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1   Introduction 

1.1   Overview 

Structural engineers and architects, in order to design buildings, bridges, factories, 

and any other type of structural system, they need to predict how the structure 

components, such as beams, columns and slabs, and also the system as a whole, will 

behave under the effect of all possible loads and unexpected displacements that can 

occur over the structure life cycle. This is done by calculating internal forces, stresses 

and deformations on the structure components. The field of study responsible for 

evaluating the effects of loads and displacements on structures is called structure 

analysis and must be mastered by all the professionals who work with the design, 

construction and maintenance of structural systems. 

 To apply the structural analysis methods it is necessary to represent the real 

structure as a structural model. This model is an idealization of the behavior of the 

real structure, so its components can be mathematically modeled by formulations 

developed in the solid mechanics theories. The conception of a structural model 

involves the adoption of simplifying assumptions about the model geometry, the 

material behavior, the support conditions with the external environment and how the 

loads are being applied to the structure. 

 The geometric simplifications are made to represent the structure components 

with complex geometry into simpler elements, called structural elements. These 

elements can be linear, surface or volumetric. Linear elements are the idealization of 

components with one dimension much greater than the other two, so that it can be 

represented by a line on its longitudinal axis. Examples of linear elements are beams 
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and columns. Surface elements represent components with two dimensions much 

greater than the other, such as slabs and shells. Volumetric elements are the 

representation of components without a prevailing dimension, such as pad 

foundations. 

 The materials used in the structure components need to have their behavior 

described by a constitutive law that relates the stresses and strains on elements. It is 

also necessary to determine if the material is homogeneous or heterogeneous, a 

characteristic related to the uniformity of its mechanical properties at different points 

of the element, and if it is isotropic or anisotropic, a characteristic related to the 

uniformity of its mechanical properties when measured in different directions. 

 The connection between the structure and the external environment, like other 

structures or the soil, must also be simplified with support conditions. The supports 

are responsible for allowing, or not, the structural model to move in a certain 

direction. These movements can be translations and rotations in the direction of an 

orthogonal axis. Plane models can have three possible movements (translation on 

horizontal and vertical axes and rotation on the same plane of the model), while 

spatial models can have six possible movements (translation on the three orthogonal 

axes and rotation on the three orthogonal planes). A support can restrain totally or 

partially one of these movements at the end of a structural element. A total restraint 

imposes the condition of null displacement in a certain direction, and a partial 

restraint allows a displacement that depends on the stiffness of the support. Most of 

the time, this simplification does not depend only on the structural model itself but 

also on the behavior of the supporting structures. For example, a column can be 

considered completely fixed to the soil, by its foundation, or there can be partial 

rotation liberation depending on the soil rigidity. 
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 The internal connections between elements can also be modeled according to 

the transmission of the internal forces. Internal forces are the integral of the stresses in 

a cross-section that can generate a normal force, shear force, bending moment and 

torsion moment. 

 Another simplification that must be done is how the loads are applied to the 

model. Loads can act punctually on an element or distributed over a line or an area. 

Point loads can be considered when the contact area between the load agent and the 

element is so small that the effects of load distribution are negligible. An example of 

this is the case of a person standing in the middle of a slab. Distributed loads are 

considered when the effects of the load distribution in one or two dimensions cannot 

be ignored, such as the support of a slab on a beam, or the snow accumulation on a 

roof. The value of a distributed load follows a function that is usually constant or 

linear to simplify what happens on reality that can be very difficult to model, such as 

the value of the wind load in a building facade. Loads can also be static or dynamic, 

and this must be taken into account when conceiving the structural model. 

 The task of conceiving a structural model by assuming all these mentioned 

simplifications and deciding what considerations better represent the behavior of the 

real structure is called modeling. This task is a very important part of the job of 

engineers and architects because assuming different considerations can produce big 

changes in the analysis results, since each type of structural element, under the effect 

of a certain solicitation and support condition, combined with the constitutive law 

adopted for the materials, has different mathematical formulations to describe its 

behavior. 



4 

 

 The results may also change depending on the analysis type that can consider 

second order effects and the plastic behavior of the material. In a first-order analysis, 

it is assumed the hypothesis of small displacements, which means that the resulting 

displacements of the structure are very small compared to its dimensions. Because of 

this, the internal forces are evaluated considering the undeformed configuration of the 

structure. These assumptions make the deformations and the internal forces to be 

proportional to the applied loads, and as a consequence the principle of superposition 

of effects can be used to simplify the analysis. In a second-order analysis the 

deformation of the structure is considered in the evaluation of the internal forces. As a 

result, the deformations and the internal forces are not proportional to the applied 

loads (geometric nonlinear effect). The analysis type also considers the constitutive 

law of the materials by assuming that they always behave elastically (elastic analysis), 

what makes the stresses to be linearly related to the strains, or considering their plastic 

behavior wherein stresses and strains cease to be proportional to a certain stage of 

solicitation. Figure 1.1 gives an idea of how the adoption of different analysis types 

influences the results of the same structural model. 

 

Figure 1.1 Comparison of analysis results using different analysis types 
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 These changes in the results, caused by different modeling considerations and 

analysis types, can lead to a project that does not meet the security needs or is 

uneconomical. 

 Many methods can be used to analyze a structural model and obtain the 

desired results, but for this, the model must be discretized in parameters that are used 

to substitute the continuous analytical solution by the discrete values of these 

parameters. The adopted parameters, used in the discrete model, can be forces (loads 

or moments) or displacements, depending on which method is being used. The 

problem with these methods is that they require manual calculations that can turn this 

task to be impracticable because of the time it would take and the probability of 

errors. 

 With the advent of computers, a new idealization of the structural system 

became possible: the computational model. This turned the structural analysis into a 

process of computational simulation of structures behavior and allowed the 

implementation of analysis methods that would be impracticable to be done manually 

even for simple structural systems, such as the direct stiffness method and the finite 

element method. This also made it possible for users of structural analysis programs 

to visualize the analysis results on the screen of the computer. Nowadays it is 

unthinkable to design structures without a computer program. 

 

 

Figure 1.2 Four levels of abstraction of a structural system (Martha, 2010) 
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1.2   Objectives 

The goal of this work is to show the steps of developing a structural analysis graphic 

program according to the direct stiffness method and provide the fundamental 

knowledge about the two major areas involved in this process: structural analysis and 

computer science.  

 To meet the objectives of this work, a graphic program for linear-elastic 

structural analysis of linear element models (LESM – Linear Elements Structure 

Model) was developed using the MATLAB programming language. This program 

currently has two versions, a graphical version, on which this work is based, and a 

non-graphical version for educational purposes. The documentation and the 

commented code of the non-graphical version can be found at 

http://webserver2.tecgraf.puc-rio.br/~lfm/analestrut3-162/lesm/main.html. 

 The LESM program considers only linear element models with linear elastic 

behavior (first-order elastic analysis) submitted to static loads. The algorithm of its 

data processing, which is the code responsible for calculating the structural analysis 

results, is based on the direct stiffness method. There are three types of structural 

models that can be analyzed: plane truss, plane frame and grillage. 

 The characteristics of LESM described throughout this work may be outdated 

due to the fact that the program is constantly evolving. 

 

http://webserver2.tecgraf.puc-rio.br/~lfm/analestrut3-162/lesm/main.html
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1.3   Document Organization 

This work is divided in five chapters. Chapter 2 (Linear Element Models) describes 

the assumptions and idealizations of the three types of structural models considered in 

LESM. 

 Chapter 3 (Mathematical Formulations for Linear Elements) is dedicated to 

present the two theories that are used to describe the behavior of linear elements: 

Euler-Bernoulli (or Navier) beam theory and Timoshenko beam theory. This chapter 

also provides the mathematical formulations, in a matrix form, necessary for 

implementing the direct stiffness method. 

 Chapter 4 (Computational Implementation) focuses on explaining some 

concepts of computer science necessary for the development of LESM or any other 

structural analysis program. It also justifies the use of MATLAB and brings the main 

characteristics of the object oriented and event-driven programming paradigms. 

 Chapter 5 (The Development of LESM) is the main chapter of this work 

because it gives a full description of the LESM program, combining the concepts of 

structural analysis and computer science presented in the previous chapters. All the 

developed classes of the object-oriented programming paradigm are presented, as well 

as the functionalities of the graphical user interface. It also distinguishes the stages of 

data processing, pre-processing and post-processing by explaining their 

considerations and commenting how they are implemented on the code. The structure 

of the code is given in the form of flowcharts to help its understanding. 
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2   Linear Element Models 

2.1   Overview 

Linear element models are structural models composed only of elements that 

represent the geometric idealization of a structure component with its length much 

greater than the dimensions of its cross-section. This idealization consists in 

representing the component by a thin line that follows its longitudinal axis, and 

adopting particular mathematical formulations to describe its behavior. 

 Linear element models can be classified according to the model geometry, the 

type of connectivity between elements, and the direction of the applied loads. The 

most common types of linear element models are plane truss, spatial truss, plane 

frame, spatial frame and grillage, each one having its own considerations and 

assumptions. Different types of structural models are also called analysis models 

because of the distinct treatment they receive in the process of structural analysis. In 

the following sections it will be described the characteristics of the analysis models 

considered in LESM, which are the plane truss, plane frame and grillage models. 

 

Figure 2.1 Different types of linear element models (analysis models): plane truss, 

spatial truss, plane frame, spatial frame and grillage 
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2.2   General Considerations 

 In linear element models, an element can be rectilinear or curved, with 

constant or variable cross-section, and it is defined by two nodal points: initial node 

and final node. Nodes that allow relative rotation of elements connected to them are 

called hinged, while those that do not allow relative rotation are called rigid. The 

angle formed by elements interconnected by rigid nodes is the same before and after 

the structure deforms, which may require the action of a bending moment to preserve 

the original angle. In hinged nodes, the relative rotation between elements causes the 

angle in the deformed configuration to be different from the originally set in the 

undeformed configuration, and the bending moment at this point to be zero. In LESM, 

all models are composed by rectilinear elements with constant cross-section and fixed 

or hinged connections at their ends. 

 The models are considered to be laid in the XY plane and there are two 

coordinate systems to reference them: the global coordinate system, based on the 

global axes, and the local coordinate system, based on the local axes of elements. The 

global axes specify a direction or the coordinates of a point relative to a fixed 

reference. The local axes of an element, in the plane models of LESM, are defined 

uniquely for all types of models in the following manner: 

 The local axis Z of an element is always in the direction of the global axis Z, 

which is perpendicular to the plane of the model. 

 The local axis X of an element follows its longitudinal axis from the initial node 

to the final node. 

 The local axis Y of an element is perpendicular to the axis X in such a way that 

the cross-product results in a vector in the global Z direction. 



10 

 

 

Figure 2.2 Local axes convention of any element in LESM 

 The degrees of freedom of an element are the combination of the degrees of 

freedom of its initial and final nodes, which are the possible directions that a node can 

move in a certain analysis model. These directions are identified by numbers and 

include translations and rotations that can be expressed in the global or local system. 

The numbering order of the degrees of freedom of an element, in the local system, is 

presented in the next sections for each analysis model type. 

 In models discretized by nodal displacements, which is the case of the direct 

stiffness method, the deformed configuration of an element is based on the 

displacements of its initial and final nodes. A nodal displacement in this context is a 

movement component in the direction of an element degree of freedom. These 

displacements are assembled in vectors: 

 {d}  Vector of the nodal displacements of an element in the global system. 

 {d’}  Vector of the nodal displacements of an element in the local system. 

 The internal forces of an element are based on its generalized forces, which are 

loads and moments acting in the direction of an element degree of freedom to 

equilibrate it in a deformed configuration. These forces are also assembled in vectors: 

 {f}  Vector of the generalized forces of an element in the global system. 

 {f’}  Vector of the generalized forces of an element in the local system. 
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 It is often necessary to convert these displacements and forces vectors from 

one coordinate system to another, so that a rotation transformation matrix is required. 

This matrix is calculated from geometric relations using the inclination angle of the 

elements, and the result is an orthogonal matrix (its transpose is equal to its inverse) 

that is valid for any element inclination and any numbering order for the element end 

nodes. Each analysis model has a particular rotation transformation matrix, which are 

presented in the next sections. Equations 2.1 and 2.2 demonstrate how to convert the 

vector of nodal displacements from one coordinate system to another, where [R] is the 

element rotation transformation matrix. The conversion of the vectors of generalized 

forces is done exactly the same way. 

