Imagens Digitais

Processamento de Imagens Visão Computacional Compressão

Modelos de uma Imagem Digital

Matematicamente imagem é uma função

Imagem em tons de cinza

$$L: [0, w] \times [0, h] \subset \mathfrak{R}^2 \to \mathbf{C}$$
$$\binom{u}{v} \to L$$

Imagem colorida como uma função do $R^2 \rightarrow R^3$

Imagem coloridas como 3 "canais" de cor

Processos que ocorrem na captura de uma imagem

Amostragem, quantização e codificação

Câmera obscura e Câmera "pin-hole"

Digitalização de Imagens

Discretização espacial (amostragem)

Processos básicos

64x54 - *floats*

Imagem de tons contínuos

Imagem amostrada quantização 64x54 - 256 tons 55 55 10 09 11 55 55 43 42 70 55 55

codificação

23

8*55, 1*20, 1*22, 1*23,

55 55

55

55 20

55

Imagem amostrada, quantizada e codificada

Imagem amostrada e quantizada

Quantização

Seis fotos da mesma cena com variação do tempo de abertura da câmera

Razões de lados e resolução típicas

Amostragem e reconstrução

1D - SOM (VOZ, FALA E MÚSICA)

Diagrama funcional da orelha humana. A orelha externa coleta ondas sonoras do ambiente e canalizam eles para a membrana timpânica (tambor da orelha), uma fina camada de tecido que vibra em sincronia com o forma da onda de ar. Os ossos do ouvido médio (martelo, bigorna e estribo) transmitem essas vibrações para a janela oval, uma membrana flexível na cóclea cheia de líquido. Contido dentro da cóclea temos a membrana basilar, que é estrutura que suporta para cerca de 12.000 células nervosas que formam o nervo coclear. Devido à rigidez variável da membrana de base, cada célula nervosa apenas responde a uma faixa estreita de frequências de áudio, tornando a orelha um analisador do espectro de a frequência.

		10 Hz	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz
Tuna	50 Hz-1.1 kHz (4	4.5 8va)					1
Chicken	125 Hz-2 kHz (4	4.0 8va)					
Goldfish	20 Hz-3 kHz (7.2 8va) 📃 💻					
Bullfrog	100 Hz-3 kHz (4	4.9 8va)					
Catrish	50 HZ-4 KHZ ((6.3 8Va)					
Iree trog	50 HZ-4 KHZ (6.3 8Va)					
Cocketiol	250 HZ-8 KHZ 1	5.0 8Va					
Parakoot	200 112-0 K112 (1	5.0 ova)		0.000			
Flenhant	17 Hz-10 5 kHz (0,4 ova/		1 1 1			
Owl	200 Hz-12 kHz	5.9 8va)					
Human	31 Hz-19 kHz (9.3 8va)					
Chinchilla	52 Hz-33 kHz (9.3 8va)					
Horse	55 Hz-33.5 kHz (9.3 8va)					
Cow	23 Hz-35 kHz (1)	0.6 8va) 🔜 💻					
Raccoon	100 Hz-40 KHz (8.6 8va)					
Sneep	125 HZ-42.5 KHZ (8.4 8Va)		0.000			
Dog	16 HZ-44 KHZ ()	9.4 8Va					
Hedgebog	250 Hz-44 KHZ (1.	1.4 OVd/ 7 5 8va					
Guinea nid	47 Hz-49 kHz (1)	0.08/a)					
Babbit	96 Hz-49 kHz (0	9.0 8va)					
Sea lion	200 Hz-50 kHz	8.0 8va)					
Gerbil	56 Hz-60 kHz (1	0.1 8va)		1 1 1 1 1 1 1 1 1 1			
Opossum	500 Hz-64 kHz (7.0 8va)					
Albino rat	390 Hz-72 kHz (7.5 8va)					
Hooded rat	530 Hz-75 kHz (7.18va)					
Cat	55 Hz-77 kHz (10	0.5 8va)					
Mouse	900 HZ-/9 KHZ (6.4 8va			1 1 1 1	1 1 1	
Deluga what	10.5 KHZ-115 KHZ (.	5.5 8Va)					
Bottlonoso dolph	in 150 Hz-120 KHZ (1						
Porpoise	75 Hz-150 kHz/1	1.08va			3111311 11	1 1 1	
ronpoise	7011E 100101E(1.			ĊĊĊ	ĊĊĊ		ĊĊ
		ŏ	ĭ Ž Š Ă	567	8 9 10 1	1 12 13 14	15 16

