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Abstract. This work presents computational strategies used in an implementation of 
the probabilistic discrete cracking model for concrete of Rossi suitable to parallel 
vector processor (PVP). The computational strategies used for each realization, within 
the framework of Monte Carlo simulation, are the inexact Newton method to solve the 
highly nonlinear problem and element-by-element (EBE) iterative strategies 
considering that nonlinear behavior is restricted to interface elements. The simulation 
of a direct tension test is used to illustrate the influence of adaptive inexact Newton 
strategy in code performance on a CRAY T90 
 
 

 
1 Introduction 
 
Concrete, the most used construction material in the world, is a very heterogeneous 
material, because of its composite structure composed by aggregates, mortar, fibers, etc. 
and also because of the physical phenomena that take place during chemical and physical 
evolution: autogenous shrinkage, initial stresses and microcracking, etc. The material can 
also present fracture size effects that may introduce large differences for the ultimate loads 
and non-objectivity of the analysis. To handle with these characteristics, two basic 
approaches are generally used to model the mechanical behavior of the material: (i) the 
heterogeneous material is assimilated to a statistically equivalent homogeneous material 
and a deterministic approach together with a size effect law is used; (ii) homogeneity is no 
longer considered, at a certain scale, and the heterogeneity of the material, introduced by a 
stochastic approach, is the responsible for the scale effect. 
Regarding concrete, the second approach is quite recent, and in this paper we refer to 
Rossi’s et al. [1], [2], [3], [4] probabilistic model that seems to take into account size 
effects when the statistical parameters are well determined. This method uses Monte Carlo 
simulations to find the average behavior of the structure, which corresponds to the 
converged mean values of some typical results.  
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The remaining of this work is organized as follows; section 2 describes the probabilistic 
model; section 3 describes the formulation of the interface element;  section 4 describes the 
computational strategies employed and section 5 addresses the numerical experiments 
carried out. Finally, section 6 closes this work  presenting some conclusions drawn from the 
experiments. 
 
2 Probabilistic Model 
 
Among several other relevant factors, such as water/cement ratio of the paste, casting and 
curing conditions, loading conditions, etc, concrete cracking depends on the random 
distribution of constituents and initial defects. The heterogeneity governs the overall 
cracking behavior and related size effects on concrete fracture. The probabilistic crack 
approach, based on the direct Monte Carlo method, developed by Rossi and co-workers ( 
Rossi et al. [1], [2], [3], [4] ) takes this stochastic process into account by assigning in finite 
element analysis,  randomly distributed material properties, such as tensile strength and 
Young's modulus to both the solid elements and the contact elements interfacing the 
former, that is, a discrete crack approach. This approach considers that all nonlinearities are 
restricted to contact elements modeling cracks. Therefore, the stochastic process is 
introduced at the local scale of the material, by considering that cracks are created within 
the concrete with different energy dissipation depending on the spatial distribution of 
constituents and initial defects. The local behavior is assumed to obey a perfect elastic 
brittle material law. Thus, the random distribution of local cracking energies can be 
replaced by a random distribution of local strengths. The present probabilistic model 
involves a number of mechanical properties of the material to be determined, which 
constitutes the modeling data. From a large number of direct tensile tests, it was found that 
a normal law describes rather well the experimental distribution of the relevant material 
data (Rossi et al. [2]). These characteristics are the means of the tensile strength ( ) and 

of the Young’s modulus ( ); the standard deviations of the tensile strength ( ) and of 

the Young’s modulus ( ). The following analytical expressions were proposed (Rossi et 
al. [2]): 
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where  is the volume of the two finite elements contiguous to an individual contact 
element of the mesh, V  is the volume of the coarsest grain, C

TV

g MPa1= ,  is the cylinder 
compressive strength determined by the standardized test (French standard) on a cylinder 
160 mm in diameter and 320 mm high, and 

cf

E  is the mean value (obtained from tests) of 
the Young’s modulus which does not exhibit significant volume effects. 
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In these expressions, the compressive strength  represents the quality of the concrete 
matrix, while the volume of the coarsest aggregate V , refers to the elementary material 
heterogeneity. 

cf

g

Equations (1) to (3) show that the smaller the scale of observation, the larger the fluctuation 
of the local mechanical properties, and thus the (modeled) heterogeneity of the matter. In 
other words, the finer the mesh, the greater the modeled heterogeneity in terms of Young's 
modulus and tensile strength. The empirical expressions corresponding to equations (1) to 
(3) were calibrated to fit a number of material tests for different types of concretes and 
volumes. They give a first approximation to capture volume effects on concrete fracture, 
but they are not expected to be universal. Furthermore, little is known about the validity of 
these empirical formulas for small V . These volume ratios, which may be used in 
finite element structural analysis, are too little to be determined by means of experimental 
tests.  

gt V/

The mesh has  volume elements and  interface elements. Each interface element 
follows a rigid-brittle constitutive law characterized by an individual tensile strength . 

