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Summary 

The design of engineering applications requires the assurance of an appropriate reliability level. Uncertainties are 

observed in mechanical and geometrical proprieties as well as in external loads. Consequently, a rational 

structural design requires the consideration of properties and loads uncertainties. Recently, this rational approach 

has been applied successfully in many areas of structural engineering. An important issue concerning design and 

detailing of reinforcement concrete members is the investigation of the so-called strut-and-tie models (STM). In 

these models, a reinforcement member is reduced to a truss-like structure, i.e. a set of compressive struts and 

tensile ties, in order to find a feasible statically admissible transfer mechanism of the applied load to the 

supporting system or ground foundation. This approach has often been used when some kind of discontinuity is 

present in the concrete element or structure. In addition, one may take into account the limited capacity of 

concrete to sustain plastic deformation providing distributed reinforcement to ensure a more ductile behavior and 

requiring that concrete members, represented by struts and nodes in the model, do not collapse before yielding of 

steel ties. Therefore, an efficiently formulation to verify the security and ductility behavior of strut-and-tie models is 

necessary. The present work uses the Crude Monte Carlo simulation method and FORM/SORM approximation 

methods for attesting a ductile behavior of a strut-and-tie model. These numerical stochastic methods can be 

applied to estimate the failure probability. With this estimation, a reliability index can be evaluated and compared 

with a target reliability index. The probability of each failure mode is obtained and design modifications are 

proposed to assure the ductility behavior of the strut-and-tie model. The stochastic distribution of concrete and 

reinforcement properties and of self weight and live loads follow the JCSS model and ACI code 

recommendations. This design approach follows ACI 318-05 guidelines that recommend the adoption of a 

reliability index and a target ductility behavior in design procedures of reinforced concrete structures. 
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1. Introduction 

Deep beams are structural elements that have small span/depth ratios. They have useful applications in 
many structures, such as tall buildings, foundations, offshore structures, and several others. This kind of 
element has the structural behavior commanded by shear failure mechanism. The shear failure 
mechanism of reinforced concrete structures members is not yet fully understood and more progress 
needs to be done to achieve an adequate rational design level. In this context, one interesting design tool 
is the truss analogy method. In this method, the internal force transfer in the continuum is replaced by a 
truss mechanism that represents a fully cracked reinforced concrete component.  Strut-and-tie models are 
a set of truss-like mechanisms first proposed by Ritter and Morsch in the early 1900s. The original truss 
analogy concept assumes that concrete after cracking is not capable of resisting tension and postulates 
that cracked reinforced concrete beam acts as a truss with chords and a web composed of concrete struts 
and transverse ties. Based on plasticity theory this method was modified by others researches, such as 
Thurlimann , Muller  and Marti.  Further work by Schlaich et al (1987) extended the beam truss model with 
the use of uniformly inclined diagonals, thereby enabling application to all parts of the structures in the 
form of generalized strut-and-tie systems.  Nowadays, strut-and-tie models are included in several codes 
and guidelines, such as ACI 318-05, EUROCO-2004, CEB-1992, and others. 

Some provisions in ACI 318-05 have applied strut-and-tie concepts in the design of deep beams. Using 
these concepts, the designer is capable of predicting the load capacity of many types of deep beams. 
However, experimental results demonstrate that the actual behavior of a reinforced concrete component 
and its prediction using ACI code are quite different. Collins and Kuchma (1999) showed experimentally 
that ACI code overestimated the shear capacity of reinforced concrete deep beams having large sections 
and small reinforced ratios. Therefore, it is necessary to investigate possible ways to surpass these 
difficulties.  

The main objective of this paper is to present a reliability criterion for analysis and design of deep beams 
using the strut-and-tie model. This approach permits that all kind of uncertainties present in problems of 
structural analysis of deep beams could be incorporated into the design process. Moreover, the proprosed 
reliability analysis assesses the failure probability associated with each failure mechanism of a deep 
beam. Using this approach, the designer estimates the probabability of occurance of a ductile mode or 
brittle mode and proposes design modifications to avoid an undesirable failure mode. To demonstrate the 
capability of this approach, the design of a deep beam tested experimentally is presented and analyzed. 
Model uncertainties values are obtained from the experimental results of 214 reinforced concrete deep 
beams that were tested to failure and reported in the literature by others researches and presented by 
Park and Kuchma (2007). 