Volley theory

"Lei" de Weber

Ernst Heinrich Weber (24 June 1795 - 26 January 1878)

Intensidade do som

 $1 \, dB = 10 \log_{10} \left(\frac{valor \, da \, intensidade}{intensidade \, de \, referencia} \right)$

_	Watts/cm ²	Decibels SPL	Example sound
-	10-2	140 dB	Pain
	10-3	130 dB	
ſ	10-4	120 dB	Discomfort
	10-5	110 dB	Jack hammers and rock concerts
	10-6	100 dB	
	10-7	90 dB	OSHA limit for industrial noise
lder	10-8	80 dB	
Lou	10-9	70 dB	
	10-10	60 dB	Normal conversation
- Softer	10-11	50 dB	
	10-12	40 dB	Weakest audible at 100 hertz
	10-13	30 dB	
	10-14	20 dB	Weakest audible at 10kHz
↓	10-15	10 dB	
•	10-16	0 dB	Weakest audible at 3 kHz
	10-17	-10 dB	
	10-18	-20 dB	

Intensidade do som

 $1 \, dB = 10 \log_{10} \left(\frac{valor \, da \, intensidade}{intensidade \, de \, referencia} \right)$

_	Watts/cm ²	Decibels SPL	Example sound
-	10-2	140 dB	Pain
	10-3	130 dB	
ſ	10-4	120 dB	Discomfort
	10-5	110 dB	Jack hammers and rock concerts
	10-6	100 dB	
	10-7	90 dB	OSHA limit for industrial noise
lder	10-8	80 dB	
Lou	10-9	70 dB	
	10-10	60 dB	Normal conversation
- Softer	10-11	50 dB	
	10-12	40 dB	Weakest audible at 100 hertz
	10-13	30 dB	
	10-14	20 dB	Weakest audible at 10kHz
↓	10-15	10 dB	
•	10-16	0 dB	Weakest audible at 3 kHz
	10-17	-10 dB	
	10-18	-20 dB	

https://www.youtube.com/watch?v=5tGEDgkZIC8

https://www.youtube.com/watch?v=XPbLYD9KFAo

https://www.youtube.com/watch?v=0ImS5IQ5MSU

Amostragem

$$f(x) = \sum_{i} f_{i} h_{i} (x)$$

$$f(x) = \sum_{i} f_{i} h_{i} (x)$$

 $\int h_k(x)f(x)dx = \int h_k(x)\left(\sum_i f_i h_i(x)\right)dx = \sum_i f_i \int h_k(x) h_i(x)dx$

$$\int h_k(x) h_i(x) dx = \begin{cases} 0, se \ i \neq j \\ i, se \ i = j \end{cases}$$

$$f_k = \int f(x) h_k(x) dx = \int_k^{k+1} f(x) dx$$

Amostragem, quantização e codificação de f(x)

Amostragem, quantização e codificação de f(x)

 $f_i = (3,4,5,5,4,2,2,3,5,5,4,2)$

Amostragem, quantização e codificação de f(x)

Freqüência de Amostragem

Sinal sub-amostrado

Amostragem mínima f(x)

Convolução

$$h(x) = f \otimes g = \int_{-\infty}^{\infty} f(u)g(x-u)du$$

$$h(x) = \int_{t=-\infty}^{t=\infty} g(t-x)f(x)dt$$

$$h_{i} = \sum_{k=0}^{n-1} g_{(k-i)} f_{i}$$

Convolution

• Pictorially

• Consider the function (box filter):

• This particular convolution smooths out some of the high frequencies in *f*(*x*).

