
to a lua_error or to a COM exception, depending on who is the one being called.

3.5 Other Objects

LuaCOM deals with other objects besides COM Automation ones. Here we describe them briefly.

3.5.1 The Enumerator Object

This object is a proxy for a COM object that implements theIEnumVARIANT interface. It translates
the calls made to fields of the table to method calls using that interface. Enumerators arise often
when dealing with collections. To obtain an enumerator for a collection, use the Lua API method
GetEnumerator . Example:

26

--
-- Sample use of enumerators
--
-- Gets an instance
word = luacom.GetObject("Word.Application")
-- Gets an enumerator for the Documents collection
docs_enum = luacom.GetEnumerator(word.Documents)
-- Prints the names of all open documents
doc = docs_enum:Next()
while doc do

print(doc.Name)
doc = docs_enum:Next()

end

The Extended Lua API methodpairs allows the traversal of the enumeration using Lua’sfor
statement. The sample above can be rewritten this way:

--
-- Sample use of enumerators
--
-- Gets an instance
word = luacom.GetObject("Word.Application")
-- Prints the names of all open documents
for index, doc in luacomE.pairs(word.Documents) do

print(doc.Name)
end

3.5.2 The Connection Point Container Object

This object allows a COM object implemented using LuaCOM to send events to its client. It’s used
primarily when implementing COM object in Lua, so see chapter4 for more information.

3.5.3 The Typelib and Typeinfo Objects

These objects allow the navigation through the type descriptions of a LuaCOM object or of a type
library. They are proxies for the interfacesITypeLib andITypeInfo , although not all methods
are available. For more information, see sections6.5and6.6.

27

Chapter 4

Implementing COM objects and controls
in Lua

4.1 Introduction

With LuaCOM it is possible to implement full-fledged COM objects and OLE controls using Lua.
Here we understand a COM object as a composite of these parts:

• a server, which implements one or more COM objects;

• registry information, which associates a CLSID (Class ID) to a tripleserver – type library –
default interface;

• a ProgID (Programmatic Identifier) which is a name associated to a CLSID;

• a type library containing a CoClass element.

The registry information maps a ProgID to a CLSID, which is, in turn, mapped to a server. The
type information describes the component, that is, which interfaces it exposes and what is the default
interface.

LuaCOM simplifies these tasks providing some helper functions to deal with registration and
instantiation of COM servers. LuaCOM suports both local (EXE) and in-process (DLL) servers.

LuaCOM also provides helper functions to register and instantiate OLE controls (with their user
interface embedded in the hosting application). This kind of object needs an in-process server, and a
supported Lua GUI toolkit (IUP, for now).

4.2 Is it really useful?

Some might argue that it would be better to implement COM object in languages like C++ or Visual
Basicc©. That’s true in many situations, and false in several others. First, dealing with COM is not
easy and LuaCOM hides most its complexities; besides that, there is another compelling reason for
using LuaCOM at least in some situations: the semantics of Lua tables and the way LuaCOM is
implemented allows one to do some neat things:

• to expose as a COM object any object that can be accessed via Lua through a table. These
might be CORBA objects, C++ objects, C structures, Lua code etc. Using this feature, a legacy
application or library may be “upgraded” to COM world with little extra work;

28

• to use COM objects anywhere a Lua table is expected. For example, a COM object might be
“exported” as a CORBA object, accessible through a network;

• to add and to redefine methods of an instance of a COM object. This might be very useful in the
preceding situations: an object of interest might be incremented and them exported to another
client.

Of course all this flexibility comes at some cost, primarily performance. Anyway, depending on
the application, the performance drawback might be negligible.

LuaCOM does not solve all problems: there is still the need of a type library, which must be build
using third party tools.

4.3 Terminology

To avoid misunderstandings, here we’ll supply the meaning we give to some terms used in this chapter.
We don’t provide formal definitions: we just want to ease the understanding of some concepts. To
better understand these concepts, see COM’s documentation.

Component a piece of software with some functionality that can be used by other components. It’s
composed by a set of objects that implement this functionality.

Component Object an object through which all the functionality of a component can be accessed,
including its other objects. This object may have many interfaces.

Application Object A component object with a interface that comprises all the top-level functional-
ity of a component; the client does not need to use other interfaces of the component object.
This concept simplifies the understanding of a component, as it puts all its functionalities in
an hierarchical manner (an application object together with its sub-objects, which can only be
accessed through methods and properties of the application object).

COM server Some piece of code that implements one or more component objects. A COM server
must tell the other applications and components which component objects it makes available. It
does soexposingthem.

OLE control An object that has an user interface, and can be embedded inside other applications that
haveOLE containers(usually C++ or VB applications).

CoClass A type library describing a component should have a CoClass entry, specifying some infor-
mation about the component:

• a name, differentiating one CoClass from others in the same type library;

• its CLSID, the unique identifier that distinguishes this component from all others;

• the interfaces of the component object, telling which one is the default. In a typical situ-
ation, only one interface will be supplied; thus the component object could be called an
Application object for that component;

• the source interface, that is, the interface the component uses to send events to the client.
This interface is not implemented by the component: it justusesobjects that implement
this interface.

Lua Application Object It’s the Lua table used to implement the Application Object.

29

4.4 Building a LuaCOM COM server

There are some steps to build a COM server using LuaCOM:

1. specify the component;

2. identify what is going to be exported: Lua application object and its sub-objects;

3. build a type library for the component;

4. define the registration information for the component;

5. register the Component object;

6. implement and expose the COM objects;

7. add COM initialization and termination code.

4.4.1 Specify the component

This is the first step: to define what functionality the component will expose. This functionality is
represented by an hierarchy of objects, rooted in the Application object. Each of these objects should
implement an interface.

Example Suppose we have a Lua library that implements the access of databases contained in a
specific DBMS. This library has three types of objects: databases, queries and records. In COM world,
this could be represented by an Application object that opens databases and returns a Database Object.
A Database object has, among others, a Query method. This method receives a SQL statement and
returns a Query object. The Query object is a collection, which can be iterated using the parameterized
property Records, which returns an object of type Record.

