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Abstract.

We present an algorithm for intersecting finite-element meshes defined on parametric

surface patches. The intersection curves are modeled precisely and both meshes are adjusted to the
newly formed borders. The algorithm is part of an interactive shell modeling program, which has
been used in the design of large offshore oil structures. We avoid unacceptable interaction delays by
using a variant of the DCEL data structure that stores topological entities in spatial indexing trees
instead of linked lists. These trees speed up the intersection computations required to determine
points of the trimming curves, and also allows mesh reconstruction using only local queries.

Keywords: surface intersection; finite element generation; parametric representation; topological

data structures

1 Introduction

Surface modeling and mesh generation on surfaces
are important problems in computer-aided geomet-
ric design (CAGD), specially in engineering applica-
tions. One way to build complex models is to take
several simple surface patches and sew them together
into a single surface, trimming excess parts away. If
this modeling technique is to be effective, then the
problem of computing the intersection between two
patches must be solved efficiently and robustly.

We consider an environment where surfaces
patches are interpolated from boundary curves given
in parametric form. Such surfaces are called Coons
patches [1]. The user provides discretizations for the
boundary curves, which are then used to interpolate
a mesh for the surface.

We approach the surface intersection problem as
a meshing problem, in the sense that we are given
not only two parametric patches, but also meshes
on them. Both the parametrizations and the meshes
must be taken into account when computing the in-
tersection. In other words, we must compute inter-
section curves that lie on both surfaces and on both
meshes. Moreover, the boundary discretizations pro-
vided by the user must be respected, so that meshes
on adjacent patches fit together correctly. Thus, our
goal is to compute a single mesh for the union of
the two patches, and this mesh must be composed
largely of the original meshes, which are only modi-
fied locally, around the intersection. See Figure 1.

Figure 1: Composite mesh after intersection.

In this paper, we present a fully automatic algo-
rithm that solves this mesh intersection problem.
The searches required for computing the intersec-
tion curves and for re-meshing are supported by a
topological data structure whose main feature is that
topological entities are stored in B-trees [2] and R*-
trees [3], instead of linked lists. These spatial in-
dexing structures play a major role in the overall
efficiency of the algorithm.

The algorithm has been implemented and is part of
a complete shell modeling program, which has been
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used in the design of large offshore oil structures.
Interactive shell modeling by direct manipulation in
3D space raises several interesting user-interface is-
sues that have been discussed elsewhere [4].

2 Previous work

Only very rarely the intersection of two parametric
surfaces can be computed analytically; even when it
can, it might not be practical. Hence, we must resort
to numerical techniques.

The methods for solving the surface intersection
problem in CAGD belong to two major classes:
Marching or continuation methods compute the in-
tersection curve in 3D object space by march-
ing in the direction of its tangent vector [5—
7). Decomposition or subdivision methods compute
the trimming curves in 2D parameter space, by re-
cursively refining the solution at each step [8].

Previous solutions to the surface intersection prob-
lem work well in many cases, but do not handle the
mesh intersection problem as defined above. An ex-
ception is the work of Lo [9], which motivated our
work. Lo [9] gave a simple algorithm for intersect-
ing triangular meshes that automatically redefines
the faces to adapt to the intersection curves. His so-
lution does not use the continuous parametric repre-
sentation of the surfaces, and thus can be used easily
in most modeling systems. On the other hand, near
regions of high curvature, the computed intersection
points may not lie on the original surfaces, which is
unacceptable for modeling.

Haber and Abel [10] pioneered the use of graphical
interfaces with transfinite mappings for meshing shell
structures.

3 Requirements for mesh intersection

Ideally, a good solution for the mesh intersection
problem should satisfy the following requirements:

Correctness: The computed intersection curves must
lie on both surfaces. If the intersection curves lie
only on the faces of the meshes but not on the sur-
faces, then the finite-element analysis will yield false
or unacceptable results. The easiest way to guaran-
tee correctness is to compute the trimming curves
in parametric space and then map them to object
space.