 

2.  Reliability analysis  

The analysis of a reinforced concrete structure involves several uncertainties related to concrete and steel 
properties, structural dimensions and position of steel reinforcement, loads and boundary conditions. 
Furthermore, uncertainties associated to the employed epistemic models are little used. For a realistic 
analysis, it is necessary to look for expected values and variances of the structural response, considering 
random input parameters. Several methods for probabilistic structural analysis have been studied in the 
last years. Generally, the methods employed are the Monte Carlo simulation method, First Order 
Reliability Method – FORM and Second Order Reliability Method. The Monte Carlo method is the most 
simple and evident way to accomplish a probabilistic analysis, and for that reason is widely used. In this 
method, material properties, loads and other random variables are introduced by digital simulation, without 
any significant modification of the algorithm used in the deterministic analysis. Moreover, Monte Carlo 
method is statistically consistent and may be employed to test other techniques. However, Monte Carlo 
method may be computationally very expensive in problems with several degrees of freedom and when 
many simulations are necessary to obtain the statistical descriptors of the structural response. In this case 
the FORM/SORM methods have often been applied. In the design criteria of reinforced concrete 
structures based on ultimate limit states, safety is reached by means of partial safety factors. These 
factors are introduced with different values to increase or to reduce the magnitude of the random variables 
involved in the analysis. Usually, loads, materials strengths and structural dimensions are the basic 



random variables considered in the design. Partial safety factors are introduced to increase loads and to 
reduce steel and concrete strengths. For concrete and steel, the partial factors cover the deviations of the 
nominal dimensions and the difference between the strength obtained from test specimens and the 
strength in the actual structure. The use of partial safety factors, although convenient, is not sufficient to 
determine the safety level obtained in the design. In fact, safety depends on the structural response due to 
the actions and this involves interdependence among all random variables. A consistent evaluation of the 
safety level requires the determination of the structural failure probability. This probability can be estimated 
if the probability distribution of a certain random variable representing a given safety margin for the 
structure is known. Unfortunately, it is not always possible or practical to obtain this probability distribution. 
An alternative to obtain the safety level consists in the evaluation of the reliability index. This index, takes 
into account all random variables involved and the way the structure responds to the actions. The 
reliability index is associated to a failure probability, although this relationship is not explicit. Several works 
have been developed to evaluate the reliability of reinforced concrete structures. However, the reliability 
analysis applied in strut-and–tie models is a new research field to be developed. In general, there are 
several methods to solve the probability of failure for systems that represents the structural behavior. A 
general problem in reliability analysis can be shown graphically by Fig 1. 

 

Figure 1: Design domain in reliability analysis. 

 

Simulation methods and approximate methods like First Order Reliability Method (FORM) and Second 
Order Reliability Method (SORM) are used in this paper to estimate a probability of failure of a reinforced 
concrete deep beam. Five modes of failure (bearing plates for support and points of load, horizontal and 
diagonal struts and tie) are considered into a system that represents the structural behavior. The FERUM 
software developed in University of Berkeley (Der Kiureghian el at [7]) and another developed by the 
authors are used for this proposal. 

 

2.1 Crude Monte Carlo simulation 

This method of simulation is widely used when accurate estimative of probability of failure is required. A 
necessary condition for MCS used is that probability distribution of each random variable involved in the 
problem need to be known.  After that, a random generation of value based on statistical parameters 
(mean and standard deviation) and correspondent probability distributions is made and the probability of 
failure is estimated.  In crude Monte Carlo simulation �� is estimated by: 
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Where �����	� is mathematical expectance of random variable ���	.  The estimator ���	 can be defined 
by: 

���	 = �1 → � ∈ Ω�0 → � ∉ Ω�
� 

Since the number of simulation is large �, the empirical average of ���	 values can be understood like a 
failure probability estimator. Then: 

��� = ∑ ��� �!	 ≤ 0	#$%&'
�  

A graphic visualization about Monte Carlo simulation is shown in Fig 2.  The integral result is done around 
the mean value whether  � will be sufficiently large. 

 

 

 

Figure 2: Monte Carlo simulation method. 