{d′} = [R]{d}                                                  (2.1) 

{d} = [R]{d′}                                                  (2.2) 

 There are four types of loads considered in LESM and it is assumed that there 

is a single load case. The load types are: 

 Concentrated nodal load in global axis directions. 

 Uniformly distributed load on elements, spanning its entire length, in local or in 

global system. 

 Linearly distributed load on elements, spanning its entire length, in local or in 

global system. 

 Uniform temperature variation on faces of elements, resulting on axial uniform 

temperature variation and uniform temperature gradient. 

 In addition, nodal prescribed displacements may be specified, always on 

global system. 
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2.3   Plane Truss 

A plane truss model is a common form of analysis model because of its simplicity. 

The following assumptions are adopted for this model type: 

 All of its elements and loads belong to the XY plane. 

 Truss elements are connected at their ends by frictionless pins (hinges). 

Therefore, a truss element does not present any secondary bending moment 

induced by rotation continuity at joints. 

 A truss model is loaded only at joints (nodal points or just nodes). Any load 

action along an element, such as self-weight, is statically transferred as 

concentrated forces to the element end nodes. 

 In LESM, this model accepts only loads (concentrated nodal loads or distributed 

loads on elements), not moments. The components of concentrated nodal loads 

are always specified in the global system, while the components of uniformly or 

linearly distributed loads on elements can be specified in the global or local 

systems. 

 Local bending of elements due to transversal loads is neglected, when compared 

to the effect of global load acting on the truss. 

 There is only one type of internal force in a plane truss element: axial internal 

force, which may be tension or compression. The convention for the positive 

orientation of internal forces in plane truss models is represented in Figure 2.3. 
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Figure 2.3 Positive orientations of internal forces in plane truss models 

 As truss elements have, by assumption, only axial behavior, the area of its 

cross-section is the single geometric parameter needed for the analysis. 

 Each node of a plane truss model has two degrees of freedom: horizontal and 

vertical translation components. The degrees of freedom numbering order 

considered in LESM for a truss element is shown in Figure 2.4 in the positive 

directions of the local system, where β is the element angle with the global X 

direction. 

 

Figure 2.4 Degrees of freedom numbering order of a plane truss element 

 The rotation transformation matrix of a plane truss element is: 

                                 (2.3) 
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 Supports of the first and second genders are considered i.e., total restriction of 

horizontal and/or vertical translation. 

 As there are no rotation restrictions on the supports, this model accepts only 

translational (horizontal or vertical) prescribed displacements in the direction of 

fixed degrees of freedom. 

 Considering the previous description of a truss analysis model, there are some 

rules that must be followed when conceiving this type of structural model, called the 

truss basic formation law, necessary for maintaining the stability of the model. It 

stablishes that if a new node is added to an isostatic plane truss, this node must be 

connected to two other nodes by inserting elements between them. This is required 

because a new node corresponds to the addition of two degrees of freedom, or two 

unknown variables on the system of equilibrium equations, and each element 

corresponds to the addition of a new equation to the system. The result of this is that 

the minimum unit to create a plane truss model is a triangle. Therefore, this model 

type is usually formed by a triangulation between its hinged elements. 

 Figure 2.5 exemplifies the conception of a possible structural model of a 

trussed bridge, for the analysis of the plane behavior of one side of the bridge. 

              

Figure 2.5 Structural model adopted to idealize the behavior of a trussed bridge 
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2.4   Plane Frame 

A frame model is made up of beams (horizontal and inclined elements) or columns 

(vertical elements). A continuous beam (an assemblage of connected beams) is 

considered as a frame model by LESM. The assumptions of a plane frame model are: 

 All of its elements and loads belong to the XY plane. 

 By assumption, there is only in-plane behavior, which means that there is no 

displacement transversal to the plane of the model. 

 Frame elements are usually rigidly connected at the joints. However, a frame 

element might have a hinge (rotation liberation) at an end or hinges at both 

ends. A frame element with hinges at both ends works like a truss element. 

 In LESM this model accepts concentrated nodal loads and moments, and 

distributed loads on elements. The components of concentrated nodal loads and 

moments are always specified in the global system, while the components of 

uniformly or linearly distributed loads on elements can be specified in the 

global or local systems. 

 Internal forces at any cross-section of a plane frame element are: axial force, 

shear force, and bending moment. The convention for the positive orientation of 

internal forces in plane frame models is represented in Figure 2.6. 

 

Figure 2.6 Positive orientations of internal forces in plane frame models 
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 The geometric parameters needed for the analysis of a plane frame model are 

the full area, the effective shear area, and the bending inertia of the cross-

sections. 

 Each node of a plane frame model has three degrees of freedom: horizontal and 

vertical translation components and in-plane rotation. The degrees of freedom 

numbering order considered in LESM for a plane frame element is shown in 

Figure 2.7 in the positive directions of the local system, where β is the element 

angle with the global X direction. 

 

Figure 2.7 Degrees of freedom numbering order of a plane frame element 

 The rotation transformation matrix of a plane frame element is: 

                        (2.4) 

 Supports of the first, second and third genders are considered i.e., total 

restriction of horizontal or vertical translation, and to node rotation. 

 This model accepts both translational (horizontal or vertical) and rotational 

prescribed displacements in the direction of fixed degrees of freedom. 
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 Plane frame models are normally used to analyze the behavior of three-

dimensional structures relative to a certain plane, assuming that the out-of-plane 

effects are not important for the results. Figure 2.8 exemplifies the conception of a 

possible model of a steel hangar, for the analysis of the plane behavior of one of the 

portal frames. 

             

Figure 2.8 Structural model adopted to idealize the behavior of a portal frame 

2.5   Grillage 

A Grillage model can be seen as a plane frame model with only out-of-plane 

behavior. Its key features are: 

 It is a two dimensional model with its elements and moment components in the 

XY plane, while the load components are in the global Z direction. 

 By assumption, there is only out-of-plane behavior, which includes translational 

displacements transversal to the plane of the model, and rotations about the X 

and Y axes. 

 Elements are laid out in a grid pattern in a single plane, rigidly connected at 

nodes. However, a grillage element might have a hinge (rotation liberation) at 

an end or hinges at both ends. In LESM, it is assumed that a hinged end releases 

the continuity of both bending and torsion rotations. 
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 In LESM, this model accepts concentrated nodal loads and moments, and 

distributed loads on elements. All load types are specified in the global system. 

 In LESM, it is assumed that temperature gradients on elements are relative only 

to the local axis Z, and the axial effects of temperature variation are disregarded. 

 Internal forces at any cross-section of a grillage element are: shear force, 

bending moment, and torsion moment. By assumption, there is no axial force in 

a grillage element. The convention for the positive orientation of internal forces 

in grillage models is represented in Figure 2.9. 

 

Figure 2.9 Positive orientations of internal forces in grillage models 

 The geometric parameters needed for the analysis of a grillage model are the 

effective shear area, the bending inertia, and the torsion inertia of the cross-

sections. 

 Each node of a grillage model has three degrees of freedom: translation in the 

global Z direction, and rotation components about the global X and Y axis. The 

degrees of freedom numbering order considered in LESM for a grillage element 

is shown in Figure 2.10 in the positive directions of the local system. 
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Figure 2.10 Degrees of freedom numbering order of a grillage element 

 The rotation transformation matrix of a grillage element is the same of a plane 

frame element, as previously shown in equation 2.4. 

 The considered types of support conditions are the total restriction of vertical 

translation, and rotations on both the global X and Y. In LESM, a rotation in a 

single direction cannot be released. 

 This model accepts both translational and rotational prescribed displacements in 

the directions of fixed degrees of freedom. 

 A grillage model is a common type of analysis model for building stories and 

bridge decks. Figure 2.11 exemplifies the conception of a grillage model to analyze 

the transversal behavior of beams. 

             

Figure 2.11 Structural model adopted to idealize the transversal behavior of beams 
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3   Mathematical Formulations for Linear Elements 

3.1   Overview 

The previous chapter presented the basic concepts of some types of linear element 

models and the considerations made to implement these analysis models in LESM. 

This chapter is dedicated to the explanation of the two theories considered in the 

program that are used to describe the flexural behavior of linear elements: Euler-

Bernoulli (or Navier) beam theory and Timoshenko beam theory. It also provides the 

mathematical expressions for describing the general behavior of linear elements 

subjected to axial, torsional and flexural effects. These expressions, which are based 

on the solid mechanics theories, are necessary for the implementation of the direct 

stiffness method and are given in a matrix form, the same way as they are stored in 

the code of the program. The deduction of the formulations presented in this chapter 

can be found in the book Análise Matricial de Estruturas: Aplicada a Modelos 

Lineares – Luiz Fernando Martha, 2016. 

3.2   Beam Theories  

 When considering a first-order analysis, assuming the hypothesis of small 

displacements, the responses of linear elements to the axial, torsional and flexural 

effects are independent, and the general behavior of the element is the combination of 

these responses. This means that the element behavior relative to each of these effects 

can be expressed by a different formulation. The mathematical idealization of linear 

elements subjected only to flexural effects (called beam elements) can be based on 

two distinct theories: Euler-Bernoulli beam theory (also called Navier beam theory) 

and Timoshenko beam theory. 
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 In Euler-Bernoulli beam theory, it is assumed that there is no shear 

deformation when an element bends. As a consequence, bending of a linear element is 

such that its cross-section remains plane and normal to the longitudinal axis of the 

element. In Timoshenko beam theory, shear deformation is considered in an 

approximated manner, so the bending of a linear element is such that its cross-section 

remains plane but it is not normal to the longitudinal axis of the element. 

 The influence of shear deformation is smaller the greater the length of the 

element. Because of this, the analysis results from the two beam theories are 

approximately the same for elements with its length much greater than its cross-

section dimensions, which is the case for most structural components. To show this, a 

dimensionless factor used in the formulation of Timoshenko beam theory is given in 

equation 3.1. This factor can be interpreted as a measure of the shear deformation 

relevance on the bending behavior of a beam element. In that equation, E and G are 

the material elasticity and shear modulus, I is the cross-section moment of inertia 

around the bending axis, As is the cross-section effective shear area obtained from the 

product of its full area with a shear shape factor, and L is the length of the element. 

This factor is inversely proportional to the square of the element length. Therefore, for 

slender elements its value is approximately zero, which is a consideration of Euler-

Bernoulli beam theory. 

                                                       (3.1) 

 Assuming a rectangular cross-section with a shear shape factor of 5/6 and a 

Poisson ratio of 0.3, the previous equation turns into equation 3.2, and the variation of 
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the Ω factor for different relations between the length of the element and its cross-

section height, h, is shown in Figure 3.1. 

                                                 (3.2) 

 

Figure 3.1 Influence of shear deformation according to the length of the elements 

 It can be seen that the effect of the shear deformation on the bending behavior 

of a beam element starts to be significant when the length is less than about twice the 

cross-section height, which means that the analysis results from the two theories start 

to diverge at this point. For a low L/h ratio, Timoshenko beam theory is more precise. 

Due to the fact that the computational effort for calculating the results by either theory 

is practically the same, despite the increased complexity of Timoshenko’s theory, 

many structural analysis programs use the Timoshenko beam as the default element 

type. 

 In LESM, both beam theories can be selected to be used in the analysis 

process of plane frame and grillage models, whose elements have bending behavior. 

In truss models, the two theories may be used indistinguishably, since there is no 

bending behavior of an element and Euler-Bernoulli beams and Timoshenko beams 

are equivalent for the axial behavior. 
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3.3   Stiffness Matrices 

The system of equilibrium equations of an element can be expressed in the matrix 

form of equation 3.3, where {f} is the vector of generalized forces, {d} is the vector 

of nodal displacements, and [k] is the element stiffness matrix. 

{f} = [k]{d}                                                 (3.3) 

 In the direct stiffness method this system is first formulated in the element 

local system, and then converted to the global system. The conversion of the vector of 

generalized forces and the vector of nodal displacements between the two reference 

systems was previously shown in equations 2.1 and 2.2. The conversion of the 

element stiffness matrix from the local to the global system is done by a triple matrix 

product as shown in equation 3.4, where [kel] is the element stiffness matrix in the 

local system and [keg] is the element stiffness matrix in the global system. 