The volume elements are elastic and have individual Young’s modulus referenced by . 

nv ni

ictf ,

vE
Following Rossi et al. [2] findings, these individual local tensile strengths and Young’s 
modulus are represented by normal distributions having the densities: 
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where  and  are the density function for the tensile strength  and the 

Young’s modulus 

( ctf fg ) ( )Eg E ctf

E , and denote the mean and standard derivation of the 
distribution of quantity 

µx σx

x . For the problem at hand, it is possible to find a sample of ni 
values , each value corresponding to an interface element, and nv values , each 
value corresponding to a volume element, by using a standard routine for generation of 
random numbers for a given normal distribution (Press et al., [6]).  

ictf , vE

If the heterogeneous characteristics of the material are well established and quantified by 
the statistical moments it is possible that the model displays the size effects related to the 
material heterogeneity. The problem with this approach is that these statistical moments are 
not known, a priori, for the characteristic volume of the finite elements used. However, 
some methods have been proposed to determine these parameters by means of inverse 
analysis using neural networks  (Fairbairn et al, [7],[8] ).  
The solution for this probabilistic approach is obtained by means of a Monte Carlo 
simulation. A number of n samples is generated for a given normal distribution, and some 
characteristic responses of the structure are computed; for example, stress crack-width 

w−σ  curve, or load displacement δ−P curve. Let the jth samples correspond to, e.g., the 
jth w−σ  curve. This jth w−σ  curve is composed of discrete values,  and , where j

kσ j
kw



 
 
 
 
 
 
 
 
 
 
4          Carmen N. Mena Paz et al. 

the superscript j indicates the sample and the subscript k the discrete value of the w−σ  
curve. The same discrete values are assumed and the response is defined exclusively 
by the values of  . The mean curve composed by pairs  then simply reads 

−w
j

kσ k
mean
k w,σ

σ

∑
=

=
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jmean
k j 1
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The Monte Carlo simulation is stopped when 
 

          toljmean
k

jmean
k ≤− −1,, σσ                 (7) 

 
where tol is the prescribed tolerance to check the convergence of the procedure. With the 
convergence of the procedure, the total number of samples is set to jn = . This total 
number of samples n, corresponding to a Monte Carlo converged simulation, clearly 
depends on tol, which is a measure of the precision required by the analysis. It also depends 
on the heterogeneity of the material represented by the standard deviation. The more 
heterogeneous is the material the greater is the number of samples necessary to obtain a 
converged solution. Our experience in this field indicates that 25 to 50 samples are 
sufficient to obtain a converged w−σ  curve. 
 
 
3. Interface elements for modeling discrete cracking 
 
The finite element cracking model is a discrete model for which volume elements are 
always elastic and cracking occurs in elastic-brittle (almost rigid brittle) contact elements 
placed between two volume elements. The three dimensions interface element (Paz, [5]) 
depicted in figure 1 can be thought as a triangular base prism connecting adjacent faces of 
neighboring tetrahedra. These elements are formulated to describe relative displacements 
between the triangular faces simulating crack opening. 
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Fig. 1.  An Interface Element and its degrees of freedom in a local system 

 
The constituve law of the 3D interface element is defined by equation (8) for non cracked   
elastic state characterized by ictn f ,< . When the tensile strength is reached the elements 
attains the cracked stage and modulus  and G are set to zero (figure 2). cE c
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    Fig. 2. Elastic-Brittle Contact law 
 

In equation (8) the subscript n normal stands for, while stand for s and t tangential 
indicating the direction respective to the crack plane, w are the relative displacements 
between the two faces of the interface element, h is the width of interface element, and 

 are respectively the normal (Young’s) and the shear modulus along crack plane. 
cE

cG
Equations (8) and figure 2 define the elastic-britle constituve behavior. The thickness h 
plays the role of a penalization parameters and should be conveniently chosen not to affect 
the solution. 
The kinematic relation for the interface element is; 
 

e
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w∆ is the crack opening  incremental  and  is the vector incremental nodal  
displacements for the interface element 

e
la∆

 
Applying a standard displacement based F. E. formulation, the resulting tangent stiffness 
matrix for the interface element is given is: 
 

                               (11) 
Ω∫=

Ω
de

Intf BDK B cr
T

 
The interface elements are generated contiguous to the faces of selected tetrahedra 
elements. This selection is performed by the user, defining a 3D box inside the mesh that 
contains the target elements. 
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Remark Our experience indicates that to increase robustness of nonlinear solution process 
we have to limit only one interface element to “crack” at each nonlinear iteration. 
 
