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Abstract 
 
This work presents a probabilistic crack approach based on the Monte Carlo method, 
implemented in a 3D fully parallelized finite element code (Paz, [1]). The cracking 
scheme used is the discrete crack approach. In this approach the heterogeneity of the 
material is taken into account by considering the properties to vary spatially 
following a normal distribution determined by the mean and the standard deviation 
of the considered material properties.  
Fracturing is modeled by 3D interface elements generated in a previously defined 
region within the mesh (Paz [1]). The interface elements are triangular base prisms 
connecting adjacent faces of neighboring tetrahedra. These elements simulate crack 
opening through relative displacements between the triangular faces.  
 
Keywords: Parallel processing, high performance computing, discrete cracking 
concrete, probabilistic crack approach, material heterogeneity, size effects, tensile 
strength domain, Monte Carlo method, non linear analysis, finite elements. 
 
1 Introduction: probabilistic model 
 
Concrete cracking depends on several relevant factors such as water/cement ratio, 
casting and curing, loading conditions, etc. Due to the random distribution of 
constituents and initial defects, the heterogeneity governs the overall cracking 
behavior and related size effects on concrete fracture. The probabilistic crack 
approach based on the direct Monte Carlo method developed by Rossi and co-
workers [2,3,4 and 5] takes this stochastic process into account by assigning in finite 
elements analysis, randomly distributed material properties (tensile strength, 
Young's modulus) to both the solid elements and the contact elements. The 
stochastic process is introduced at the local scale of the material, by considering that 
cracks are created within the concrete with different energy dissipation depending on 
the spatial distribution of constituents and initial defects. The local material behavior 
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in concrete is assumed to obey a perfect elastic brittle behavior, so that the random 
distribution of local cracking energies can be replaced by a random distribution of 
local strengths. Therefore, solid elements are elastic, while interface elements are 
considered elastic-brittle. 
 

 
 

 

Figure 1: This stochastic process into account by assigning in finite elements 
analysis, randomly distributed material properties. 

 
 

Thus, the present probabilistic model involves a number of mechanic properties 
of the material to be determined, which constitutes the modeling data. From a large 
number of direct tensile tests it was found that a normal law describes rather well the 
experimental distribution (Rossi et al. [3]). These characteristics are: µ,ctf and µE , 
the means of the tensile strength  and of the Young’s modulus respectively; σ,ctf and 

σE , the standard deviations of the tensile strength and of the Young’s modulus 
respectively. The following analytical expressions were proposed: 

 
b

gtctct
a

gtct VVffVVf −− == )/(35.0/;)/(5.6 ,,, αµσµ      (1) 
c

gt VVEEEE −== )/(15.0/σµ           (2) 
 

where tV  is the volume of the two finite elements contiguous to an individual 
contact element of the mesh; gV is  the volume of the coarsest aggregate; E is the 
average Young’s modulus that does not exhibit significant volume effects. For 
cylinder specimens, whose dimensions are 160 mm in diameter and 320 mm high 
constants a, b and c are related to the compressive strength cf given by the relations, 

 
( ) ( )253 103.1106,325.0 cc ffa −− ×+×−=  

( ) ( )2532 108.1105.4105.4 cc ffb −−− ×−×+×=         (3) 

( ) ( )263 104.3107.2116.0 cc ffc −− ×−×+=  
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In these expressions the compressive strength cf  represents the quality of the 
concrete matrix, while the volume of the coarsest aggregate gV , refers to the 
elementary material heterogeneity. 

Equations (1) to (3) show that the smaller the scale of observation, the larger the 
fluctuation of the local mechanical properties, and thus the (modeled) heterogeneity 
of the matter. In other words, the finer the mesh, the greater the modeled 
heterogeneity in terms of Young's modulus and tensile strength. 

Let mv  the number of tetrahedra and mi the number of interface elements in a 
given mesh. Also let  the set of all Young’s modulus of the solid elements be 
denoted by E  and ctf  the at of all tensile strength of interface elements 

According to Rossi et al. [3] these individual local tensile strengths and Young’s 
modulus are represented by normal distributions having the densities: 
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where ( )ctf fg  and ( )Eg E  are density functions for the tensile strength ctf  and the 
Young’s modulus E , respectively, and µx and σx denote the mean and standard 
deviation of the distribution of quantity x . For the problem at hand, it is possible to 
find a sample of mi values iictf , , each value corresponding to an interface element, 
and mv values ivE , each value corresponding to a volume element, by using a 
standard routine for generation of random numbers for a given normal distribution 
(Press et al., [6]).  