       [keg] = [R]T[kel][R]                                          (3.4) 

 The stiffness matrices of linear elements are symmetrical square matrices with 

the dimension equivalent to the number of degrees of freedom of the element: four for 

plane truss elements and six for plane frame and grillage elements. These matrices are 

assembled with the elements stiffness coefficients: 

k(i,j)  Element stiffness coefficient: Forces that must act in the direction of the 

degree of freedom i to maintain the equilibrium of an isolated element when a single 

and unitary nodal displacement, dj, is imposed in the direction of the degree of 

freedom j. 
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 The value of these coefficients in the local system is presented in appendix A 

(Local Stiffness Coefficients of Linear Elements) in the form of decoupled matrices 

for each effect: axial stiffness coefficients, [kea], torsional stiffness coefficients, [ket], 

and flexural stiffness coefficients, [kef]. In flexural behavior, the bending can occur in 

the XY plane (plane frame models) or XZ plane (grillage models), and the flexural 

stiffness coefficients must follow the positive convention of the degrees of freedom of 

the corresponding model type, established in Figures 2.7 and 2.10. 

 The stiffness matrices of the elements of plane truss, plane frame and grillage 

models are presented in equations 3.5 to 3.7, respectively, in the local system. 

Because of the independent behavior to the effects in different directions, these 

matrices can be assembled using the decoupled stiffness coefficients matrices, 

resulting in null coefficients in some positions of the element stiffness matrix. 

                                    (3.5) 

     (3.6) 

     (3.7) 
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3.4   Fixed End Forces 

Fixed end forces are the support reactions of isolated elements subjected to external 

solicitations. In the direct stiffness method these reactions correspond to the 

equivalent nodal loads, coming from internal loads or temperature variation of 

elements, in the opposite direction. 

 In LESM, the formulations for fixed end forces consider a linearly distributed 

load with axial and transversal components, which is the most general case for a 

distributed load solicitation. It also considers a uniform temperature variation along 

the superior and inferior faces of the elements, which can lead to an axial temperature 

variation and a temperature gradient. 

 The value of the fixed end forces for each element continuity condition, in the 

local system, is presented in appendix B (Fixed End Forces for Linearly Distributed 

Load) and C (Fixed End Forces for Temperature Variation). These values, just like 

the stiffness coefficients values, are given in the form of decoupled vectors for each 

individual effect: axial fixed end forces, [fea], and flexural fixed end forces, [fef]. 

There is no torsional reaction because distributed torsion moments are not supported 

by the program. The flexural behavior distinguishes the bending in the XY plane 

(plane frame models) of the XZ plane (grillage models). The reactions obey the 

positive convention of the degrees of freedom of the corresponding model type, 

established in Figures 2.7 and 2.10. 

 The vectors with fixed end forces values are shown in equations 3.8 to 3.10 for 

elements of plane truss, plane frame and grillage models respectively. These vectors 

are assembled using the decoupled fixed end forces vectors for each effect, where: 
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fel(i)  Element local fixed end force: Support reaction of an element, subjected to 

an internal solicitation, in the direction of the degree of freedom i in the local system. 

                                               (3.8) 

                                               (3.9) 

                                             (3.10) 

 Eventually these vectors must be converted to the global system. This is done 

by using the element rotation transformation matrix as shown in equation 3.11, where 

[fel] is the fixed end forces vector in the local system and [feg] is the fixed end forces 

vector in the global system. 

                                         (3.11) 
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3.5   Shape Functions 

Shape functions describe the deformed configuration of an element subjected to a 

single and unitary nodal displacement by giving the axial and transversal 

displacements along its longitudinal axis. These functions are not used in the direct 

stiffness method, but they are necessary to graphically represent the deformed 

configuration of plane frame and grillage models. Plane truss models do not make use 

of shape functions because in this case the elements always remain straight, so the 

deformed configuration can be obtained only by the coordinates of the displaced 

nodes. 

Ni(x)  Element shape function: Function that describes the deformed configuration 

of an isolated element when a single and unitary nodal displacement di is imposed in 

the direction of the degree of freedom i. 

 With shape functions, the deformed configuration of an isolated element can 

be described by an interpolation of its initial and final nodes displacements. Equations 

3.12 and 3.13 give the axial, u(x), and transversal, v(x), displacements of an element 

in terms of its shape functions and nodal displacements. 

                                     (3.12) 

                   (3.13) 

 These equations can be expressed in a matrix form, as equations 3.14 and 3.15, 

where [N] is the shape functions matrix. 
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            (3.14) 

                                               (3.15) 

 The expressions for the shape functions are presented in appendix D (Shape 

Functions) for each element end continuity condition. 

3.6   Internal Displacements in Loaded Elements 

In plane frame and grillage models, the deformed configuration of an element 

considers not only the displacements of the end nodes, but also the internal 

displacements caused by distributed loads and temperature variation. The expressions 

that describe the axial and transversal displacement components from these two 

effects are given in Appendix E (Internal Displacement from Linearly Distributed 

Load) and Appendix F (Internal Displacement from Temperature Variation). To 

determine the total displacement at any cross-section of an element, these expressions 

are then added to the ones that provide the internal displacements in terms of shape 

functions and nodal displacements. 
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4   Computational Implementation 

4.1   Overview 

Structural analysis methods can be divided into two groups: classic methods and 

matrix methods. The second is more appropriate for computational implementation 

because the emphasis is in the generalization and, as operating with matrices in high 

level computer languages is very simple, it allows the automation of the process. The 

purpose of the previous chapter in assembling all coefficients and equations in 

matrices and vectors is to make them usable by the direct stiffness method. 

This matrix-based method is implemented in LESM and many commercial programs 

for calculating element forces and displacements in structures using stiffness 

relations.  

 Developing a structural analysis program to assist the work of professionals 

requires more than just implementing the code for calculating analysis results. This 

chapter focuses on explaining some concepts of computer science that were used in 

the development of all the processing stages of LESM, and could be used for 

developing any other structural analysis program. 

4.2   Implementation stages of a typical graphic program of structural analysis 

The step of calculating the analysis results, given all the required information about 

the structural model, is called data processing. This procedure is nothing more than a 

series of instructions (algorithm) written in a particular programming language (code) 

to make it possible the interpretation of the input data and the calculation of the 

results, through an input/output (I/O) operation. When developing a computer 

program for users, it becomes an application, and a few more procedures are required 
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to make the program usable and provide an interactive experience to users: the data 

pre-processing, the data post-processing, and the development of a Graphical User 

Interface (GUI). 

 The pre-processing stage consists in providing input data with the model 

information and preparing it to be used in the data processing stage. This data 

provision can be done through the process of modeling or loading an input file. 

Modelling allows users to build a structural model by gradually providing information 

about materials, cross-sections, nodes, elements, support conditions, etc. An input file 

contains the full description of a model in a format that the program can read and 

interpret. 

 The post-processing stage is responsible for making the output data from the 

analysis process available to users by printing or graphically displaying them on the 

screen of the computer. In the case of a structural analysis program, the visible results 

are internal forces diagrams and deformed configurations. This stage is crucial to 

make the data output easily interpretable to users, letting them see these results and 

control the visualization. 

 In order to implement the pre-processing and the post-processing stages of a 

program, a GUI must be developed to allow users to interact with the code through 

mouse control, keyboard entry, and graphical components such as push-buttons, 

checkboxes, sliders, etc. The development of programs with an interactive graphical 

interface requires two basic tools: a Graphic System and a User Interface System. The 

first has the function to generate images in windows managed by the second. That is, 

the interface system is responsible for the architecture and behavior of the GUI by 

managing components like windows, buttons and menus, while the graphic system is 
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responsible for drawing geometric primitives like points, lines and shapes to represent 

the structural model in an interface component called canvas. 

 

Figure 4.1 Flowchart of the operating stages of LESM 
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4.3   The Use of MATLAB to Develop a Graphic Program 

MATLAB (short for Matrix Laboratory) is a powerful software package consisting in 

an interactive development environment that has built-in functions and tools to 

accomplish a diverse range of tasks such as mathematical operations, programming, 

and graphical illustrations that can be used to develop applications efficiently. This 

section will present the main characteristics of MATLAB and the reasons why it was 

chosen to develop LESM. 

 The great differential of MATLAB is that it works only with matrices, so even 

a scalar value is stored in a 1x1 matrix variable. Because of this, there are many 

operations and functions that can be performed on entire vectors and matrices without 

running a loop, as if they were simple numeric variables. Also, the type of the 

variables does not need to be specified. These aspects simplify the code, make it much 

cleaner and understandable, and it is a great advantage when writing a program that 

makes use of several matrix operations, such as the algorithm to implement the direct 

stiffness method, especially when the focus of the code is to have a didactic approach. 

 Besides the facilities with mathematical operations, MATLAB is also a high 

level programming language. This means that it aims to provide a higher level of 

abstraction of the internal computer hardware details, making its commands to be 

very similar to human writing. The computer, however, can only interpret commands 

written in machine language, so the code must be translated before the computer can 

actually execute the sequence of instructions in the program. In MATLAB this 

translation is done by an interpreter that goes through the code, line-by-line, 

translating and executing each command. 
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 MATLAB is a multi-paradigm programming language, that is, a programming 

language that supports more than one programming paradigm, such as the object-

oriented and the event-driven, both used in different development stages of LESM 

and described in the following sections. 

 In addition to a clear code, it is very important that all files are well 

documented, so people can easily understand what each step does when analyzing the 

code. A common way to document the code is to include comments and, in the case of 

MATLAB, it is also possible to publish the files. The publish command creates a 

readable, organized and formatted document that includes codes, comments, and data 

output. It is a very useful tool for sharing the code as it can be converted to different 

document formats. The link to the html publication of the processing stage of LESM 

is given in section 1.2 (Objectives). 

 The implementation of the post-processing stage and the generation of graphic 

results are also of a great simplicity when using MATLAB. Its graphic system has 

many graphing capabilities, including 2D and 3D plotting functions whose use is 

facilitated by the possibility of passing vectors and matrices as parameters. Functions 

to control the camera and the model visualization do not need to be implemented, 

since MATLAB already include toolbars that allow this task. 

 Finally, there are two ways to develop a GUI in MATLAB: programmatically 

or using the Graphical User Interface Development Environment (GUIDE). The latter 

was chosen to develop an interface for LESM and it is based on the event-driven 

programming paradigm. The object-oriented programming paradigm is used in the 

code of the processing stage and implicitly used in the post-processing stage because 

graphic objects are created when a plotting function is called. 
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4.4   Object-Oriented Programming Paradigm 

Differently from the procedural programming paradigm, which consists in a list of 

instructions with no association between functions and the operated data, the object-

oriented programming (OOP) paradigm is based on classes equipped with data fields 

(properties) and associated functions (methods). The most important distinction is that 

procedural programming uses procedures to operate on data structures, whereas the 

OOP paradigm bundles the two together, increasing code understanding and 

facilitating its maintenance and expansion. This would allow the extension of LESM 

data processing to support spatial analysis models, for example, with greater 

simplicity. 

 In the OOP paradigm, a class is a template for defining properties and 

methods, as well as default values and behavior. Instances of a class, also called 

objects, can be created by setting the properties values. Each object has its behavior 

controlled by the methods defined by its class. 

 A class definition consists in two main blocks, one with the definition and 

initialization of the properties, and the other with the implementation or declaration of 

the methods. There are two methods that should always be implemented in a class 

definition, the constructor method and the destructor method. The first must have the 

same name of the class and it is required to create objects of that class with prescribed 

values for their properties. The destructor method is used to clean the objects by 

resenting their properties values. 

 

 



35 

 

 The basic characteristics of the OOP paradigm are: 

 Inheritance: This mechanism allows one class to be derived from another, so 

that the initial class is called superclass and the derived class is called subclass. 

The subclass is a new class that implements the methods declared in its 

superclass. This technique is indicated when the same procedures are being used 

several times. 

 Abstraction: An abstract class cannot be instantiated and it is usually a 

superclass that declares the methods that must be implemented in its subclasses. 

These methods declared in the superclass and implemented in the subclasses are 

called abstract methods. When the implementation of a method is independent 

of the subclass, it can be done in the superclass. 