4.4.2 Objects to be exported

The objects to be exported are those belonging to the hierarchy rooted in the Application object. In
Lua world, objects are ordinarily represented as tables or userdatas. So it’s necessary to identify (or
to implement) the Lua tables used to implement the objects to be exported.

4.4.3 Building the type library

The type library should contain entries for all the interfaces of exported objects and an entry for the
CoClass, specifying the interface of the Application object and the interface used to send events.

The most common way to build a type library is to write an IDL describing the type library
and them use an IDL compiler, such as Microsoft’sc© MIDL. Notice that all the interfaces must be
dispinterfaces, that is, must inherit fromIDispatch , and must have the flagoleautomation .

4.4.4 Registration Information

Here we must specify the information that is used by COM to locate the component. See documenta-
tion of RegisterObject .

30

4.4.5 Registering the Component Object

Before being accessed by other applications, the component object must be registered in the system
registry. This can be done with theRegisterObject API function. This function receives a table
of registration info for the object. See the complete example for the fields of this table.

4.4.6 Implementing and Exposing the Component

There are two different situations, which one demands different actions:

Implementing the Application Object Here we must use the LuaCOM methodNewObject to cre-
ate a COM object and bind it to the table of the Lua Application Object. Them this object must
be made available to other applications throughExposeObject .

Implementing other objects The other objects of the component are obtained via the Lua Appli-
cation Object as return values of functions or as values stored in the fields of the Lua Ap-
plication Object (that is, via property access). These object should be implemented using
ImplInterface . They can be implemented in the initialization (and then be stored some-
where) or can be implemented on-demand (that is, each time a COM object should be return, a
call to ImplInterface is made).

Notice that the fields of the Lua table used to implement COM component will only be accessible
if they are present in the type library. If not, they are invisible to COM.

4.4.7 Initialization and Termination

Initialization

If you are implementing your own server, instead of using the builtin support, your server must call the
COM initialization functions (OleInitialize or CoInitialize) before LuaCOM is started.
Other initialization task is the implementation and exposition of the COM objects. This task can be
greatly simplified using the C/C++ LuaCOM API functionluacom_detectAutomation .

If you want to use the builtin support, the only initialization necessary is to call theDetectAutomation
API function at the end of the script that implements your objects, passing a table containing methods
to register and expose your objects.

Termination

The COM server must call (in Lua)RevokeObject for each exposed object. Then it must call the
COM termination functions AFTERlua_close has been called; otherwise fatal errors may occur.

4.5 Running the COM server

A COM server built following the preceding guidelines can be used as any other COM object, that is,
usingCoCreateInstance , CreateObject or something like these.

31

4.6 Generating Events

The methodNewObject returns a connection point container object. This object allows the compo-
nent to send events to its clients just calling methods on this object, passing the expected parameters.
Return values are not allowed yet.

4.7 Full Example

This is an example of a Lua COM server. The example assumes this script is called testobj.lua:

-- This is the implementation of the COM object
path_to_obj = "\\Path\\To\\Script\\"

TestObj = {}

function TestObj:showWindow()
print("Show!")
events:OnShow()

end

function TestObj:hideWindow()
print("Hide!")
events:OnHide()

end

COM = {}

function COM:StartAutomation()
-- creates the object using its default interface
COMAppObject, events, e = luacom.NewObject(TestObj, "TEST.Test")
-- This error will be caught by detectAutomation
if COMAppObject == nil then

error("NewObject failed: "..e)
end
-- Exposes the object
cookie = luacom.ExposeObject(COMAppObject)
if cookie == nil then

error("ExposeObject failed!")
end

end

function COM:Register()
-- fills table with registration information
local reginfo = {}
reginfo.VersionIndependentProgID = "TEST.Test"
reginfo.ProgID = reginfo.VersionIndependentProgID..".1"
reginfo.TypeLib = "test.tlb"

32

reginfo.CoClass = "Test"
reginfo.ComponentName = "Test Component"
reginfo.Arguments = "/Automation"
reginfo.ScriptFile = path_to_script .. "testobj.lua"
-- stores component information in the registry
local res = luacom.RegisterObject(reginfo)
if res == nil then

error("RegisterObject failed!")
end

end

function COM:UnRegister()
-- fills table with registration information
local reginfo = {}
reginfo.VersionIndependentProgID = "TEST.Test"
reginfo.ProgID = reginfo.VersionIndependentProgID..".1"
reginfo.TypeLib = "test.tlb"
reginfo.CoClass = "Test"
-- removes component information from the registry
local res = luacom.UnRegisterObject(reginfo)
if res == nil then

error("UnRegisterObject failed!")
end

end

-- Starts automation server
return luacom.DetectAutomation(COM)

4.8 Building a Lua OLE control

Most of what is needed to build an OLE control was already covered in the last section. Controls are
like ordinary LuaCOM objects, but they are created by theNewControl API function, instead of
NewObject . The registration info table must also have verb+Control+ field set totrue .

The table that implements the control must also implement a few additional methods, part of the
control protocol. These are:

InitialSize The control may use this method to return its initial size, in pixels.

CreateWindow Called when the control has to create its window. The parameters to this function are
the handle of the parent window (an userdata), the initial position and initial size of the window.
The control must return an userdata with its window handle.

SetExtent Called whenever the host wants to change the size of the control. The parameters are the
new size. Must returntrue if the control accepts the size change, andfalse otherwise.

GetClass Must return the class id of the control.

DestroyWindow Called when the host is finished with the control, and it has to destroy its window
and release its resources.

33

Thedemo/control directory of the LuaCOM distribution has an example of a control.

34

Chapter 5

Release Information

Here is provided miscellaneous information specific to the current version of LuaCOM. Here are
recorded the current limitations of LuaCOM, its known bugs, the history of modifications since the
former version, technical details etc.

5.1 Limitations

Here are listed the current limitations of LuaCOM, as of the current version, and information about
future relaxation of this restrictions.