The problem with this approach is that these statistical moments are not known a 
priori for the characteristic volume of the finite elements used in the analysis. 
However, some methods have been proposed to determine these parameters by 
means of inverse analysis using neural networks [1, 7, 8, 9,10].  

The solution for this probabilistic approach is obtained by means of a Monte 
Carlo simulation. As depicted in figure 2, in a Monte Carlo simulation a number of n 
samples are generated for a given normal distribution and some characteristic 
responses of the structure. A characteristic response may be for example a stress 
crack-width w−σ  curve. Let the jth samples correspond to the jth w−σ  curve. 
This jth w−σ  curve is composed of discrete values, j

kσ  and j
kw , where the 

superscript j indicates the sample and the subscript k the discrete value of the w−σ  
curve. The discrete w  values are assumed known and the response is defined 
exclusively by the values of j

kσ  . The mean curve composed by pairs k
mean
k w,σ  then 

simply reads 
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The Monte Carlo simulation is stopped when 
 

toljmean
k

jmean
k ≤− −1,, σσ                 (7) 

 
where tol is the prescribed tolerance to check the convergence of the procedure. 
Where convergence is reached the number of samples is set to jn = . This total 
number of samples n, corresponding to a Monte Carlo converged simulation, clearly 
depends on tol, which is a measure of the accuracy required by the analysis. It also 
depends on the heterogeneity of the material represented by the standard deviation. 
The more heterogeneous is the material the greater is the number of samples 
necessary to obtain a converged solution. Our experience in this field indicates that 
25 to 50 samples are sufficient to obtain a converged w−σ  curve. 
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Figure 2: Monte Carlo simulation. 
 
 
 
2 Discrete cracking: 3D Interface elements 
 
The finite element cracking model is a discrete model for which volume elements 
are always elastic and cracking occurs in elastic-brittle (almost rigid brittle) contact 
elements placed between two neighbor surfaces of the volume elements. The 3D 
interface elements (Paz [1]) depicted in Figure 3 (a) can be thought as triangular 
base prisms connecting adjacent faces of neighboring tetrahedra. 

These elements are formulated to represent  relative displacements between the 
triangular faces to simulate crack opening. 
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(a) (b) 
 

Figure 3: (a) An interface element and its degrees of freedom in a local system;  
(b) Elastic-brittle contact law. 

 
 

The constitutive law of the 3D interface element is defined by equation (8) for a 
non cracked elastic state, characterized by ictn f ,<σ . When the tensile strength is 
exceeded, the elements reach a cracked stage and module cE  and cG are set to zero 
as shown in figure 3b. 
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In equation (8) the subscripts n, s and t indicate the directions normal and 
transversal to the crack plane respectively, w are the relative displacements between 
the two faces of the interface element, h is the width of interface element, cE and 

cG are the longitudinal (Young’s) and the transversal modulus respectively. 
Equation (8) and figure 3(b) define the elasto-brittle constituve behavior. 

However, it can be considered rigid-fragile, since thickness h of the interface 
element is considered very small (less than a value limh ). In this way the modulus cE  
and cG  in equation (8) do not have a physical meaning and the terms hEc /  and 

hGc /  tend to infinity. 
The kinematic relation for the interface element is given by: 
 

    
e
laBw ∆=∆  

The stiffness matrix for the interface element is by: 
 

Ω∫=
Ω
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3 3D interface elements mesh generation 
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Fracturing is modeled by 3D interface elements generated in a previously defined 
cracked region. This selection is performed by the user defining a 3D box inside the 
mesh that contains the target elements. The interface elements are automatically 
generated ( Paz [1]) contiguous to the faces of the selected tetrahedra.  

 
The procedure initially establishes the neighborhoods of the faces, then it maps 

how many elements share each node. Later it creates the nodes necessary to the 
interface elements, all nodes having the same coordinates of the neighbor node. 
After this all nodes with the same coordinates are visited, and the first element of the 
loop takes the existing node of the initial mesh of tetrahedra (see figure 4a) and, for 
the other elements that share this node, it is introduced a new node numbering (see 
figure 4b) Later connectivities are created, introducing the interface elements 
according to an ordering previously established. 

 
Interface elements with collapsed nodes provide continuity to the elements 

outside the cracked region (see figure 4c). These elements are implemented using an 
artifice that allows the use of elements with six nodes. This artifice consists of 
multiple references for the same collapsed nodes duplicating the node numbering for 
the elements outside the 3D box. 

 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 4: 3D Interface Elements mesh generation.  

