
AN INTEGRATED PARALLEL SYSTEM FOR PROPAGATION OF ARBITRARY
CRACKS IN SOLID MODELS

Célio O. Moretti

Túlio N. Bittencourt
Computational Mechanics Laboratory, Department of Structural and Foundation Engineering,
Polytechnical School, University of São Paulo
Av. Prof. Almeida Prado, travessa 2, no. 83 - CEP 05508-900 - São Paulo – Brazil
Luiz F. Martha
Department of Civil Engineering and Technology Group on Computer Graphics - Tecgraf
Pontifical Catholic University of Rio de Janeiro - PUC-Rio
Rua Marquês de São Vicente, 225 - CEP 22453-900 - Rio de Janeiro – Brazil

Abstract. To perform crack propagation in a solid model, a high computational power is
required, mainly at three-dimensional mesh generation and structural analysis steps. At each
crack propagation step, the mesh is rebuilt and a new structural analysis is performed. If a
large scale cracked model is being analyzed, time consumed by mesh generation and analysis
may be extremely large or even prohibitive in some cases. The main idea of the methodology
presented in this work is to parallelize mesh generation and structural analysis procedures,
and to integrate these procedures into a computational environment able to perform
automatic arbitrary crack propagation. A parallel mesh generation algorithm has been
developed. This algorithm is capable of generating three-dimensional meshes of tetrahedral
elements in arbitrary domains with one or multiple embedded cracks. A finite element method
program called FEMOOP, based on object oriented programming, has been adapted to
implement the parallel features. The parallel strategy to solve the set of linear equations is
based on an element-by-element scheme in conjunction with a gradient iterative solution. A
program called FRANC3D, which is completely integrated with other components of the
system, performs crack propagation and geometry updates. The entire system is described in
this work and an application example is presented to show the performance and reliability of
the crack propagation process.

Keywords: Parallel computing, Crack propagation, Finite Element Method, Mesh generation

22nd IBERIAN LATIN-AMERICAN CONGRESS
ON COMPUTATIONAL METHODS IN

ENGINEERING
2nd Brazilian Congress on Computational Mechanics

NOVEMBER 7-9, 2001
Campinas, SP - Brazil

1. INTRODUCTION

 Crack propagation simulation is an important topic in many fields, e.g., aeronautical
engineering, material sciences, and geophysics. This type of simulation requires a high
computational power, mainly at three-dimensional mesh generation and structural analysis
steps. These steps usually spend a large amount of computing time. The main objective of this
work is to provide a fast and accurate system for crack growth simulation in three-
dimensional models. To do this, a parallel 3-D mesh generator and a parallel FEM analysis
have developed and integrated with a program called FRANC3D (Martha,1989)
(Carter,2000), responsible for crack propagation and geometry updates, establishing a parallel
system to perform automatic crack growth simulation.

 In the following sections, all components of the parallel system are presented, with
special emphasis to parallel mesh generator and parallel FEM analysis components. A three
steps crack propagation in a concrete dam model is presented as an example to demonstrate
the performance and reliability of the parallel system.

2. THE PARALLEL SYSTEM

 The parallel analysis system is comprised by a set of integrated programs, each of one
responsible for a specific task: pre-processing, mesh generation, structural analysis and crack
propagation. All components of this system are presented in the following sections.

2.1 Pre-processing

 A program named FRANC3D (3D Fracture Analysis Code) (Martha,1989) (Carter,2000)
is used in the pre-processing step. FRANC3D is a system that exploits graphical and
processing resources of high performance workstations to perform the modeling and
visualization of three-dimensional solids with arbitrary cracks. With an intuitive graphical
interface (Figure 1), this program allows the modeling of complex 3D solids with a variety of
crack shapes.

Figure 1 - FRANC3D graphical interface.

2.2 Parallel mesh generation

 A sequential volumetric mesh generation algorithm has already developed and
implemented by Cavalcante Neto, et al. (Cavalcante,2001). This algorithm is capable of
generating three-dimensional meshes of tetrahedral elements in arbitrary domains with one or
multiple cracks. The algorithm combines an advancing front technique with a recursive spatial
decomposition technique, in this case an octree, to define the internal nodes, element sizes,
and mesh transition. Various complex models have been meshed using this algorithm with
good results (Cavalcante,2001).

