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Abstract

Barros, Guilherme Coelho Gomes; Martha, Luiz Fernando (Advi-
sor); Menezes, Ivan Fábio Mota (Co-Advisor). Topology Opti-
mization considering Limit Analysis. Rio de Janeiro, 2017.
41p. Dissertação de Mestrado – Departamento de Engenharia Civil
e Ambiental, Pontifícia Universidade Católica do Rio de Janeiro.
This work presents a full plastic formulation to be applied within topol-

ogy optimization. The main idea of topology optimization in solid mechanics
is to find the material distribution within the domain so that it optimizes
a performance measure and satisfies a set of constraints. One might seek
to minimize the compliance satisfying that the volume is less than a given
value. The aforementioned formulation is the standard topology optimiza-
tion which has been used widely in literature. Although it provides inter-
esting results, additional requirements must be taken into account when
practical application is concerned. Structures are designed considering two
main aspects: (i) the structure must not collapse, supporting the applied
loads (safety criterion); and (ii) its displacements must be lower than a
prescribed bound (serviceability criterion). Consequently, the standard for-
mulation shall be modified, finding the material distribution corresponding
to the minimum volume such that the safety criterion is met. Said safety cri-
terion may be defined as restraining the elastic stresses to the yield criterion
in the entire domain. This definition has resulted in a new branch in this
research field: the stress constrained topology optimization. On the other
hand, it is understood that the plastic design criterion is preferable when
optimization is intended, since it fully exploits the material strength. There-
fore, this work addresses the incorporation of the plastic design criterion into
topology optimization as a more advantageous method than standard and
stress constrained topology optimization methods. The proposed formula-
tion is an extension of limit analysis, which provides an estimative of the
collapse load of a structure directly through mathematical programming,
ensuring computational efficiency to the proposed methodology. Lastly, nu-
merical examples are shown to verify plastic topology optimization and the
final topology is compared with those provided by standard and stress con-
strained topology optimization methods.

Keywords
Plastic Structural Design; Limit Analysis; Topology Optimization.
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Resumo

Barros, Guilherme Coelho Gomes; Martha, Luiz Fernando;
Menezes, Ivan Fábio Mota. Otimização Topológica con-
siderando Análise Limite. Rio de Janeiro, 2017. 41p. Disser-
tação de Mestrado – Departamento de Engenharia Civil e Ambien-
tal, Pontifícia Universidade Católica do Rio de Janeiro.
Este trabalho apresenta uma formulação puramente baseada em plas-

ticidade para ser aplicada à otimização topológica. A principal ideia da
otimização topológica em mecânica dos sólidos é encontrar a distribuição
de material dentro do domínio de forma a otimizar uma medida de perfor-
mance e satisfazer um conjunto de restrições. Uma possibilidade é minimizar
a flexibilidade da estrutura satisfazendo que o volume seja menor do que um
determinado valor. Essa é a formulação clássica da otimização topológica,
que é vastamente utilizada na literatura. Não obstante fornecer resultados
interessantes, condições adicionais devem ser levadas em consideração para
viabilizar sua aplicação prática. O projeto estrutural aborda dois aspectos
principais: (i) a estrutura não deve colapsar, suportando os carregamentos
aplicados (critério de segurança); e (ii) deverá se sujeitar a um valor máximo
aceitável de deformação (critério de aceitabilidade). Consequentemente, a
otimização topológica clássica deve ser modificada de forma a encontrar a
distribuição de material correspondente ao menor volume possível tal que o
critério de segurança seja verificado. O referido critério de segurança pode
ser definido como limitar as tensões elásticas ao critério de plastificação em
todo o domínio. Esta definição resultou em um novo ramo de pesquisa: a
otimização topológica com restrições de tensões. Por outro lado, entende-se
que o projeto estrutural plástico é preferível quando um projeto ótimo é
almejado, uma vez que permite um maior aproveitamento da resistência do
material. Dessa forma, este trabalho aborda a incorporação do projeto estru-
tural plástico à otimização topológica como método mais vantajoso do que
a otimização topológica clássica e a com restrições de tensões. A formulação
proposta é uma extensão da análise limite, que fornece uma estimativa da
carga de colapso de uma estrutura diretamente por meio da programação
matemática, assegurando a eficiência computacional da metodologia pro-
posta. De forma a verificar a otimização topológica plástica e comparar a
topologia final com as obtidas através da otimização topológica clássica e
da com restrição de tensões, são apresentados exemplos numéricos.