• LuaCOM currently supports only exposes COM objects as “single use” objects. That might
be circumvented by exposing many times the same object. This restriction might be removed
under request;

• LuaCOM doesn’t support COM methods with variable number of parameters. This could be
circumvented passing the optional parameters inside a table, but this hasn’t been tested. This
may be implemented under request;

• LuaCOM doesn’t provide access to COM interfaces that doesn’t inherit fromIDispatch
interface. That is, only Automation Objects are supported. This restriction is due to the late-
binding feature provided by LuaCOM. It’s possible to provide access to these COM interfaces
via a ”proxy” Automation Object, which translate calls made through automation to vtable
(early-binding) calls. It’s also possible to implement this ”proxy” directly using LuaCOM
C/C++ API, but this hasn’t been tested nor tried;

5.2 Known bugs

Here are recorded the known bugs present in LuaCOM. If any other bugs are found, please report
them through LuaCOM’s home page.

• LuaCOM only implements late-bound interfaces, but accepts a QueryInterface for early-bound
ones. This erroneous behavior is due to the way a VB client sends events to the server. See
subsection5.4.5;

35

• when a table of LuaCOM objects (that is, a SAFEARRAY ofIDispatch pointers) is passed
as a parameter to a COM object, these LuaCOM objects might not be disposed automatically
and may leak;

• when a COM object implemented in Lua is called from VBScript, the “in-out” parameters of
type SAFEARRAY cannot be modified. If they are, VBScript will complain with a COM error.

5.3 Future Enhancements

Besides the enhancements listed in the sections5.1and5.2, there are other planned enhancements:

• to improve the overall performance of LuaCOM;

• dynamic creation of type libraries;

• better support for creating full-fledged COM objects using Lua.

5.4 Important issues about LuaCOM

LuaCOM is very similar to using other Automation-enabled languages or environments (Visual Basicc©,
VBA, VBScript c©, pycom etc). Nevertheless, there are some subtle differences that might confuse
the programmer: different syntax, unexpected behavior etc. To ease the task of the LuaCOM user, we
grouped the information related to these isses here.

5.4.1 Problems instantiating COM objects

Some COM objects can rest at in-process servers (implemented in DLL’s) and at local servers (im-
plemented as separeted processes). COM gives preference to in-process servers, as they are faster.
Nevertheless, some applications may not work with LuaCOM when working as in-process servers.
One should instance the COM object supplying an additional flag forcing the use of local servers. See
documentation for API functionCreateObject .

5.4.2 Releasing COM objects from memory

In a normal scenario, an out-of-process COM server should terminate when all references to its objects
are released. This may be importart, as the creation of new instances might depend on the absence of
a running one. LuaCOM integrates the standard COM mechanism of reference counting with Lua’s
garbage collection. This works fine in most situations, but there are some situations which demand a
more careful analysis:

• to immediatelyterminate the server process, it’s necessary to eliminate all references in Lua to
the COM objects residing in this process and then force a garbage-collection cycle;

• sometimes a reference to a COM object may be stored by mistake to a global variable and
then forgot there. This may prevent the server process to exit even when a method like “Quit”
is called. To avoid this problem, one might group all to references to a COM object and its
sub-objects in a single table to avoid “lost” references.

For more information, see section3.2.1.

36

5.4.3 Receiving events

When one wishes to receive events and notifications from a COM object, a connection must be es-
tablished using connection points. But that is not enough: the client application must have a message
loop running to get these notifications. For more information, see section3.3.3.

5.4.4 Extensible Interfaces

Some objects that have type information describing their interface (methods, properties, types of
parameters etc), may add new methods and properties at runtime. This means that these methods and
properties can only be accessed using the same mechanism LuaCOM uses for Generic COM object.
This have some implications:

• when accessing properties, it’s mandatory to access them as methods and to use theset prefix
to alter their values. If an objectfoo has a propertycolor not present in the type information,
it can only be accessed throughfoo:color() (read access) orfoo:setcolor() (write
access);

• when calling methods, all parameters are treated as in-out. This means that, beyond the return
value, a call to a method of this type will return all the parameters back, whether or not modified
by the callee. Anyway, one can ignore these values simply not assigning them to a variable, e.g.
x = foo:method(a,b) will ignore the values ofa andb, also returned by the call.

COM objects related to WMI have this behavior. For more information, see section3.3.2.

5.4.5 Visual Basicc© issue

A COM server implemented with LuaCOM can be used in VB with no trouble:

Public lc as Object
Set lc = CreateObject("MyCOMObject.InLuaCOM")
lc.showWindow
b = lc.getData(3)
lc.Quit

But if one wants to received events generated by a COM object implemented using LuaCOM,
then it’s necessary to use VB’sPublic WithEvents :

Public WithEvents obj as MyCOMObject.Application
Set obj = CreateObject("MyCOMObject.Application")
Private Sub obj_genericEvent()

’ Put your event code here
End Sub

Here there is a problem: when VB assigns the result ofCreateObject to obj variable, it tries
to get an early bound interface (as far as I know, VB only uses late-bound interfaces with variables of
typeObject). LuaCOM does not work with early-bound interfaces (known as vtable). If you call
any method using theobj variable, VB will throw an exception.

The solution we adopted was to accept a QueryInterface for a early-bound interface (thus allowing
the use ofPublic WithEvents). Then the clientmustdo a “typecast” to use correctly the COM
object:

37

Public WithEvents obj_dummy as MyCOMObject.Application
Public obj as Object
Set obj_dummy = CreateObject("MyCOMObject.Application")
Set obj = obj_dummy

This way the client may call methods of the COM object using theobj variable.

5.5 History

Version 1.3b2

• OLE controls with embedded UI;

• Representing variants with tables;

Version 1.3b

• Conversion tag/metamethod for tables;

• Representing dates with tables;

• More than one event sink connected to an object;

• A method of typelibs returned by GetTypeInfo exports all enumerations of the typelib to a table;

• Removal of registered servers from registry (unregister);

• Identifies when an interface pointer is in fact a local Lua table implementing a COM object;

• Fixed memory leak with some out parameters;

• Removed line break in some system exceptions.