Faithfulness: The geometry of the resulting surface
must faithfully reflect the geometry of the original
surfaces, because they represent the intent of the de-
signer. In particular, new parametric patches should
not be defined using the trimming curves as bound-
ary curves, because this would yield a different ge-
ometry. See Figure 2.
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Figure 2: Bulge produced by re-parametrization.

Precision: Points in parametric space corresponding
to the same intersection point must, when mapped to
3D, be at a distance smaller than a tolerance selected
by the user (usually, a fraction of the size of the
smallest element in the original meshes).

Automatism: The two meshes should be automat-
ically redefined to include the intersection curves
and possibly exclude trimmed regions. The user
should not be required to manually edit the resulting
meshes.

Quality: The elements generated during re-meshing
must have a good geometric shape and must be of
the same average size of the elements in the original
meshes. When the original meshes have elements
with very different sizes or when the element edges
are close to the intersection curve, the resulting mesh
may have elongated elements with sharp angular dif-
ferences, if no corrections are made.

Locality: Only elements close to the intersection re-
gion should be modified during re-meshing. Ele-
ments far from the intersection region should remain
unaltered. Moreover, if smoothing is used to improve
mesh quality, then it too should be local.

Regions: The regions defined in parametric space by
the trimming curves must be automatically identi-
fied. These regions may or may not take part in the
final generated model; they can even have different
attributes (loads, materials, boundary conditions).

Efficiency: The time and space required for comput-
ing the intersection should be ideally linear in the
number of elements around the intersection region.
Algorithms that are quadratic in the total number of
elements in the meshes are too slow for large meshes
and are not appropriate for interactive modeling.

Robustness: An arbitrary number of intersection
curves may be generated, having different geome-
try, topology, and interpolation points. In partic-
ular, closed curves must be handled correctly, and
must yield regions with holes when trimmed.
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4 The algorithm

The algorithm we propose here for intersecting two
meshed surfaces A and B has three basic steps, which
aim at fulfiling the requirements listed above:

1. Determination of the intersection points:

(a) Compute and store the intersection of
edges in A against faces in B; and

(b) Compute and store the intersection of
edges in B against faces in A.

2. Determination of the trimming curves:

(a) Link intersection points into polygonal
lines representing the trimming curves;

(b) Interpolate parametric curves
through polygonal lines points;

passing

(¢) Compute new points with proper spacing
on these curves; and
(d) Move these new points onto each surface.

3. Topology reconstruction:

(a) Determine the trimming regions removing
vertices and edges based on polygonal lines;

(b) Insert new edges over the trimming curves
using the new points defined in Step 2;

(¢) Triangulate the trimming regions on both
surfaces; and

(d) Smooth both meshes.

To avoid testing all edges against all faces in
Step 1, we store topological entities in spatial index-
ing trees, as described in Section 4.1. Since edges and
faces are curved in object space, we need a numeri-
cal procedure to determine the intersection points,
which is described in Section 4.2. At the end of
Step 1, edges in one mesh are paired with the faces
that they intersect in the other mesh, and vice-versa.
For each such pair, we also store the parametric co-
ordinates of the intersection point.

In Step 2a, we compute the trimming curves in
parametric space by linking and interpolating the in-
tersection points computed in Step 1. In Steps 2b—d,
we compute continuous representations for the trim-
ming curves in parametric space. Equally-spaced
sample points on the trimming curves are then com-
puted and relaxed back onto the original surfaces.
More details are given in Section 4.3.

In Step 3a the trimming regions are identified.
These regions, actually sub-patches, are faces of the
topological data structure generated by the elimina-
tion of some edges. At the end of Step 3a there
are, in each surface, as many regions as the num-
ber of trimming curves. Step 3b consists of inserting

the edges that represent the trimming curves, which
leads to the subdivision of each trimming face in two.
After that, in Step 3c, each trimming region is tri-
angulated by inserting the edges, according to the
geometric criteria described in Section 4.4.

Finally, to increase the shape quality of the faces
generated in the intersection step, we use the stan-
dard Laplacian smoothing technique in parametric
space. More precisely, the parametric coordinates of
each vertex are changed to an average of the coor-
dinates of its neighbors (which are easily identified
using the DCEL). This averaging is repeated a num-
ber of times, until the quality of the elements reaches
the desired level. Boundary and trimming vertices
are never moved during smoothing.