 

2.2 FORM/SORM Methods  

The First Order Reliability Method (FORM) is a gradient-based search algorithm to locate the nearest point 
in the parameter space that yields a failure. In this so-called design point, a linear approximation of the 
Limit State Function (LSF) is used The First Order Reliability Method (FORM) is a gradient-based search 
algorithm. The First Order Reliability Method (FORM) is a gradient-based search algorithm to locate the 
nearest point in the parameter space that yields a failure. In this so-called design point, a linear 
approximation of the Limit State Function (LSF) is used as an approximate boundary between the safe 
and failure domain. Using this boundary, an estimate of the failure probability can be computed. In this 
paper, the HLRF method (Hansofer and Lind [8]) has been applied, a widely used algorithm that is 
generally fast and reliable. Each iteration step consists of a numerical gradient evaluation to find the 
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direction of steepest descent towards the design point, followed by an optimization loop to set an optimal 
step in that direction. A disadvantage of the FORM algorithm is that no measure of accuracy is provided 
for the estimated failure probability. When a problem has multiple failure criteria, a FORM analysis must be 
performed for each criterion.  
The Second Order Reliability Method (SORM) the limit-state surface is approximated by a parabolic 
surface with its principal curvatures fitted to the principal curvatures of the limit-state surface at the design 
point. Two algorithms are available for determining the principal curvatures and the corresponding 
principal directions of the limit-state surface at the design point. One algorithm determines the principal 
curvatures (eigenvalues) and the principal directions (eigenvectors) by solving an eigenvalue problem 
involving the Hessian (second-derivative matrix) of the limit-state surface. The Hessian is computed by 
finite difference calculations in the standard normal space. Another algorithm computes the principal 
curvatures in the order of decreasing magnitude by iterative calculations in the course of finding the design 
point by the improved HLRF algorithm (Der Kiureghian et al [6]). This approach is advantageous for 
reliability problems with large number of random variables, since calculations can be stopped when the 
magnitude of the last curvature found is sufficiently small. Once the principal curvatures are determined, 
the asymptotic formula by Breitung [5] or the exact formula by Tvedt [37] is used to compute the 
probability content of the fitted parabolic as the SORM approximation of the failure probability for each 
component. The design point for FORM/SORM approximation methods are shown in Fig3. 
 
 

 
 

Figure 3: Design point in FORM/SORM approximation methods 

 
3. Uncertainties   

The presence of uncertainty in engineering, therefore, is clearly unavoidable. The available data are often 
incomplete or insufficient and invariably contain variability. Moreover, engineering planning and design 
must rely on predictions or estimation based on idealized models with unknown degrees of imperfections 
relative to reality, and thus involves additional uncertainty. In practice, two types of uncertainty may be 
identifying: aleatory uncertainty and epistemic uncertainty. For the deep beam problem used in this paper 
both types are considered. 

 

3.1 The aleatory uncertainty or uncertainty associated with randomness 

Many phenomena or process of concern to engineers contain randomness. It means that expected 
outcomes are unpredictable (to some degree). Such phenomena are characterized by field or 
experimental data that contains significant variability that represents the natural randomness of an 
underlying phenomenon; i.e., the observed measurements are different from one experiment to another, 
even if conducted or measured under apparently identical conditions. There is a range of measured or 
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observed values of the experimental results; moreover, within this range certain values may occur more 
frequently than others. The variability inherent in such data or information is statistical in nature, and the 
realization of a specific value or range of values involves probability.  In general, this kind of approach is 
considering trough basic variables that are more relevant for the problem.  Then, specifics limit state 
equations are developed to represent each mode of failure of the structure. The calculation model for each 
limit state considered should contain a specified set of basic variables, i.e. physical quantities which 
characterize actions and environmental influences, material and geometrical quantities. The basic 
variables are assumed to carry the entire input information to the calculation model.  Each basic variable is 
defined by a number of parameters such means, standard deviation, type of probabilistic distributions, 
parameters determining the correlation structures, etc. Considering the deep beam problem, four basic 
variables are taken: two of them represent the material randomness (concrete and steel) and two others 
for actions randomness (permanent and live load). In Table 1, the statistical parameters for associated 
basic variables are shown. Most of the guidelines used in this work are taken from JCSS 2001. 

 

 

 

The compression concrete strength and yield strength values used in this paper are the average of values 
obtained in the laboratory results. The load values are obtained through ACI 318-05 for the less value of 
failure in the model. A value of 0.5 in the relation between permanent and total load are used to simulate a 
real design situation. 