Version 1.2

• Can be loaded by Lua 5’srequire function;

• In-process servers, fully implemented in Lua (no initialization code in C is necessary for in-
process servers, and for local servers using Lua 5);

• Now 1-based arrays are correctly converted by LuaCOM;

• UNICODE strings are correctly converted from/to ANSI ones by LuaCOM;

• byte arrays are now converted from/to strings with embedded zeros;

• LuaCOM now has a limited support for loading and browsing type information and type li-
braries. This includes the ability to import type library constants (enum’s) as Lua globals and
the ability to open the help information associated with a component;

• objects implementingIEnumVARIANT interface are now supported. This means that collec-
tions can be used in LuaCOM in a similar way as the are in VBScriptc©;

38

• implemented a log mechanism to simplify debugging;

• LuaCOM now handles correctly COM calls with named parameters1. This caused problems
when receiving Microsoft Excelc© events;

• now it’s possible to specify the context used to create an instance of a COM object (whether it
should be created as a local server or as an in-process server);

• non-ANSI code removed;

• when faced with anIUnknown pointer, LuaCOM now queries it forIDispatch or IEnumVARIANT
interfaces, returning a LuaCOM object instead of anIUnknown pointer;

• improved error-handling: now LuaCOM allows the customization of the actions to be taken
when errors occur;

• LuaCOM now supports the concept of default method: when one uses a reference to a LuaCOM
object as a function, LuaCOM does the function call using the default method of that object;

• part of the LuaAPI of LuaCOM now is implemented in Lua 5. This eases the addition of new
features and avoids cramming the library. Nevertheless, this does not impact those who use the
binary release, as they carry the Lua code precompiled;

• luacom.GetObject now supports the use of monikers. Among other thing, this makes pos-
sible to use WMI and to open document files directly, e.g.luacom.GetObject("myfile.xls") ;

• luacom.CreateObject andluacom.GetObject now make an attemp to initialize the
COM object via IPersistStreamInit. Some objects refuse to work without this step.

Version 1.1

• LuaCOM is now compatible with Lua 4 and Lua 5. It’s just a matter of linking with the right
library;

• when used with Lua 5, LuaCOM uses booleans to better match the Automation types;

• all functions of LuaCOM’s Lua API are now grouped together in a single table calledluacom ,
although they are still accessible globally asluacom <function> in the Lua 4 version of
the library;

• now it’s possible to create instances of Microsoftc©Office c© applications (Excelc©, Powerpointc©
etc.). It was only possible to use them via GetObject; now you can create a new instance of these
applications usingluacom.CreateObject ;

• when compiled with theNDEBUGflag, LuaCOM does not use any kind of terminal output
anymore (printf , cout etc). This could break some applications.

1Notice that LuaCOM does not implement named parameters; it just takes them when called from a COM client and
puts them.

39

Version 1.0

• property access modified: now parameterized properties must be accessed as functions using a
prefix to differentiate property read and write. If the prefix is omitted, a property get is assumed;

• syntax “obj.Property(param) ” is no longer supported. A colon – “:” – must be used:
“obj:Property(param) ”;

• better support for implementation of COM objects, including registration and event generation;

• Type conversion engine rewritten. Now it adheres more firmly to the types specified in the type
libraries;

• binding rewritten to better support “out” and “in-out” parameters and to adhere more strictly to
the recommended memory allocation policies for COM;

• COM objects without type information are now supported.

Version 0.9.2

• removal ofLUACOMTRUEand LUACOMFALSE constants; now booleans follow the same
convention of the C language;

• memory and interface leaks fixed;

• some functions of the API have slightly different names;

• changes in memory allocation policy, to follow more strictly practices recommended in COM
documentation;

• parameter passing policies changed;

• added limited support forIUnknown pointers;

• changes in type conversion;

• added limited support for implementing and registering COM objects in Lua

Version 0.9.1

• conversion to Lua 4;

• better handling of different kinds of type information (e.g. now can access Microsoft Internet
Explorerc© object);

• now handles more gracefully exceptions and errors;

• added support for optional parameters with default values;

• LuaCOM does not initializes COM libraries anymore; this is left to the user;

• more stringent behavior about the syntax of method calls and property access (methods with “:”
and properties with “.”).

40

Chapter 6

Reference

6.1 The C/C++ API

luacom open

Prototype

void luacom_open(lua_State* L);

Description

This function initializes the LuaCOM library, creates the globalluacom table and fills it with
LuaCOM methods in the given Lua state. Notice that it’s necessary to initialize COM before, us-
ing OleInitialize or CoInitialize or something like that.

Sample

int main()
{

lua_State *L = lua_open(0);

OleInitialize(NULL);

luacom_open(L);

.

.

.
}

luacom close

Prototype

void luacom_close(lua_State* L);

41

Description

This function is intended to clean up the data structures associated with LuaCOM in a specific Lua
state (L). Currently, it does nothing, but in future releases it will do. So, do not remove from
your code! It must be also called before the COM termination functions (OleUninitialize and
CoInitialize) and beforelua close .

Sample

int main()
{

lua_State *L = lua_open(0);

OleInitialize(NULL);

luacom_open(L);

.

.

.

luacom_close(L);

lua_close(L);

OleUninitialize();
}

luacom detectAutomation

Prototype

int luacom_detectAutomation(lua_State *L, int argc, char *argv[]);

Description

This function gets from the top of the Lua stack a table which should hold two fields named “StartAu-
tomation” and “Register” (these fields should contain functions that implement these actions). Then
it searches the command line (providedargc andargv) for the switches “/Automation” or “/Reg-
ister”. If one of these switches is found, it then calls the corresponding function in the Lua table.
Finally it returns a value telling what happened, so the caller function may change its course of action
(if needed).

This function is simply a helper for those implementing Automation servers using LuaCOM. Most
of the work should be done by the Lua code, using the methodsRegisterObject , NewObject ,
andExposeObject .