Palavras-chave
Projeto Estrutural Plástico; Análise Limite; Otimização Topológica.
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"Knowledge is like a sphere, the greater its vol-
ume, the larger its contact with the unknown."

Blaise Pascal, quote.
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1
Introduction

In the field of structural optimization, structural parameters are manip-
ulated in order to render a performance measure its optimal value and satisfy
a set of constraints. The performance measure may be a structural response,
such as maximum displacement; maximum stress; and structural compliance.
It might be a cost-related measure as well, such as the cost itself; the struc-
tural weight; and the structural volume. As the performance measure, the
constraints might also be a structural response or a cost-related measure. For
instance, one may seek the structure with minimum compliance that costs at
most a specified value. Another example is the lightest structure that does not
undergo plastic behavior under the application of external loads.

Topology optimization is a branch of structural optimization in which the
material distribution within a continuum structure is optimized. The standard
formulation of topology optimization is to find the material distribution that
minimizes the compliance subject to a volume constraint, which is a bounded
amount of material to distribute. This formulation provides interesting results
and has been widely used in literature. However, regarding practical applica-
tion, the structural safeness must be verified, among other criteria. In fact,
some examples show that the standard topology optimization may not suffice,
requiring considerable manual work to determine the final design.

For this reason, a new branch of topology optimization has arisen: the
stress constrained topology optimization. Its formulation may be posed as the
standard formulation with the addition of stress constraints – i.e. the plastic
criterion must be satisfied in the entire domain – or as determining the material
distribution which minimizes the volume and meets the stress constraints. This
design is said to be an elastic structural design, and may be further improved
if a plastic structural design is chosen instead.

Plastic structural design allows the structure to undergo plastic behavior;
thus, it provides, in general, a lighter structure. The previous safety criterion
is replaced by the following: the structure has to be able to support the
applied loads without collapsing. In other words, the elastic design refers to
the imminence of yield, while the plastic design deals with the imminence
of collapse. The elastic design may be checked by taking the stresses of a
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Chapter 1. Introduction 12

linear elastic analysis and confirming that the plastic criterion is met in the
entire domain. On the other hand, the plastic design may be verified using an
elastoplastic analysis by ascertaining that the collapse load is greater than the
applied load.

However, an elastoplastic analysis may be a cumbersome computational
task on its own. Thus, to combine it with a structural optimization might
make the problem impracticable. Therefore, a direct analysis method for the
collapse load ought to be preferred. Such method does exist and it is called
limit analysis, which is based in the limit theorems of plasticity, disregarding
any elastic structural behavior. This formulation allows the collapse load to be
found through mathematical programming. Thereby, a global unique solution
is proved to exist and might be found efficiently.

Topology optimization may be modeled through density field, which
means the material density is assumed to be a continuous field described by
some parameters. Hence, the topology optimization concerns the determination
of such parameters. Since the construction of a structure does not allow
intermediate values of density, the problem is penalized so that its optimum
has value one in certain part of the domain and zero everywhere else.

Given all the above, the main objective of this work is to present a plastic
formulation to be applied with topology optimization. The density approach
with penalization is used to model the material distribution. Therefore, the
optimization problem is solved with a sequential optimization scheme, in
which the constraints are retrieved from limit analysis. In order to make the
developments clearer representative examples considering both truss model and
continuum structures are presented and compared to traditional formulations
found in the literature.

1.1
Literature review

Topology optimization of continuum structures is a widely covered sub-
ject in the literature [1, 2, 3, 4]. Although this technique is a significant step
towards a fully automatic structural design, the resulting design may not fulfill
design criteria, presenting stress concentrations [5]. To cope with this hurdle,
new developments [6] have focused on bringing stress constraints into topology
optimization.

However, the solutions available in the literature are, in general, obtained
by constraining the elastic stress [5, 6, 7, 8, 9, 10], which may not fully consider
structural safety. Therefore, a plastic design should be preferred over an elastic
design when attempting to reach an optimal structural design [11, 12, 13].
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Chapter 1. Introduction 13

Nevertheless, it is well known that an elastoplastic analysis is a demanding
computational task since it involves the solution of nonlinear systems of
equations [14, 15, 16]. Thus, the coupling of an elastoplastic analysis with
topology optimization might be impracticable to achieve [17, 18].

