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Abstract. This work presents the development and use of a graphical tool to analyze planar framed structure models 

with the consideration of large displacements and large rotations in the elastic regime of the material behavior. The 

main objective in the development of this application is to give users the possibility to control the progress of the 

nonlinear analysis by changing its parameters as the analysis goes forward or backwards. The focus of this controlled 

analysis is to provide students, engineers, and researchers a better knowledge on the behavior of reticulated structures 

with geometric nonlinearity and the use of numerical methods to trace equilibrium paths. This nonlinear analysis 

module was implemented in the Ftool program, a software largely used by the structural analysis community. The 

results show that the change in the analysis parameters can influence the response of the structure and, therefore, ways 

of controlling the analysis are necessary. 
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1. INTRODUCTION 
 

When a structural system is subjected to deflections that are relatively large when compared to the dimensions of its 

components, the consideration of large displacements and large rotations are required in the formulation of finite 

element equations. This consideration is necessary to impose the equilibrium of the structural system in its deformed 

configuration, so the nonlinear response of the structure’s geometry can be taken into account. Otherwise, if the 

equilibrium and kinematic equations of the finite element method were formulated in the undeformed configuration, 

second-order effects, such as unexpected internal forces and buckling, would not be predicted and could lead the 

structure to fail. 

The identification of second-order effects can be done by studying the history of the equilibrium of the structure 

with a certain control variable. Hence, one of the main objectives of a geometrically nonlinear analysis is to obtain the 

equilibrium path of the structural system. This path is traced by an incremental-iterative process, where the nonlinear 

system must be linearized and solved in a series of iterations within each analysis step, until equilibrium is satisfied 

according to a convergence criterion. The convergence points represent an equilibrium state of the structure. 

Depending on the severity of the nonlinearities and the complexity of the equilibrium path, the problem may present 

some critical points that can lead to difficulties in tracing the entire path. Many methods and strategies have been 

developed to overcome these difficulties and efficiently follow the equilibrium path. Sophisticated methods that 

compute increments of both control variables (load and displacements) are called continuation methods. However, one 

single method may not be capable of solving any general nonlinear problem, and modifications to the solution 

algorithms may be necessary to recover the entire equilibrium path. Therefore, as stated by Bergan et al. (1978), a 

computer program for nonlinear analysis should possess several alternative algorithms for the solution of the nonlinear 

system of equations. These procedures should also allow for the possibility of an extensive control over the solution 

process by parameters that are input to the analysis. 

This work describes the development and use of a geometrically nonlinear analysis tool for planar frame models, 

considering large displacements and large rotations, but small deformations in the elastic regime of the material 

behavior. This tool was incorporated as a new feature of the Ftool (Two-dimensional Frame Analysis Tool) program 

(Martha, 1999). It provides users with a wide range of analysis options and parameters, including the most well-known 

incremental-iterative methods to solve the nonlinear system of equilibrium equations. It is also possible to perform the 

analysis process in an interactive-adaptive fashion, by allowing the change of any of these options and parameters 

between the steps of the analysis. Furthermore, a sophisticated graph-plotting environment was developed to show the 

equilibrium path, or the behavior of other variables inherent to the analysis. 
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2. NONLINEAR FINITE ELEMENT FORMULATION 

 

2.1 Kinematic description 

 

In a geometrically nonlinear analysis, a body subjected to external loads assumes different configurations as it 

moves in space and changes shape. In the context of the continuum mechanics, there are two ways to describe the 

movement of the body, the Eulerian description and the Lagrangian description (Malvern, 1969). The latter is the most 

appropriate for solid mechanics, because it maps the trajectory of all particles of the body, using material coordinates, 

from the beginning of the movement to the end. To formulate the finite element equations of the body, a reference 

configuration must be established for all kinematic and static variables. Three formulations, based on the kinematic 

description, are mainly used to develop the nonlinear system of equations, depending on the reference configuration 

adopted within the Lagrangian description of the movement. They are the Total Lagrangian (TL), the Updated 

Lagrangian (UL), and the Co-Rotacional (CR) formulations. According to Bathe (1996), the only advantage of using 

one formulation rather than the other lies in its greater numerical efficiency. In this work, the UL and the CR 

formulations are used, due to their advantages for beam elements with large displacements and small deformations, 

when compared to the TL formulation, as shown by Bathe and Bolourchi (1979) and stated by Felippa (2017). 