 
4. Computational strategies. 
 
In this work we employ the inexact Newton method (Kelley, [9]) to solve resulting 
nonlinear set of equations at each load or displacement increment. 
The outline of the nonlinear solution algorithm is presented in Box 1. 
 

Given u  relative and residual tolerance.  η,toltol r,

Compute stiffness tetrahedra matrix  TetraK
do  k=1,2….., number of  load increments do  
          Compute external  forces vector 







 +−++=

−−

− kIntefktetravolume
K
nodal

k
ext UKUKFFFF

σ
 

do  i=1,2 ..., while convergence 
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Assembly matrix 
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Update solution, 
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∆
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≤
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ψ  then convergence 

end while  i. 
end do  k. 

 
 

Box 1. Inexact Newton Algorithm 
 
Note that in  we account for nodal forces, body forces and prescribed displacements 

and stresses . The total internal forces vector F  is the sum of the tetrahedra element 

vector internal forces 

k
extF

−−
σU , i

int

( ) Tetra
i
intF  plus the interface element internal forces vector 

( ) Intf
i
intF . The total stiffness matrix is the sum of the continuum matrix  plus the TetraK
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interface matrix  updated at every nonlinear iteration. An approximate solution is 
obtained when the Inexact Newton termination criterion is satisfied, that is 

i
IntfK

=pA

IntfK

MPa

  
i

i
ii ψψuA η≤−∆                 (12) 

Tolerance  may be kept fixed throughout the nonlinear iterations or may be adaptively 

selected as the iterations progress towards the solution. Our choice for 
iη

iη  follows the 
criteria suggested by Kelley. 
The iterative driver for the solution of the linearized set of equations is the element-by-
element PCG. Several preconditioner options are available ranging from the simple 
diagonal up to incomplete factorizations. In this work, to stress the benefits of the inexact 
Newton method, we restricted ourselves to simple diagonal and nodal block diagonal. 
 
Remarks  
 
1) In the present implementation matrix vector products in EBE, PCG are computed as: 

( ) ( )∑+∑
==

IntfN

1j
jIntf

tetraN

1i
iTetra pKpK              (13) 

where, Ntetra is the number of tetrahedra, Nintf is the number of interface elements, 
and are respectively element matrices for the tetrahedra and interface;  

and  are the components of p restricted to the degrees of freedom of two element 
type.  

TetraK

jp
ip

2) Stiffness matrices for tetrahedra are computed and stored at the beginning of the 
analysis since they are elastic. 

3) Stiffness matrix for interface elements are updated at every nonlinear iteration. 
4) The arrays of  element stiffness matrices are stored taking into account their symmetry; 

in the case of the element tetrahedra 78 coefficients are stored and for the interface 
element only 18 coefficients are stored, exploring the particular structure of the 
discrete gradient operator given in equation (10). 

5) The mesh coloring algorithm of Hughes [10] was extended to block both solid and 
interface elements into disjoint groups thus enabling full vectorization an 
parallelization of the operations involved in equation (13). 

 
 
 
5. Numerical experiments 
 
5.1 Direct tension test 
 
The experimental results of concrete uniaxial tension tests published by (Li et al [12] ) were 
used to validate the developments presented in this paper. The specimens are cylinders 
101.6 mm in diameter and 203.2 mm high. This specimens had 25.4 mm notches at their 
midheight on both sides (figure 3).  
Concrete with maximum aggregate diameter of 9.525 mm was used. Its average tensile 
strength and Young’s modulus at the age of 28 days were: MPaf ct 72,4= and 

. Ec 42000=
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Fig. 3. Uniaxial tension specimen geometry, dimensions, load, boundary conditions  
 
 
The numerical experiments were controlled by a field of uniform displacements applied at 
the top of the test specimen in 30 incremental steps . The boundary 
conditions restrain the degrees of freedom in the vertical at the bottom. The final mesh has 
11,933 elements, where 4,775 are tetrahedra and 7,158 are interface elements  (figure 4).  