The collapse load of a structure may be assessed by limit analysis in
spite of elastoplastic analysis. Limit analysis is based on set of fundamental
collapse theorems of plasticity [19, 20], and it is applicable for a great variety
of problems such as plane stress and plane strain [21, 22, 23, 24]; trusses [25];
frames [26, 27, 28, 29]; bending plates [30, 31, 32]; and three dimensional
models [33, 34]. Finite element discretization is adopted in most of these works
[35, 36, 37], but it has been shown [38] that the element-free Galerkin approach
[39] and the boundary element approach [40, 41] are also possible.

The solution of a limit analysis problem is found by means of an
optimization problem [42, 43]. The limit analysis problem had been commonly
addressed as a nonlinear programming problem [21, 33, 43, 44] until it was
demonstrated [45] that the second-order cone programming is applicable.
Second-order cone programming might be viewed as a generalization of the
linear programming or a special case of the semidefinite programming [46]. It
appeals to limit analysis researchers due to the existence of computationally
efficient methods to obtain the solution [47, 48, 49]. Moreover, the solution is
proved to be global and independent of initial steps [46, 50]. Therefore, second-
order cone programming has been widely adopted on limit analysis in order to
provide solutions efficiently and permit the experimentation on more complex
numerical examples [31, 51, 52, 53].

The plastic formulation is commonly applied to the topology opti-
mization of truss structures, the so called ground structure optimization
[54, 55, 56, 57, 58]. In addition, the elastic formulation for topology optimiza-
tion of trusses [59] and the plastic formulation considering equal stress limits
in compression and tension are equivalent [60]. Although the plastic formula-
tion for topology optimization on truss structures has been widely covered in
the literature, this formulation has only recently been explored to continuum
structures [61].

1.2
Main contributions

This work explores the knowledge on limit analysis to formulate the
equilibrium constraints and to deal efficiently with the yield criterion appearing
in the plastic topology optimization problem. The work of Kammoun and
Smaoui [61] presents a similar formulation. However, the penalization approach
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Chapter 1. Introduction 14

adopted in that work has not succeeded in providing good black-and-white
results. Therefore, this work presents a new penalization approach to obtain
such results within the plastic topology optimization.

1.3
Dissertation organization

The remainder of work is divided as follows: Chapter 2 presents the
formulation of limit analysis to trusses and continuum structures; Chapter
3 concerns the extension of limit analysis to plastic topology optimization
for trusses and continuum structures; Chapter 4 brings verification results of
plastic topology optimization and the comparison of final topology with those
provided by standard and stress constrained topology optimization methods;
and, finally, Chapter 5 consists of conclusions and final remarks regarding this
theme.

DBD
PUC-Rio - Certificação Digital Nº 1512787/CA



2
Limit analysis

Limit analysis is a technique to estimate the collapse factor of a structure,
which is the maximum scalar that can be multiplied by the applied loads
in order to reach structural plastic collapse. It represents an alternative to
the elastoplastic analysis. In the elastoplastic analysis a nonlinear system of
equilibrium equations must be solved, while in the limit analysis the collapse
multiplier is found solving a constrained optimization problem.

Limit analysis is based on a set of fundamental theorems from the theory
of plasticity: the lower bound theorem (or static theorem); the upper bound
theorem (or kinematic theorem); and the uniqueness theorem. These theorems
were firstly formulated by Gvozdev [19] and, independently, by Drucker et al.
[20] for a rigid and perfectly plastic model of material structural behavior.

Since elastic behavior is disregarded, the structural behavior may be
formulated only in terms of the static variables, for the lower bound theorem,
or only in terms of kinematic variables, for the upper bound theorem. Those
theorems, as their names suggest, provide bounds to the true collapse load.
The uniqueness theorem ensures that if a collapse state is found satisfying
both, equilibrium and compatibility, then it associates the actual collapse load
which is unique.

In this work the lower bound theorem is adopted in the formulation.
This theorem may be stated as: if collapse has not occurred, a safe statically
admissible state of stress can be found [20]. In order to base the concept
exposed by the lower bound theorem, the definition of safe admissible state
of stress must be provided. Consider first a state of stress for which the
components σij are continuous functions of the coordinates. Such a state is
called statically admissible if it satisfies the equilibrium conditions:

σij,j + bi = 0

σijnj = ti
; (2-1)

in which bi and ti are, respectively, the body force and the surface traction
in the ith direction, and nj is the jth coordinate of the surface normal vector
where traction t is applied. Additionally, the defined admissible state of stress
is said to be safe if the yield criterion is verified:
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f (σij) ≤ 0 . (2-2)
In summary, the lower bound theorem may be restated as: if an equilib-

rium distribution of stress can be found which balances the applied load and is
everywhere below yield or at yield, the structure will not collapse or will just
be at the point of collapse [62]. From this theorem it is possible to enunciate
limit analysis as:

λc = sup
{
λ ∈ R+; ∃σij, σij,j + λbi = 0, σijnj = λti, f (σij) ≤ 0

}
, (2-3)

in which λ is all possible collapse multipliers and λc, the supreme of the set in
Eq. (2-3), is the true collapse multiplier. Furthermore, Eq. (2-3) is equivalent
to finding the maximum possible collapse multiplier for which a safe statically
admissible state of stress can be found.