In the UL formulation, the reference configuration is periodically updated to the last achieved equilibrium 

configuration. That is, once the equilibrium is reached, all the static and kinematic variables of the analysis are defined 

according to the new configuration. In the CR formulation, the reference configuration is divided in two so that rigid 

body displacements are separated from those that generate deformations. The initial configuration is used to measure 

rigid body movements, while a co-rotated configuration is used to measure deformations and stresses of the body. 

Figure 1 illustrates this concept. Throughout this work, the configuration corresponding to the incremental step i-1 is the 

last obtained equilibrium configuration, while the one corresponding to step i is the current configuration, still 

unknown, in which equilibrium is being sought. 

 

 
 

Figure 1. Kinematic descriptions for geometrically nonlinear formulation of beam elements. 

 

2.2 Nonlinear system of equilibrium equations 

 

Common to any kinematic description used to formulate the nonlinear structural problem is that the system of 

nonlinear equations, which defines the global equilibrium state, considering a finite element discretization, is given by 

the balance of internal and external forces at nodal points. This balance is expressed in Eq. (1), where F is the vector of 

internal nodal forces, which is a function of the nodal displacements vector, u, and P is the vector of external nodal 

forces applied to the structure. 

 

  F u P  (1) 

 

The solution of this system is obtained incrementally. For a sequence of external force increments, ΔPi, the 

corresponding increments of nodal displacements, Δui, are calculated by linearizing the problem, where subscript i 

indicates the i-th analysis step. The total external forces and nodal displacements of current configuration (step i) are 

then computed by adding the incremental updates to the previous configuration (step i-1): 

 

1i i i  P P P     ,    1i i i  u u u  (2) 
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Considering that the structure was in equilibrium at step i-1, it is desired to achieve equilibrium in the i-th step. 

Since the internal forces are a nonlinear function of the displacements, the solution of the linearized incremental 

problem does not satisfy the equilibrium. A vector of residual forces, Ri-1, then arises as a result of the unbalance 

between external and internal forces, as shown in Eq. (3) to Eq. (5). 

 

 1 1i i i i   F u u P P  (3) 

 

   1 1i i i i     F u P P F u  (4) 

 

  1i i i   F u P R  (5) 

 

Corrective iterations of the Newton-Raphson type are performed within each incremental step until the residual 

forces are numerically null, given a convergence criterion, so a new equilibrium state is established. In this way, the 

total increments in the i-th step are computed by accumulating the iterative increments of external forces, δPi
j, and 

displacements, δui
j. This update process is given in Eq. (6), where superscript j indicates the j-th iteration of the i-th 

step. 

 
1j j j

i i i
   P P P     ,    

1j j j
i i i

    u u u  (6) 

 

Substituting Eq. (6) into Eq. (5), it is possible to obtain the incremental-iterative system of equations to achieve 

equilibrium in the i-th step as follows: 

 

   1 1
1

j j j j
i i i i i
 

      F u F u P P R  (7) 

 

      1 1
1 1

j j j j
i i i i i i

 
        F u P P P F u F u  (8) 

 

    1 1
1 1

j j j j
i i i i i i

 
       F u P P P F u u  (9) 

 

    1 1j j j j
i i i i

     F u P P F u  (10) 

 

  1j j j
i i i

   F u P R  (11) 

 

Defining the tangent stiffness matrix as the derivatives of the internal forces with respect to the nodal displacements 

(K = ∂F/∂u), evaluated at the previous known configuration, we finally reach the governing system of nonlinear finite 

element equations to be solved at the j-th iteration of the i-th step. 

 
1 1j j j j

i i i i
    K u P R  (12) 

 

The tangent stiffness matrix is composed by a linear portion, which depends only on the elastic properties of the 

elements, and a geometric portion that depends on the elements internal forces. The development of the local tangent 

matrix of an element, in the case of the UL formulation, depends on the degree of sophistication of the adopted shape 

functions and the inclusion of the nonlinear components of the Green strain tensor. Accordingly, different forms of the 

tangent matrix can be obtained. The tangent matrices of the UL formulation available in the developed tool are 

presented in Rodrigues (2019). In the CR formulation, only the relative displacements that cause deformations to an 

element are present in the deformed configuration about the co-rotated referential. Therefore, as stated by Santana 

(2015), the displacements and rotations measured in the element local coordinate system is usually considered small, 

and linear deformation measurements can be used. Based on this assumption, only one tangent matrix is available for 

the CR formulation, and its development can be found in Santana (2015). 