6103.5 −=∆ xu

 
 

 

 
 
 
 

 
 
 
 

 
(a) (b) 

 
Fig. 4. Hidden line (a) and wire frame (b) representations of the computational mesh for the 

simulation of a direct tension test. It is also shown aside the resulting mesh for the interface elements 
considering. 
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Fig. 5. Results for the complete  Monte Carlo simulation. 
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Fig.6. Comparison of experimental and numerical results.   
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Curves δσ − for the several realizations of the Monte-Carlo simulation are given in figure 
5. The comparison between experimental by Li et al  [12] and the convergent Monte Carlo 

δσ −  curve is given in figure 6, figure 7 presents the crack configuration for a given 
sample at a stage corresponding to the softening branch of the δσ −  curve 
 
 
  

 
  

 
 

 
 
 

Fig. 7. Crack evolution for numerical simulation  
 
 
 
5.2 Comparison of inexact Newton strategies 
 
An assessment of the implemented inexact Newton strategies was carried out for one 
realization of the direct tension test simulation the selected preconditioner for this 
experiment was the diagonal nodal block. 
A fixed tolerance for PCG was selected for the first analysis requiring 52 inexact 
Newton iterations. For the second analysis, now employing the adaptive inexact Newton 
method, the tolerance range for PCG was set to 10 , requiring 54 inexact 
Newton iterations. Tolerances for the inexact Newton were iterations set to 

 , in both cases. 

310−=η

63 10−− ≤≤ η

3
toltol 10ru −==

As can be seen in Figure (8), comparing the number of nonlinear iterations for both 
analyses, it remained fairly the same irrespective to the selection of the inexact Newton 
approach, either fixed or adaptive, indicating that the overall nonlinear character of the 
solution was not affected the adaptive approach. Figure (9) shows a plot of the number of  
PCG iterations per incremental step for both analyses. It is evident in this figure the 
reduction of PCG iterations due to the adaptive strategy. 
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 Fig. 8. Nonlinear iterations per incremental step for the direct tension test simulation. 
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Fig. 9.  PCG iterations per incremental step for the direct tension test simulation. 
 
 

5.3 Computational Performance 
 
A detailed vector performance analysis is obtained by the summary of the PERFVIEW's 
Report presented in Table 3. The CPU time of the vectorized single processor run for 
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CRAY T90 is 10.38 hours. This table list for a single CPU run, the Mflop/s rates for the 
three top routines. The routines Smatv-fint and Smatv-tetra are respectively responsible 
for the  matrix-vector products for the interface and tetrahedra elements, routines are the 
computations kernels the routine PCG-block, implements the iterative solver the nodal 
block diagonal Preconditioned Conjugate Gradient. 

 
Routines Single CPU (%) Performance (Mflop/s) 

smatv-intf 52.80 613.7 
smatv-tetra 17.32 554.0 
PCG-block 25.90 82.4 

Others 3.98 - 
 

Table 3 Performance Analysis -The top 3 subroutines 
 
The code achieved good vectorization on the CRAY T90 for a mesh with 11933 elements, 
comprising (7158 interface and 4775 tetrahedra elements). The top three subroutines 
consume the major CPU utilization in the whole analysis.  
The parallel performance is shown in table 4 and the figure 10 (a) and (b) as obtained from 
a summary ATEXPERT report, autotasking performance tool. The routines Fint-tetra and 
Fint-intf evaluate respectively the internal force vector of the interface elements and the 
tetrahedra elements. Routine A-Kintf computer update interface stiffness.. 
 

Routines % Parallel Dedicated 
Speedup 

Actual Speedup  

Smatv-tetra 98.9 3.96 3.8 
Smatv-intf 99.8 3.83 3.8 
Fint-tetra 92.5 3.83 3.2 
Fint-intf 99.1 3.55 3.5 
A-Kintf 85.8 3.53 2.6 

 
Table 4 Summary of the ATEXPERT’s Report for the 5 dominant loops 
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Fig. 10 (a) Program Summary of the ATEXPERT’s Report 
(b) ATEXPERT’s Report -The top 6 subroutines on a Dedicated Speedup 

 
According to ATEXPERT tool this program appears to be 99.2 percent parallel and 0.8 
percent serial. Amdahl's Law predicts the program could expect to achieve a 3.9 times 
speedup on 4 cpus. A 3.8 speedup is predicted with 4 cpus on a dedicated system.  
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5. Concluding remarks 
 
 
This paper presented computational strategies used in an implementation of Rossi’s 
probabilistic model for the simulation of cracking in concrete structures.  
The resulting code achieved very good level, for parallel and vetor performance single CPU 
achieved 614 Mflop/s while parallel speed-up reached 3.8 in a 4 CPU system. The results 
emphasizes the suitability of the implemented code on a PVP system the CRAY T90  
Extensive use of element-by-element techniques within the computational kernels 
comprised in the iterative solution drivers provided a natural way for achieving high flop 
rates and good parallel speed-up's.  
The use of an adaptive inexact Newton method showed to be effective in reducing overall 
linear iterations, by a factor of two in comparison to the  fixed tolerance inexact Newton 
scheme. 
 