Interface elements with
collapsed nodes to
provide continuity with
elements outside the
cracked  region. 
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4 Implementation code strategies, parallel vector 
processor (PVP) 

 
4.1 Solution of equilibrium equations and the inexact Newton 

Method 
 
Traditional finite element technology for non linear problems involves the repeated 
solution of systems of sparse linear equations by a direct solution method, that is, 
some variant of Gauss elimination. The updating and factorization of the sparse 
global stiffness matrix can result in extremely large storage requirements and a very 
large number of floating point operations. 
 

In this paper we employ an Inexact Newton method (Kelley [11] , Coutinho[12]), 
to solve large-scale three-dimensional incremental elastic-brittle problems. In the 
Inexact Newton Method, at each non linear iteration, a linear system of finite 
element equations is approximately solved by the preconditioned conjugate gradient 
method (PCG). 

 
The implementation of global matrix-vector products are easily parallelized in 

different computer architectures, performing element level products followed by 
global assembly. This type of implementation is often referred to element-by-
element (EBE) schemes. Matrix-vector products computed by EBE schemes are 
memory intensive, requiring more operations than the product with the assembled 
matrix, because element matrices have many overlapping non-zero entries. 
However, particularly for large scale non linear problems EBE methods have been 
very successful, because they handle large sparse matrices in a simple and 
straightforward manner. Besides, efficient preconditioners may be derived keeping 
the same data structure. For a recent review of such topics see Hughes [13]. 

 
When solving iteratively the finite element system of linear equations, it is 

straightforward to employ inexact versions of the standard Newton-like methods. In 
this case, tolerances for the inner iterative driver may be adaptively selected to 
minimize computational effort towards the solution, giving rise to the following 
algorithm: 

 
 
Given iη,r,u toltol  relative and residual tolerance. 
Compute stiffness tetrahedra matrix TetraK  
do  k=1,2….., number of load increments do  

Compute external forces vector 
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do i=1,2 ..., while convergence 
Compute internal forces vector, 
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( ) ( ) Intf
i

Tetra
ii

intintint FFF +=  
Compute residual vector, 

i
ext

ii FFψ −= int  
Update stiffness interface matrix i

IntfK  
i
IntfTetra

i KKA +=  

Compute tolerance for iterative driver, iη  

Solver: ii ψuA =∆  for tolerance iη  
 
Update solution, 

uUU ∆+=  

if utol≤
∆
U
u

 and rtol
k
ext

i

≤
∆

F

ψ  then convergence 

end while i. 
end do k. 

 

 
Note that in k

extF  we account for nodal forces, body forces and prescribed 

displacements and stresses 
−
U , 

−

σ . The total internal forces vector i
intF  is the sum of 

the solid elements internal forces ( ) Tetra
i
intF  plus the interface element internal 

forces vector ( ) Intf
i
intF . The total stiffness matrix is the sum of the continuum 

matrix TetraK  plus the interface matrix i
IntfK  updated at each non linear iteration. 

We adopted a simple nodal block-diagonal preconditioner. Therefore, the most 
expensive computational kernel in the linear solver is the matrix-vector product. 
According to the above algorithm, an approximate solution is obtained when the 
Inexact Newton termination criterion is satisfied, that is, when, 

 
i

i
ii Ψ≤Ψ−∆ ηuA                (11) 

 
We selected iη as suggested by Kelley [11], based on a measure of how far the 

nonlinear iteration is from the solution, that is, 
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If  A

iη  is uniformly limited away from 1, and taking   ( )A
ii ηηη ,max min=  Kelley 

[11] has shown general convergence properties when Equation (12) is used. To 
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avoid that  A
iη  be too small when the nonlinear iteration is away from the solution, 

Kelley also suggests the following modification, 
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In some cases iψ  can be very small, well beyond the required accuracy, 

resulting in undesired work. To remedy this over solving Kelley [11] proposes to 
compute C

iη  using; 
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and finally taking  ( )C

ii ηηη ,max min= . 
Our experience indicates that selecting 6

min
3

max 10101.0, −− ≤≤= ηη and  for utol 
and rtol in the usual range, that is, 310− to 210− , is enough for practical engineering 
computations. Typical values for γ  and g are 0.5 and 0.1, respectively. 

 
 
 
 

4.2 Matrix-vector products element-by-element, EBE  
 
In the element-by-element EBE matrix-vector product, the matrix A  it is never 
formed. Rather, the product is computed as:  
 

( ) ( )∑∑∑
===

+==
Intftetra N

i
iIntf

N

i
iTetrae

Nel

e 111

pKpKpApA            (15) 

 
where Nel is the number of elements in the mesh, Ntetra is the number of tetrahedra, 
Nintf is the number of interface elements, eA are the element matrices for the 
tetrahedra and interface; ep  the components of p  restricted to the degrees of 
freedom of the element. The arrays of the element stiffness matrices are stored 
taking into account their symmetry; in the case of tetrahedra 78 coefficients are 
stored and for the interface element only 18 coefficients are stored, exploring the 
particular structure of the discrete gradient operator . 

