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ABSTRACT: This work presents a probabilistic crack approach based on the Monte Carlo method, imple-
mented in a 3D fully parallelized finite element code (Paz, 2000). The cracking scheme used is the discrete 
crack approach. In this approach the heterogeneity of the material is taken into account by considering the 
properties to vary spatially following a normal distribution determined by the mean and the standard devia-
tion of the considered material properties.  
Fracturing is modeled by 3D interface elements generated in a previously defined region within the mesh (Paz 
2000). The interface elements are triangular base prisms connecting adjacent faces of neighboring tetrahedra. 
These elements simulate crack opening through relative displacements between the triangular faces.  

1 INTRODUCTION:  

1.1 Probabilistic model  
Concrete cracking depends on several relevant fac-
tors such as water/cement ratio, casting and curing, 
loading conditions, etc. Due to the random distribu-
tion of constituents and initial defects, the heteroge-
neity governs the overall cracking behavior and re-
lated size effects on concrete fracture. The 
probabilistic crack approach based on the direct 
Monte Carlo method developed by Rossi and co-
workers 1994a,b 1996,1997, takes this stochastic 
process into account by assigning in finite elements 
analysis, randomly distributed material properties 
(tensile strength, Young's modulus) to both the solid 
elements and the interface elements (figure 1). The 
stochastic process is introduced at the local scale of 
the material, by considering that cracks are created 
within the concrete with different energy dissipation 
depending on the spatial distribution of constituents 
and initial defects. 
 

  
 

Figure 1: This stochastic process into account by assigning in 
finite elements analysis, randomly distributed material proper-

ties. 

 
The local material behavior in concrete is as-

sumed to obey a perfect elastic brittle behavior, so 
that the random distribution of local cracking ener-
gies can be replaced by a random distribution of lo-
cal strengths. Therefore, solid elements are elastic, 
while interface elements are considered elastic-
brittle. 

Thus, the present probabilistic model involves a 
number of mechanic properties of the material to be 
determined, which constitutes the modeling data. 
From a large number of direct tensile tests it was 
found that a normal law describes rather well the 
experimental distribution (Rossi et al. 1994b). These 
characteristics are: µ,ct and , the means of the 
tensile strength  and of the Young’s modulus respec-
tively; σ,ct and σ , the standard deviations of the 
tensile strength and of the Young’s modulus respec-
tively. The following analytical expressions were 
proposed: 
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where  is the volume of the two finite elements 
contiguous to an individual contact element of the 
mesh; is  the volume of the coarsest aggregate; 

tV

gV
E is the average Young’s modulus that does not ex-
hibit significant volume effects. For cylinder speci-
mens, whose dimensions are 160 mm in diameter 



and 320 mm high constants a, b and c are related to 
the compressive strength given by the relations, cf
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In these expressions the compressive strength  
represents the quality of the concrete matrix, while 
the volume of the coarsest aggregate V , refers to 
the elementary material heterogeneity. 
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Equations (1) to (3) show that the smaller the 
scale of observation, the larger the fluctuation of the 
local mechanical properties, and thus the (modeled) 
heterogeneity of the matter. In other words, the finer 
the mesh, the greater the modeled heterogeneity in 
terms of Young's modulus and tensile strength. 

Let mv  the number of tetrahedra and mi the num-
ber of interface elements in a given mesh. Also let  
the set of all Young’s modulus of the solid elements 
be denoted by  and f  the at of all tensile strength 
of interface elements 

E ct

According to Rossi et al. 1994b these individual 
local tensile strengths and Young’s modulus are rep-
resented by normal distributions having the densi-
ties: 
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where ctf  and  are density functions 
for the tensile strength ct  and the Young’s modulus 

( fg ) )g
f

E , respectively, and and denote the mean and 
standard deviation of the distribution of quantity 

µx xσ
x . 