42

Sample

/*
* com_object.cpp
*
* This sample C++ code initializes the libraries and
* the COM engine to export a COM object implemented in Lua
*/

#include <ole2.h>

// libraries
extern "C"
{
#include <lua.h>
#include <lualib.h>
}
#include <luacom.h>

int main (int argc, char *argv[])
{

int a = 0;

CoInitialize(NULL);

IupOpen();

lua_State *L = lua_open(0);

lua_baselibopen (L);
lua_strlibopen(L);
lua_iolibopen(L);

luacom_open(L);

lua_dofile(L, "implementation.lua");

// Pushes the table containing the functions
// responsible for the initialization of the
// COM object

lua_getglobal(L, "COM");

// detects whether the program was invoked for Automation,
// registration or none of that

int result = luacom_detectAutomation(L, argc, argv);

43

switch(result)
{
case LUACOM_AUTOMATION:

// runs the message loop, as all the needed initialization
// has already been performed
MessageLoop();
break;

case LUACOM_NOAUTOMATION:
// This only works as a COM server
printf("Error. This is a COM server\n");
break;

case LUACOM_REGISTER:
// Notifies that the COM object has been
// registered
printf("COM object successfully registered.");
break;

case LUACOM_AUTOMATION_ERROR:
// detectAutomation found /Automation or /Register but
// the initialization Lua functions returned some error
printf("Error starting Automation");
break;

}

luacom_close(L);
lua_close(L);

CoUninitialize();

return 0;
}

-- implementation.lua
--
-- This is a sample implementation of a COM server in Lua
--

-- This is the implementation of the COM object
TestObj = {}

function TestObj:showWindow()
dialog.show()

end

44

function TestObj:hideWindow()
dialog.hide()

end

-- Here we create and populate the table to
-- be used with detectAutomation

COM = {}

-- This functions creates the COM object to be
-- exported and exposes it.
function COM:StartAutomation()

-- creates the object using its default interface
COMAppObject, events, e = luacom.NewObject(TestObj, "TESTE.Teste")
-- This error will be caught by detectAutomation
if COMAppObject == nil then

error("NewObject failed: "..e)
end
-- Exposes the object
cookie = luacom.ExposeObject(COMAppObject)
if cookie == nil then

error("ExposeObject failed!")
end

end

function COM:Register()
-- fills table with registration information
local reginfo = {}
reginfo.VersionIndependentProgID = "TESTE.Teste"
reginfo.ProgID = reginfo.VersionIndependentProgID..".1"
reginfo.TypeLib = "teste.tlb"
reginfo.CoClass = "Teste"
reginfo.ComponentName = "Test Component"
reginfo.Arguments = "/Automation"
-- stores component information in the registry
local res = luacom.RegisterObject(reginfo)
if res == nil then

error("RegisterObject failed!")
end

end

function COM:UnRegister()
-- fills table with registration information
local reginfo = {}
reginfo.VersionIndependentProgID = "TESTE.Teste"
reginfo.ProgID = reginfo.VersionIndependentProgID..".1"

45

reginfo.TypeLib = "teste.tlb"
reginfo.CoClass = "Teste"
-- removes component information from the registry
local res = luacom.UnRegisterObject(reginfo)
if res == nil then

error("UnRegisterObject failed!")
end

end

luacom IDispatch2LuaCOM

Prototype

int luacom_IDispatch2LuaCOM(lua_State *L, void *pdisp_arg);

Description

This functions takes a pointer toIDispatch , creates a LuaCOM object for it and pushes it in the
Lua stack. This function is useful when one gets an interface for a COM object fromC/C++ code
and wants to use it in Lua.

Sample

void CreateAndExport(lua_State* L)
{

// Creates the object
IUnknown *obj = CreateObj();

// Gets the IDispatch
IDispatch* pdisp = NULL;
QueryInterface(IID_IDISPATCH, &pdisp);

// pushes onto lua stack
luacom_IDispatch2LuaCOM(L, (void *) pdisp);

}

6.2 The Lua Standard API

CreateObject

Use

luacom_obj = luacom.CreateObject(ID, creation_context, untyped)

Description

This method finds the Class ID referenced by the ID parameter and creates an instance of the object
with this Class ID. If there is any problem (ProgID not found, error instantiating object), the method

46

returns nil.

Parameters

Parameter Type

ProgID String

Return Values

Return Item Possible Values

luacomobj LuaCOM object
nil

Sample

inet_obj = luacom.CreateObject("InetCtls.Inet")
if inet_obj == nil then

print("Error! Object could not be created!")
end

Connect

Use

implemented_obj, cookie = luacom.Connect(luacom_obj, implementation_table)

Description

This method finds the default source interface of the objectluacom_obj , creates an instance of
this interface whose implementation is given byimplementation_table and creates a connec-
tion point between theluacom_obj and the implemented source interface. Any calls made by
the luacom_obj to the source interface implementation will be translated to Lua calls to member
function present in theimplementation_table . If the method succeeds, the LuaCOM object
implemented byimplementation_table , plus a cookie that identifies the connection, are re-
turned; otherwise,nil is returned.

Notice that, to receive events, it’s necessary to have a Windows message loop.

Parameters

Parameter Type

luacom_obj LuaCOM object
implementation_table Table or userdata

Return Values

Return Item Possible Values

implementedobj LuaCOM object
nil

cookie number

47

Sample

events_handler = {}
function events_handler:NewValue(new_value)

print(new_value)
end
events_obj = luacom.Connect(luacom_obj, events_handler)

ImplInterface

Use

implemented_obj = luacom.ImplInterface(impl_table, ProgID, interface_name)

Description

This method finds the type library associated with the ProgID and tries to find the type information
of an interface called “interfacename”. If it does, then creates an object whose implementation is
“impl table”, that is, any method call or property access on this object is translated to calls or access
on the members of the table. Then it makes a LuaCOM object for the implemented interface and
returns it. If there are any problems in the process (ProgID not found, interface not found, interface
isn’t adispinterface), the method returns nil.