In order to elucidate the idea of a safe statically admissible state of stress
as well as formulate limit analysis as a mathematical programming problem,
first truss structures are addressed. Afterwards, continuum structures in plane
stress are formulated by means of the finite element method.

2.1
Truss structures

The truss structure is addressed in order to clarify the concept of safe
statically admissible state of stress. Particularly, for truss structures, a state
of stress is a collection of axial forces within each member. Hence, the set of
states of stress is defined as:

N = {N ∈ Rm} = Rm , (2-4)
in which m is the number of members of a truss structure. From this set it
may be defined a subset of the statically admissible states of stress as:

S̄ =

N ∈ N ;
m∑
j=1

aijNj = Fi ∀i ∈ {1, 2, · · · , df}

 , (2-5)

in which n is the number of joints (nodes) and df is the number of degrees of
freedom of a truss structure. Moreover, in Eq. (2-5), the term aij represents
the contribution of member j into the equilibrium equation of the ith degree of
freedom, onto which it is applied the external force Fi. It is worth mentioning
that, for truss structures, it is verified

df = 2n− s , (2-6)
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in which s is the number of supports applied to a truss structure. Additionally,
a state of stress of a truss is said to be safe if the yield criterion is verified
everywhere within the structural domain. Hence, the set of safe stress states
is determined as:

Ŝ =
{
N ∈ N ;N l

j ≤ Nj ≤ Nu
j ∀j ∈ {1, 2, · · · ,m}

}
, (2-7)

in which N l
j and Nu

j are, respectively, the lower bound and the upper bound
for the internal force of the jth member of a truss structure. From the formal
definition of safe stress states and statically admissible stress states it is
possible to define the set of safe statically admissible stress states as:

S = Ŝ ∩ S̄ . (2-8)
In cases of statically determined structures, there is only one possible

statically admissible state of stress. Therefore, it is easy to determine whether
this state of stress is safe or not. For the statically indeterminate truss of Figure
2.1, any stress vector of size five consists of a state of stress. In addition, this
structure has the following set of equilibrium equations:

∑
F 3
x = −4

5N3 −N4 − λP = 0∑
F 3
y = N2 + 3

5N3 = 0∑
F 4
x = 4

5N1 +N4 = 0∑
F 4
y = 3

5N1 +N5 = 0

, (2-9)

in which the applied load P is multiplied by the scalar λ. Eq. (2-9) can be
written in matrix form as:

[A] {N} = λ {F} , (2-10)
in which

[A] =


0 0 −4

5 −1 0
0 1 3

5 0 0
4
5 0 0 1 0
3
5 0 0 0 1

 (2-11)

is the equilibrium matrix and

{F} =



P

0
0
0


(2-12)

is the vector of applied loads.
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P  

Figure 2.1: Statically indeterminate truss

It is easy to see, for the structural model shown in Figure 2.1, that the set
of equilibrium equation are linearly independent, thus matrix [A] has full row
rank equal to four. Therefore, the set of statically admissible states of stress
is a subset of R5 with dimension one. Choosing N1 as independent parameter,
the other components of N are written as:

N2 = −3
5N1 + λ

3
4P

N3 = N1 − λ
5
4P

N4 = −4
5N1

N5 = −3
5N1

. (2-13)

Assuming N l
i = −Ny and Nu

i = Ny in the example of Figure 2.1, the set
of safe statically admissible states stress is written as:

S =


N1 ∈ R;

−Ny ≤ N1 ≤ Ny

−Ny ≤ −3
5N1 + λ3

4P ≤ Ny

−Ny ≤ N1 − λ5
4P ≤ Ny

−Ny ≤ −4
5N1 ≤ Ny

−Ny ≤ −3
5N1 ≤ Ny


. (2-14)

This set might be represented by means of auxiliary variables:

x = λP

Ny
, (2-15)
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y = N1

Ny
. (2-16)

It is shown in Figure 2.2 the set of safe statically admissible states of
stress, represented by the gray region. Every point in x−y space is a statically
admissible stress state. Additionally, each line color is related to a member;
solid lines represent the limit of the yield criterion due to tension; while dashed
lines represent the limit of the yield criterion under compression. Each member
yield criterion defines a feasible region and the intersection of all feasible regions
gives the set of safe statically admissible states of stress.