For the problem at hand, it is possible to find a sam-
ple of mi values iict , , each value corresponding to an 
interface element, and m

f
v values iv , each value cor-

responding to a volume element, by using a standard 
routine for generation of random numbers for a 
given normal distribution (Press et al., 1992).  

E

The problem with this approach is that these sta-
tistical moments are not known a priori for the char-
acteristic volume of the finite elements used in the 
analysis. However, some methods have been pro-
posed to determine these parameters by means of in-

verse analysis using neural networks Paz 2000, Far-
bairn 1999, 2000a, b. 

The solution for this probabilistic approach is ob-
tained by means of a Monte Carlo simulation. As 
depicted in figure 2, in a Monte Carlo simulation a 
number of n samples are generated for a given nor-
mal distribution and some characteristic responses of 
the structure. A characteristic response may be for 
example a stress crack-width w−σ  curve. Let the 
jth samples correspond to the jth w−σ  curve. This 
jth w−σ  curve is composed of discrete values, k  
and k , where the superscript j indicates the sample 
and the subscript k the discrete value of the 

jσ

w
jw

−σ  
curve. The discrete  values are assumed known 
and the response is defined exclusively by the values 
of  . The mean curve composed by pairs 
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The Monte Carlo simulation is stopped when 

toljmean
k

jmean
k ≤− −1,, σσ            (7) 

where tol is the prescribed tolerance to check the 
convergence of the procedure. Where convergence is 
reached the number of samples is set to jn = . This 
total number of samples n, corresponding to a Monte 
Carlo converged simulation, clearly depends on tol, 
which is a measure of the accuracy required by the 
analysis. It also depends on the heterogeneity of the 
material represented by the standard deviation. The 
more heterogeneous is the material the greater is the 
number of samples necessary to obtain a converged 
solution. Our experience in this field indicates that 
15 to 30 samples are sufficient to obtain a converged 

w−σ  curve. 
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Figure 2: Monte Carlo simulation. 

2 DISCRETE CRACKING: 3D INTERFACE 
ELEMENTS  

 
The finite element cracking model is a discrete 
model for which volume elements are always elastic 
and cracking occurs in elastic-brittle (almost rigid 



brittle) contact elements placed between two 
neighbor surfaces of the volume elements. The 3D 
interface elements (Paz 2000) depicted in Figure 3 
(a) can be thought as triangular base prisms connect-
ing adjacent faces of neighboring tetrahedra. 

These elements are formulated to represent  rela-
tive displacements between the triangular faces to 
simulate crack opening. 
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Figure 3: (a) An interface element and its degrees of free-
dom in a local system; (b) Elastic-brittle contact law. 

 
The constituve law of the 3D interface element is 

defined by equation (8) for a non cracked elastic 
state, characterized by ictn ,f<σ . When the tensile 
strength is exceeded, the elements reach a cracked 
stage and module  and are set to zero as 
shown in figure 3b. 
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In equation (8) the subscript n normal stands for, 
while stand for s and t tangential indicating the di-
rection respective to the crack plane, w are the rela-
tive displacements between the two faces of the in-
terface element, h is the width of interface element, 

and  are respectively the normal (Young’s) and 
the shear modulus along crack plane. 
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Equations (8) and figure 3 define the elastic-britle 
constituve behavior. The thickness h plays the role 
of a penalization parameters and should be conven-
iently chosen not to affect the solution. 

The kinematic relation for the interface element is 
given by: 

e
laBw ∆=∆                    (9) 

w∆ is the crack opening  incremental  and  
is the vector incremental nodal  displacements 

for the interface element 
e
la∆

Applying a standard displacement based F. E. 
formulation, the resulting tangent stiffness matrix for 
the interface element is given is: 

Ω∫=
Ω

de
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            (10) 
The interface elements are generated contiguous to 
the faces of selected tetrahedra elements. This selec-
tion is performed by the user, defining a 3D box in-
side the mesh that contains the target elements. 