 The basic idea to parallelize this volumetric mesh generation algorithm is to divide the
original domain into subdomains that could be meshed independently, without message
passing among processors. The parallel algorithm uses a master/slave programming model:
the master program is responsible for domain partitioning and final mesh assembly; and the
slave programs are responsible for mesh generation in each subdomain. Briefly, the desirable
features of the present parallel mesh generation algorithm are:

1. To generate subdomains from a given triangular surface mesh;
2. To generate interfaces between subdomains using triangular elements with sizes

compatible to the sizes of given (input) surface mesh;
3. To generate consistent solid elements at the neighborhood of adjacent subdomains;
4. To generate subdomains with approximate mesh generation computation time.

In the following subsections, all steps of the mesh generation process are described.

2.2.1 Input data

 A triangular surface mesh is the input data. In this work, this surface mesh is generated
by FRANC3D, but any given triangular surface mesh can be used. There is a large number of
triangular surface mesh generation algorithms (Lau,1996)(Lewis,1996) that can be used to
generate this initial mesh.

2.2.2 Background mesh generation

 In this work, an initial coarse solid mesh is generated (background mesh) from a given
triangular surface mesh, using the existing sequential mesh generation algorithm. This
background mesh is partitioned to generate subdomains. A desirable feature of the
background mesh generation is to have a reduced processing time in comparison with
complete mesh generation time.

 The number of internal nodes created in the process of mesh generation is defined by the
octree density. As a reduced processing time is wanted, a small octree density value, in
comparison with a regular density value, is used. Using this small density value, a few
internal nodes are created in the process of background mesh generation, resulting in a coarse
mesh generated in a reduced time.

2.2.3 Background mesh partitioning

 Subdomains are created from background mesh partitioning. To perform this partitioning,
Metis library (Karypis,1997) is used. Metis library is a set of programs developed to perform

graph and mesh partitioning. To partition a finite element mesh, initially a corresponding
graph is defined and is divided using Metis algorithms. These algorithms are based in a
multilevel scheme for partitioning irregular graphs (Karypis,1998).

 The background mesh partitioning is performed assigning elements to different
subdomains. In this step, the original domain is divided into subdomains with approximately
the same number of elements and with minimal neighboring interfaces. A desirable condition,
but not necessary, is that created subdomains are continuous. Existence of discontinuous
subdomains does not prevent mesh generation but can depreciate the performance of the
parallel mesh generation algorithm.

2.2.4 Initial interface smoothing

 In this step, an initial smoothing is applied to interfaces between subdomains. The
implemented algorithm covers all elements at the boundary of a subdomain and verifies, for
each element, whether the number of neighbor elements of an adjacent subdomain is greater
than the number of neighbor elements of the same subdomain of the element. If that occurs,
the element is transferred to the adjacent subdomain. The main goal is to smooth the interface
between subdomains with a very low computational cost.

2.2.5 Interface refinement

 Background mesh partitioning creates subdomains normally comprised by the original
(input) triangular surface mesh and by the surface meshes that belong to interfaces between
subdomains. The latter surface meshes result from the initially generated coarse mesh. For
this reason, the size of their triangles is not compatible with size of the original surface
triangles. To guarantee quality of the final solid mesh generated after assembling all
subdomain meshes, an interface refinement is required.

 A technique based on octree partitioning is used to guide the interface refinement. In this
case, an octree with a density normally used to generate not coarse meshes is applied. The
refinement procedure can be summarized as: for each interface triangle, if its area is greater
than the corresponding octree cell face area, divide this triangle and the adjacent triangles
creating a node in the middle of longest edge that does not belong to original surface mesh;
repeat this process until all interface triangles are refined.

 After applying this procedure, some triangles can present a sliver shape, i.e., with one
edge much greater than other two edges. To prevent this, all triangles are traversed again and,
if a sliver triangle is found, it is subdivided creating a node in the middle of longest edge (if
possible). If not possible, i.e., the longest edge belongs to original (input) triangular surface
mesh, the triangle remains unchanged.

2.2.6 Interface smoothing

 After the interface refinement step, some triangles might not present a good shape. This
condition could depreciate quality of final generated mesh. To avoid this, a Constrained
Laplacian Smoothing Algorithm (Cannan,1998) is applied. This algorithm, in its simplest
form, moves each node to the average coordinates of adjacent nodes. This technique works
well in convex regions. To avoid distorted or inverted elements near concavities, constraints
are applied to node movements.