4.1 The data structure

We store surface patches in a variant of the DCEL
data structure [11], extended to handle topologies of
curved elements. Moreover, topological entities (ver-
tices, edges, and faces) are stored in trees, instead of
linked lists or vectors. This allows for fast solutions
for the searches necessary for the initial mesh assem-
bly and for the mesh reconstruction.

We use B-trees [2] for storing vertices and edges,
and R*-trees [3] for storing faces. The vertices
are inserted into a B-tree that searches points by
their parametric coordinates in lexicographical order.
Each vertex gets an index such that vertices with
smaller indices also have smaller parametric coordi-
nates, in the lexicographical sense. Figure 3 shows
the modified DCEL data structure used here.

The edges are considered as straight lines in the
parametric space, connecting pairs of points vertices.
The edges are oriented from the vertex with the
smaller index to the vertex with the larger index,
and are stored into a B-tree that has these indices as

the search key, as in the vertex B-tree.
o | Vertex |
Vertex
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f edge
ue ve uv
edge

Figure 3: The modified DCEL.
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Figure 4: Topological chaining of DCELs.

The faces are inserted into a R*-tree that uses their
3D bounding boxes as the key. We use R*-trees with
nodes with a minimum of four and a maximum of
ten faces because present good average performance
for planar subdivisions [12].

The Intersection field of edges and faces is used
to determine the trimming curves and to reconstruct
the topologies; it is also the key to the topological
chaining of two DCELs. Figure 4 shows how this
topological chaining between the faces and edges of
two intersecting surfaces is made. The geometric in-
formation of each intersection point is stored in pairs
(ug,vy) and (ue,v.) in Intersection.

4.2 Computation of intersection points

In Step 1 of the algorithm, the edges in one surface
are tested against the faces in the other surface that
can potentially intersect it. This is done by testing
their bounding boxes for intersection. The face R*-
tree is searched by using the edge bounding box.
For each selected edge-face pair, we find the point
where they intersect by solving a minimization prob-
lem F(u,v,t) =0, where F(u,v,t) = S(u,v) — R(t).
The algorithm stops when the distance from the edge
point with parameter ¢ to the face point with coor-
dinates (u,v) is smaller than a given tolerance. This
tolerance corresponds to a fraction of the smallest
length of the edges involved in the intersection. Fig-
ure 5 illustrates the elements involved in the prob-
lem, where the parameter ¢, which defines the vari-
ation along the intersected edge, can be expressed
as an interpolation given by the straight line in the
parametric space (w, h) that connects V5 and V3.
The correction term for solving F'(u, v,t) = 0 using
the Newton-Raphson method is Ap = —J~1(p)F(p),
where p = (u,v,t) and J is the Jacobian matrix
of F. Sinc this Jacobian matrix is composed by
the directional tangents on the patch’s surface and
by the tangent to the curve, which is a directional
derivative on the edge’s surface, one must be very
careful with the length of the tangent vector, to
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ensure convergence. If the surfaces have different
parametrizations, such as one bicubic and another
bilinear, the directional derivatives must be normal-
ized before solving F'(u,v,t) = 0. To make the pro-
cedure robust enough to cope with the singularities
that occur where the surfaces are tangent or parallel
to each other, we use the modified Newton-Raphson
method described by Deuflard [13].

After the convergence of the minimization algo-
rithm, two parametric pairs: (ug,vy) in the face’s
surface, and (ue,ve) in the edge’s surface are iden-
tified, and the relative position of the face and the
intersection point must be tested inside face’s para-
metric space. A modified single shot algorithm is per-
formed to verify if the intersection point lies inside,
outside, on an edge, or an a vertex of the face being
tested. If the point is outside the face no updates
are made in the data structure. When the point is
inside the face, the edge/face pair is updated in its
Intersection fields (see Figure 3). If the point is over
an edge, besides the edge/face pair, the edge identi-
fied by the algorithm must also have it’s Intersection
field updated. When the intersection is located over
a vertex of the face, all edges adjacent to this vertex
must also be updated.