 Polymorphism: This concept, used by abstract classes, allows methods of two or 

more subclasses, derived from the same superclass, to have the same name but 

different implementation. With this mechanism, the same method can be 

implemented in different subclasses and the superclass knows which one to call 

depending on the subclass of the object. 

 Encapsulation: This concept is related to data protection, keeping it safe from 

outside interference and misuse. This occurs when a class does not allow the 

code to access the internal data of its objects or when this access is given only 

through specific methods. This mechanism of the OOP paradigm makes it a 

better and safer alternative than procedural programming, but it assumes that 

users should only need to know the functionality of methods, not how it is 

implemented. In LESM, however, the goal is to preserve the simplicity of the 

code, so the access to the methods and properties of the objects is not restricted. 
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 Attributes are a group of characteristics inherent to a class, method or property 

that can be set to modify their behavior. When an attribute need to be different from 

the default setting, it must be specified in the beginning of the class definition, or in 

the beginning of the properties or methods blocks. To give different attributes to 

properties or methods it is necessary to split them into blocks with the same attribute 

setting. Attributes of classes, properties and methods are not inherited, so the settings 

of a superclass do not affect its subclasses. 

 The access to properties and methods of a class can be controlled by setting 

their accessibility attribute, which is used to apply the concept of encapsulation. This 

attribute can be set to three options: public (access is possible from anywhere), private 

(access is possible only in the respective class), protected (access is possible only in 

the respective class or subclass). In LESM the accessibility attribute of all properties 

and methods is set to public. Another method attribute that is commonly set is the 

definition of an abstract method or a static method. The first is used to declare 

methods of an abstract class and the second specifies methods that do not depend on 

any object. 

 Allowing the free manipulation of data in LESM makes methods able to call 

properties and other methods by using the dot operator and the name of the object as 

prefix. To access a property or a method of its own object the keyword obj is used as 

prefix. Another way to make these calls is using the set and get methods that are 

implicitly called when a reference to a property or method is made using the dot 

operator. The set and get methods are implemented in LESM by deriving the created 

classes from built-in handle classes. 
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 There are two types of classes in MATLAB: value classes and handles classes. 

The first is the default type and its objects are associated with the variable to which it 

is assigned. If this variable is reassigned, an independent copy of the original object is 

created, so that any change to this copy does not affect the original object. If a 

variable containing an object of a value class is passed to a function for the purpose of 

modifying it, this function must return the modified object as an output argument. 

 Handle classes, on the other hand, originate handle objects. When these 

objects are assigned to variables or passed to a function, their data is not copied; 

instead, a reference is created. Therefore, it is possible to assign a handle object to 

multiple variables, pass it to functions without making a copy of the original object, 

and it is not needed that functions return modified objects. Handle classes allow more 

complex interactions among objects because they can reference each other, and they 

are also used to create graphic objects and figure windows in MATLAB, since each 

visual element is a handle object. All handle classes must be derived from a built-in 

abstract handle class of MATLAB. 

 In LESM, all classes are handle classes derived from the MATLAB built-in 

abstract class matlab.mixinSetGet. This built-in class derives handle classes that 

inherit the set and get methods, responsible for assigning or returning values from a 

specific property. These methods are called when a property is referenced using the 

dot operator and they must be an implemented for each property of a class. 
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4.5   Event-Driven Programming Paradigm 

The event-driven programming paradigm works with the idea that actions are 

triggered by events, so the program is designed to react. These events can be mouse 

clicks, key presses, a selection on a drop-down list, an entry into a text box, etc. They 

determine the flow of the program by calling specific functions, called callback 

functions, with the code implementation responsible for executing the action related to 

a specific event. 

 This programming paradigm is largely used in the development of graphical 

interfaces, since the code that manages the interface behavior is supposed to perform 

certain procedures in response to user actions. The interface of LESM was created 

using the Graphical User Interface Development Environment (GUIDE), a tool that is 

a drag-and-drop environment for laying out user interfaces that can display any type 

of MATLAB plot and contains various interactive components, including push-

buttons, menus, tool bars, tables, etc. MATLAB automatically generates a structured 

file with the callback functions related to the actions that can be executed in each of 

the components added to the interface layout. 
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5   The Development of LESM 

5.1   Overview 

The previous chapters presented some concepts of structure analysis and computer 

science required to understand the implementation of a structural analysis program, 

including comments of how these concepts are considered and implemented in 

LESM. This chapter combines these two areas and describes the development of the 

operating stages and the interface of the program. It also gives a complete description 

of all class created with the OOP paradigm. 

5.2   The Classes of LESM 

The program is divided in nine classes, seven of them are related to the processing 

stage, to create a structural model and calculate the analysis results. The other two are 

associated with the post-processing stage, to draw or print these results on the screen 

of the computer. 

 As mentioned in chapter 4 (Computational Implementation), the accessibility 

attribute of all properties and methods in LESM are set to public, so that objects can 

easily interact with each other and the code becomes cleaner and simpler to 

understand. This enables the properties of all objects to be accessed and modified by 

methods of any object or functions of any file. The call of a property or method can be 

done with the dot operator, which implicitly calls the set or get methods, inherited 

from a built-in class in MATLAB responsible for deriving handle classes. By making 

the classes of the program as handle classes, it is possible to reference objects instead 

of creating copies to be passed between methods and functions. 
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 The flowchart in Figure 5.1 illustrates the interaction between all implemented 

classes. Each box represents an object of a class without distinguishing if it is a 

superclass or a subclass. The arrows indicate the handle properties of these objects 

i.e., if an object of class “A” points to an object of class “B”, it means that the first has 

a property that is a handle to the second. For example, if an object of the Draw class 

needs to access the initial and final nodal coordinates of a specific element, it has to 

make a reference chaining with objects of the Drv, Elem and Node classes, to access 

the property of the node object that gives its coordinates. 

 The blue color is associated with objects related to the processing stage, while 

the red color is for objects used in the post-processing stage. 

 

Figure 5.1 Flowchart of the classes of LESM 

 In the following sections it will be described the characteristics of each class, 

together with a table containing the name and a short explanation of all its properties 

and methods. The set, get, constructor and clean methods are not included because 

they have the same functionality in all classes and were previously explained. 
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5.2.1   The Drv (Driver) Class 

This class is the one that drives the analysis process. Its properties store the general 

information about the structural model and its methods are functions that correspond 

to the main steps of the direct stiffness method. Since all data of a model can be 

accessed using the properties of an object of the Drv class, only one object of this 

class is created during the processing stage. 

Drv Class 

Properties Description 

anm Handle to an object of the Anm class 

materials Vector of handles to objects of the Material class 

sections Vector of handles to objects of the Section class 

nodes Vector of handles to objects of the Node class 

elems Vector of handles to objects of the Elem class 

K Global stiffness matrix 

F Global  forces vector 

D Global displacements vector 

ID Degree of freedom numbering matrix 

nmat Number of materials 

nsec Number os cross-sections 

nnp Number of nodal points 

nel Number of elements 

neq Number of equations 

neqfree Number of equations of free degrees of freedom 

neqfixed Number of equations of fixed degrees of freedom 

Static Methods Description 

openFile Opens input file 

Public Methods Description 

fictRotConstraint Inserts or removes a fictitious rotation constraint on nodes 

dimKFD Dimensions the global stiffness matrix, forces vector and displacements vector 

assembleDOFNum Assembles the degree of freedom numbering matrix 

assembleGle Assembles the gather vector of an element (stores element d.o.f. numbers) 

gblMtx Assembles the global stiffness matrix 

assembleElemMtx Assembles the stiffness matrix of an element to the global stiffness matrix 

elemLoads Adds the equivalent nodal loads of an element to the global forces vector 

assembleENL Assembles the equivalent nodal load vector of an element to the global forces vector 

solveEqnSystem Partitions and solves the system of equations 

elemIntForce Computes internal forces of each element 

process Processes current model data according to the direct stiffness method 

Figure 5.2 Properties and methods of the Drv class 
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5.2.2   The Anm (Analysis Model) Class 

The Anm class is an abstract superclass that declares abstract methods in which the 

implementation depends on the analysis model. The implementation of these abstract 

methods is done in the subclasses, each one considering the specific behavior of the 

corresponding analysis model. The behavior of the three analysis models supported by 

LESM was explained in chapter 2 (Linear Element Models). The subclasses derived 

from this superclass are: Anm_Truss2D, Anm_frame2D and Anm_Grillage. 

 As the value of the properties is always the same for objects of the same Anm 

subclass, the use of this class is based on its methods. For this reason, only one object 

is created in the processing stage, which is used to call its methods. 

Anm Class 

Properties Description 

analysis_type Type of analysis model 

ndof Number of degrees of freedom per node 

Abstract Methods Description 

gblToLocElemRotMtx Assembles the rotation transformation matrix 

setupDOFNum Sets up the degree of freedom numbering matrix 

setupPrescDispl Stores prescribed displacements in the global displacements vector 

elemLocStiffMtx Assembles the stiffness matrix of an element 

nodalLoads Adds nodal load components to the global forces vector 

elemLocUniformLoadFEF Assembles the fixed end force vector of an element for a uniformely distributed load 

elemLocLinearLoadFEF Assembles the fixed end force vector of an element for a linearly distributed load 

elemLocThermalLoadFEF Assembles the fixed end force vector of an element for thermal expansion 

initIntForce Initializes the internal forces vectors of an element with null values 

assembleIntForce Assembles the internal forces vectors of an element 

Figure 5.3 Properties and methods of the Anm class 

5.2.3   The Elem (Element) Class 

This is an abstract superclass that generically defines a linear element object. It 

specifies the properties of an element, implements methods related to the generic 

behavior of linear elements, and declares methods that depend on the element type. 
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 The properties of this superclass consider a three-dimensional behavior of an 

element in its local axes system. An object of the Anm class is responsible to "project" 

this general three-dimensional behavior to a specific model behavior. Therefore, one 

of the properties of an object of the Elem class is a handle to a target Anm object. 

 As explained in section 3.2 (Beam Theories), linear elements can be divided 

into two types according to the theory considered for the flexural behavior. The 

generic behavior of linear elements considers everything that does not depend on 

bending, which are the axial and torsional effects. Therefore, derived subclasses 

should implement abstract methods that deal with flexural behavior, whereas methods 

related to general behavior of elements are implemented in the superclass itself. The 

subclasses derived from this superclass are: 

 Elem_Navier: This subclass deals with Navier (Euler-Bernoulli) flexural 

behavior of linear elements. In Euler-Bernoulli flexural behavior, it is assumed 

that there is no shear deformation. As a consequence, bending of a linear 

element is such that its cross-section remains plane and normal to the element 

longitudinal axis. 

 Elem_Timoshenko: This subclass deals with Timoshenko flexural behavior of 

linear elements. In Timoshenko flexural behavior, shear deformation is 

considered in an approximated manner. Bending of a linear element is such that 

its cross-section remains plane but it is not normal to the element longitudinal 

axis. 

 Because elements are considered to be three-dimensional, each abstract 

method that deals with flexural behavior has two implementations, one considering 

the bending in the local plane XY (plane truss and plane frame models) and the other 
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considering the bending in the local plane XZ (grillage models). The differences 

between these implementations are in the distinct degrees of freedom involved in each 

analysis model and the cross-section properties that are used. 

 This superclass does not deal with properties and methods that are related to 

element loads. Therefore, one of the properties of an object of the Elem class is a 

handle to an object of the Lelem class that contains all the information about the loads 

acting on the element. 