 

Member 1 

Member 2 

Member 3 
Member 4 

Member 5 

Tension 
Compression 

Feasible Region 

Figure 2.2: Feasible region

As previously stated, the collapse multiplier λc corresponds to the
maximum value of λ. From Figure 2.2 it can be observed that the maximum
possible value of variable x is:

x = λP

Ny
= 1.6 , (2-17)

from which the true collapse multiplier is:

λc = 1.6Ny

P
. (2-18)

Thereby, it is possible to find the collapse load of the structure only
through its equilibrium equations and yield criterion, without the need to
carry out a tiresome elastoplastic analysis. Even though the procedure was
carried out graphically, it may be generalized to any truss structural model by
means of linear programming as:

max
λ,{N}

λ

s.t.

 [A] {N} = λ {F}{
N l
}
≤ {N} ≤ {Nu}

. (2-19)
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2.2
Continuum structures

For the continuum case, the collapse load might be found from Eq.
(2-3). However, it would require the finding of a function for each stress
component satisfying equilibrium and yield criterion for each value of λ.
Therefore, the finite element method (FEM) is employed in order to obtain
a discrete formulation solvable by mathematical programming.

The equilibrium equation may be formulated from the principle of virtual
displacement: ∫

Ω

{δε̇}T {σ} dΩ =
{
δḊ
}T
{F} , (2-20)

in which {σ} =
{
σxx σyy τxy

}T
is the stress vector; {δε̇} is the vector of

corresponding virtual strain rate; {F} is the vector of applied loads; and
{
δḊ
}

is the nodal virtual velocity vector. Through the finite element discretization,
instead of continuum functions, piecewise continuum functions are adopted for
each stress component. Therefore, Eq. (2-20) is applied for each element:∫

Ωe

{δε̇e}T {σe} dΩe =
{
δḋe

}T
{f e} , (2-21)

in which
{
δḋe

}
and {f e} are the nodal virtual velocity vector and the load

vector of element e, respectively. The time derivative of the compatibility
equation commonly used in the FEM leads to:

{δε̇e} = [Be]
{
δḋe

}
. (2-22)

The difference between the elastic formulation and the plastic one is that
in the plastic formulation an independent interpolation of the stress field is
adopted. This interpolation is given as:

{σe} = [He] {βe} , (2-23)
in which [He] is the element stress interpolation matrix and {βe} is the element
stress parameter vector.

Substituting Eq. (2-22) and Eq. (2-23) into Eq. (2-20) one might find

{
δḋe

}T
∫

Ωe

[Be]T [He] dΩe

 {βe} =
{
δḋe

}T
{f e} . (2-24)

Since the virtual velocity vector is arbitrary, it must hold:∫
Ωe

[Be]T [He] dΩe

 {βe} = {f e} , (2-25)

or,
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[Ae] {βe} = {f e} , (2-26)
with

[Ae] =
∫
Ωe

[Be]T [He] dΩe . (2-27)

Adding up the contribution of each element, it is possible to assemble a global
equilibrium equation, as:

[A] {β} = {F} . (2-28)
Thereby, the limit analysis may be formulated as:

max
λ,{β}

λ

s.t.

 [A] {β} = λ {F}

f i (σ ({β})) ≤ 0 i = 1, · · · , q

, (2-29)

in which f i ({σ}) = f
({
σixx σiyy τ ixy

}T
)
is the constraint associated to the

yield criterion at the ith verification point and q is the number of points where
the yield criterion must be verified.

While the velocity interpolation within an element is a well-covered
subject among researchers in this field, the stress interpolation may not be
as well-known. Therefore, the next section of this paper will further illustrate
this matter.

2.2.1
Element formulation

Possibly, the most straightforward element formulation is to employ
linear velocity field and constant stress field over a triangular shaped element.
In this case, the [B] matrix is constant and the stress parameters are the stress
itself, so

[Ae] = t a [Be]T , (2-30)
in which t is the thickness of the element and a is its area.