Parameters

Parameter Type

impl_table table or userdata
ProgID string

interface_name string

Return Values

Return Item Possible Values

implementedobj LuaCOM object
nil

Sample

myobject = {}
function myobject:MyMethod()

print("My method!")
end
myobject.Property = "teste"
luacom_obj = luacom.ImplInterface(myobject, "TEST.Test", "ITest")
-- these are done via Lua
myobject:MyMethod()
print(myobject.Property)
-- this call is done through COM

48

luacom_obj:MyMethod()
print(luacom_obj.Property)

ImplInterfaceFromTypelib

Use

impl_obj = luacom.ImplInterfaceFromTypelib(
impl_table,
typelib_path,
interface_name,
coclass_name)

Description

This method loads the type library whose file path is “typelibpath” and tries to find the type informa-
tion of an interface called “interfacename”. If it does, then creates an object whose implementation
is “impl table”, that is, any method call or property access on this object is translated to calls or access
on the members of the table. Then it makes a LuaCOM object for the implemented interface and re-
turns it. If there are any problems in the process (ProgID not found, interface not found, interface isn’t
a dispinterface), the method returns nil. The “coclassname” parameter is optional; it is only
needed if the resulting LuaCOM object is to be passed to the methodsConnect , AddConnection
or ExposeObject . This parameter specifies the Component Object class name to which the inter-
face belongs, as one interface may be used in more than one “coclass”.

Parameters

Parameter Type

impl_table table or userdata
typelib_path string

interface_name string
coclass_name (optional) string

Return Values

Return Item Possible Values

implementedobj LuaCOM object
nil

Sample

myobject = {}
function myobject:MyMethod()

print("My method!")
end
myobject.Property = "teste"
luacom_obj = luacom.ImplInterfaceFromTypelib(myobject, "test.tlb",
"ITest", "Test")

49

-- these are done via Lua
myobject:MyMethod()
print(myobject.Property)
-- this call is done through COM
luacom_obj:MyMethod()
print(luacom_obj.Property)

GetObject

Use

luacom_obj = luacom.GetObject(ProgID)
luacom_obj = luacom.GetObject(moniker)

Description

The first version method finds the Class ID referenced by the ProgID parameter and tries to find a
running instance of the object having this Class ID. If there is any problem (ProgID not found, object
is not running), the method returns nil.

The second version tries to find an object through its moniker. If there is any problem, the method
returns nil.

Parameters

Parameter Type

ProgID/moniker String

Return Values

Return Item Possible Values

luacomobj LuaCOM object
nil

Sample

excel = luacom.GetObject("Excel.Application")
if excel == nil then

print("Error! Could not get object!")
end

NewObject/NewControl

Use

-- Creates a COM object
implemented_obj, events_sink, errmsg = luacom.NewObject(impl_table, ProgID)
-- Creates an OLE control
implemented_obj, events_sink, errmsg = luacom.NewControl(impl_table, ProgID)

50

Description

This method is analogous toImplInterface , doing just a step further: it locates the default inter-
face for the ProgID and uses its type information. That is, this method creates a Lua implementation
of a COM object’s default interface. This is useful when implementing a complete COM object in
Lua. It also creates a connection point for sending events to the client application and returns it as the
second return value. If there are any problems in the process (ProgID not found, default interface is
not adispinterface etc), the method returns nil twice and returns the error message as the third
return value.

To send events to the client application, just call methods of the event sink table returned. The
method call will be translated to COM calls to each connection. These calls may contain parameters
(as specified in the type information).

Parameters

Parameter Type

impl_table table or userdata
ProgID string

Return Values

Return Item Possible Values

implementedobj LuaCOM object
nil

eventsink event sink table
nil

errmsg error message in the case
of failure
nil

Sample

myobject = {}

function myobject:MyMethod()
print("My method!")

end

myobject.Property = "teste"

obj, evt, err = luacom.NewObject(myobject, "TEST.Test")

-- these are done via Lua
myobject:MyMethod()
print(myobject.Property)
-- this call is done through COM
luacom_obj:MyMethod()
print(luacom_obj.Property)

51

-- here we sink events
evt:Event1()

ExposeObject

Use

cookie = luacom.ExposeObject(luacom_obj)

Description

This method creates and registers aclass factoryfor luacom obj , so that other running applications
can use it. It returns a cookie that must be used to unregister the object. If the method fails, it returns
nil .

ATTENTION: the object MUST be unregistered (usingRevokeObject) before callingluacom close
or lua close , otherwise unhandled exceptions might occur.

Parameters

Parameter Type

luacomobj LuaCOM object

Return Values

Return Item Possible Values

cookie number
nil

Sample

myobject = luacom.NewObject(impl_table, "Word.Application")
cookie = luacom.ExposeObject(myobject)
function end_of_application()

luacom.RevokeObject(cookie)
end

RegisterObject

Use

result = luacom.RegisterObject(registration_info)

Description

This method creates the necessary registry entries for a COM object, using the information inregistration info
table. If the component is successfully registered, the method returns a non-nil value.

Theregistration info table must contain the following fields1:

1For a better description of these fields, see COM’s documentation.

52

VersionIndependentProgID This field must contain a string describing the programmatic identifier
for the component, e.g. “MyCompany.MyApplication”.

ProgID The same as VersionIndependentProgID but with a version number, e.g. “MyCompany.MyApplication.2”.

TypeLib The file name of the type library describing the component. This file name should contain a
path, if the type library isn’t in the same folder of the executable. Samples:mytypelib.tlb ,
c:\app\test.tlb , test.exe\1 (this last one can be used when the type library is bound
to the executable as a resource).

Control Must betrue if the object is an OLE control, andfalse or nil otherwise.

CoClass The name of the component class. There must be acoclass entry in the type library with
the same name or the registration will fail.

ComponentName This is the human-readable name of the component.

Arguments This field specifies what arguments will be supplied to the component executable when
started via COM. Normally it should contain “/Automation ”.