 

3.2 The epistemic uncertainty or uncertainty associated with imperfect knowledge  

In engineering, there are idealized models of the real world in our analysis and the predictions for the 
purpose of making decisions or planning and developing criteria for design of an engineering system. 
These idealized models, which may be mathematical or simulation models or even laboratory models, are 
imperfect representations of the real world. Consequently, the results of analysis, estimations or 
predictions obtained on the basis of such models are inaccurate, with some unknown degree of error, and 
thus also contain uncertainty. Such uncertainties are, therefore, knowledge based and are of the epistemic 
type. Quite often, this epistemic uncertainty may be more significant than the aleatory uncertainty. In 
performing a prediction or estimation with a idealized model, the objective is invariably to obtain a specific 
quantity of interest; this may be the mean-value or median value of a variable. Therefore, in considering 
the epistemic uncertainty it is reasonable in practice, to limit our consideration to the accuracy in 
calculating or estimating the central value, such mean-value or median value. A calculation model is a 
physically based or empirical relation between relevant variables, which are in general random variables: 

( =  ��', �*, . . , �,	 

Where ( is the model output,   is the model function and �,  the basic variables of the problem. In fact, 
the model function   often will be inexact. Then, the difference between the model prediction the real 
outcome of the experiment can be written down as: 

( =  -.�', . . , �, , /', . . , /%0 

Table1  - Statistical properties for the model 

Random variable Distribution Mean δ

Permanent load Normal Pgm 0,03

Live load Gumbel Pqm 0,30

Compression concrete strength Lognormal fcm 0,17

Yield strength Lognormal fym 0,05



The parameters namely /, are referred to as parameters which contain the model uncertainties and 
random variables.  

 

Their statistical properties are derived from experiments or observations. The mean of these parameters 
should be determined in such a way that, on average, the calculation model correctly predicts the test 
results. In Table 2, the parameters for epistemic uncertainties consideration are shown. The proposed 
method used the values of average and coefficient of variation obtained by Park and Kuchma (2007) to 
calculate the capacity of 214 reinforced concrete deep beams that were tested to failure and reported in 
the literature by others investigations using ACI 318-05 orientations. 

 

4. Example application  

To illustrate the proposed approach for the assessment of the safety and ductility level on the strut-and-tie 
model, an example of a reinforced concrete deep beam is presented and analyzed considering the 
orientations presents in ACI 318-05. The compression concrete strength values were increased to show 
their influence in the behavior of model. 

 

4.1. Deep beam structure 

The external geometry of the deep beam used for this example is shown in Fig. 4. A simply supported 
deep beam to two-point top loading is used. For hydrostatic nodes, the struts e tie dimensions are 
controlled by the size of the bearing plates and for existent angle for the ratio  2/
4�, only. Unfortunately, 

since the width of strut and tie are not known initially, some iterative process is required after initial values 
are adopted. 

In this work none hydrostatic node is not required, then the width of the horizontal strut and tie are 
modified and its influence evaluated. From the force equilibrium at the top node, the compressive forces 
56 in the diagonal strut, 57 in the horizontal strut and ( in the horizontal tie can be determined by the 
following equations: 

56 = �
89:/;

 57 = �
<2:/;

 ( = �
<2:/;

 (2) 

 

The inclined angle /; of the diagonal strut is given by: 

<2:/; = 
4�
2  

 

Where, 2 is the shear span and 
4� is the lever arm of main reinforcement to the center of concrete 

stress block. The term =8 is the cross-sectional area of the diagonal strut and is computed by: 

 

=>_;@AB@ = CD�E@  cos /; +  JK 89:/;   	 

Table2  - Epistemic uncertaities of the model 

Random variable Distribution Mean δ

Uncertainty of resistance Normal 1,76 * 0,18 *

Uncertainty of load effect Normal 1 0,05

* Values obtained by model versus experimental results



 

 

 

Figure 4: Strut-and-tie model for simply supported deep beams 

 

Where, CD is the beam width,  E@ is the depth of the bottom node, taken differently by one case to 
another and JC is the width of the support plates. The lever arm of main reinforcement  
4�  is: 


4� = ℎM − E@
2 − E7

2  

The effective depth of the top horizontal concrete strut was taken as: 