Alternatively, a linear interpolation of the stress field may be used. In
this case,
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σxx

σyy

τxy

 =


ϕ1 0 0 ϕ2 0 0 ϕ3 0 0
0 ϕ1 0 0 ϕ2 0 0 ϕ3 0
0 0 ϕ1 0 0 ϕ2 0 0 ϕ3





σ1
xx

σ1
yy

τ 1
xy

σ2
xx

σ2
yy

τ 2
xy

σ3
xx

σ3
yy

τ 3
xy



, (2-31)

in which ϕi is the shape function corresponding to the ith node of the element,
the same used in the velocity interpolation [35, 36]; and, for instance, σixx is
σxx at the element ith node.

Instead of those listed above, a linear interpolation based on the Airy
stress function is used here, i.e.:

σxx = ∂2φ

∂η2

σyy = ∂2φ

∂ξ2

τxy = − ∂2φ

∂ξ∂η

, (2-32)

in which

φ (ξ, η) = β1

2 ξ
2 + β2ξη + β3

2 η
2 + β4

6 ξ
3 + β5

2 ξ
2η + β6

2 ξη
2 + β7

6 η
3 . (2-33)

Consequently, Eq. (2-33) is rewritten as

{σ} =


0 0 1 0 0 ξ η

1 0 0 ξ η 0 0
0 −1 0 0 −ξ −η 0





β1

β2

β3

β4

β5

β6

β7



, (2-34)

and Eq. (2-29) may be restated as

max
λ,{β},{σ}

λ

s.t.


[A] {β} = λ {F}
{σ} = [D] {β}
f i ({σ}) ≤ 0 i = 1, · · · , q

, (2-35)
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in which matrix [D] is an assemblage of the evaluation of [He] to the element
nodes.

Since the principle of virtual displacements, as per Eq. (2-20), is the
weak form of the differential equilibrium equation, the Airy stress function
approach is more advantageous because it intrinsically verifies the differential
equilibrium equation in the parametric space.

Another crucial aspect of limit analysis is how to deal with the yield
criterion effectively. This issue will be addressed in Subsection 2.2.2.

2.2.2
Treatment of plastic constraints

If no proper care is taken when formulating the mathematical program-
ming problem, which arises from limit analysis, it may result in a difficult
and time-consuming nonlinear problem. As previously demonstrated, since the
problem is assumed to be initially rigid, the equilibrium equation is a set of
linear equality constraints. Consequently, the only source of nonlinearity lies
in the yield criterion.

The most common yield criteria used in practice are suitable to be shaped
into semidefinite conic form, while in some particular cases the criteria may
be shaped into second-order cone constraints. It is presented in [63] the conic
representation of several yield criteria found in the literature. Particularly,
the Mohr-Coulomb, Rankine and Tresca criteria are representable as positive
semidefinite cones, while the von Mises and Drucker Prager criteria may
be written as second-order conic constraints as firstly shown in the work of
Andersen et al. [45].

A second-order cone constraint is, given a n dimensional vector {x},

‖{x2, . . . , xn}‖ ≤ x1 , (2-36)
or, more literally, the first entry of a vector must be greater than or equal
to the norm of the remaining vector. Eq. (2-36) represents a n dimensional
quadratic cone along x1.

The von Mises criterion, for instance, may be viewed as a second-order
cone constraint with some algebraic manipulation. Initially, the von Mises
criterion may be stated as:

f ({σ}) =
√
σ2
xx + σ2

xx − σxxσyy + 3τ 2
xy − σy , (2-37)

in which σy is the material yield stress. Alternatively, Eq. (2-37) could be
expressed in matrix form as:

f ({σ}) =
√
{σ}T [M ] {σ} − σy , (2-38)
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in which

[M ] =


1 −1

2 0
−1

2 1 0
0 0 3

 . (2-39)

Since [M ] is a positive definite matrix, it is possible to find its Cholesky
decomposition [M ] = [L]T [L]; thus, Eq. (2-38) may be rewritten as:

f ({σ}) =
√
{σ}T[L]T [L] {σ} − σy . (2-40)

Defining

{y} = [L] {σ} , (2-41)
Eq. (2-40) is redefined as:

f ({σ}) =
√
{y}T {y} − σy = ‖{y}‖ − σy . (2-42)

Using Eq. (2-40), it is possible to rewrite Eq. (2-29) as:

max
λ,{β},{σ},{y}

λ

s.t.



[A] {β} = λ {F}
{σ} = [D] {β}
{y} = [L] {σ}
‖{yi}‖ ≤ σiy ∀i = 1, · · · , q

, (2-43)

which is a second-order cone programming problem.
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3
Topology optimization considering limit analysis

The plastic topology optimization presented in this work is based on the
lower bound limit theorem of plasticity. The idea is to minimize the volume
of the structure while it is still possible to find a statically admissible state
of stress. In this formulation, the relationship between the structural response
and the density field is given by the yield criterion.