Ilustação da convolução

Ilustração da convolução

Jean Baptiste Joseph Fourier (1768-1830) Paper de 1807 para o *Institut de France*

Fourier

$$f(x) = a_0 + \sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{2\pi kx}{n}\right) + b_k \sin\left(\frac{2\pi kx}{n}\right)\right)$$

onde:

$$a_0 = \frac{1}{n} \int f(x) dx$$

$$a_k = \frac{1}{n} \int f(x) \cos\left(\frac{2\pi kx}{n}\right) dx$$

$$b_k = \frac{1}{n} \int f(x) \sin\left(\frac{2\pi kx}{n}\right) dx$$

Integrais de senos e cosenos em $[-\pi,\pi]$

sin(nx)

Integrais de senos e cosenos em
$$[-\pi, \pi]$$

$$\int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx = \pi \delta_{mn} \quad \text{for } n, m \neq 0$$

$$\int_{-\pi}^{\pi} \cos(mx) \cos(nx) dx = \pi \delta_{mn} \quad \text{for } n, m \neq 0$$

$$\int_{-\pi}^{\pi} \sin(mx) \cos(nx) dx = 0$$
Funções ortogonais

$$\int_{-\pi}^{\pi} \cos(mx) \, dx = 0$$

$$\int_{0}^{T} f(t)dt = \int_{0}^{T} a_{o}dt + \sum_{k=1}^{\infty} \left(a_{k} \int_{0}^{T} \cos(\frac{2\pi nkt}{T}) dt + b_{k} \int_{0}^{T} \sin(\frac{2\pi kt}{T}) dt \right)$$

$$\int_0^T f(t)dt = a_0 T + 0 + 0$$

$$a_0 = \frac{1}{T} \int_0^T f(t) dt$$

Série de Fourier:
$$a_n e b_n$$

 $f(t)$
 $f(t) = a_0 + 2\sum_{k=1}^{\infty} (a_k \cos \frac{2\pi kt}{T} + b_k \sin \frac{2\pi kt}{T})$

$$\int_{0}^{T} \cos(\frac{2\pi nt}{T}) f(t) dt = 0 + 2\sum_{k=1}^{\infty} a_{k} \int_{0}^{T} \cos(\frac{2\pi nt}{T}) \cos(\frac{2\pi kt}{T}) dt + 0$$
$$= Ta_{n}$$

$$a_n = \frac{1}{T} \int_0^T f(t) \cos(\frac{2\pi n t}{T}) dt \qquad \qquad b_n = \frac{1}{T} \int_0^T f(t) \sin(\frac{2\pi n t}{T}) dt$$

Resumindo

$$f(t) = a_0 + 2\sum_{k=1}^{\infty} (a_k \cos \frac{2\pi kt}{T} + b_k \sin \frac{2\pi kt}{T})$$

$$a_{k} = \frac{1}{T} \int_{0}^{T} f(t) \cos(\frac{2\pi kt}{T}) dt \quad k = 0, 1, 2, 3, \dots$$

$$b_k = \frac{1}{T} \int_0^T f(t) \sin(\frac{2\pi kt}{T}) dt \quad k = 1, 2, 3, \dots$$

$$\omega_k = \frac{2\pi k}{T}$$

$$\Delta \omega = \frac{2\pi}{T}$$

$$\begin{pmatrix} f_o, f_1, f_2, \dots, f_r, \dots, f_{N-2}, f_{N-1}, \end{pmatrix} a_k \approx \frac{1}{N} \sum_{r=0}^{N-1} f_r \cos(\frac{2\pi kr}{N}) \qquad b_k \approx \frac{1}{N} \sum_{r=0}^{N-1} f_k \sin\left(\frac{2\pi kr}{N}\right)$$

