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Abstract 
This work presents a probabilistic crack approach (Rossi et al [1]), based on the Monte Carlo 
method, that was recently implemented in a 3D fully parallelized finite element code (Paz, [2]). 
The cracking scheme used is the discrete crack approach introduced by 3D interface elements. 
In this approach the heterogeneity of the material is taken into account by considering the 
properties to vary spatially following a normal distribution determined by the mean the standard 
deviation of the considered material properties. N samples of a vector of these properties are 
generated and the corresponding solutions are computed by the FE code. Hence, the average 
response of the N samples corresponding to a Monte Carlo simulation is a function of the mean 
value and of the standard deviation that define the Gauss density function. If the heterogeneous 
characteristics of the material are well established and quantified by the statistical moments it is 
possible that the model displays the size effects related to the material heterogeneity.  
Fracturing is modeled by 3D interface elements  generated in a previously defined region within 
the mesh. The interface elements are triangular base prisms connecting adjacent faces of 
neighboring tetrahedra. These elements simulate crack opening through relative displacements 
between the triangular faces (Paz [2]).  
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1. Introduction: Probabilistic Model 

Among several other relevant factors, such as water/cement ratio of the paste, casting and curing 
conditions, loading conditions, etc. concrete cracking depends on the random distribution of 
constituents and initial defects. The heterogeneity governs the overall cracking behavior and 
related size effects on concrete fracture. The probabilistic crack approach, based on the direct 
Monte Carlo method, developed by Rossi and co-workers [1] takes this stochastic process into 
account by assigning in finite element analysis, randomly distributed material properties (tensile 
strength, Young's modulus) to both the solid elements and the contact elements. The stochastic 
process is introduced at the local scale of the material, by considering that cracks are created 
within the concrete with different energy dissipation depending on the spatial distribution of 
constituents and initial defects. The local material behavior in concrete is assumed to obey a 
perfect elastic brittle behavior, so that the random distribution of local cracking energies can be 
replaced by a random distribution of local strengths. Therefore, solid elements are elastic, while 
interface elements are considered elastic-brittle. 
The present probabilistic model involves a number of mechanic properties of the material to be 
determined, which constitutes the modeling data. From a large number of direct tensile tests it 
was found that a normal law describes rather well the experimental distribution (Rossi et al. 
[1]). These characteristics are: µ,ctf and µE , the means of the tensile strength  and of the 

Young’s modulus respectively; σ,ctf and σE , the standard deviations of the tensile strength and 
of the Young’s modulus respectively. The following analytical expressions were proposed: 

b
gtctct

a
gtct VVffVVf −− == )/(35.0/;)/(5.6 ,,, αµσµ        (1) 

c
gt VVEEEE −== )/(15.0/σµ                            (2) 

where tV  is the volume of the two finite elements contiguous to an individual contact element 
of the mesh; gV is  the volume of the coarsest aggregate; E is the average Young’s modulus that 

does not exhibit significant volume effects. For cylinder specimens, whose dimensions are 160 
mm in diameter and 320 mm high a, b and c are constants related to it’s compressive strength 

cf given by: 

( ) ( )253 103.1106,325.0 cc ffa −− ×+×−=  
    ( ) ( )2532 108.1105.4105.4 cc ffb −−− ×−×+×=        (3) 

 ( ) ( )263 104.3107.2116.0 cc ffc −− ×−×+=  
 
In these expressions, the compressive strength cf  represents the quality of the concrete matrix, 
while the volume of the coarsest aggregate gV , refers to the elementary material heterogeneity. 