Moreover, in the incremental-iterative process, the tangent matrix can be computed in accordance with a standard or 

modified Newton-Raphson iteration type. In the former method, the tangent matrix is updated in all iterations, 

considering the last obtained configuration and internal forces, while in the latter, the tangent matrix is only computed 

at the beginning of each incremental step and held constant for all subsequent iterations, i.e., Ki
j-1 = Ki

0 for j ≥ 2. The 

modified method has a lower computational cost at each iteration than the standard version, but convergence is usually 

slower. 
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2.3 The N+1 dimensional space formulation 

 

In order to prepare the system of Eq. (12) to be solved, the vector of external nodal forces is expressed as the 

product of a load factor, λ, by a vector of reference external forces, Pref, which is usually taken as the total applied nodal 

forces to the structure. Therefore, the following expressions are valid: 

 

ref 1

1
ref

ref unknown

j j j j
i i i i i

j j j j j
i i i i i

j j j
i i i





        

        

     

P P

P P

P P

 (13) 

 

The governing system of equations can be rewritten as: 

 
1 1

ref
j j j j

i i i i
    K u P R  (14) 

 

This system has N+1 unknowns, N components of displacement increment in δui
j and one load factor increment δλi

j, 

but only N equations. It is necessary to add a constraint equation to the system, given by Eq. (15), where vector a and 

scalars b and c are constants that can assume different values depending on the solution method. 

 
j j j j j

i i i i ib c   a u  (15) 

 

Equation (14) and Eq. (15) yield an augmented system of N+1 equations and unknowns: 

 

 

1
1

ref
j

j j
i

i i
T

j jj j
i ii i cb


                       

K P u R

a
 (16) 

 

The augmented matrix is no longer symmetric and has an increased bandwidth due to the added load factor. The 

solution of this system would be computationally undesirable with respect to both storage and efficiency. However, 

Batoz and Dhatt (1979) presented a technique to overcome this problem by decomposing the system into two systems 

that use the original matrix, so the banded and symmetric properties of the original system remain intact: 

 
1

ref

1 1

j j
i i

j j j
i i i



 

  


 

K u P

K u R
 (17)

  

The solution for the iterative increment of displacements is the linear combination of a tangent, δ i
j, and a residual, 

δ i
j, increment of displacements: 

 
j j j j

i i i i     u u u  (18) 

 

The unknown iterative increment of the load factor is given by the constraint equation, which is associated with a 

particular nonlinear solution method that gives rise to the constraint coefficients a, b, and c of Eq. (15). The addition of 

the constraint equation to the system permits an adjustment of both the displacements and the load factor during the 

iterative cycle and the advance in the solution beyond critical points. 

 

3. SOLUTION STRATEGIES 

 

3.1 General solution algorithm 

 

The introduction of the constraint equation to the incremental-iterative solution process of Eq. (17) is usually 

divided into two phases, a predictor and a corrector phase. The former (j = 1) calculates a predicted solution with a 

single linear analysis, and the latter (j > 1) tries to null the residual forces generated by the predicted solution through a 

cycle of iterative corrections. The general solution algorithm is illustrated in the diagram of Fig. 2. The difference 

between the UL and the CR formulations lies in the computation of the tangent matrix and the vector of internal forces. 

These steps are highlighted with bold boxes. The adopted convergence criterion is based on the ratio between the norms 

of the residual force vector and the reference force vector, which must be lower than a given tolerance, ε. 
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Figure 2. General solution algorithm of the incremental-iterative nonlinear system. 

 

3.2 Predictive techniques 

 

Obtaining the predicted solution has as fundamental task the calculation of the initial increment of the load factor, 

δλi
1. The automatic selection of this increment should reflect the degree of nonlinearity of the system, that is, it should 

provide large increments when the response is almost linear and lead to small increments when the response is strongly 

nonlinear. In addition, the algorithm must be able to choose the correct sign for the increment, being able to go beyond 

limit points. 