In all cases when the field Intersection has to be
updated, if it is already instantiated in previous com-
putations, no changes are necessary. As Section 4.3
will show, a single reference in each edge and face
is sufficient to link intersection points, thus the first
one computed does this task.

For the determination of the intersection points
to be complete and for the fields necessary to the
construction of the trimming curves to be filled, all
procedures described in the present section must be
repeated switching surfaces, that is, testing the edges
of the second surface against the faces of the first one.
At the end of this step, all topological and geometri-
cal information necessary to determine the trimming
curves is stored into the DCELSs.

Vo

R(t

V1

Figure 5: Notation for the intersection problem.
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(a) Intersection points.

(b) Local polyline.

(c) Global polyline.

Figure 6: Local and global polylines used in Step 2 of the algorithm.

4.3 Computation of intersection curves

This step is done by visiting adjacent intersected
faces, identified by the Intersection field shown in
Figure 3, moving across intersected edges and stor-
ing references to these edges in each position. When
all intersected faces have been visited, all connected
components of the intersection have been found.

We use two kinds of polygonal lines: local poly-
lines, which join intersection points within a fixed
face; and global polylines, which are composed of
local polylines and represent a complete trimming
curve. Figure 6a shows the intersection curve and
the intersection points of two surfaces A and B. Fig-
ure 6b shows the local polyline for the face drawn in
gray. Points 0 and 4 are the intersections of the edges
of this face with faces of B; points 1, 2, and 3 are
the intersections of edges of B in the interior of the
gray face in A. Figure 6¢ shows the global polyline
obtained by propagation of local polylines through
all faces of A.

To convert the global polylines into continuous
intersection curves, we interpolate the intersection
points using cubic splines. We use the knot sequence
selection scheme defined by Foley and Nielson [14]
because it gives good results for points having non-
uniform spacing (it also has other interesting proper-
ties, such as invariance under affine transformations).

Once we have a continuous representation for the
trimming curves, we sample them uniformly, with a
spacing proportional to the size of the edges in the
initial mesh. These new sample points define vertices
representing the intersection curves in the combined
mesh. Even though the interpolation points lie on
both surfaces, the sample points may not, and we
have to relax them back onto the surfaces, using a
procedure similar to the one used in Step 1. As a
by-product, we also obtain the parameter values for
the sample points.

4.4 Determination of trimming regions

To find the trimming regions in Step 3a, we remove
all edges connected to the vertex closest to each inter-
polation point found in Step 1. The edges belonging
to a boundary or to a trimming curve determined
in previous intersections cannot be removed and are
split at the crossing position.

In Step 3b, the edges representing the trimming
curves are inserted, dividing the faces in two: one to
the left, and one to the right of each curve. Figure 7
shows the intersection of two shells and the corre-
sponding trimming curves and regions. The edges
created over the trimming curves receive the posi-
tive mark on the field trimming shown in Figure 3.

Figure 7: Two intersecting shells and the trimming
regions in each suface.
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Figure 8: Triangulation of trimming regions.
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Figure 9: Smoothed meshes.

In Step 3c, the trimming regions are triangulated
by selecting edges according to the following geomet-
ric criteria:

Consistency: Edges should be completely contained
in the parametric region limited by the edges, with-
out intersecting other edges.

Prozimity: Edges should connect two vertices that
are near each other.

Curvature: The area of the sector formed by the
chord and by the curve which follows the surface is
the smallest one.

Delaunay: Edges should obey the standard Delaunay
criterion projected on a plane whose normal vector is
the average of the normal vectors of adjacent faces.

Figure 8 shows the regions of Figure 7 triangu-
lated by the algorithm using these criteria. The
edges created to subdivide the trimming regions are
drawn with thicker lines. Figure 9 shows the result-
ing meshes after smoothing.