Elem Class 
Properties Description 

nen Number of nodes (always 2) 

anm Handle to the object of the Anm class 

type Element type (Euller-Benoulli or Timoshenko) 

material Handle to an object of the Material class 

section Handle to an object of the Section class 

nodei Handle to an object of the Node class corresponding to the initial node 

nodef Handle to an object of the Node class corresponding to the final node 

hingei Flag for hinge at initial node 

hingef Flag for hinge at final node 

length Length value 

cosine_X Orientation cosine with global axis X 

cosine_Y Orientation cosine with global axis Y 

cosine_Z Orientation cosine with global axis Z 

rot Rotation transformation matrix 

gle Gather vector (stores element d.o.f. numbers) 

load Handle to an object of the Lelem class 

axial_force Vector of axial internal forces at element ends 

shear_force_Y Vector of shear forces at element ends relative to local axis y 

shear_force_Z Vector of shear forces at element ends relative to local axis z 

bending_moment_Y Vector of bending moments at element ends relative to local axis y 

bending_moment_Z Vector of bending moments at element ends relative to local axis z 

torsion_moment Vector of torsion moments at element ends 

Abstract Methods Description 

flexuralStiffCoeff_XY Generates the flexural stiffness coefficient matrix relative to local plane XY 

flexuralStiffCoeff_XZ Generates the flexural stiffness coefficient matrix relative to local plane XZ 

shapeFunctionMtx_XY Generates the shape functions matrix relative to local plane XY 

shapeFunctionMtx_XZ Generates the shape functions matrix relative to local plane XZ 

Public Methods Description 

gblStiffMtx Generates the stiffness matrix in the global system 

axialStiffCoeff Generates the axial stiffness coefficient matrix 

torsionStiffCoeff Generates the torsion stiffness coefficient matrix 

gblAnlIntForce Gets the internal force vector caused by end nodes displacements 

Figure 5.4 Properties and methods of the Elem class 
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5.2.4   The Lelem (Load Element) Class 

The Lelem class is an abstract superclass that specifies the load components of a linear 

element object, implements methods related to the generic behavior of linear 

elements, and declares methods that depend on the element type. The generic 

behavior of linear elements and the element types were briefly explained in the 

previous section. This class considers load components that act in three dimensions. 

 Differently from the Elem class, where methods are functions that depend on 

the physical and geometric properties of elements, the methods of this class are those 

that make use of load information, such as the calculation of fixed end forces (FEF), 

equivalent nodal loads (ENL) and internal displacements. To access the information 

about the element where these loads are applied, an object of the Lelem class must 

have a property that is a handle to the associated element object. 

 Just like in the Elem class, subclasses of the Lelem superclass are responsible 

for the implementation of the abstract methods that deal with flexural behavior. These 

subclasses are: Lelem_Navier and Lelem_Timoshenko. Each abstract method is 

implemented considering both the bending in the local plane XY (plane truss and 

plane frame models) and the bending in the local plane XZ (grillage models) because 

of the distinct load components and cross-section properties used in each case. 
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Lelem Class 

Properties Description 

elem Handle to an object of the Elem class 

unifDir Flag for the uniform load direction (local or global system) 

uniformGbl Vector of uniformly distributed load components in global system 

uniformLcl Vector of uniformly distributed load components in local system 

linDir Flag for the linear load direction (local or global system) 

linearGbl Vector of linearly distributed load components in global system 

linearLcl Vector of linearly distributed load components in local system 

tempVar_X Temperature variation in the center of gravity 

tempVar_Y Temperature gradient relative to local axis Y 

tempVar_Z Temperature gradient relative to local axis Z 

Abstract Methods Description 

flexuralLinearLoadFEF_XY Generates the flexural FEF vector for a linearly distributed load in local plane XY 

flexuralLinearLoadFEF_XZ Generates the flexural FEF vector for a linearly distributed load in local plane XZ 

flexuralThermalLoadFEF_XY Generates the flexural FEF vector for a temperature variation in local plane XY 

flexuralThermalLoadFEF_XZ Generates the flexural FEF vector for a temperature variation in local plane XZ 

locDisplLinearLoad_XY Generates the internal displacements vector for a linearly distributed load in local plane XY 

locDisplLinearLoad_XZ Generates the internal displacements vector for a linearly distributed load in local plane XZ 

locDisplTempVar_XY Generates the internal displacements vector for a temperature variation in local plane XY 

locDisplTempVar_XZ Generates the internal displacements vector for a temperature variation in local plane XZ 

Public Methods Description 

axialLinearLoadFEF Generates the axial FEF vector for a linearly distributed load 

axialThermalLoadFEF Generates the axial FEF vector for a temperature variation 

simplySuppLinearLoadFEF Generates the transversal FEF vector for a linearly distributed load (simply support at both ends) 

gblUniformLoadENL Generates the equivalent nodal load vector for a uniformly distributed load 

gblLinearLoadENL Generates the equivalent nodal load vector for a linearly distributed load 

gblThermalLoadENL Generates the equivalent nodal load vector for a temperature variation 

Figure 5.5 Properties and methods of the Lelem class 

5.2.5   The Node Class 

The Node class specifies the properties of nodal points considering a three-

dimensional space. An object of this class has three coordinates and six degrees of 

freedom. The vectors of essential boundary conditions, prescribed displacements and 

nodal loads have six positions, each one associated with the degree of freedom of the 

same number. Even though a value is assigned to all positions of these vectors, only 

the values associated with the degrees of freedom of the respective analysis model are 

used. 
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Node Class 

Properties Description 

id Identification number 

coord_X Coordinate on global axis X 

coord_Y Coordinate on global axis Y 

coord_Z Coordinate on global axis Z 

ebc Vector of essential boundary conditions flags 

prescDispl Vector of prescribed displacements values 

nodalLoad Vector of nodal loads components 

Public Methods Description 

elemsIncidence Counts total number of elements connected to a node 

Figure 5.6 Properties and methods of the Node class 

5.2.6   The Material Class 

The Material class specifies the properties of a homogeneous and isotropic material. 

This class has no method other than those implemented in all classes. 

Material Class 

Properties Description 

id Identification number 

elasticity Elasticity modulus 

poisson Poisson ratio 

shear Shear modulus 

thermexp Thermal expansion coefficient 

Figure 5.7 Properties and methods of the Material class 

5.2.7   The Section Class 

This class defines a three-dimensional generic cross-section by specifying all its 

properties, even though some of them are not used depending on the analysis model. 

This class also does not have any implemented method besides those required 

methods. 
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Section Class 

Properties Description 

id Identification number 

area_X Area relative to local axis X (full area) 

area_Y Area relative to local axis Y (effective shear area) 

area_Z Area relative to local axis Z (effective shear area) 

inertia_X Moment of inertia relative to local axis X (torsion inertia) 

inertia_Y Moment of inertia relative to local axis Y(bending inertia) 

inertia_Z Moment of inertia relative to local axis Z (bending inertia) 

cw Warping torsional constant 

height_Y Height relative to local axis Y 

height_Z Height relative to local axis Z 

Figure 5.8 Properties and methods of the Section class 

5.2.8   The Draw Class 

This class is an abstract superclass that defines an object for drawing graphic entities, 

implements static methods for plotting geometric figures, and declares abstract 

methods whose implementation depends on the analysis model. The derived classes 

that implement these abstract methods are: Draw_Truss2D, Draw_Frame2D and 

Draw_Grillage. 

 Only one object of this class is created for the post-processing stage and its 

methods are used to display the structural model and the analysis results on the 

screen, as well as set some visualization parameters. For this reason, this object needs 

to have a property that is a handle to an object of the Drv class that contains all the 

information about the model and the results. 

 The static methods were implemented to generalize the code for plotting 

geometric figures that are commonly used for drawing the model and the results. 

Calling these methods, instead of writing the code for plotting the same shapes 

multiple times, simplifies the implementation of the abstract methods. 
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Draw Class 

Properties Description 

drv Handle to an object of the Drv class 

size Drawing size parameter 

az Canvas viewpoint azimuth 

elev Canvas viewpoint elevation 

Static Methods Description 

circle Plots a circle with defined position, size and color 

sphere Plots a sphere with defined position and size 

square Plots a square with defined position, size and color 

cube Plots a cube with defined position, size and color 

triangle Plots a triangle with defined position, size, orientation and color 

pyramid Plots a pyramid with defined position, size, orientation and color 

arrow2D Plots a plane arrow with defined position, size, orientation and color 

arrow3D Plots a spatial arrow with defined position, size, orientation and color 

moment2D Plots a plane moment symbol with defined position, size, orientation and color 

moment3D Plots a spatial moment symbol with defined position, size, orientation and color 

Abstract Methods Description 

setSize Sets viewpoint position and drawing size parameter 

setLimits Sets axes limits 

scaleFactor Sets scale factor value 

model Draws structural model (only with nodes, supports and elements) 

elements Draws elements with hinged or continuous ends 

nodes Draws nodal points with support conditions 

elemLoads Draws distributed loads (uniform and linear) 

nodalLoads Draws applied nodal loads and moments 

nodalPrescDispl Draws indication of nodal prescribed displacements 

thermalLoads Draws thermic variation representation 

nodeID Plots identification number of nodes 

elementID Plots identification number of elements 

elementOrientation Draws indication of elements orientation 

deformConfig Draws the structure deformed configuration 

axialForce Draws the resulting axial force diagram 

shearForce Draws the resulting shear force diagram 

bendingMoment Draws the resulting bending moment diagram 

torsionMoment Draws the resulting torsion moment diagram 

reactions Draws indication of support reactions 

Figure 5.9 Properties and methods of the Draw class 

5.2.9   The Print Class 

The Print class is an abstract superclass similar to the Draw class in terms of use and 

applicability that instead of defining an object for drawing graphic entities, it defines 

an object for printing the information about the model and the results in a textual 

output file during the post-processing stage. This class implements public methods 
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and declares abstract methods for printing text information that depends on the 

analysis model. The subclasses derived from this superclass are: Print_Truss2D, 

Print_Frame2D and Print_Grillage. 

 A single object of this class is created to allow the use of its methods. One of 

the properties of this object is a handle to an object of the Drv class that contains all 

the information about the model and the results. 

Print Class 

Properties Description 

drv Handle to an object of the Drv class 

txt Identifier of the output file 

Abstract Methods Description 

results Prints analyis results 

analysisLabel Prints the analysis model type 

nodalSupport Prints information about support conditions 

nodalPrescDisp Prints information about prescribed displacements 

nodalLoads Prints information about nodal loads 

elements Prints information about elements 

unifElementLoads Prints information about uniform loads 

linearElementLoads Prints information about linear loads 

temperatureVariation Prints information about temperature variation 

nodalDisplRot Prints results of nodal displacement/rotation 

reactions Prints results of support reactions 

intForces Prints results of internal forces at element nodes 

Public Methods Description 

header Prints analysis results header 

modelDescrip Prints global description of model 

material Prints information about material properties 

nodalCoords Prints information about nodal coordinates 

Figure 5.10 Properties and methods of the Print class 

5.3   The Graphical User Interface 

The user intarface of LESM is composed by a main window, where it is possible to 

create, view and analyze a model, and a set of auxiliary windows for getting the input 

data necessary to add or remove components from the model. The main window is a 

resizeble window designed to fit on screen resolutions of 1280 x 800 or more, and the 
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auxiliary windows are modal and non-resizeble. Each of these windows is an 

independent figure, created using the Graphical User Interface Development 

Environment (GUIDE) tool. This tool automatically generates a file with the code that 

controls the behavior of each window following the event-driven programming 

paradigm as described in section 4.5 (Event-Driven Programming Paradigm). The 

data transmission between these files is done by storing or getting the data from the 

root of the directory using the setappdata and getappdata commands. 

 The main window of the graphical interface of LESM is composed by five 

panels, a toolbar, a canvas and a button to run the analysis process. Figure 5.11 shows 

the initial configuration of this window. 

 

Figure 5.11 Main window of the graphical user interface of LESM 
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 The canvas is an interface component that defines the area where the graphic 

system can draw geometric primitives (points, lines, shapes, etc.) to represent the 

structural model and the analysis results. In LESM, just like in any other MATLAB 

graphic application, this area is an axes system with three dimensions. The functions 

to control its visualization, such as zoom, pam, projection type, and camera 

movements, are automatically implemented. 

 There are three built-in toolbars that can be added to the main window: Figure 

Toolbar, Camera Toolbar, and Plot & Edit Toolbar. The Figure Toolbar is the only 

one available when the program starts and it has some basic options of visualization. 

The Camera Toolbar has more advanced functions of visualization and camera 

control. The Plot & Edit Toolbar can be used to mannually insert texts, lines and 

shapes to the window. 

 The buttons to select file-related options are in the “Options” panel. Selecting 

“New” will display a message to confirm if the user really wants to reset the current 

model. This implies in deleting all the model information and cleaning the canvas. 