Equations (1) to (3) show that the smaller the scale of observation, the larger the fluctuation of 
the local mechanical properties, and thus the (modeled) heterogeneity of the matter. In other 
words, the finer the mesh, the greater the modeled heterogeneity in terms of Young's modulus 
and tensile strength. 
The mesh has mv tetrahedra elements and mi interface elements. The individual Young’s 
modulus of the tetrahedra elements is referenced by ivE  and the elastic-brittle constitutive law 
of the interface elements is characterized by an individual tensile strength iict,f .  
Following Rossi et al. [1] findings these individual local tensile strengths and Young’s modulus 
are represented by normal distributions having the densities: 
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where ( )ctf fg  and ( )Eg E  are density functions for the tensile strength ctf  and the Young’s 

modulus E , respectively, and µx and σx denote the mean and standard derivation of the distri-

bution of quantity x . For the problem at hand, it is possible to find a sample of mi values iict,f , 

each value corresponding to an interface element, and mv values ivE , each value corresponding 
to a volume element, by using a standard routine for generation of random numbers for a given 
normal distribution (Press et al., [3]).  
The problem with this approach is that these statistical moments are not known, a priori, for the 
characteristic volume of the finite elements used in analysis. However, some methods have been 
proposed to determine these parameters by means of inverse analysis using neural networks [2], 
[4], [5]and [6].  
The solution for this probabilistic approach is obtained by means of a Monte Carlo simulation 
(depicted in fig 1). A number of n samples are generated (for a given normal distribution) and 
some characteristic responses of the structure (for example, stress crack-width w−σ  curve, or 
load displacement δ−P curve, or load crack mouth opening displacement CMODP −  curve) are 
computed.  
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Figure1: Monte Carlo simulation 

2. Discrete cracking: 3D Interface elements  

The finite element cracking model is a discrete model for which volume elements are always 
elastic and cracking occurs in elastic-brittle (almost rigid brittle) contact elements placed be-
tween two volume elements. The 3D interface elements (Paz [2]) depicted in Fig. 2 (a) can be 
thought as triangular base prisms connecting adjacent faces of neighboring tetrahedra. 
These elements are formulated to represent  relative displacements between the triangular faces 
to simulate crack opening. 
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Figure 2: (a) An Interface Element and its degrees of freedom in a local system,  
(b) Elastic-Brittle Contact law 

 
The constituve law of the 3D interface element is defined by equation (6) for non cracked   elas-
tic state, characterized by ictn f ,<σ . When the tensile strength is exeeded, the elements reach a 
cracked stage and module cE  and cG are set to zero (fig. 2 (b)). 
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In equation (6) the subscripts n, s and t indicate the directions normal and transversal to the 
crack plane respectively, w are the relative displacements between the two faces of the interface 
element, h is the width of interface element, cE and cG are the longitudinal (Young’s) and the 
transversal modulus respectively. 
Equation (6) and fig. 2(b) define the elasto-brittle constituve behavior. However, it can be con-
sidered rigid-fragile, since thickness h of the interface element is considered very small (less 
than a value limh ) of such form that the solution of the problem does not get excited if h dimin-
ishes, limhh < . In this way the modulus cE  and cG  in equation (6) does not have a physical 
meaning and the terms hEc /  and hGc /  tend to infinity. 
The kinematic relation for the interface element is given by: 

         
e
laBw ∆=∆  

The stiffness matrix for the interface element is by: 
 

Ω∫=
Ω
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Intf BDK B cr

T

 
The interface elements are automatically generated (Paz [2]) contiguous to the faces of selected 
tetrahedra. This selection is performed by the user defining a 3D box inside the mesh that con-
tains the target elements. 
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3. Implementation code strategies, parallel vector processor (PVP) 

3.1. Solution of equilibrium equations and the inexact Newton Method 

In this paper we employ an Inexact Newton method (Kelley, [7]), to solve large-scale three 
dimensional incremental elastic-brittle problems. In the Inexact Newton Method, at each 
nonlinear iteration, a linear system of finite element equations is approximately solved by the 
preconditioned conjugate gradient method (PCG). 
In the finite element method, the implementation of global matrix-vector products are easily 
parallelized in different computer architectures, performing element level products followed by 
global assembly. This type of implementation is often referred to element-by-element (EBE) 
scheme. Matrix-vector products computed by EBE (Hughes [8]) schemes are memory intensive, 
requiring more operations than the product with the assembled matrix, because element matrices 
have many overlapping non-zero entries.  
When solving iteratively the finite element system of linear equations, it is straightforward to 
employ inexact versions of the standard Newton-like methods (Kelley, [7], Papadrakakis, [9]). 
In this case, tolerances for the inner iterative driver may be adaptively selected to minimize 
computational effort towards the solution, giving rise to the following algorithm: 
 

 
Given iη,r,u toltol  relative and residual tolerance.  