Acknowledgments 
 
The authors are indebted to the Computer Graphics Technology Group TECGRAF/PUC-
Rio, High Performance Computing Center NACAD/COPPE/UFRJ, and the Laboratory of 
Computational Methods in Engineering of the Program of Civil Engineering LAMCE 
/COPPE/UFRJ. CESUP/UFRGS is gratefully acknowledged for the computer time 
provided for the performance experiments.  
This work was partially supported by CAPES and CNPq's grant No 150039/01-8(NV). 
 
References 
 
1. Rossi P., Richer S.: Numerical modeling of concrete cracking based on a stochastic 

approach. Materials and Structures, 20  (119), . (1987) 334-337. 

2. Rossi P., Wu X., Maou F. le, and Belloc A.: Scale effect on concrete in tension. 
Materials and Structures, 27 (172), (1994) 437-444. 

3. Rossi P., Ulm F.-J., and Hachi F.: Compressive behavior of concrete: physical 
mechanisms and modeling. Journal of Engineering Mechanics ASCE, 122 (11), (1996), 
1038-1043. 

4. Rossi P. and Ulm F.-J.:  Size effects in the biaxial behavior of concrete: physical 
mechanisms and modeling. Materials and Structures, 30 (198), (1997) 210-216. 

5. Paz C. N. M., Development and Implementation Probabilistic Model for 2D and 3D 
Discrete Cracking Concrete in Parallel Computing, D.Sc. Thesis, COPPE/UFRJ, the 
Graduate Institute of Federal University of Rio de Janeiro, Brazil (2000) [in 
Portuguese]. 

6. Press W. Teukolski H., S., Vetterling W.T. and Flannery B.: Numerical Recipes, 
Cambridge University Press (1992). 

7. Fairbairn E. M. R., Paz C. N. M., Ebecken N. F. F., and Ulm F-J., Use of neural network 
for fitting of probabilistic scaling model parameter, Int. J. Fracture, 95, (1999), 315-
324. 

8. Fairbairn E. M. R., Ebecken N. F. F., Paz C. N. M.,  and Ulm F-J.: Determination of 
probabilistic parameters of concrete: solving the inverse problem by using artificial 
neural networks, Computers and Structures, 78, (2000) 497-503. 



 
 
 
 
 
 
 
 
 
 
14          Carmen N. Mena Paz et al. 

9. Kelley C. T.: Iterative Methods for Linear and Nonlinear Equations. Frontiers in applied 
mathematics, SIAM Society for Industrial and Applied Mathematics, Philadelphia, 
(1995). 

10. Hughes T. J. R., Ferenez R. M. , Hallquist J. O.: Large-Scale Vectorized Implicit 
Calculation in Solid Mechanics on a CRAY X-MP/48 Utilizing EBE Preconditionated 
Conjugate Gradients  Computer Methods in applied Mechanics and Engineering, 61, 
(1987) 2115-248. 

11. Papadrakakis M.: Solving Large-Scale Problems in Mechanics: The Development and 
Application of Computational Solution, Editor, M. Papadrakakis, John Wiley and 
Sons, (1993).  

12. Li Q. and  Ansari F.: High Concrete in Uniaxial Tension,  ACI Material J. 97- (1), 
(2000) 49- 57. 

13. Coutinho A. L. G. A., Martins M. A. D., Alves J. L. D., Landau L., and Moraes A.: 
Edge-based finite element techniques for nonlinear solid mechanics problems, Int. J. 
for Numerical Methods in Engineering, 50 (9), (2001) 2050-2068. 

14. Fairbairn E. M. R., Debeux V.J.C., Paz C. N. M., and Ebecken N. F. F.: Application of 
probabilistic Approach to the Analysis of gravity Dam Centrifuge Test, 8  ASCE 
Specialty Conference on Probabilistic Mechanics and Structural Reliability (2000) 
PMC 2000-261. 

th

15. Kelley C. T.: Iterative methods for optimization. Frontiers in applied mathematics, 
SIAM Society for Industrial and Applied Mathematics, Philadelphia, (1999). 


	References