ScriptFile This field specifies the full path of the script file that implements the component. Only
used to register in-process servers.

This method is not a generic “registering tool” for COM components, as it assumes the component
to be registered is implemented by the running executable during registration.

Parameters

Parameter Type

registrationinfo table with registration information

Return Values

Return Item Possible Values

result nil or non-nil value

Sample

-- Lua registration code
function RegisterComponent()

reginfo.VersionIndependentProgID = "TESTE.Teste"
-- Adds version information
reginfo.ProgID = reginfo.VersionIndependentProgID..".1"
reginfo.TypeLib = "teste.tlb"
reginfo.CoClass = "Teste"
reginfo.ComponentName = "Test Component"
reginfo.Arguments = "/Automation"
reginfo.ScriptFile = "teste.lua"
local res = luacom.RegisterObject(reginfo)
return res

end

53

UnRegisterObject

Use

result = luacom.UnRegisterObject(registration_info)

Description

This method removes the registry entries for a COM object, using the information inregistration info
table. If the component is successfully unregistered, the method returns a non-nil value.

Theregistration info table must contain the following fields2:

VersionIndependentProgID This field must contain a string describing the programmatic identifier
for the component, e.g. “MyCompany.MyApplication”.

ProgID The same as VersionIndependentProgID but with a version number, e.g. “MyCompany.MyApplication.2”.

TypeLib The file name of the type library describing the component. This file name should contain a
path, if the type library isn’t in the same folder of the executable. Samples:mytypelib.tlb ,
c:\app\test.tlb , test.exe\1 (this last one can be used when the type library is bound
to the executable as a resource).

CoClass The name of the component class. There must be acoclass entry in the type library with
the same name or the registration will fail.

Parameters

Parameter Type

registrationinfo table with registration information

Return Values

Return Item Possible Values

result nil or non-nil value

Sample

-- Lua registration code
function UnRegisterComponent()

reginfo.VersionIndependentProgID = "TESTE.Teste"
-- Adds version information
reginfo.ProgID = reginfo.VersionIndependentProgID..".1"
reginfo.TypeLib = "teste.tlb"
reginfo.CoClass = "Teste"
local res = luacom.UnRegisterObject(reginfo)
return res

end
2For a better description of these fields, see COM’s documentation.

54

addConnection

Use

cookie = luacom.addConnection(client, server)

Description

This method connects two LuaCOM objects, setting theserver as an event sink for theclient ,
that is, the client will call methods of the server to notify events (following the COM model). This will
only work if theclient supports connection points of theserver ’s type. If the method succeeds,
it returns the cookie that identifies the connection; otherwise, it throws an error.

Parameters

Parameter Type

client LuaCOM object
server LuaCOM object

Return Values

Return Item Possible Values

cookie number

Sample

obj = luacom.CreateObject("TEST.Test")
event_sink = {}
function event_sink:KeyPress(keynumber)

print(keynumber)
end
event_obj = luacom.ImplInterface(

event_sink, "TEST.Test", "ITestEvents")

cookie = luacom.addConnection(obj, event_obj)

releaseConnection

Use

luacom.releaseConnection(client, event_sink, cookie)

Description

This method disconnects a LuaCOM object from an event sink.

55

Parameters

Parameter Type

client LuaCOM object
eventsink LuaCOM object

cookie LuaCOM object

Return Values

There are none.

Sample

obj = luacom.CreateObject("TEST.Test")
event_sink = {}
function event_sink:KeyPress(keynumber)

print(keynumber)
end
event_obj = luacom.ImplInterface(

event_sink, "TEST.Test", "ITestEvents")
result = luacom.addConnection(obj, event_obj)
.
.
.
luacom.releaseConnection(obj)

ProgIDfromCLSID

Use

progID = luacom.ProgIDfromCLSID(clsid)

Description

This method is a proxy for the Win32 functionProgIDFromCLSID .

Parameters

Parameter Type

clsid string

Return Values

Return Item Possible Values

progID string
nil

56

Sample

progid = luacom.ProgIDfromCLSID("{8E27C92B-1264-101C-8A2F-040224009C02}")
obj = luacom.CreateObject(progid)

CLSIDfromProgID

Use

clsid = luacom.CLSIDfromProgID(progID)

Description

It’s the inverse ofProgIDfromCLSID .

ShowHelp

Use

luacom.ShowHelp(luacom_obj)

Description

This method tries to locate theluacom obj ’s help file in its type information and shows it.

Parameters

Parameter Type

luacomobj LuaCOM object

Return Values

None.

Sample

obj = luacom.CreateObject("TEST.Test")
luacom.ShowHelp(obj)

GetIUnknown

Use

iunknown = luacom.GetIUnknown(luacom_obj)

57

Description

This method returns a userdata holding theIUnknown interface pointer to the COM object be-
hind luacom obj . It’s important to notice that Lua does not duplicates userdata: many calls to
GetIUnknown for the same LuaCOM object will return the same userdata. This means that the
reference count for theIUnknown interface will be incremented only once (that is, the first time the
userdata is pushed) and will be decremented only when all the references to that userdata go out of
scope (that is, when the userdata suffers garbage collection).

One possible use for this method is to check whether two LuaCOM objects reference the same
COM object.

Parameters

Parameter Type

luacomobj LuaCOM object

Return Values

Return Item Possible Values

iunknown userdata with IUnknown
metatable
nil

Sample

-- Creates two LuaCOM objects for the same COM object
-- (a running instance of Microsoft Word(R))
word1 = luacom.GetObject("Word.Application")
word2 = luacom.GetObject("Word.Application")
-- These two userdata should be the same
unk1 = luacom.GetIUnknown(word1)
unk2 = luacom.GetIUnknown(word2)
assert(unk1 == unk2)

isMember

Use

answer = luacom.isMember(luacom_obj, member_name)

Description

This method returns true (that is, different fromnil) if there exists a method or a property of the
luacom obj namedmember name.