5 Examples

We now show some examples of our algorithm in
action. The first example has already appeared in
Figure 1: it is the union of a Coons patch with a
cylinder, whose bottom part has been trimmed away.
Note that the two intersections curves are symmet-
rical, due to symmetry in the original surfaces.
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The next example is the union of two cylindrical
shells, modeled as bilinear Coons patches. Figure 10
shows the results of the algorithm for meshes of in-
creasing complexity. In Figures 10a and 10b, the
intersection region extend up to the boundaries, so
that the smoothing repositions a few interior vertices.
Figures 10c and 10d show that, in higher resolution
meshes, only the few elements close to the intersec-
tion region are affected, and the original meshes are
largely preserved. This can also be seen in Figure 1.

(b) 5 x 5.

(d) 30 x 30.

Figure 10: Intersections between cylindrical shells
meshed with increasing resolution.

Figure 11 shows an example of an intersection that
has two connected components. The patches are a
cylindrical shell and a toroidal shell. Figure 12 shows
a detail. In this example, three distinct regions can
be identified on each patch. Figures 13a and 13b
show the elements in parametric space, with distinct
regions drawn with different line widths. Note that
the elements do not have good shapes in parametric
space but they do in object space. Figure 14 shows
the mesh resulting from removing the central region
of the cylindrical shell.

The example in Figure 15 shows that the algorithm
correctly handles closed intersection curves.
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Figure 12: Detail of the intersection in Figure 11.
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(b) Toroidal shell.

(a) Cylindrical shell.

Figure 13: Distinct regions in parametric space.
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Figure 14: The distinct regions resulting by elimi-
nating the central part of the cylindrical shell.
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Figure 15: Closed intersection curve.

6 Conclusion

An algorithm that determines the intersection curves
and the resulting meshes of two parametric patches
was developed and implemented with the DCEL
topological data structure, using trees for storing en-
tities. These spatial structures greatly reduce the
complexity of intersection computations by quickly
discarding large sections in one mesh that cannot in-
tersect the other mesh. The topological data struc-
ture used to represent the mesh of each surface patch
allows the construction of the trimming curves with-
out global searches. The topological information
is also used in the re-meshing algorithm to obtain
elements with improved quality, suitable for finite-
element analyses.

The results show that the algorithm is very fast
if compared with the construction of the individ-
ual patches, and can be used in interactive shell
modeling with composite patches. Experiments with
meshes having up to one million faces suggest that
the time required by the algorithm grows linearly
with the number of faces. This can be explained by
the small number of faces intersections actually pro-
cessed due to the efficient searches provided by the
spatial trees.

Step 3 of the algorithm is the most time consum-
ing of all three steps (an average of 60% of the to-
tal time), and its current implementation uses the
speed-up described by O’Rourke [15], which still is
O(n?), where n is the total number of edges in the
intersection region. In practice, n is much smaller
than the total number N of edges in both meshes.
Typically, n = O(v/N), which is consistent with the
experimental results mentioned above.

The DCEL data structure is simple and compact,
and is a good choice for the shell modeling program.
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For applications that must handle all topological de-
generacies that appear in more general intersections
(faces with holes, self-edges or edges inside faces),
the half-edge data structure [16] would be a better
choice. However, the half-edge data structure is not
compact and its impact on memory use would have
to be further evaluated, specially for large meshes.

The algorithm does not need to order the intersec-
tion points in a face using geometric tests as done
in [17]. The algorithm also does not require the
global search for chaining the individual segments,
needed in Lo’s algorithm [9], because it performs
this task as the global polylines are computed with
topological tests on the extremities of the trimming
curve. It also handles trimming curves with sharp
curvatures and several connected components.

The geometric quality of some trimming curves
generated by the algorithm were tested comput-
ing the distance from points evaluated over them
with the analytical solution, and the results show
that they are very close. Thus, the interpolation
method using Foley’s parametric variation [14] pre-
sented good results in our tests.

The regions created by the inserted trimming
edges are implicitly represented in the data struc-
ture and a simple topological algorithm can quickly
identify them.

We are currently working on mesh uniformization,
converting triangular elements into quadrilaterals,
using the method proposed by Potyondy et al. [18].
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