Compute stiffness tetrahedra matrix TetraK  
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Note that in k
extF  we account for nodal forces, body forces and prescribed displacements and 

stresses 
−−
sU , . The total internal forces vector i

intF  is the sum of the tetrahedra element vector 

internal forces ( ) Tetra
i
intF  plus the interface element internal forces vector ( ) Intf

i
intF . The 

total stiffness matrix is the sum of the continuum matrix TetraK  plus the inteface matrix i
IntfK  

update at each nonlinear iteration. 
We adopted a simple nodal block-diagonal preconditioner. Therefore, the most expensive 
computational kernel in the linear solver is the matrix-vector product. 
According to the above algorithm, an approximate solution is obtained when the Inexact 
Newton termination criterion is satisfied, that is, when, 

i
i

ii Ψ≤Ψ−∆ ηuA            (9) 

The tolerance iη  may be selected using Papadrakakis, [9] or Kelley [7]. 

3.2    Matrix-vector products element-by-element, EBE  

In the element-by-element EBE matrix-vector product, the matrix A  it is never formed. Rather, 
the product is computed as:  

( ) ( )∑∑∑
===

+==
Intftetra N

i
iIntf

N

i
iTetrae

Nel

e 111

pKpKpApA                    (10) 

where Nel is the number of elements in the mesh, Ntetra is the number of tetrahedra, Nintf is the 
number of interface elements, eA are the element matrices for the tetrahedra and interface; ep  
the components of p  restricted to the degrees of freedom of the element. The arrays of the ele-
ment stiffness matrices are stored taking into account their symmetry; in the case of the element 
tetrahedra 78 coefficients are stored and for the interface element only 18 coefficients are 
stored, exploring the particular structure of the discrete gradient operator (matrix B).  
Note that, during the nonlinear iterations, only the interface elements stiffness matrices should 
be updated. 
The mesh coloring algorithm Hughes [8] was extended in order to block both solid and interface 
into disjoint groups this enabling full vectorization and parallelism of the operations involved in 
equation (10). 

4. Numerical simulation and comparison with experimental data 

A notched, plain concrete three-point bending beam test carried out at Amparano et al [10]. The 
geometrical details of the test are shown in fig. 3 and fig. 4 with the mesh of tetraedra of 3D 
interface element. The thickness of beam is 63.5 mm, which was determined by considering the 
maximum aggregate, size 19 mm. To examine the effect of maximum aggregate content, a vol-
ume fraction of 55% of aggregate to total concrete volume was considered. Tests on specimens 
made whit this concrete indicated the following average characteristics at the age (28 days) the 
model were tested; MPaf ct 45,3=  and MPaEc 10500= . This model was created by MG mod-
eler [11] using J-mesh algorithm [12]. Interface elements were later included in the model using 
the algorithm developed in (Paz [2]). 
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Figure 3: Specimen geometry for the three-point bend beam 
 

 
 

  
Figure 4:  Mesh of tetraedra with interface elements and detail for the mesh of interface 

 elements 
Tipical Load-CMOD (crack mouth opening displacement) curves, obtained from numerical 
simulation, and comparison of experimental and numerical results are shown in fig. 5. 
Fig. 6 presents the crack configurations for given sample at a stage corresponding to de soften-
ing branch of the Load-CMOD curve. 
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Figure 5: (a) Monte Carlo simulation 
(b) Comparison of experimental and numerical results 
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Figure 6: Crack evolution for numerical simulation. 