In the first incremental step of the analysis (i = 1), the predicted increment of the load factor must be a prescribed 

value by the analyst. In the remaining steps (i > 1), it is computed according to the selected technique. The differences 

between the predictive techniques are the constraint equation to obtain the value of the increment, and the strategy to 

determine its size adjustment factor and correct sign. Table 1 shows the formulas to obtain the predicted increment of 

load factor for the techniques implemented in this work. In those expressions, I and J are the adjustment factors of the 

increment size, based on the nonlinearity of the solution. The strategies for obtaining these factors, as well as the 

appropriate increment sign, are presented posteriorly. The details of these formulations can be found in Silva [24], 

Santana [19], and Leon et al. [11]. 

 

Table 1. Constraint equation for the predictive techniques.  

 

Predictive Technique Load Factor Increment (i > 1) 

Direct Increment (DI) 1 1
1i iI      

Cylindrical Arc-Length Increment (CALI) 1 1 1

1 1

i i
i

i i

I   
  

 

u u

u u
 

Spherical Arc-Length Increment (SALI) 
 

2

1 1 1 ref ref1

1 1
ref ref

i i i
i

i i

I
      

  
   

u u P P

u u P P
 

External Work Increment (EWI) 
1 1 ref 1

1
ref

i i
i

i

I   
  



P u

P u
 

GSP-Based Increment (GSPI) 1 1
1i J     
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3.3 Increment adjustment and sign 

 

Two strategies to automatically adjust the size of the predicted increment of the load factor and determine its sign 

are used in this work. The strategy presented by Ramm (1981) is given in Eq. (19), where Nd and Ni-1 are the desired 

number of iterations and the number of iterations required to achieve convergence in the previous step, respectively. 

The increment sign, represented by s in Eq. (20), for this strategy is taken as the same sign of the dot product between 

the vectors of tangent increment of displacements and total increment of displacements in the previous step: 

 
1

2

1

d

i

N
I

N 

 
  
 

 (19) 

 

 1
1sign i is   u u  (20) 

 

Yang and Kuo (1994) proposed the use of the Generalized Displacement Parameter (GSP), given in Eq. (21), to 

adjust the predicted increment size in accordance with Eq. (22). When this strategy is used, the stiffness of the structure 

is measured with respect to the first incremental step, so stiffening and softening behavior are readily identified. 

 
1 1
1 1

1 1
1

GSP

i i

 

 

u u

u u
 (21) 

 

GSPJ   (22) 

 

The GSP changes sign only immediately after load limit points, as illustrated in Fig. 3. Therefore, as explained in 

Eq. (23), the sign of the predicted increment is positive in the first step and it must be inverted every time the GSP value 

is negative. 

 

1

GSP 0

i s

s s

   


   
 (23) 

 

 
 

Figure 3. Behavior of the GSP sign. 

 

3.4 Corrective techniques 

 

In the corrective phase, it is sought to restore the structure equilibrium by vanishing the residual forces of the 

predicted solution through an iterative cycle. The iterative increments of load factor and displacements are restricted to 

the constraint equation that characterizes the selected technique. If the performed iterations involve not only the 

displacements, but also the load factor, then it is called a continuation method, since it can continue beyond limit points. 

As mentioned earlier, one single strategy may not be capable of solving any general nonlinear problem. Therefore, 

most of the well-known corrective techniques were implemented, and they are presented in Tab. 2. Some of these 

iterative strategies are related to a particular predictive technique, and other are not bound to any. Because of that, some 

computer programs ask users to provide the predictive and corrective techniques separately. In the developed tool, in 

order to simplify the input data, the solution method refers to the technique for the corrective iterations and it includes 

the predictive technique that is more appropriate. Among the nine solution methods implemented, only one is not a 

continuation method, the Load Control, which works only with displacement increments in each iteration. The 

expressions for the Cylindrical Arc-Length and Spherical Arc-Length methods may result in a complex value for the 

load factor correction if the incremental steps are not sufficiently small (Krenk, 2009). In this case, the program returns 

a warning. In addition, it was opted to limit the value of the load factor correction of all methods to 0.5, to avoid 

extrapolating values. 
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Table 2. Solution methods with the corresponding predictive and corrective techniques.  