 $\begin{bmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{N-1} \end{bmatrix} = \frac{1}{N} \begin{bmatrix} c_{00} & c_{01} & \cdots & c_{0(N-1)} \\ c_{10} & c_{11} & \cdots & c_{1(N-1)} \\ \vdots & \vdots & \ddots & \vdots \\ c_{(N-1)0} & c_{(N-1)1} & \cdots & c_{(N-1)(N-1)} \end{bmatrix} \begin{bmatrix} f_{0} \\ f_{1} \\ \vdots \\ f_{N-1} \end{bmatrix} \quad \text{onde:} \quad c_{kr} = \cos\left(\frac{2\pi \, kr}{N}\right)$

$$\begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{N-1} \end{bmatrix} = \frac{1}{N} \begin{bmatrix} s_{00} & s_{01} & \cdots & s_{0(N-1)} \\ s_{10} & s_{11} & \cdots & s_{1(N-1)} \\ \vdots & \vdots & \ddots & \vdots \\ s_{(N-1)0} & s_{(N-1)1} & \cdots & s_{(N-1)(N-1)} \end{bmatrix} \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_{N-1} \end{bmatrix} \quad \text{onde:} \quad s_{kr} = \sin(\frac{2\pi \, kr}{N})$$

Transformada

Números complexos

- *x* é a parte real
- y é a parte imaginária
- A é a magnitude
- θ é a fase

$$z = x + iy = A(\cos\theta + i\sin\theta)$$

$$i = \sqrt{-1}$$
Operação básicas com complexos

$$(x_{1} + iy_{1}) + (x_{2} + iy_{2}) = (x_{1} + x_{2}) + i(y_{1} + y_{2}) \qquad a(x + iy) = ax + iay$$

$$i^{2} = -1$$

$$(x_{1} + iy_{1})(x_{2} + iy_{2}) = (x_{1}x_{2} + i^{2}y_{1}y_{2}) + i(x_{2}y_{1} + x_{1}y_{2}) = (x_{1}x_{2} - y_{1}y_{2}) + i(x_{2}y_{1} + x_{1}y_{2})$$

$$(x + iy)(x - iy) = (x^{2} + y^{2}) + i(xy - xy) = x^{2} + y^{2}$$

$$x + iy = (x + iy)(x - iy) = 1 \quad (x + iy)(x - iy) = 1$$

$$\frac{x_1 + iy_1}{x_2 + iy_2} = \frac{(x_1 + iy_1)(x_2 - iy_2)}{(x_2 + iy_2)(x_2 - iy_2)} = \frac{1}{x_2^2 + y_2^2} (x_1 + iy_1)(x_2 - iy_2)$$

 $e^{i\theta} = \cos\theta + i\sin\theta$

revisão

Derivada de e^{iωt}

$$\frac{d}{dt}e^{i\omega t} = i\omega e^{i\omega t}$$

$$\frac{d}{dt}(\cos\omega t + i\sin\omega t) = -\omega\sin\omega t + i\omega\cos\omega t$$

$$=i\omega(-\frac{1}{i}\sin\omega t+\cos\omega t)$$

$$\frac{-1}{i} = \frac{-i}{i^2} = \frac{-i}{-1} = i$$

 $=i\omega(i\sin\omega t+\cos\omega t)$

C.Q.D.