 
5  Computational Performance 
 
Vector performance analysis was obtained using the program summary provided by PER-
FVIEW's Report as shown showed in tab. 1. The CPU time of the vectorized single processor 
run for CRAY T90 is 33.99 hours. This table relates the single CPU utilization to the Mflop/s 
rates for the three top routines. The routines Smatv-fint and Smatv-tetra are responsible re-
spectively for the matrix-vector operations on the interface elements and tetrahedra element, 
these multiplications are needed in the routine PCG-block, the iterative driver to the imple-
menting the nodal block diagonal preconditioned Conjugate Gradient Method (PCG). 

Table 1: Performance Analysis -The top 3 subroutines 

Routines Single CPU 
(%) 

Performance 
(Mflop/s) 

smatv-intf 52.50 597.3 
smatv-tetra 25.40 536.8 
PCG-block 19.10 82.2 

Others 3.00 - 
 

The code achieved good vectorization on the CRAY T90 for a mesh with 8750 elements, com-
prising 4419 interface and 4331 tetrahedra. The top three subroutines are responsible for major 
CPU utilization in the whole analysis.  
The parallel performance is shown in table 2 and the figures 7 (a) and (b) give a summary report 
provided ATEXPERT, the autotasking performance tool. The top five subroutines assigned for 
parallel analysis are presented in tab. 2. The routines Fint-tetra and Fint-intf evaluate respec-
tively the internal force vector of the interface and tetrahedra elements. The routine Kintf com-
putes the stiffness matrices for the interface elements. 
 

Table 2: Summary of the ATEXPERT’s Report for the 5 dominant loops 
Routines % 

Parallel  
Dedicated 
Speedup 

Actual 
Speedup  

Smatv-tetra 98.9 3.96 3.8 
Smatv-intf 99.8 3.83 3.8 
Fint-tetra 92.5 3.83 3.2 
Fint-intf 99.1 3.55 3.5 

Kintf 85.8 3.53 2.6 
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Figure.7: (a) Program Summary of the ATEXPERT’s Report 
(b) ATEXPERT’s Report -The top 6 subroutines on a Dedicated Speedup 

 
According to ATEXPERT tool this program appears to be 99.2 percent parallel and 0.8 percent 
serial. Amdahl's Law predicts the program could expect to achieve a 3.9 times speedup on 4 
cpus.  

6 Concluding remarks 

This paper presented the optimized implementation of Rossi’s a probabilistic model for the 
simulation of cracking in concrete structures. This model in based on the assumption that some 
particularities of the cracking behavior of concrete, such as strain softening, cracking evolution 
and size-effects are derived from the heterogeneous characteristics of the material.  
The probabilistic methodology presented in this paper corresponds to the 3D analysis of a 
strongly nonlinear material that develops cracking. In adition, the finite elements analysis must 
be called several times within a Monte Carlo simulation. Therefore, the code needs to be opti-
mized in such a way that the simulation time does not exceed a practical limit. The example pre-
sented in this paper shows that the model is capable of simulating the crack opening and the 
crack pattern. 
The code achieved a very good level for both parallel performance and vetorization. The most 
demanding routines, which implement the matrix-vector-multiply computational kernel for the 
interface and tetrahedral elements, are "fully" parallelized (~ 99%) and responsible for over 
80% of CPU time. The results emphasizes the suitability of the implemented code on the paral-
lel-vector machine, CRAY T90 for 2 CPU's, which presented a flop rate of 614 Mflop/s and a 
parallel speed-up of 3.8 for 4 CPU's. 
Extensive use of element-by-element techniques within the computational kernels comprised in 
the iterative solution drivers provided a natural way for achieving high Flop rates and good par-
allel speed-up's. Furthermore, element-by-element techniques, avoid completely the formation 
and handling of large sparse matrices. Therefore, the computational strategies presented herein 
provide a natural way to deal with more complex scenarios, particularly those involving three-
dimensional problems. 
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