 
Remark Our experience indicates that to increase 
robustness of nonlinear solution process we have to 
limit only one interface element to “crack” at each 
nonlinear iteration. 

3 3D INTERFACE ELEMENTS MESH 
GENERATION 

Fracturing is modeled by 3D interface elements gen-
erated in a previously defined cracked region. This 
selection is performed by the user defining a 3D box 
inside the mesh that contains the target elements. 
The interface elements are generated ( Paz 2000) 
contiguous to the faces of the selected tetrahedra.  

The procedure initially establishes the neighbor-
hoods of the faces, then it maps how many elements 
share each node. Later it creates the nodes necessary 
to the interface elements, all nodes having the same 
coordinates of the neighbor node. After this all 
nodes with the same coordinates are visited, and the 
first element of the loop takes the existing node of 
the initial mesh of tetrahedra (see figure 4a) and, for 
the other elements that share this node, it is intro-
duced a new node numbering (see figure 4b) Later 
connectivities are created, introducing the interface 
elements according to an ordering previously estab-
lished. 

Interface elements with collapsed nodes provide 
continuity to the elements outside the cracked region 
(see figure 4c). These elements are implemented us-
ing an artifice that allows the use of elements with 
six nodes. This artifice consists of multiple refer-
ences for the same collapsed nodes duplicating the 
node numbering for the elements outside the 3D 
box. 
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Figure 4: (b,c) 3D Interface elements mesh generation. 

4 COMPUTATIONAL STRATEGIES; 
PARALLEL VECTOR PROCESSOR (PVP) 

4.1 Solution of equilibrium equations and the 
inexact Newton Method 

Traditional finite element technology for non linear 
problems involves the repeated solution of systems 
of sparse linear equations by a direct solution 
method, that is, some variant of Gauss elimination. 
The updating and factorization of the sparse global 
stiffness matrix can result in extremely large storage 
requirements and a very large number of floating 
point operations. 

In this paper we employ an Inexact Newton 
method (Kelley 1995), to solve large-scale three-
dimensional incremental elastic-brittle problems. In 
the Inexact Newton Method, at each non linear itera-
tion, a linear system of finite element equations is 
approximately solved by the preconditioned conju-
gate gradient method (PCG). 

The implementation of global matrix-vector 
products are easily parallelized in different computer 
architectures, performing element level products fol-
lowed by global assembly. This type of implementa-
tion is often referred to element-by-element (EBE) 
schemes. Matrix-vector products computed by EBE 
schemes are memory intensive, requiring more op-
erations than the product with the assembled matrix, 
because element matrices have many overlapping 
non-zero entries. However, particularly for large 
scale non linear problems EBE methods have been 
very successful, because they handle large sparse 
matrices in a simple and straightforward manner. 

Besides, efficient preconditioners may be derived 
keeping the same data structure. For a recent review 
of such topics see Hughes 1987. 

When solving iteratively the finite element sys-
tem of linear equations, it is straightforward to em-
ploy inexact versions of the standard Newton-like 
methods. In this case, tolerances for the inner itera-
tive driver may be adaptively selected to minimize 
computational effort towards the solution, giving 
rise to the following algorithm: 

Interface elements with col-
lapsed nodes to provide con-
tinuity with elements outside
the cracked  region.  

Given iη,r,u toltol  relative and residual tolerance. 
Compute stiffness tetrahedra matrix  TetraK
do  k=1,2….., number of load increments do  

Compute external forces vector 
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ψ  then conver-

gence 
end while i. 

end do k. 
Note that in  we account for nodal forces, 

body forces and prescribed displacements and 
stresses 

−
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−

. The total internal forces vector  
i  the sum of the solid elements internal forces 

k
extF

U σ i
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s  
( ) Tetra

iFint  plus the interface element internal forces 
vector ( ) Intf

i

i
Intf

int . The total stiffness matrix is the 
sum of the continuum matrix TetraK  plus the inter-
face matrix  updated at each non linear itera-
tion. 