Outras propriedades úteis

revisão

 $e^{i\theta} = \cos\theta + i\sin\theta$

Outras propriedades úteis (2) revisão

 $e^{i\theta} = \cos\theta + i\sin\theta$ $e^{-i\theta} = \cos\theta - i\sin\theta$

$$\cos\theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta})$$

 $\cos \omega t = \frac{1}{2} \left(e^{i\omega t} + e^{-i\omega t} \right)$

o cosseno corresponde a média de dois harmônicos de freqüências *w e -*w

Outras propriedades úteis (2) revisão $e^{-i\theta} = \cos\theta - i\sin\theta$ $e^{i\theta} = \cos\theta + i\sin\theta$ $\frac{1}{i} = \frac{i}{i^2} = \frac{i}{-1} = -i$ $\sin\theta = \frac{1}{2i}(e^{i\theta} - e^{-i\theta}) = \frac{i}{2}(e^{-i\theta} - e^{i\theta})$ i ωt $-\omega t$ V o seno também corresponde a dois harmônicos: -1 1 we-w -i

Outras propriedades úteis (3) revisão

$$z_1 = A_1 e^{i\theta_1} = A_1 (\cos \theta_1 + i \sin \theta_1)$$

$$z_2 = A_2 e^{i\theta_2} = A_2 (\cos \theta_2 + i \sin \theta_2)$$

$$z_1 z_2 = A_1 A_2 e^{i(\theta_1 + \theta_2)}$$

$$\frac{z_1}{z_2} = \frac{A_1}{A_2} e^{i(\theta_1 - \theta_2)}$$

Amplitude e fase de complexos

Dado um valor:

$$F_{k} = a_{k} - ib_{k} = \frac{1}{N} \sum_{s=0}^{N-1} f_{s} e^{-i(\frac{2\pi ks}{N})}$$

$$E_{kr} = e^{-i\frac{2\pi k}{N}}$$

 $\begin{bmatrix} f_{0} \\ f_{1} \\ \vdots \\ f_{N-1} \end{bmatrix} = \begin{bmatrix} E'_{00} & E'_{01} & \cdots & E'_{0(N-1)} \\ E'_{10} & E'_{11} & \cdots & E'_{1(N-1)} \\ \vdots & \vdots & \ddots & \vdots \\ E'_{(N-1)0} & E'_{(N-1)1} & \cdots & E'_{(N-1)(N-1)} \end{bmatrix} \begin{bmatrix} F_{0} \\ F_{1} \\ \vdots \\ F_{N-1} \end{bmatrix} \quad \text{onde:} \quad E'_{kr} = e^{i\frac{2\pi i}{N}}$

$$E'_{kr} = e^{i\frac{2\pi kr}{N}}$$

Transformada de Fourier

$$F(w) = \int_{-\infty}^{+\infty} f(x) e^{-i2\pi w x} dx$$

$$f(x) = \int_{-\infty}^{+\infty} F(w) e^{+i2\pi w x} dw$$

Transformada da Gaussiana

$$F(w) = \int_{-\infty}^{\infty} \left(\frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2}} \right) e^{-i2\pi wx} dx$$

$$= \int_{-\infty}^{\infty} \left(\frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2}} \right) (\cos(2\pi wx) + i\sin(2\pi wx)) dx$$

$$= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2\sigma^2}} \cos(2\pi wx) dx = e^{-2\pi\sigma^2 w^2}$$

$$= v\sqrt{2\pi} \left(\frac{1}{v\sqrt{2\pi}}e^{-\frac{w^2}{2v^2}}\right), \quad v = \frac{1}{2\pi\sigma}$$

$$\int_{-\infty}^{\infty} f(x)\delta(x)dx = \lim_{b \to 0} \int_{-b/2}^{b/2} \frac{1}{b} f(x)dx = \lim_{b \to 0} \frac{(b/2 + b/2)}{b} f(\xi), \xi \in \left[-\frac{b}{2}, \frac{b}{2}\right]$$

$$\int_{-\infty}^{\infty} f(x)\delta(x)dx = f(0)$$

Delta de Dirac de Gaussianas

Transformada do Delta de Dirac

$$F(w) = \frac{1}{2} \left[\delta(w + \frac{\overline{w}}{2\pi}) + \delta(w - \frac{\overline{w}}{2\pi}) \right]$$