The “Open” option displays a dialogue window to allow users to load a file containing 

the information of a previously saved model. There are two types of file that LESM 

can read, lsm files and neutral files, both described in section 5.3 (Data Pre-

Processing). If the selected file contains valid information, the model appears on 

canvas, otherwise an error message shows up. The “Save” option creates a lsm file 

and saves it in the selected folder. Clicking in “Documentation” opens the published 

code in html format. 
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 The “Model Type” panel has two pop-up menus, one to select the analysis 

model (Truss 2D, Frame 2D or Grillage) and the other to select the type of the 

elements i.e., the beam theory adopted for the elements (Euller-Bernoulli or 

Timoshenko). In LESM, a model can only have elements of the same type. When the 

analysis model option is changed, the camera view is adjusted to a viewpoint 

appropriate to the selected option. It is not possible to change these options when a 

model is already being built or analyzed.  

 The “Modelling” panel is used to create or delete model components, such as 

materials, cross-sections, nodes, elements, supports, prescribed displacements and 

loads. When clicking a button, an auxiliary GUI opens to manage the creation of 

objects of the selected component. These auxiliary GUIs enable users to fill only the 

input data fields used by the selected analysis model. When a component is created, 

deleted or modified, the model is automatically updated on canvas. The modelling 

options are always enabled so users can start building a model from the beginning or 

modify already existing models. 

 The units of input data are indicated next to each fill-in field and they cannot 

be changed. The units adopted are those commonly used in the daily life of engineers 

but they are not the units used by the data processing, so they need to be converted in 

the pre-processing. 

 In the auxiliary GUIs for managing materials and cross-sections, users can 

create and delete these objects as well as see a list with the properties of all created 

objects. All materials in LESM are considered to be homogeneous and isotropic, and 

the cross-sections are of a generic type. Inserting or removing objects from these lists 
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does not affect the model since users cannot delete a material or a cross-section that is 

being used by an element. 

 

Figure 5.12 Auxiliary GUI for managing material objects 

 

Figure 5.13 Auxiliary GUI for managing cross-section objects 

 The auxiliary GUI for managing nodes allows users to create nodal points by 

setting their coordinates. It is also possible to see a list with the coordinates of all 

created nodes. Users are unable to create two nodal points with the same coordinates, 

if it happens an error message shows up. If a node is deleted, all the connected 

elements are also deleted, so a warning message is displayed to confirm this action 

with users. The Z coordinate is not used because LESM still does not work with three-

dimensional models. 
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Figure 5.14 Auxiliary GUI for managing node objects 

 To access the auxiliary GUI that deals with elements, it is necessary to create 

at least one material, one cross-section, and two nodes, since information about these 

components are mandatory for creating an element. In this window users can create 

and delete element objects as well as see a list with the properties of all created 

elements. To create an element, the initial and final nodes cannot be the same, 

otherwise an error message shows up. The “Hinge 1” and the “Hinge 2” options are 

automatically set to “Yes” when the current analysis model is a plane truss. 

 

Figure 5.15 Auxiliary GUI for managing element objects 
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 Objects of each material, cross-section, node and element are identified by a 

number that represents the order in which these objects were created. When an object 

is deleted, this order is changed, so that all objects with identification number higher 

than the number of the deleted object have their numbers lessened by one. 

 Support conditions and prescribed displacements are not created components 

but rather a settable property of a node. To open the auxiliary GUI for setting these 

properties, at least one node must be created. In this window, users can select a node 

to change its support conditions and prescribed displacements values. The only 

enabled fields to fill the prescribed displacements value are the ones with a 

displacement constraint in the direction of the same degree of freedom. 

 

Figure 5.16 Auxiliary GUI for managing support conditions and prescribed 

displacements 

 Just like support conditions and prescribed displacements, applied nodal loads 

and element distributed loads are properties inherent to nodes and elements, so they 

are not created objects. To open the GUIs that manage these properties, there must be 

at least one node or element created. 
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Figure 5.17 Auxiliary GUI for managing nodal loads 

 

Figure 5.18 Auxiliary GUI for managing distributed loads 

 It is also possible to check the current model information in a text file by 

clicking the “Model Information” button in the “Modeling” panel. 

 The button for processing the data is responsible for running the code that 

calculates the analysis results through the direct stiffness method. These results are 

then set as properties of objects used in the post-processing stage to draw the graphic 

results or create a text file with numeric results. This button is only enabled when it is 
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identified that a model is being built (existence of at least one nodal point). When this 

button is clicked, and the data is succesfuly processed, the buttons in the “Results” 

panel are enabled, and the data processing button is disabled until a change is made to 

the model. Every time a model is loaded or modified, its data must be processed 

before checking the results. If the data is not succesfuly processed, which is the case 

of an unstable structure, a warning is issued and no changes are made. 

 Graphic and textual results can be checked by clicking one of the buttons in 

the “Results” panel. More details about results options are given in section 5.6 (Data 

Post-Processing). The main window also has a panel with visualization options, which 

are: 

 Grid: Check-box to display a grid in canvas. 

 Ruler: Check-box to display axes values in the side of the canvas. 

 Units: Check-box to display the units of the values. 

 Node IDs: Check-box to display the identification number of each node. 

 Element ID: Check-box to display the identification number of each element. 

 Element Orientation: Check-box to display an arrow in the middle of each 

element indicating its orientation from the initial node to the final node. 

 Scale: Slider to adjust the scale factor of the deformed configuration and 

internal forces diagrams. The value of the scale factor is only informed when 

the deformed configuration is being displayed. 

 Element Result: Pop-up menu to select the only element that will have its 

internal forces diagrams displayed. 

 Showing: Text to indicate what is being shown in canvas. 
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5.4   Data Pre-Processing 

This stage consists in providing input data with all the necessary information about a 

structural model and preparing it to be used in the processing stage. This information 

can be provided by the process of modeling or by loading a file containing the model 

full description in a format that LESM can read and interpret. 

 When users load a file, an auxiliary function, called openFile, is executed to 

read the model information and create objects to store this information in their 

properties. There are two file formats that this function can read: lsm file and Neutral 

File. These formats are very similar, with the lsm file being an adaptation of the 

Neutral File. After loading a file, the model immediately appears on canvas, but its 

data is not yet processed. When a model is saved, its data is stored in a lsm file. 

 The Neutral File is actually a file format designed with the purpose of 

containing all information needed for finite element analysis programs. It is easy to 

read, has a very simple structure, contains no automatic generation or implicit rule, 

and provides a simple way for programs to skip information that is not needed for 

their specific function. Both the Neutral File and the lsm file specify a 3D model. 

Therefore, LESM always reads and stores information about a three-dimensional 

model even if, depending on the analysis model, some of these data are not used in the 

analysis process. An object of an Anm subclass defines what information is used in 

the data processing. More about the Neutral File format can be found at 

http://www.tecgraf.puc-rio.br/neutralfile. 

 

http://www.tecgraf.puc-rio.br/neutralfile
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 The modeling process allows users to modify a loaded model or to build one 

from the beginning by gradually providing information about materials, cross-

sections, nodes, elements, support conditions, and loads. This information is provided 

through the input data of the auxiliary GUIs. 

 To avoid mistakes during the modeling process, the program needs to control 

the actions of the users. In LESM, one of the mechanisms to make this control is to 

disable the input data fields of the information that is not used in the selected analysis 

model, avoiding users to get confused. As mentioned, even if this unnecessary 

information is defined by users, the program would still provide the correct results 

because an object of the Anm class would access only the right properties. Figure 5.19 

brings a list of properties that are enabled to be set in each analysis model. 

 Another implementation that helps users not to make mistakes during 

modeling was the development of a method called fictRotConstraint. This method 

inserts or removes a fictitious rotation constraint in nodes with more than one element 

connected and which all of them are hinged at this end. This can be a common 

mistake when trying to release the rotation between two or more elements, and causes 

the model to be unstable. This method is called immediately before the data 

processing, to insert the fictitious constraints, if any, and after, to remove. 

Property Truss_2D Frame_2D Grillage 

Cross Section Area Ax Ax     Ay Ax    Az 

Cross Section Inertia  -  Iz Ix     Iy 

Cross Section Height Hy Hy Hz 

Constraints Dx     Dy Dx    Dy    Rz Dz    Rx    Ry 

Prescribed Displacements Dx     Dy Dx    Dy    Rz Dz    Rx    Ry 

Nodal Loads Fx     Fy Fx    Fy    Mz Fz    Mx    My 

Element Uniform Load Qx     Qy Qx     Qy Qz 

Element Linear Load Qx1  Qy1  Qx2  Qy2 Qx1  Qy1  Qx2  Qy2 Qz1     Qz2 

Element Temperature Variation Ty+     Ty- Ty+     Ty- Tz+     Tz- 

Figure 5.19 Settable properties of each analysis model 
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5.5   Data Processing 

After loading, building or modifying a structural model, the “Process Data” button is 

enabled. When this button is clicked, the method “process” of the Drv class is called 

to execute the data processing and to enable the visualization of the graphic and 

textual results. This stage consists of a group of functions implemented to use the data 

provided by the pre-processing stage for calculating the analysis results of a structural 

model. The processing stage of LESM is completely based on the OOP paradigm, so 

these functions are actually class methods and the provided data are the properties of 

objects created in the data pre-processing. After this stage is executed, the analysis 

results are also stored in the properties of these objects that need to be accessed from 

the objects of the post-processing classes. 

 The algorithm to calculate the analysis results follows the direct stiffness 

method. This is a matrix method that discretizes the model in nodal displacements and 

uses the elements’ stiffness relations for calculating the unknown displacements of the 

nodes, the support reactions, and the internal forces at element ends. 

 In summary, the target problem is to solve the system of equilibrium equations 

of the structural model given in equation 5.1, where {F} is the global vector of forces, 

[K] is the global stiffness matrix, and {D} is the global vector of nodal displacements. 

The unknowns of this system are the values of nodal displacements in the direction of 

free degrees of freedom, since displacements in the restricted directions have null or 

prescribed values, and the values of forces acting in the direction of fixed degrees of 

freedom that are the support reactions. The number of equations in this system is 

equivalent to the total number of degrees of freedom of the model. 

{F} = [K]{D}                                                  (5.1) 
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  After solving this system, it is necessary to compute the internal forces at the 

ends of the elements. This is done by combining the result of the global analysis, 

which takes into account only the nodal displacements, with the result from the local 

analysis of loaded elements. 

 The method can be divided into three parts, explained in the following 

sections: The assembly of the equation system, the resolution of this system, and the 

computation of internal forces. 

5.5.1   Assembly of the Equation System 

In this first part of the method, the terms of the equation system must be assembled in 

such a way that its resolution can be partitioned. The flowchart in Figure 5.20 

indicates the order of the methods called to assemble the global stiffness matrix, the 

global displacements vector, and the global forces vector. The boxes of this flowchart 

give the name and the class of the methods, not specifying subclasses. The methods of 

the Elem and Lelem classes that deal with the flexural behavior are being generically 

treated by not specifying the plane where the bending occurs. 
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Figure 5.20 Flowchart of the methods to assemble the equation system 
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5.5.1.1   Initialization of Auxiliary Variables 

The first step of the analysis process is to initialize and dimension the global stiffness 

matrix, the global displacements vector, and the global forces vector. This is done in 

the “dimKFD” method by creating a square matrix and two column vectors, all filled 

with zeros and of the size of the number of equations in the system. 

 In order to partition the equation system, the equations related to free degrees 

of freedom must be numbered first, before the equations of fixed degrees of freedom. 

This numbering order is set in the “setupDOFNum” method. After that, two auxiliary 

variables must be created to store the equation number of the degrees of freedom of 

each node and element. These variables are the ID matrix and the gather vector of the 

elements. 

 The ID matrix has the number of columns equal to the total number of nodes 

in the model, and the number of rows equal to the number of degrees of freedom per 

node. The term ID(ij) gives the equation number of the degree of freedom “i” of node 

“j”. This matrix is assembled in the “assembleDOFNum” method. 

 The gather vector is a column vector of the size of the number of degrees of 

freedom of an element, which is equal to the sum of the degrees of freedom of its 

initial and final nodes. This vector gives the equation number of the degrees of 

freedom of each element and it is set as a property of the objects of the Elem class. 

The gather vectors of the elements are assembled in the “assembleGle” method. 