F

K

We adopted a simple nodal block-diagonal pre-
conditioner. Therefore, the most expensive computa-
tional kernel in the linear solver is the matrix-vector 
product. According to the above algorithm, an ap-
proximate solution is obtained when the Inexact 
Newton termination criterion is satisfied, that is, 
when, 

i
i

ii Ψ≤Ψ−∆ ηuA             (11) 



We selected as suggested by Kelley [11], 
based on a measure of how far the nonlinear itera-
tion is from the solution, that is, 
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If   is uniformly limited away from 1, and tak-
ing 

A
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( )Aηηη ,max ii min  Kelley [11] has shown gen-
eral convergence properties when Equation (12) is 
used. To avoid that  i  be too small when the 
nonlinear iteration is away from the solution, Kelley 
also suggests the following modification, 
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In some cases iψ

C
iη

 can be very small, well be-
yond the required accuracy, resulting in undesired 
work. To remedy this over solving Kelley 1995 pro-
poses to compute  using; 
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and finally taking ( )Cηηη ,max= . ii min
Our experience indicates that selecting 

minmax  for utol and rtol in 
the usual range, that is, 10 to , is enough for 
practical engineering computations. Typical values 
for 

63 10101.0, −− ≤≤= ηη and
3− 210−

γ  and g are 0.5 and 0.1, respectively 

4.2 Matrix-vector products element-by-element, 
EBE 

In the present implementation matrix vector 
products in EBE, PCG are computed as: 
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where, Ntetra is the number of tetrahedra, Nintf is the 
number of interface elements, Tetra and Intf are re-
spectively element matrices for the tetrahedra and 
interface;  and  are the components of p re-
stricted to the degrees of freedom of two element 
type.  

K K

ip jp

Stiffness matrices for tetrahedra are computed 
and stored at the beginning of the analysis since they 
are elastic. 

Stiffness matrix for interface elements are up-
dated at every nonlinear iteration. 

The arrays of  element stiffness matrices are 
stored taking into account their symmetry; in the 
case of the element tetrahedra 78 coefficients are 
stored and for the interface element only 18 coeffi-

cients are stored, exploring the particular structure of 
the discrete gradient operator. 

The mesh coloring algorithm of Hughes 1987  
was extended to block both solid and interface ele-
ments into disjoint groups thus enabling full vectori-
zation an parallelization of the operations involved 
in equation (15). 

5 NUMERICAL EXAMPLE 

 
The analized example is direct tension tests (fig-

ure 5). This numerical  example was analyzed by 
Rossi et al 1997  in a bidimensional program . 

The numerical experiment were controlled by a 
field of uniform displacements applied at the top of 
the test specimen in 30 incremental steps 

. The boundary conditions restrain 
the degrees of freedom in the vertical at the bottom. 
Concrete with maximum aggregate diameter of 
10.00 mm was used. Its average tensile strength and 
Young’s modulus at the age of 28 days were: 

3100.4 −=∆ xu

MPafct 0.3= and . MPaE 30000=c
The final mesh figure 6, has 4,756 elements, 

where 2,000 are tetrahedra and 2,726 are interface 
elements, and node numbers 4,181. The final mesh 
figure7, has 3,292 elements, where 2,000 are tetra-
hedra and 1,292 are interface elements and node 
numbers 2,131. 
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Figure 5:  Uniaxial tension specimen geometry, dimen-

sions, load, boundary conditions 
 

 

 

 

Figure 6: Representations of the computational mesh for 
the simulation of a direct tension test. It is also shown aside the 
resulting mesh for the interface elements considering. (mesh a) 
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Figure 7: Representations of the computational mesh for 

the simulation of a direct tension test. It is also shown aside the 
resulting mesh for the interface elements considering. (mesh b) 

 
 

 
           

Figure 8 : Curve stress – strain  Rossi et al. 1997 
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Figure 9:  Results for the complete  Monte Carlo simulation 

(mesh a). 
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Figure 10: Results for the complete  Monte Carlo simula-
tion (mesh b). 