Pares importantes

f(x)	F(u)
1	$\delta(u)$
$\delta(x)$	1
$\cos \pi x$	$\frac{1}{2}\delta\left(u+\frac{1}{2}\right)+\frac{1}{2}\delta\left(u-\frac{1}{2}\right)$
$\sin \pi x$	$\frac{j}{2}\delta\left(u+\frac{1}{2}\right)-\frac{j}{2}\delta\left(u-\frac{1}{2}\right)$
$e^{-\pi x^2}$	$e^{-\pi u^2}$
$\operatorname{rect}(x) = \begin{cases} 1 & x < \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$	$\operatorname{sinc}(u) = \frac{\sin \pi u}{\pi u}$

Propriedades da transformada

Filtragem com Transformada de Fourier

Amostragem e Reconstrução

Observando os domínio do espaço e das freqüências

Sinal original

Sinal discretizado

Amostragem

Sinal discretizado

Reconstrução

Retorno ao sinal original

Sinal original com mais altas freqüências

Mesma taxa de amostragem

domínio do espaço

domínio das freqüências

Sinal amostrado

Não temos como reconstruir sem introduzir artefatos!

Teorema de Nyquist

Para que um sinal de banda limitada (i.e. aqueles cuja a transformada resultam em zero para freqüências f > B) seja reconstruido plenamente ele precisa ser amostrado numa freqüência f >= 2B.

Um sinal amostrado na freqüência (f=2B) é dito amostrado por Nyquist e f=2B é a freqüência de Nyquist.

Não há perda de informação nos sinais amostrados na freqüência de Nyquist, e não adicionamos nenhuma informação se amostrarmos numa freqüência maior.

Base de Haar

Transformada Haar

Exemplo de transformada Haar

três iterações de Haar sobre um vetor

Inversa Transformada de Haar

Transformada Haar

Aplicando a transformada de Haar na horizontal Aplicando a transformada de Haar na vertical Matriz resultante

Uma iteração da transformada de Haar sobre uma matriz

Duas iterações da Transformada de Haar

REDUÇÃO DE RUÍDOS

Ruídos gaussianos e impulsivo (sal e pimenta)

O problema

Dada uma imagem I(x, y) com um ruído N(x, y), reduza
 N(x, y) o máximo que puder sem alterar significativamente
 I(x, y).

Modelo aditivo de ruído: $\tilde{I}(x, y) = I(x, y) + n(x, y)$

$$SNR = \frac{\sigma_s}{\sigma_n} \quad SNR_{dB} = 10\log_{10}\frac{\sigma_s}{\sigma_n}$$

20 dB significam
$$\frac{\sigma_s}{\sigma_n} = 100$$

Dois tipos básicos de ruídos

 <u>Ruído impulsivo</u>: causado por erro de transmissão, CCDs defeituosos, etc... Também chamado de pico e de sal e pimenta.

$$n_{sp}(i,j) = \begin{cases} 0 & x < l \\ i_{\min} + y(i_{\max} - i_{\min}) & x \ge l \end{cases}$$

 $x, y \in [0,1]$ são v.a. uniformemente distribuídas

 i_{min} , i_{max} , e *l* são parâmetos de controle da quantidade de ruídos.

Dois tipos básicos de ruídos

 <u>Ruído Gaussiano branco</u>: processo estocástico de média zero, independente do tempo e do espaço.

 $\overline{n}(i, j) \sim \overline{n}(i + i_0, j + j_0)$ é o mesmo processo estocástico que não varia no tempo.

 $\overline{n}(i,j) = 0$

 $\overline{n}(i,j)$ é uma variável aleatória com a distribuição:

$$G(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}}$$

Exemplo de ruído Gaussiano (σ =5) e Impulsivo (ℓ =0.99)

Figure 3.1 (a) Synthetic image of a 120×120 grey-level "checkerboard" and grey-level profile along a row. (b) After adding zero-mean Gaussian noise ($\sigma = 5$). (c) After adding salt and pepper noise (see text for parameters).