 



65 

 

 5.5.1.2   Assembly of the Global Displacements Vector 

The global displacements vector stores the values of nodal displacements in the global 

system. The assembly order of this vector follows the numbering order of the 

equations so that displacements of fixed degrees of freedom come in the end of the 

vector. 

 The first part of this vector corresponds to the unknowns of the equation 

system, while the second part stores the known support displacement values. The 

displacements in the direction of fixed degrees of freedom are usually zero, unless a 

value had been prescribed. The “setupPresDispl” method stores the prescribed 

displacements values in the global displacements vector. 

5.5.1.3   Assembly of the Global Stiffness Matrix 

The global stiffness matrix of structural models is the matrix that correlates the global 

displacements vector and the global forces vector. This matrix is assembled through a 

direct sum of the stiffness matrices of each element, hence the name of the method. 

The “gblMtx” method is responsible for this task. 

 The stiffness matrices of linear elements were presented in section 3.3 

(Stiffness Matrices) in the local system using the terms of the stiffness coefficient 

matrices, given in Appendix A (Element Local Stiffness Coefficients). The stiffness 

coefficient matrices are generated in the methods axialStiffCoeff, 

flexuralStiffCoeff_XY, flexuralStiffCoeff_XZ and torsionStiffCoeff. The assembly of 

the stiffness matrix of each element is done in the “elemLocStiffMtx” method by 

allocating the terms of the stiffness coefficient matrices in the correct position of the 

element stiffness matrix. 
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 The stiffness matrix of each element is then rotated to the global system in the 

“gblStiffMtx” method using rotation transformation matrix of the element, as shown 

in equation 3.4. The “gblMtx” method gets these rotated matrices and calls the 

“assembleElemMtx” method to insert them in the correct positions of the global 

stiffness matrix. 

 To add the contribution of the stiffness matrix of an element, in the global 

system, to the global stiffness matrix, the gather vector is used to associate the 

element degrees of freedom to the corresponding equation number in the global 

matrix. 

5.5.1.4   Assembly of the Global Forces Vector 

The global forces vector stores the values of the forces that act on nodes in the 

direction of the degrees of freedom in the global system. The assembly order of this 

vector follows the numbering order of the equations so that the unknown forces 

related to fixed degrees of freedom (support reactions) come in the end of the vector, 

while the known force values come in the beginning. 

 The value of the forces can be obtained by combining the contributions 

coming from applied nodal loads and equivalent nodal loads of loaded elements. 

Initially, it is assumed that the unknown terms of the vector store loads applied 

directly to fixed degrees of freedom. 

 The “nodalLoads” method is responsible for adding the contribution of applied 

nodal loads to any term of the global forces vector, including terms that correspond to 

fixed degrees of freedom. The ID matrix is used to associate the degrees of freedom 

of the nodes to the corresponding equation number in the global forces vector. 
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 The equivalent nodal loads are the fixed end forces of loaded elements, 

explained in section 3.4 (Fixed End Forces), in the opposite direction. The 

“elemLoads” method adds the equivalent nodal loads from each loaded element, 

including distributed loads and thermal load, to the global forces vector. 

 The vectors of fixed end forces of linear elements are given in the local 

system, using terms of the decoupled fixed end forces vectors for each individual 

effect. These decoupled vectors are given in Appendix A (Fixed End Forces from 

Linear Distributed Loads) and Appendix B (Fixed End Forces from Temperature 

Variation), and generated in the methods axialLinearLoadFEF, 

axialThermalLoadFEF, flexuralLinearLoadFEF_XY, flexuralLinearLoadFEF_XZ, 

FlexuralThermalLoad_XZ, flexuralThermalLoadFEF_XY, and 

simplySuppLinearLoadFEF. The assembly of the fixed end forces vectors of each 

element is done in the methods elemLocUniformLoadFEF, elemLocLinearLoadFEF 

and elemLocThermalLoadFEF by allocating the terms of the decoupled vectors in the 

correct position of the element fixed end forces vector. 

 To calculate the vector of equivalent nodal loads of an element, its fixed end 

forces vector is then rotated to the global system and multiplied by -1 to invert the 

direction of the forces. This is done in the methods gblUniformLoadENL, 

gblLinearLoadENL, and gblThermalLoadENL using the rotation transformation 

matrix as shown in equation 3.11. The “elemLoads” method gets these rotated vectors 

and calls the “assembleENL” method to insert them in the correct positions of the 

global forces vector, including those that correspond to fixed degrees of freedom. The 

gather vectors are used to associate the degrees of freedom of the elements to the 

corresponding equation number in the global forces vector. 
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5.5.2   Resolution of the Equation System 

After assembling the system of equilibrium equations, it must be solved for the 

unknown values of nodal displacements and support reactions. The numbering order 

of the degrees of freedom, considering the free before the fixed, makes it possible to 

divide the equation system into equations 5.2 and 5.3. The partition of the global 

stiffness matrix, global displacements vector, and global forces vector is described 

below. The subscript “f” refers to free and “c” refers to constrained. 

 {Df} Vector of nodal displacements in the directions of free degrees of 

freedom (unknown) 

 {Ff} Vector of forces in the directions of free degrees of freedom (known) 

 {Dc} Vector of nodal displacements in the directions of fixed degrees of 

freedom (known) 

 {Fc} Vector of forces in the directions of fixed degrees of freedom (unknown) 

[Kff]{Df} + [Kfc]{Dc} = {Ff}                                      (5.2) 

[Kcf]{Df} + [Kcc]{Dc} = {Fc}                                     (5.3) 

 The manipulation of equation 5.2 results in equation 5.4, where Df is the only 

unknown. 

[Kff]{Df} = {Ff} − [Kfc]{Dc}                                      (5.4) 

 With Df determined, it is possible to calculate Fc using equation 5.3 and adding 

the global forces of fixed degrees of freedom in the opposite direction. 

{Fc} = [Kcf]{Df} + [Kcc]{D𝑐} − {𝐹c}                              (5.5) 
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 The partition of the equation system and its resolution is done in the 

“solveEqnSystem” method of the Drv class. The stability of the model is also verified 

in this method by checking if the submatrix Kff is singular or not. If it is, the model is 

unstable and the data processing is interrupt with an error message. 

5.5.3   Computation of Internal Forces at Element Ends 

The internal forces of the elements are initially calculated only at their ends. This 

calculation must take into account the effects of the global and local analysis of the 

structural model. The value of these end forces is presented in textual format. For 

generating the graphic results, it is necessary to calculate the internal forces along the 

length of the elements, based on the value of their end forces. The generation of 

internal forces diagrams is part of the post-processing stage. 

 The global analysis gives the internal forces of elements resulting from the 

effect of nodal displacements only. The value of these displacements are calculated 

when the system of equilibrium equations is solved. The local analysis of elements 

gives the effect of internal loads along the length of the elements and it must be added 

to the effect of nodal displacements. 

 All the process of computing internal forces is done in the “elemIntForce” 

method as indicated in the flowchart of Figure 5.21. This flowchart, just like the one 

in Figure 5.20, does not specify the plane where the bending occurs for methods 

related to flexural behavior. 



70 

 

 

Figure 5.21 Flowchart of the methods to compute internal forces at element ends 

 Initially, the vectors of internal forces of each element are initialized with null 

values in the “initIntForce” method. Then, the “elemIntForce” method adds the 

contribution of global analysis to these empty vectors by calling the “gblAnlIntForce” 

method and the “assembleIntForce” method. The first uses the gather vector of an 

element to get its vector of nodal displacements, convert it to the local system using 

the rotation transformation matrix, and multiplies it by the element stiffness matrix 

that must be assembled one more time. The result of this product is the vector of 

generalized forces, which are the forces applied at the ends of an element to keep it in 

the deformed configuration. This vector is then added to the vectors of internal forces 

in the “assembleIntForce” method.  

 After considering the effect of the global analysis, the “elemIntForce” method 

adds the contribution of each type of element load by getting the vector of fixed end 

forces of all loaded elements and calling the “assembleIntForce” method to add them 

to the vectors of internal forces. The vectors of fixed end forces must be assembled 

once again, as it is done in the assembly of the global forces vector (section 5.5.1.4). 
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 The sign convention of the calculated internal forces is not yet the same as that 

established in chapter 2 (Linear Element Models). The way it is, the internal forces 

are positive when acting in the positive direction of the corresponding degree of 

freedom. This sign convention is kept when printing the textual results, but it needs to 

be converted to the usual convention in the post-processing stage to display the 

diagrams. 

 It is clear that this algorithm is not the most efficient implementation, since the 

stiffness matrix of all elements and the vector of fixed end forces of all loaded 

elements are being calculated and assembled twice along the data processing. The 

reason for this is that this program values the didactics and understanding of the code 

by its users, and implementing the code this way is better to visualize how the direct 

stiffness method works. 

5.6   Data Post-Processing 

Once the results of the structural analysis have been computed in the processing stage, 

the data post-processing becomes responsible for making these results available to 

users by graphically displaying or printing them. This section is dedicated to explain 

the considerations and the development of the code for exposing the analysis results. 

The results options of LESM are exhibited in the “Results” panel of Figure 5.22. The 

“Model” button in this panel is not considered as a result option, but rather an option 

to show the structural model. 
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Figure 5.22 Panel of results options 

 The graphic components of this panel are enabled only when the data of the 

current model has been successfully processed. Only the buttons that provide the 

internal forces supported by the selected analysis model are enabled. When a button 

or the “Reactions” checkbox is clicked, a method of a post-processing class is called 

by the callback function that controls the behavior of the main window. These classes 

are discussed in sections 5.2.8 (The Draw Class) and 5.2.9 (The Print Class). 

 The interpretation of the internal forces diagrams depends on the convention 

adopted to determine the lower and upper face of an element. In horizontal and 

inclined elements of plane truss and plane frame models, the lower face is on the side 

of the element where the vertical component of its orthogonal vector points in the 

negative direction of the global Y axis. In vertical elements, the lower face is on the 

right side. In grillage models, the lower face is on the side of the element where its 

orthogonal vector points in the negative direction of the global Z axis. 

 

Figure 5.23 Lower face of elements in plane truss and plane frame models 
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5.6.1   Deformed Configuration 

The algorithm of the “deformConfig” method for drawing the deformed configuration 

of plane truss models is different from the algorithm for drawing plane frame and 

grillage models. In the case of plane trusses, all elements are hinged at their ends and 

the internal effect of element loads are ignored since the loads action along an element 

is statically transferred as concentrated forces to the element end nodes. Because of 

this, this analysis model accepts only constant axial internal forces and the elements 

always remain straight in the deformed configuration. The only information needed 

for drawing the deformed configuration of a truss model is the coordinates of the 

displaced nodes, which is the sum of the original coordinates with the nodal 

displacements given by the global displacements vector. The deformed configuration 

is drawn simply by connecting the displaced nodal coordinates. 

 In the case of plane frame and grillage models, not all elements are hinged at 

their ends and the internal effects of element loads must be considered when drawing 

the structure deformed configuration. Because of this, elements may have an internal 

deformation resulting from nodal displacements (global analysis) and from the 

internal loads (local analysis). To graphically represent elements deformation, they 

are discretized in several nodes where the internal displacements are calculated using 

the shape functions (result from global analysis) and the expressions for internal 

displacements in loaded elements (result from local analysis). The displaced 

coordinates of these internal nodes are then connected to draw the deformed 

configuration of the element. 
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 The shape functions are used to calculate the displacements of each node 

created inside an element as a result of the displacements at the element ends. This is 

done by assembling the shape functions matrix with the values of the shape functions 

expressions, given in Appendix D (Shape Functions). Equation 3.14 is then applied by 

multiplying the shape functions matrix by the vector of nodal displacements at the 

element ends, in the local system. The result is a vector with the axial and transversal 

displacement components of the internal node. 

 The expressions for internal displacements in loaded elements are used to 

calculate the displacements of each node inside an element as a result of the local 

analysis. The expressions that describe the axial and transversal displacement 

components are given in Appendix E (Internal Displacement from Linearly 

Distributed Load) and Appendix F (Internal Displacement from Temperature 

Variation). To determine the total displacement of an internal node, the displacement 

components resulting from the global and local analysis are then combined. 

 The components of the total displacement of each internal node is added to 

their original coordinate to graphically display the element deformed configuration by 

connecting the points. The initial scale factor is calculated in the “scaleFactor” 

method, and can be changed at any time using the slider in the “Visualization” panel. 