Note that, during the nonlinear iterations, only the interface elements stiffness 
matrices should be updated. 

The mesh coloring algorithm Hughes [13] was extended in order to block both 
solid and interface elements into of disjoint groups thus enabling full vectorization 
and parallelism of the operations involved in equation (15). 
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5 Numerical examples 
 
5.1 Uniaxial tension test - Comparasion with experimental data 
 
The experimental results of concrete uniaxial tension tests published by (Li et al 
[14]) were used to illustrate the developments presented in this paper. The 
specimens are cylinders 101.6 mm in diameter and 203.2 mm high. This specimens 
had 25.4 mm notches at their midheight on both sides (Figure 5).  
Concrete with maximum aggregate diameter of 9.525 mm was used. Its average 
tensile strength and  Young’s modulus at the age of 28 days were: 

MPaf ct 72,4= and MPaEc 42000= . This model was created by Mesh 
Generation (MG) modeler (Coelho et al [15]) using J-mesh algorithm (Cavalcante et 
al [16]). Interface elements were later included in the model using the algorithm 
developed in Paz [1]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure. 5: Uniaxial tension specimen geometry, dimensions, load, boundary 
conditions and place of the measurement of δ. 

 
 
 
 
 

The numeric experiments were controlled by a field of uniform displacements 
applied at the upper end of the test specimen. The boundary conditions restrain the 
degrees of freedom in the vertical at the lower end and place of the measurement of 
δ (Figure 5). The mesh of tetrahedra is shown in  Figure 6.  
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Figure 6: Mesh tetrahedra with interface elements and  
detail of the mesh of interface elements. 
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Figure 7:  Monte Carlo simulation. 
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Figure 8: Comparison of experimental and numerical results.   
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Curves δσ −  for the several samples of the Monte-Carlo simulation are given in 
figure 7 (place of the measurement of δ (Figure. 5)). The comparison between 
experimental results by Li et al [14] and the converged Monte Carlo (30 samples) 

δσ −  curve is given in figure 8. With the experience gotten in the works [1, 7, 8, 9 
and 10] we are using inverse analysis to introduce factor 2 that multiplies µ,ctf of 
Equation (1). 

 Figure 9 presents the crack configuration for a given sample at a stage 
corresponding to the softening branch of the δσ −  curve. 
 
 
 

    
 

Figure 9: Crack evolution.  
 
 
 
 
 
 
 
5.2 Beam test - Comparasion with experimental data 
 
A notched, plain concrete three-point bending beam test carried out by Amparano et 
al [17]. The geometrical details of the test are shown in figure 10 and figure 11 with 
the mesh of tetraedra and interface elements. The thickness of the beam is 63.5 mm, 
which was determined by considering the maximum aggregate size 19 mm. To 
examine the effect of maximum aggregate content, a volume fraction of 55% of 
aggregate to total concrete volume was considered. Tests on specimens made with 
this concrete indicated the following average characteristics again at (28 days) the 
age at test: MPaf ct 45,3=  and MPaEc 10500= . Again this model was created by 
Mesh Generation MG modeler (Coelho et al [15]) using J-mesh algorithm 
(Cavalcante et al [16]). Interface elements were later included in the model using the 
algorithm developed in Paz [1]. 
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Figure 10: Specimen geometry for the three-point bend beam. 
 
 
 
 

  

  
 
 

Figure 11: Mesh of tetraedra with interface elements and detail for the mesh of 
interface elements. 

 
 
 

The comparison between experimental results by Amparano et al [17] and the 
converged Monte Carlo (40 samples) Load-CMOD curve is given in figure 12. 
Typical Load-CMOD (Crack Mouth Opening Displacement) curves, obtained from 
numerical simulation, and comparison of experimental and numerical results are 
shown in figure 13. 

Figure 14 presents the crack configurations for given sample at a stage 
corresponding to de softening branch of the Load-CMOD curve. 
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Figure 12:  Monte Carlo simulation. 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.05 0.1 0.15 0.2 0.25

CMOD (mm)

Load (kN)

Experimental

Numerical

 
Figure 13: Comparison of experimental and numerical results. 