The truss structure case is addressed first for elucidation purpose. In this
case, the continuum density design, in which the density is allowed to be any
value between zero and one, may be formulated as:

min
{ρ},{N}

m∑
i=1

aiLiρi

s.t.


[A] {N} = {F}

ρiN
l
i ≤ Ni ≤ ρiN

u
i i = 1, · · · ,m

0 ≤ ρi ≤ 1 i = 1, · · · ,m

, (3-1)

in which ai, Li and ρi are the cross section area, the length and the density of
the ith element, respectively.

A similar approach, the so called ground structure, would be to optimize
the cross section area of each element instead of the density. The density
approach is adopted herein because of its similarity with the formulation for
continuum media. Although plastic topology optimization for truss structures
has been widely explored in the literature, little was done in applying this
formulation to continuum media.

However, from the limit analysis formulation and the knowledge on plas-
tic topology optimization of truss structures, it should be quite straightforward
to formulate the plastic topology optimization of continuum structures using
finite element technique. This formulation is posed as:

min
{ρ},{β},{σ},{y}

m∑
i=1

tρiai

s.t.



[A] {β} = λ {F}
{σ} = [D] {β}
{y} = [L] {σ}∥∥∥{yi}∥∥∥ ≤ ρiσ

i
y ∀i = 1, · · · , q

0 ≤ ρi ≤ 1

. (3-2)
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Obviously, the formulation in Eq. (3-2) allows the density of each element
to be any real value between zero and one. Nevertheless, a possible-to-construct
design would have only zero or one density values. This may be achieved by
using the solid isotropic material with penalization (SIMP) approach. The idea
of the SIMP is to penalize the continuous density field in order to make it tend
to zero or one.

In the work of Kammoun and Smaoui [61] the penalization is applied to
the objective function as:

min
{ρ},{β},{σ},{x}

m∑
i=1

tρ
1
p

i ai

s.t.



[A] {β} = λ {F}
{σ} = [D] {β}
{y} = [L] {σ}∥∥∥{yi}∥∥∥ ≤ ρiσ

i
y ∀i = 1, · · · , q

0 ≤ ρi ≤ 1

, (3-3)

in which p is the penalization parameter. In the case of p = 1, the solution is
the continuum density field. However, as p becomes greater the elements with
densities 0 < ρ < 1 becomes heavier and shall be removed. Notwithstanding,
this approach has two main disadvantages: (i) if any density approaches to
zero the gradient at the corresponding entry tends to infinity; and (ii) since the
penalization occurs within a summation it loses effectiveness componentwise,
resulting in a topology with lots of gray region.

In order to overcome these hurdles, it is proposed in this work an innova-
tive penalization approach. This approach consists of penalizing intermediate
densities at the yield criterion:

min
{ρ},{β},{σ},{x}

m∑
i=1

tρiai

s.t.



[A] {β} = λ {F}
{σ} = [D] {β}
{y} = [L] {σ}∥∥∥{yi}∥∥∥ ≤ ρpiσ

i
y ∀i = 1, · · · , q

0 ≤ ρi ≤ 1

. (3-4)

Since

0 ≤ ρ ≤ 1, p ≥ 1⇒ ρp ≤ ρ , (3-5)
the yield limit of intermediate value densities are further reduced; thus, these
densities are forced towards zero or one. From Eq. (3-4) it can be seen that each
density is penalized separately and the derivative of the penalized function is
well-defined at zero.
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4
Numerical results

In this section, numerical examples are presented to verify plastic topol-
ogy optimization and the final topology is compared with those provided by
standard and stress constrained topology optimization methods.

While running the examples shown below, it was observed that con-
centrated loads may cause a local plastification in the neighbor boundaries
of the load, leading to a localized collapse mechanism. Therefore, the result-
ing collapse load would not reflect reality. The same drawback occurs in stress
constrained topology optimization, since concentrated load often implies stress
concentration [5]. A possible alternative around this problem is to distribute
the load over a small portion of the boundary near the application point.

4.1
MBB-Beam

The MBB-beam is a benchmark example in topology optimization. It
consists of a simply supported beam with a mid-span applied load. It is shown
in Figure 4.1 the model, considering symmetry, used in the analysis. The
adopted material follows the von Mises criterion and has yield limit of 350 MPa;
the applied load is 1,500 N; the plate thickness is 1 mm; and the geometry of
the plate is given by L= 100 mm. The stress constrained topology optimization
performed by Holmberg, E. et al [5] considered the material Young’s modulus
71 GPa and Poisson’s ratio 0.33.