Its value is indicated in the same panel. This factor multiplies the total displacements 

of internal nodes before adding this value to the original coordinates. 
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5.6.2   Axial Force Diagram 

The value of the axial force on elements of plane truss models is always constant, so 

instead of indicating it in a diagram, this value is plotted next to each element. The 

reason for this is that the visualization of the results becomes clearer. This constant 

value is that calculated at the ends of the element, but with the sign convention 

converted to the usual convention established in chapter 2 (Linear Element Models). 

 In plane frame models, the value of the internal axial force is constant only on 

elements with no distributed axial loads. In this case, the diagram is drawn by 

connecting the initial and final values. If an element is loaded, its axial force diagram 

is drawn by discretizing it in several nodes and calculating the force value in the 

position of each of these nodes. These values are then multiplied by a scale factor and 

connected to draw the diagram. 

 The function that gives the value of the axial force in any position of loaded 

elements, N(x), can be obtained from the differential equation 5.6. 

dN(x)

dx
= −p(x)                                               (5.6) 

 The function that describes the axial load distribution on an element, p(x), is 

computed combining both its uniform and linear loads. Assuming a generic load 

distribution for this combination, in the form of equation 5.7, the internal axial force 

is expressed by equation 5.8. 

p(x) = Ax + B                                                (5.7) 

N(x) = −A
x2

2
− Bx + C                                         (5.8) 
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 The constant “C” is calculated using the boundary condition of axial force at 

element initial end. The axial force diagram is displayed with positive values plotted 

on the upper side of the element. The initial scale factor is calculated in the 

“scaleFactor” method, and can be changed at any time using the slider in the 

“Visualization” panel, but its value is not shown for any internal force diagram. 

Grillage models do not support internal axial force. 

5.6.3   Shear Force Diagram 

In plane frame and grillage models, the shear force diagram is drawn the same way 

the axial force diagram is, but in this case, when an element has a distributed load the 

transversal component is considered and the shear force is calculated in the position 

of each internal node. Truss models do not support internal shear force. 

 The function that gives the value of the shear force in any position of loaded 

elements, V(x), can be obtained from the differential equation 5.9. 

dV(x)

dx
= −q(x)                                                  (5.9) 

 The function that describes the transversal load distribution on an element, 

q(x), and the shear force equation are: 

q(x) = Ax + B                                                (5.10) 

V(x) = −A
x2

2
− Bx + C                                         (5.11) 

 The constant “C” is calculated using the boundary condition of shear force at 

element initial end. The shear force diagram is displayed with positive values plotted 

on the upper side of the element. 
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5.6.4   Bending Moment Diagram 

Just like the axial and shear force diagrams, the bending moment diagram in plane 

frame and grillage models is drawn by discretizing loaded elements in several internal 

nodal points. Only the transversal component of distributed loads is considered and 

the function that describes its distribution is the same of equation 5.10. The function 

that gives the value of the bending moment in any position of loaded elements, M(x), 

can be obtained from the differential equation 5.12, resulting in equation 5.13 when 

considering a generic linear load distribution. 

d2M(x)

dx2
= −q(x)                                             (5.12) 

M(x) = −A
x3

6
− B

x2

2
+ Cx + D                                 (5.13) 

 The constant “C” is calculated using the boundary condition of shear force at 

element initial end in equation 5.11, and the constant “D” using the boundary 

condition of bending moment at the initial end, in equation 5.13. The bending moment 

diagram is displayed with positive values plotted on the tension side of the element. 

Truss models do not support internal bending moment. 

5.6.5   Torsion Moment Diagram 

In grillage models, the value of torsion moment on elements is always constant since 

distributed torsion moment is not a load type considered in LESM. So, instead of 

indicating the values in a diagram, they are plotted next to each element. This constant 

value is that calculated at the ends of the element, but with the sign convention 

converted to the usual convention established in chapter 2 (Linear Element Models). 

Plane truss and plane frame models do not support internal torsion moment. 
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5.6.6   Other Result Options 

When the callback function that controls the “Textual” button behavior is triggered, it 

creates a text file and calls the methods of the Print class responsible for printing the 

results. The provided results are nodal displacements, support reactions, and internal 

forces at element ends in the original sign convention. 

 The “Reactions” checkbox, when activated, displays the support reactions 

values next to each support. 
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6   Conclusions 

The development of LESM proved that the computational implementation of the 

direct stiffness method for structural analysis is a task that makes the learning of this 

method much easier. When writing a code with the algorithm of this method, or any 

other method whose manual resolution is not feasible, the procedures become clearer 

to be understood. The understanding of the data processing of a structural analysis 

program is then a great complement to the theory presented in the courses of matrix 

analysis of structures. 

 Because LESM is a simple graphic program, it was also possible to have an 

overview of all stages of the development of more complex structural analysis 

programs, such as those used commercially by companies or universities. Many of the 

concepts presented in this work for implementing the data processing, pre-processing 

and post-processing stages are generic for developing programs of any field of study. 

 The use of the object-oriented programming paradigm, although not trivial for 

some, has proved to be a very clear way to show the code of the program, especially 

when using a high-level language such as MATLAB. This also allows the program to 

be expanded much more easily than if it had been written in a procedural 

programming paradigm. Future versions of LESM may include three-dimensional 

models, semi-rigid support conditions and the consideration of second order effects. 
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Appendix A   Local Stiffness Coefficients of Linear Elements 

A.1   Axial Stiffness Coefficients 

                                              (A.1) 

A.2   Torsional Stiffness Coefficients 

Element with continuous ends: 

                                               (A.2) 

Element with any hinged end: 

                                                  (A.3) 

A.3   Flexural Stiffness Coefficients 

Parameters of Timoshenko beam theory (for Euler-Bernoulli beam theory, Ω = 0): 

                                                    (A.4) 

                                                     (A.5) 

                                                  (A.6) 
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Element with continuous ends: 

                                 (A.7) 

                                (A.8) 

Element with initial end hinged: 

                                        (A.9) 

                                      (A.10) 

 



83 

 

Element with final end hinged: 

                                      (A.11) 

                                      (A.12) 

Element with hinged ends: 

                                              (A.13) 
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Appendix B   Fixed End Forces from Linearly Distributed Load 

B.1   Fixed End Forces from Axial Distributed Load 

 

Figure B.1 Fixed end forces from axial distributed load in the XY plane 

 

Figure B.2 Fixed end forces from axial distributed load in the XZ plane 

 

                                          (B.1) 

                                                   (B.2) 
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B.2   Fixed End Forces from Transversal Distributed Load 

 

Figure B.3 Fixed end forces from transversal distributed load in the XY plane 

 

Figure B.4 Fixed end forces from transversal distributed load in the XZ plane 

                                                        (B.3) 

                                                    (B.4) 

Parameters of Timoshenko beam theory (for Euler-Bernoulli beam theory, Ω = 0): 

                                                    (B.5) 

                                                    (B.6) 

                                                    (B.7) 

                                                  (B.8) 
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                                                   (B.9) 

                                                 (B.10) 

                                                 (B.11) 

                                                 (B.12) 

Fixed end forces values for an element with continuous ends: 

                                                (B.13) 

                                               (B.14) 

                                                (B.15) 

                                                (B.16) 

                                              (B.17) 

                                             (B.18) 

Transmission coefficient of moments: 

                                                (B.19) 
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Element with continuous ends: 

                                                        (B.20) 

Element with initial end hinged: 

                                          (B.21) 

                                          (B.22) 

Element with final end hinged: 

                                          (B.23) 

                                          (B.24) 
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Element with hinged ends: 

                                               (B.25) 
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Appendix C   Fixed End Forces from Temperature Variation 

C.1   Fixed End Forces from Axial Temperature Variation 

 

Figure C.1 Fixed end forces from axial temperature variation in the XY plane 

 

Figure C.2 Fixed end forces from axial temperature variation in the XZ plane 

                                               (C.1) 

                                                (C.2) 

                                                                                    (C.3) 
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C.2   Fixed End Forces from Temperature Gradient 

 

Figure C.3 Fixed end forces from temperature gradient in the XY plane 

 

Figure C.4 Fixed end forces from temperature gradient in the XZ plane 

                                           (C.4) 

                                            (C.5) 

Parameters of Timoshenko beam theory (for Euler-Bernoulli beam theory, Ω = 0): 

                                                  (C.6) 

                                                   (C.7) 

                                                   (C.8) 
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Fixed end forces values for an element with continuous ends: 

                                               (C.9) 

                                           (C.10) 

                                                (C.11)                                                    

                                             (C.12) 

Transmission coefficient of moments: 

                                                   (C.13) 

 

Element with continuous ends: 

                                                 (B.14) 

Element with initial end hinged: 

                                                                                (C.15) 
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                                       (C.16)                                           

Element with final end hinged: 

                                                                      (C.17) 

                                      (C.18) 

Element with hinged ends: 

                                                  (C.19) 
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Appendix D   Shape Functions 

Parameters of Timoshenko beam theory (for Euler-Bernoulli beam theory, Ω = 0): 

                                                     (D.1) 

                                                      (D.2) 

                                                      (D.3) 

                                                   (D.4) 

Element with continuous ends: 

                                                            (D.5) 

 
                                   (D.6) 

 
                                   (D.7) 

                                                                     (D.8) 

 
                                      (D.9)

 

                                         (D.10) 
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                                                                    (D.11) 

                               (D.12)  

                                  (D.13) 

                                                                   (D.14) 

                                       (D.15)  

                                     (D.16) 

Element with initial end hinged: 

                                                          (D.17) 

                                (D.18) 

                                                                   (D.19) 

                                                                   (D.20) 

                                   (D.21) 

                                         (D.22) 
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                                                                   (D.23) 

                                                                   (D.24) 

                                (D.25) 

                                                                   (D.26) 

                                      (D.27) 

                                   (D.28) 

Element with final end hinged: 

                                                          (D.29) 

                              (D.30) 

                                (D.31)  

                                                                   (D.32)  

                                  (D.33) 

                                                                   (D.34) 
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                                                                   (D.35) 

                             (D.36)  

                              (D.37) 

                                                                   (D.38) 

                                                                   (D.39)  

                                  (D.40) 

Element with hinged ends: 

                                                          (D.41) 

                                                          (D.42) 

                                                                  (D.43) 

                                                                   (D.44) 

                                                                   (D.45) 

                                                                   (D.46) 
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                                                                  (D.47) 

                                                                   (D.48) 

                                                         (D.49) 

                                                                 (D.50) 

                                                                 (D.51) 

                                                                 (D.52) 
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Appendix E   Internal Displacements from Linearly Distributed Load 

E.1   Axial Displacement 

 

Figure E.1 Element loaded with distributed axial load 

                                                        (E.1) 

                                                     (E.2) 

                     (E.3) 

E.2  Transversal Displacement 

 

Figure E.2 Element loaded with distributed transversal load 

                                                      (E.4) 

                                                   (E.5) 

                                         (E.6) 
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Parameters of Timoshenko beam theory (for Euler-Bernoulli beam theory, Ω = 0): 

                                                   (E.7) 

                                                   (E.8) 

                                                   (E.9) 

                                                 (E.10) 

                                                   (E.11) 

                                                 (E.12) 

                                                 (E.13) 

                                                   (E.14) 

                                                   (E.15) 

                                                 (E.16) 

                                                 (E.17) 
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Element with continuous ends: 

              (E.18) 

         (E.19) 

Element with initial end hinged: 

           (E.20) 

         (E.21) 

Element with final end hinged: 

          (E.22) 

    (E.23) 

Element with hinged ends: 

                    (E.24) 

               (E.25) 
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Appendix F   Internal Displacements from Temperature Variation 

 

Figure F.1 Element with temperature variation 

                                              (F.1) 

F.1   Axial Displacement 

                                                    (F.2) 

F.2   Transversal Displacement 

Timoshenko beam theory parameters (for Euler-Bernoulli beam theory, Ω = 0): 

                                                  (F.3) 

                                                   (F.4) 

                                                   (F.5) 

                                                 (F.6) 

Element with continuous ends: 

                                                     (F.7) 
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Element with initial end hinged: 

                        (F.8) 

Element with final end hinged: 

                              (F.9) 

Element with hinged ends: 

                                        (F.10) 