 

 
 

 
Figure 11: Crack evolution for numerical simulation (mesh a) 
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Figure 12: Crack evolution for numerical simulation (mesh b) 

6 COMPUTATIONAL PERFORMANCE 

A detailed vector performance analysis is obtained 
by the summary of the PERFVIEW's Report pre-
sented in figures 13 and 14. The CPU time of the 
vectorized single processor run for CRAY T90 are 
1.48 hours and   1.02  hours (mesh (a) and (b) re-
spectively). This table list for a single CPU run, the 
Mflop/s rates for the three top routines. The routines 
Smatv-fint and Smatv-tetra are respectively re-
sponsible for the  matrix-vector products for the in-



terface and tetrahedra elements, routines are the 
computations kernels the routine PCG-block, im-
plements the iterative solver the nodal block diago-
nal Preconditioned Conjugate Gradient (PCG). 
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Figure 13: Performance Analysis – The top three subroutines – 

The 2 Meshes 
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Figure 14: Performance Analysis- Single CPU (%) – The top 
the subroutines 

 
The code achieved good vectorization on the 

CRAY T90 for a mesh (a). The top three subroutines 
are consume the major CPU utilization in the whole 
analysis.  

The parallel performance is shown figures 15 
(a,b) as obtained from a summary ATEXPERT, re-
port autotasking performance tool. The top five sub-
routines assigned for parallel analysis are presented  
for the direct tension test. The routines Fint-tetra 
and Fint-intf evaluate respectively the internal force 
vector of the interface and tetrahedra elements. The 
routine Kintf computer update interface elements 
stiffness. 
According to ATEXPERT tool this program appears 
to be 99.2 percent parallel and 0.8 percent serial. 
Amdahl's Law predicts the program could expect to 
achieve a 3.9 times speedup on 4 CPU's. A 3.8 

speeup is predicted with 4 CPU’s on dedicated sys-
tem. 
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Figure 15:  (a) Program Summary of the ATEXPERT’s 
Report 

(b) ATEXPERT’s Report -The top 5 subroutines on a Dedi-
cated Speedup 

 

7 CONCLUDING REMARKS  

This paper presented the optimized implementation 
of Rossi’s a probabilistic model for the simulation of 
cracking in concrete structures. This model in based 
on the assumption that some particularities of the 
cracking behavior of concrete, such as strain soften-
ing, cracking evolution and size-effects are derived 
from the heterogeneous characteristics of the mate-
rial.  

The probabilistic methodology presented in this 
paper corresponds to the 3D analysis of a strongly 
nonlinear material that develops cracks. In adition, 
the finite elements analysis must be called several 
times within a Monte Carlo simulation. Therefore, 
the code needs to be optimized in such a way that 
the simulation time does not exceed a practical limit.  

The code achieved a very good level for both 
parallel performance and vetorization. The most de-
manding routines, which implement the matrix-
vector-multiply computational kernel for the inter-
face and tetrahedral elements, are "fully" parallel-
ized (~ 99%) and responsible for over 80% of CPU 
time. The results emphasizes the suitability of the 



implemented code on the parallel-vector machine, 
CRAY T90 for 2 CPU's, which presented a flop rate 
of 614 Mflop/s and a parallel speed-up of 3.8 for 4 
CPU's. 

Extensive use of element-by-element techniques 
within the computational kernels comprised in the 
iterative solution drivers provided a natural way for 
achieving high Flop rates and good parallel speed-
up's. Furthermore, element-by-element techniques, 
avoid completely the formation and handling of 
large sparse matrices. Therefore, the computational 
strategies presented herein provide a natural way to 
deal with more complex scenarios, particularly those 
involving three-dimensional problems. 
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