 

Solution Method Predictive Technique Load Factor Correction (j ≥ 1) 

Load Control 

(LC) 
DI 0j

i   

Linear Arc-Length (Riks)* 

(LAL_RI) 
CALI 

 

1

1 1
ref ref

j
j i i
i j

i i i

 
  

    

u u

u u P P
 

Linear Arc-Length (Ramm)** 

(LAL_RA) 
CALI 

 

1

1 1
ref ref

j j
j i i
i j j j

i i i



 

 
  

    

u u

u u P P
 

Cylindrical Arc-Length*** 

(CAL) 
CALI 

2

sj
i

b b c

a a a

 
     

 
 

Spherical Arc-Length*** 

(SAL) 
SALI 

2

sj
i

b b c

a a a

 
     

 
 

Minimum Norm 

(MN) 
CALI 

j j
j i i
i j j

i i

 
  

 

u u

u u
 

Orthogonal Residue 

(OR) 
CALI 

1

1
ref

j j
j i i
i j

i






  



R u

P u
 

Work Control 

(WC) 
EWI 

ref

ref

j
j i
i j

i


  



P u

P u
 

Generalized Displacement 

(GD) 
GSPI 

1

1

j
j i i
i j

i i

 
  

 

u u

u u
 

* Presented in Riks (1972) and Riks (1979). 

**Presented in Ramm (1981) and Ramm (1982). 

*** Parameters for methods CAL and SAL: 

 ref ref
j j

i ia     u u P P  

   1 1
ref ref

j j j j
i i i ib        u u u P P  

 12j j j
i i ic      u u u  

 

Cylindric Arc-Length 0

Spheric Arc-Length 1

 


 
 

 1sign j j
i is   u u  

 

4. DEVELOPED TOOL 

 

A geometrically nonlinear analysis module was implemented and incorporated to the Ftool program (Martha, 1999). 

Over the last years, Ftool have demonstrated to be a valuable tool for teaching structural engineering. It has been used 

on solid mechanics, structural analysis, and structural design courses in many universities all over the world as well as 

in the industry. It consists of a graphical structural analysis program that has, in a single platform, all the necessary tools 

for efficient modeling, pre and post-processing the results. The internal solver, called FRAMOOP, is a simplified 

version of the FEMOOP (Finite Element Method Object Oriented Program) system (Martha and Parente, 2002), 

modified to perform only the analysis of framed structure models (models made of beam elements). The FRAMOOP 

system is written in the C programming language and adopts a programming philosophy similar to the Object Oriented 

Programming (OOP) paradigm, which is advantageous for a structural analysis code (Rangel and Martha, 2019). The 

graphical user interface is built using the IUP (Portable User Interface) system (Levy et al., 1996), which is a multi-

platform toolkit that offers a simple API for building graphical user interfaces in different programming languages and 

allows a program source code to be compiled in different systems without any modification. Its main advantage is the 

high performance, due to the fact that it uses native interface elements. Figure 4 shows the main window of the Ftool 

program, highlighting the new menus created for this work: Analysis Menu and Plotting Menu. 
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Figure 4. Developed menus for nonlinear analysis. 

 

In the Analysis Menu, when the Analysis Type option is selected to Nonlinear (Geometry), users are requested to set 

multiple options and parameters to perform the nonlinear analysis. This nonlinear menu displays two tabs, the Options 

tab and the Parameters tab. In the Options tab, a Formulation panel provides options for the kinematic description used 

to formulate the problem (Updated Lagrangian or Co-Rotational) and the corresponding geometric stiffness matrices. If 

the Updated Lagrangian option is selected as the kinematics, three options of stiffness matrix are available: Small 

rotation 2nd order, Large rotation 2nd order, and Large rotation 4th order (Rodrigues, 2019). On the other hand, if 

Corotational option is selected, the geometric matrix option is locked in Small rotation 2nd order. All these matrices are 

implemented in the FRAMOOP code for Euler-Bernoulli and Timoshenko beam element, and can be found in the 

previously referred works. A Solver panel brings the Solution algorithm option to specify which of the incremental-

iterative solution methods, listed in Tab. 2, will be used to perform the analysis. The Increment type option can be set to 