Imagem com ruído impulsivo

223	204	204	204	204	204	204	204	204	204	204	204	204	223
171	120	120	120	18	120	50	120	120	120	120	120	120	171
171	120	120	120	116	120	120	120	120	120	120	120	120	171
138	120	120	120	120	120	50	120	97	120	120	120	120	171
171	120	120	120	120	120	120	120	120	120	187	120	120	242
172	120	120	120	120	120	120	120	120	120	120	120	120	171
171	120	120	120	120	120	<u>179</u>	120	120	120	120	167	120	171
171	120	120	120	120	120	120	235	120	120	120	120	120	171
171	120	120	120	120	120	120	235	120	76	175	120	120	171
171	120	120	120	120	1]120	120	120	120	120	120	120	120	171
171	120	120	120	120	120	120	120	123	120	120	214	120	114
171	120	120	120	120	120	120	120	120	120	120	120	143	171
171	120	120	120	232	120	120	198	120	120	120	120	120	171
203	171	171	171	171	171	171	171	171	205	171	171	171	203

Uso da mediana para reduzir o ruído

 I_{ij} = mediana Ω_{ij} = 120

Sinal com ruído gaussiano

 $f3(x) := 10\cos(2\pi x) + 6\sin(10\pi x) + .8\cos(40\pi x)$

Suavização

$$h_i = \frac{f_{i-1} + 2f_i + f_{i+1}}{4}$$

Filtragem Gaussiana

Mascara ou Filtro

$$h_i = \frac{f_{i-1} + 2f_i + f_{i+1}}{4}$$

ou:

$$h_{i} = \sum_{k=0}^{n-1} g_{(k-i)} f_{k}$$

$$g_{l} = \begin{cases} 0 & se \quad l < -1 \\ 1/4 & se \quad l = -1 \\ 2/4 & se \quad l = 0 \\ 1/4 & se \quad l = +1 \\ 0 & se \quad l > +1 \end{cases}$$

Convolução

$$h(x) = \int_{t=-\infty}^{t=\infty} g(t-x)f(t)dt$$

$$h(x) = f \otimes g = \int_{-\infty}^{\infty} f(u)g(x-u)du$$

Discretização da Gaussiana 1D

Discretização da Gaussiana 2D

Convolução com máscara

Separabilidade do filtro gaussiano

Imagem filtrada com um filtro passa baixa

Arestas e cantos

 Locais de mudanças significativas na intensidade da imagem

Edgedels = edge elements

Tipos de arestas

degrau (step)

cume (roof)

impulso (spike)

Gráfico sem e com ruído

Derivadas e arestas

Série de Taylor

$$f(x + \Delta x) = f(x) + (\Delta x)f'(x) + \frac{(\Delta x^2)}{2}f''(x) + O(\Delta x^3)$$

Com
$$\Delta x=1$$
, $f(x)=f_i e f(x+\Delta x)=f_{i+1}$

$$f_{i+1} \cong f_i + f'_i + \frac{1}{2} f''_i$$
 (a)

Com $\Delta x = -1$, $f(x) = f_i e f(x + \Delta x) = f_{i-1}$

$$f_{i-1} \cong f_i - f'_i + \frac{1}{2} f''_i$$
 (b)

Aproximações para derivadas

$$f'_{i} \cong (f_{i+1} - f_{i-1})/2$$

 $(a+b) \Rightarrow$

 $(a-b) \Rightarrow$

$$f''_{i} \cong -(-f_{i+1} + 2f_{i} - f_{i-1})$$

Em 2D

Gradiente

$$\nabla f(x, y) = \begin{pmatrix} \partial f \\ \partial x \\ \partial f \\ \partial y \end{pmatrix} \qquad \frac{\partial f(x, y)}{\partial x} \approx \frac{f(x_{n+1}, y_m) - f(x_n, y_m)}{\Delta x} \qquad \begin{bmatrix} -1 & 1 \end{bmatrix}$$

$$\frac{\partial f(x, y)}{\partial y} \approx \frac{f(x_n, y_{m+1}) - f(x_n, y_m)}{\Delta x} \qquad \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Laplaciano