Parameters

Parameter Type

luacomobj LuaCOM object
membername string

58

Return Values

Return Item Possible Values

answer nil or non-nil

Sample

obj = luacom.CreateObject("MyObject.Test")
if luacom.isMember(obj, "Test") then

result = obj:Test()
end

StartLog

Use

result = luacom.StartLog(log_file_name)

Description

This methods activates the log facility of LuaCOM, writing to the log file all errors that occurr. If the
library was compiled with VERBOSE defined, it also logs other informative messages like creation
and destruction of LuaCOM internal objects, method calls etc. This can help track down object
leaks. The method returns true

if the log file could be opened, false
otherwise.

Parameters

Parameter Type

log file name string

Return Values

Return Item Possible Values

result boolean

Sample

ok = luacom.StartLog("luacomlog.txt")
if not ok then

print("log not opened")
end

EndLog

Use

luacom.EndLog()

59

Description

This method stops the log facility (if it has been activated), closing the log file.

Parameters

None.

Return Values

None.

Sample

luacom.EndLog()

GetEnumerator

Use

e = luacom.GetEnumerator(luacom_obj)

Description

This method returns a COM enumerator for a given LuaCOM object (if it provides one). This is the
same as calling theNewEnum

method, at least for the majority of the objects. The enumerator object is described in section6.4.

Parameters

Parameter Type

luacomobj LuaCOM object

Return Values

Return Item Possible Values

e enumerator object or nil

Sample

-- Prints all sheets of an open Excel Application
excel = luacom.GetObject("Excel.Application")
e = luacom.GetEnumerator(excel.Sheets)
s = e:Next()
while s do

print(s.Name)
s = e:Next()

end

60

6.3 Lua Extended API

pairs

GetType

CreateLocalObject

CreateInprocObject

LoadConstants

FillTypeInfo

FillTypeLib

6.4 Enumerator Object

The enumerator object is a proxy for the interfaceIEnumVARIANT. It can be obtained using the API
methodGetEnumerator .

Methods

Next returns the next object in the enumeration ornil if the end has been reached.

Skip skips the next object, returningtrue if succeeded offalse if not.

Reset restarts the enumerator.

Clone returns a new enumerator in the same state.

6.5 Type Library Object

The type library object is a proxy for the interfaceITypeLib . It can be obtained using the API
methodLoadTypeLibrary or the type information object methodGetTypeLib .

Methods

GetDocumentation returns a table containing the fieldsname, helpstring , helpcontext and
helpfile for the type library.

GetTypeInfoCount returns the number of type descriptions contained in the type library.

GetTypeInfo(n) returns an type information object for the n-th type description.

ShowHelp tries to launch the help file associated with the type library (if any).

6.6 Type Information Object

The type information object is a proxy for the interfaceITypeInfo . It can be obtained using the
API methodGetTypeInfo or the type library object methodGetTypeInfo .

61

Methods

GetTypeLib returns the containing type library object.

GetFuncDesc(n) returns a table describing the n-th function of the type description. This table
contains the following fields:memid (dispatch identifier),invkind (invoke kind),Params
(number of parameters),ParamsOpt (number of optional parameters),description , helpfile ,
helpcontext , name. Besides that, it stores an array-like table calledparameters describ-
ing each parameter of the function, with these fields:name, type .

GetVarDesc(n) returns a table describing the n-th variable (or constant) in the type description. This
table contains the following fields:name, value (for constants only).

GetDocumentation returns a table with documentation for the type description, with the fieldsname,
helpstring , helpcontext andhelpfile .

GetTypeAttr returns a table containing the type attributes for the type description. This table holds
the following fields: GUID, typekind , Funcs (number of functions),Vars (number of
variables or constants) andImplTypes . There is also aflags field, containing a table that
describes the flags for this type description. This table contains the following boolean fields:
control , appobject , dispatchable , oleautomation , cancreate .

GetImplType(n) For type descriptions of COM classes, this returns the type information object for
the nth interface of the COM class.

GetImplTypeFlags(n) For type descriptions of COM classes, this returns a table containing the im-
plementation flags for the n-th interface belonging to the COM class. This table holds the
following boolean flags:default , source , restricted , defaultvtable .

ExportEnumerations returns a table with all the enumerations in this typelib. The keys are the
enumeration names, and each one of them is a table, keyed by the enumeration values.

62

Chapter 7

Credits

LuaCOM has been developed by Renato Cerqueira, Vinicius Almendra and Fabio Mascarenhas. The
project is sponsored by TeCGraf (Technology Group on Computer Graphics).

63

	Introduction
	Features
	Who Should Read What (or About the Manual)

	Tutorial
	Using The LuaCOM library
	Locating COM Objects
	Creating Objects
	Getting Help about an Object
	Methods and Properties
	Releasing Objects

	LuaCOM Elements
	LuaCOM API
	LuaCOM objects
	Object Disposal

	Automation binding
	Implementing dispinterfaces in Lua
	Using Methods and Properties
	Connection Points: handling events
	Parameter Passing
	Exception Handling

	Type Conversion
	Boolean values
	Pointers to IDispatch and LuaCOM objects
	Pointers to IUnknown
	Arrays and Tables
	CURRENCY type
	DATE type
	Variants
	Error Handling

	Other Objects
	The Enumerator Object
	The Connection Point Container Object
	The Typelib and Typeinfo Objects

	Implementing COM objects and controls in Lua
	Introduction
	Is it really useful?
	Terminology
	Building a LuaCOM COM server
	Specify the component
	Objects to be exported
	Building the type library
	Registration Information
	Registering the Component Object
	Implementing and Exposing the Component
	Initialization and Termination

	Running the COM server
	Generating Events
	Full Example
	Building a Lua OLE control

	Release Information
	Limitations
	Known bugs
	Future Enhancements
	Important issues about LuaCOM
	Problems instantiating COM objects
	Releasing COM objects from memory
	Receiving events
	Extensible Interfaces
	Visual Basic© issue

	History

	Reference
	The C/C++ API
	The Lua Standard API
	Lua Extended API
	Enumerator Object
	Type Library Object
	Type Information Object

	Credits