E7 = P
 

Where, 
 is the effective depth of deep beam and P was derived from the classical bending theory for a 
single reinforced beam section. For more details see Park and Kuchma (2007). The effective depth of the 
diagonal concrete strut was taken as:  

E6Q = 2
2 89:�/;	 + P
RS8�/;	 (3) 

Where, a/2 should not be less than the length of the loading plate, P
 is the depth of the compression 
zone at the section. The inclined angle of the diagonal strut can be evaluated by: 

<2:/; = ℎM − E@2 − E72
2  

The effective depth of the diagonal strut is adopted for the less value between Eq. 3 and the similar 
expression used for the bottom node. 
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Table 3 shows the values used in the example considered in this paper. These values are obtained in 
paper of Park and Kuchma (2007). 

 

 

6. Methodology 

 

The approach used in the paper has two steps. In first step laboratorial conditions are simulated in way to 
compare results with researches previously done. Failure modes are checked and the numerical 
stochastic model calibrated. It means that only permanent load is considered with any correction because 
it represents a mean value. It is possible once there are controlled loading conditions inside the laboratory. 
In the same way, concrete and steel proprieties values are used like mean values once represent mean 
values for laboratorial tests. In the second step, real design conditions are applied. It means that total load 
is half represented by permanent load (normal distribution) and half by live load (Gumbel distribution). Also 
the characteristic values adopted by resistance and load variables have to be correct and the 
correspondent means values obtained for each correspondent distribution. In this step JCSS code 
orientations are adopted. All the steps are done considering the epistemic uncertainties in the model like 
presented in Table 2. 

 

6. Discussion and conclusions 

 

A value of 20.5MPa was used in the original deep beam. A brittle mode of failure, namely the concrete 
crushing, was obtained in the test. A similar result was obtained by the numerical model too. As shown in 
Fig.5, using laboratory conditions, high values of brittle failure are obtained for all values of compressive 
strength of concrete.  

 

(a) (b) 

Figure 5: Reliability analysis using laboratory conditions 

Table 3 - Model proprieties

hv bw la lb a Pn

cm cm cm cm cm KN

35,6 10,2 10 10 30,5 73,42

Beam 0A0-44  - Table 1 - Park and Kuchma (2007) SI Units



In spite of the brittle behavior the values of reliability index is satisfactory for values above 26MPa. For 
simplicity, only important modes of failure were shown, i.e. the failure of mode 4 associated a concrete 
crushing and failure mode 5 associated a yielding of steel. Even considering uncertainties into the model 
the ACI 318-05 formulation was not capable to lead the structure for ductile modes of failure. 

In the second step, the design conditions were applied into the numerical model. Since, the design 
conditions are harder then laboratory conditions an increment into the values of compressive strength of 
concrete was necessary to guaranty the same level of safety. However, the brittle behavior continues 
present for all values of compressive strength of concrete. The modes 4 and 5 had a similar behavior 
obtained previously, with high values for crushing concrete and low values for yielding of steel. 

 

  

(a) (b) 

Figure 6: Reliability analysis using design conditions 

 

A modified design condition was proposal to surpass the brittle behavior. A modification in the width of the 
beam was done in association a decrease in the steel area present in the model. A value of 12.2 cm was 
used for deep width with a reduction of 34% in the area of steel present in the tie. The Fig. 7 shows the 
results for the modified design condition. 

 

  

(a) (b) 

Figure 7: Reliability analysis using modified design conditions 

 

Despite of the level of safety were reached above 26MPa, the desire ductile behavior could be observed 
only after values above 35MPa. This is an important observation. Using this approach is possible 
controlling the ductile level of the model by some modification in the variables of the problem. Also, a 
safety level for the model can be estimated. 



A numerical approach using the reliability analysis of a concrete deep beam including the uncertainties of 
model is done. The ACI 318-05 orientations recommended for strut-and-tie models in the design concrete 
structures were used and compared with a previously tested model. Some modifications into the variables 
of the problem were necessary to improve a better behavior for the model. A safety level and a significant 
control of the failure mode of the structure were approved to be done. It can be concluded that reliability 
analysis using an experimental calibration is a satisfactory approach to be used in design and analysis of 
reinforced concretes using strut-and-tie methods.  
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