Adjusted or Constant, and defines whether the adjustment factor of the predicted increment will be used or not. In the 

Iteration type option, users can switch between standard or modified Newton-Raphson strategies of updating the 

tangent stiffness matrix. In the Parameters tab, the Control factor is the predicted increment of the load factor in the 

first step. The Limit load ratio and the Max. steps (maximum number of steps) parameters determine when the analysis 

will stop. The Desired iterations sets the Nd value in Eq. (19). Since this parameter is only used to adjust the predicted 

increment size, its input field is inactive if the Increment type option is set to Constant. Finally, the Max. iterations 

(maximum number of iterations) and the Tolerance are information for the convergence criterion. 

Analysis control buttons are positioned below the Options and Parameters tabs. These buttons allow users to run the 

complete analysis, until the maximum number of steps or limit load ratio is reached, or advance and rewind a certain 

number of steps. Changes in any of the analysis options and parameters are also allowed in between steps, so the 

analysis will continue with the new input data. The implementation of theses control options is done by saving in a 

linked list, all the necessary data to start the analysis in any given step, based on the history of the results. This 

possibility to perform the analysis in an incremental-adaptive way is an important feature of the developed tool. Some 

problems may not converge in a specific step of the solution with a set of parameters, but changing it can make the 

analysis to go beyond that problematic point. A step-by-step feedback of the analysis progress is given in a text field in 

the bottom of the Analysis Menu. 

The Plotting Menu is where users can create graphs and add curves to them. Different data options can be plotted in 

the X and Y-axes. These options include nodal displacement, load ratio, step number, displacement increment, and load 

factor increment. For example, one can create a graph that shows the relation between the displacements of two degrees 

of freedom as the analysis goes on, or study the behavior of the load factor increment for each analysis step. Each graph 

can be set as static or dynamic. Static graphs never change its data while dynamic graphs are automatically updated 

when the current analysis step changes. Another interesting feature of the Plotting Menu is the option to plot the 

iteration points rather than only the converged step points. A more in-depth study of the behavior of the solution 

algorithms can be performed from this feature. 

 

5. EXAMPLE 

 

Figure 5 shows a structural model known as Lee frame (Lee et al., 1968), the considered analysis settings, and the 

deformed configuration for distinct analysis stages, with load limit points in bold. Figure 6 presents the equilibrium 

paths of the horizontal displacement, vertical displacement, and rotation of the corner node, as well as the load ratio 

value for each analysis step. Table 3 brings the number of steps to obtain the solution using the continuation methods of 

Tab. 2 and varying the formulation and the control factor, where X means that the full response could not be captured. 
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Figure 5. Lee frame analysis. 

 

  
 

Figure 6. Equilibrium paths and load ratio behavior of the Lee frame. 

 

Table 3. Number of steps to trace full equilibrium path for different analysis settings.  

 

Settings AL_RI AL_RA CAL SAL MN OR WC GD 

UL (λ1
0 = 0.10) 158 158 151 161 162 X 61* 103 

CR (λ1
0 = 0.10) X X 104 X 101 X 46* 103 

UL (λ1
0 = 0.01) 

193 185 178 193 185 X X 1033 

CR (λ1
0 = 0.01) 

128 124 110 135 108 X X 1034 

* Unable to trace a smooth path  

 

As observed in Tab. 3, the UL formulation works better for a larger initial increment, while the CR formulation 

requires less steps when using a smaller increment. The WC method has difficulty to go through snap-back points, as 

explained by Leon et al. (2011). The OR method does not work well for this problem. 

 

6. CONCLUSION 

 

As expected, the results showed that any change to the options and parameters of a nonlinear analysis may lead to a 

greater or lesser efficiency in obtaining the response, or the inability to obtain it correctly, or even the inability obtain it 

at all. Therefore, the availability of several methods and options for the analysis, especially for educational purposes, 

has proved to be fundamental for those who need to analyze models with high nonlinearities, and those who want to 

study the performance of the solution methods and the influence of each analysis parameter. It is important to keep in 

mind that the present implementation has some particular considerations and, because of this, the obtained results may 

vary a little for other implementations. However, similar conclusions should be drawn about the overall behavior of the 

methods to solve the nonlinear problem. 
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