Figure 4.1: Geometry of the MBB-Beam problem [5]

The result obtained by Talischi et al [64] with the standard formulation
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of topology optimization is shown in Figure 4.2. In the work of Holmberg et
al [5] on stress constrained optimization, a main disadvantage is made clear
by the results: several different final results are achieved for the same problem
depending on setup parameters. One result obtained in that work is presented
in Figure 4.3.

In order to avoid the aforementioned localized collapse mechanism prob-
lem, the load is distributed over two adjacent nodes on the top boundary. Since
the support on the bottom boundary is isolated, its reaction will also cause the
localized collapse mechanism problem. Hence, two more supports are added to
adjacent nodes at the bottom boundary. The resulting topology is shown in
Figure 4.4. Figure 4.5 illustrates the map of stresses of the resulting topology
upon collapse. The mesh used to obtain these results have 1,200 elements.

Figure 4.2: MBB-Beam by standard topology optimization

Figure 4.3: MBB-Beam by stress constrained topology optimization

0.2

0.4

0.6

0.8

Figure 4.4: MBB-Beam by plastic topology optimization
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Figure 4.5: Map of stresses of resulting topology

4.2
L-shaped beam

The L-shaped beam is a popular example for stress constrained topology
optimization [5, 6]. It owes its popularity to the stress concentration at the
corner. The structural model adopted within the optimization is presented in
Figure 4.6. The employed material is the same of the MBB-Beam problem.
The geometry is given by L = 200 mm and thickness equal to 1 mm. A 1,500
N point load is applied to the structure.

Using PolyTop [65], the standard topology optimization is performed in
this structure. The resulting topology is presented in Figure 4.7. On the other
hand, the result of stress constrained topology optimization [5] is presented
in Figure 4.8. It is presented in Figure 4.9 the optimum topology provided
by plastic topology optimization and, in Figure 4.10, the stresses at plastic
collapse of this optimum design.
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Figure 4.6: Geometry of the L-shaped beam problem [5]

Figure 4.7: L-shaped beam with standard topology optmization
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Figure 4.8: L-shaped beam with stress constrained topology optimization [5]

Figure 4.9: L-shaped beam with plastic topology optimization
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Figure 4.10: Stresses map of the optimal topology through plastic topology
optimization

4.3
Long cantilever beam

The long cantilever beam problem, shown in Figure 4.11, is addressed in
the work of Kammoun and Smaoui [61] and, therefore, it is considered herein
for comparison purposes. The structural domain has H = 1 m and L =4 m;
the material adopted follows the von Mises yield criterion with yield stress
σy = 1kPa; and a 0.1 kN load is applied. In order to avoid localized collapse
mechanism, the load is distributed over a portion of the boundary b = 10cm.

Figure 4.11: Long cantilever beam

The result of standard topology optimization for this problem found by
[66] is shown in 4.12. The result found by Kammoun Z. and Smaoui H. [61] is
represented in 4.13. And the resulting topology using the presented formulation
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is illustrated in 4.14. The collapse state of stress of the optimized structure is
shown in 4.15.

Figure 4.12: Standard topology optimization for the long cantilever beam [66]

Figure 4.13: Plastic topology optimization with penalization in objective
function [61]

Figure 4.14: Plastic topology optimization with the presented formulation
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Figure 4.15: Stress map of the optimum topology of long cantilever beam
problem
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5
Conclusions

It has become clear that topology optimization considering limit analysis
is more advantageous than stress constrained topology optimization, since
plastic design fully exploits material strength. Additionally, it is important
to remark that stress constrained optimization, in general, relies on several
parameters, due to penalization and aggregation. Those parameters influence
deeply the final topology. On the other hand, topology optimization considering
limit analysis is a fairly parameter-free method.

Furthermore, topology optimization considering limit analysis has also
proved to be more suitable for practical applications than the standard
topology optimization, since no prescribed volume constraint is required.
Additionally, another advantage of this approach is that the design criterion
is intrinsically verified.

It is worth mentioning that this formulation is easily extendable for three
dimensional problems, since there are several papers dealing with limit analysis
for three dimensional models. Another interesting future development of this
field would be to address two materials, one being ductile and the other brittle.

In order to make possible to perform the optimization in more complex
structures, further research is necessary in how to accelerate the solution. This
might be achieved, for example, through adapting the solution of previous
steps in order to find a warm start for the subproblem solution.
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