 

  

 
 

 
Figure 14: Crack evolution. 
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6 Computational Performance 
 
Vector performance analysis was obtained using the program summary provided by 
PERFVIEW's Report as shown in table 1 and figures 15 and 16. The CPU time of 
the vectorized single processor run for CRAY T90 are 34.87 and 33.99 hours 
(examples 1 and 2 respectively). This table relates the single CPU utilization to the 
Mflop/s rates for the three top routines. The routines Smatv-fint and Smatv-tetra 
are responsible respectively for the matrix-vector operations on the interface 
elements and tetrahedra elements, these multiplications are needed in the routine 
PCG-block, the iterative driver implementing the nodal block diagonal 
preconditioned conjugate gradient method (PCG). 
 
 

EXAMPLE 1 EXAMPLE  2  
ROUTINES Single CPU 

(%) 
Performanc
e (Mflop/s) 

Single CPU 
(%) 

Performance 
(Mflop/s) 

smatv-intf 52.80 613.7 52.50 597.3 
smatv-tetra 17.32 554.0 25.40 536.8 
PCG-block 25.90 82.4 19.10 82.2 

Others 3.98 - 3.00 - 
 

Table 1: Performance Analysis -The top 3 subroutines - The 3 examples. 
 

No Example No Elements  No Eelements 
tetrahedra 

No Elements 
Interface  

Example 1 11933 4775 7158 
Example 2 8750 4331 4419 

 
Table 2: Number of elements the meshes. 
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Figure 15: Performance Analysis -The top three subroutines - The 2 examples. 
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Figure 16: Performance Analysis - Single CPU (%) -The top three subroutines.  

 
The code achieved good vectorization on the CRAY T90 for a 2 examples show 

in table 1 The top three subroutines are responsible for major CPU utilization in the 
whole analysis.  

The parallel performance is shown in table 4 and the figures 17 (a) and (b) give a 
summary report provided ATEXPERT, the autotasking performance tool. The top 
five subroutines assigned for parallel analysis are presented in table 3 for the 
uniaxial tension test. The routines Fint-tetra and Fint-intf evaluate respectively the 
internal force vector of the interface and tetrahedra elements. The routine Kintf 
computes the stiffness matrices for the interface elements. 

 
Routines % 

Parallel  
Dedicated 
Speedup 

Actual 
Speedup  

Smatv-tetra 98.9 3.96 3.8 
Smatv-intf 99.8 3.83 3.8 
Fint-tetra 92.5 3.83 3.2 
Fint-intf 99.1 3.55 3.5 

Kintf 85.8 3.53 2.6 
 

Table 3: Summary of the ATEXPERT’s Report for the 5 dominant loops. 
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Figure.17: (a) Program Summary of the ATEXPERT’s Report; 
(b) ATEXPERT’s Report -The top 6 subroutines on a Dedicated Speedup. 

 
According to ATEXPERT tool this program appears to be 99.2 percent parallel 

and 0.8 percent serial. Amdahl's Law predicts the program could expect to achieve a 
3.9 times speedup on 4 cpus.  
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7 Concluding remarks 
 
This paper presented the optimized implementation of Rossi’s a probabilistic model 
for the simulation of cracking in concrete structures. This model in based on the 
assumption that some particularities of the cracking behavior of concrete, such as 
strain softening, cracking evolution and size-effects are derived from the 
heterogeneous characteristics of the material.  
The probabilistic methodology presented in this paper corresponds to the 3D 
analysis of a strongly nonlinear material that develops cracks. In adition, the finite 
elements analysis must be called several times within a Monte Carlo simulation. 
Therefore, the code needs to be optimized in such a way that the simulation time 
does not exceed a practical limit. The example presented in this paper shows that the 
model is capable of simulating the crack opening and the crack pattern. 
The code achieved a very good level for both parallel performance and vetorization. 
The most demanding routines, which implement the matrix-vector-multiply 
computational kernel for the interface and tetrahedral elements, are "fully" 
parallelized (~ 99%) and responsible for over 80% of CPU time. The results 
emphasizes the suitability of the implemented code on the parallel-vector machine, 
CRAY T90 for 2 CPU's, which presented a flop rate of 614 Mflop/s and a parallel 
speed-up of 3.8 for 4 CPU's. 
Extensive use of element-by-element techniques within the computational kernels 
comprised in the iterative solution drivers provided a natural way for achieving high 
Flop rates and good parallel speed-up's. Furthermore, element-by-element 
techniques, avoid completely the formation and handling of large sparse matrices. 
Therefore, the computational strategies presented herein provide a natural way to 
deal with more complex scenarios, particularly those involving three-dimensional 
problems. 
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