Núcleos de convolução

$$\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Derivação após suavização

Sobel:

[-1	0	+1]	[+1	+2	+1]
-2	0	+2	0	0	0
L-1	0	+1	l-1	-2	-1

Laplaciano:

$$\begin{pmatrix} 1 & 4 & 1 \\ 4 & -20 & 4 \\ 1 & 4 & 1 \end{pmatrix}$$

Imagem filtrada com um filtro passa alta

TRABALHO 1: 28/3 - SLICO

Implemente o algoritmo de superpixel SLICO descrito em:

https://infoscience.epfl.ch/record/177415/files/Superpixel_PAMI2011-2.pdf https://infoscience.epfl.ch/record/177415

Seguindo as adaptações indicadas nos próximos slides.

Superpixels

O algoritmo SLIC (Simple Linear Iterative Clustering)

Entrada: n_s (número aprox. de superpixels) e, opcionalmente, m (compacidade)

- 1. Calcule as coordenadas CIE Lab de todos os pixels da imagem;
- 2. Calcule o tamanho, *s*, da cédula quadrada

$$s = \sqrt{\frac{w * h}{n_s}}$$

3. Initialize os representantes das cédulas $c_i = [l_i; a_i; b_i; x_i; y_i]^T$ amostrando em uma grade de tamanho *s*, $i=0,...,(n_s-1)$

evite as bordas e pontos ruidosos: escolha na vizinhança 3x3 do centro da célula o pixel que tenha o menor gradiente para c_i

O algoritmo SLIC (cont.)

4. Para cada superpixel c_k crie uma janela de tamanho 2*s* centrada em (x_k, y_k)

- a) Para cada pixel neste janela que estiver atribuído a outro superpixel c_j , verifique se a distância dele ao c_k é menor e, se for, atribua este pixel ao c_k .
- 5. Quando todos os superpixels tiverem sido visitados, recalcule o sua cor e centro através da média de seus pixels. Calcule também o deslocamento de seu centro e acumule numa medida de erro E.
- Se o erro acumulado (de todos os superpixels) for pequeno ou se o número de iterações for excessivo, maior que 10, por exemplo, pare. Caso contrário volte para o passo 4.

Cálculo de distância

Distância entre o pixel $p_j = [l_j; a_j; b_j; x_j; y_j]^T$ e o superpixel $c_i = [l_i; a_i; b_j; x_i; y_i]^T$

$$d_c = \sqrt{(l_i - l_j)^2 + (a_i - a_j)^2 + (b_i - b_j)^2}$$

$$d_s = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

$$d_t = \sqrt{\left(\frac{d_c}{m_c}\right)^2 + \left(\frac{d_s}{m_s}\right)^2}$$

onde m_c e m_s são as máximas distâncias esparadas no superpixel. Opções:

- 1. constantes: $m_s = s \ e \ m_c \ e \ par \ ametro \ de \ entrada.$
- 2. adaptativos: $m_s e m_c s$ ão calculados a partir da última iteração.

Tomografia Computadorizada (TC)

Raio X

Visualização Volumétrica Direta: Função de Transferência

Visualização Volumétrica Direta

Apenas os valores de densidade baixa (ar) são considerados translúcidos.

Apenas os valores de densidade alta (ossos) são considerados opacos.

Seismic acquisitions

Refletividade

Representação digital de dados

analógico

ponto-flutuante

8-bit

Seismic data

- Seismic traces: one temporal signal (1D)
- Seismic lines: 2D set of traces
- Seismic volumes: 3D set of traces
- 4D Seismic: seismic volumes in different times

Reservoir interpretation

(Johann, 2003)