2.2.7 Parallel mesh generation

 After the interface refinement and smoothing phases, resulting subdomains are sent to
processors. Each processor applies the sequential mesh generation algorithm
(Cavalcante,2001) to the corresponding subdomain. Therefore, subdomain mesh is generated
concurrently and independently, without message passing among processors.

2.2.8 Final mesh assembly

 In this final step, the master program receives subdomain meshes and assemblies the
complete solid mesh.

2.3 Parallel FEM Analysis

 In the system presented here, the structural analysis is performed by a finite element
program called FEMOOP (Finite Element Method - Object Oriented Programming)
(Martha,1996), which is organized using object-oriented concepts (Fujii,1997)
(Guimarães,1992). One of the most important advantages of the object-oriented programming
is the code extensibility. This feature allows new implementations with minimum impact over
the existent code. Another important feature of the program code is its portability, which
allows an easy code adaptation to different platforms. These two features have allowed the
adaptation of the original sequential code to a parallel environment and to different
computational platforms. The parallel environment considered in this work is a distributed
memory environment, which can be comprised by a local area network, a parallel computer or
a multiprocessor machine. In a previous work (Moretti,1998), parallel analyses running in a
local area network was presented. In this case, the local area network can be viewed as a
virtual parallel machine with multiple processors and distributed memory. In the present
work, the analyses were performed in a multiprocessor machine.

 To adapt FEMOOP to the parallel computational environment, a new class has been
created, which is responsible for data manipulation. Also, a series of new functions have been
implemented into existent classes. The first step necessary to adapt FEMOOP to the parallel
environment was the implementation of a library responsible for the message passing
management. The main objective of this library is to the direct access message passing
functions. This access facilitates an eventual change of the message passing manager or the
addition of a new one. A change or addition of a message passing manager has impact only
over the library code. This parallel procedure library contains all functions necessary to
perform the message passing in a distributed memory environment. The main functions
implemented here are responsible for sending and receiving messages among processors, for
parallel process initialization, and for the identification of program type (either a master or a
task program).

 The parallel programming paradigm adopted here has been the master-slave model. In
this model, the master is a separate program responsible for process spawning, initialization,
reception and display of results, and timing of functions. The task (or slave) programs are
executed concurrently and interact through message passing. Each task program is responsible
for assembling finite element stiffness matrices and right-hand side forces of a subdomain.
Through interactions between the master program and the task programs, the global solution
is obtained.

 In the following subsection, a parallel technique used to solve the linear system of
equations

 fKu = , (1)

that arises in the finite element method, is presented.

2.3.1 Element-by-element

The global stiffness matrix and the right-hand side vector that arise in a finite element method
can be written as

 ∑
=

=
N

e

eKK
1

ˆ , ∑
=

=
N

e

eff
1

ˆ , (2)

where eK̂ and ef̂ are the contribution from the finite element e and N is the total number of

elements. eK̂ and ef̂ represent the local element contribution (Ke and fe, respectively)
expanded to the global structure size, i.e., the entries of Ke are mapped into corresponding
global row and column locations with others entries in eK̂ equal to zero. Then Eq. (1) can be
written as

 







=







 ∑∑
==

N

e

e
N

e

e fuK
11

ˆˆ . (3)

 eK̂ is a very sparse matrix, but only the dense local element contribution Ke needs to be
stored. Ke and fe can be calculated concurrently and independently for elements e=1,2,…,N.

 In this case, a PCG method has also been used to solve the linear system. The main
calculations in this method are a matrix-vector product and vector dot products that are
repeated at each iteration. These operations can be performed concurrently taking advantage
of Ke and fe characteristics. A global matrix-vector product of the form Kv = w can be written
as

 ∑∑∑
===

==







=








=

N

e

ee
N

e

e
N

e

e wwvKvKKv
111

ˆˆˆˆ . (4)

 Again, ev̂ and eŵ represent the local element contribution expanded to system size and
to perform the product only the non-zero terms are considered

 eee vAw = (5)

and each element matrix-vector product can be computed independently. The dot products are
performed in a similar way, considering only the non-zero entries of the local vectors.

 When the local calculations are completed, the processors send the local results of the
matrix-product or dot product to the master program, which assembles the global result and

send it back to the processors. This process is repeated at each PCG iteration until the solution
is obtained. Note that this scheme does not require any special mesh partitioning or element
ordering.

2.4 Crack propagation

 In this work, FRANC3D is used in the crack propagation step. FRANC3D is designed for
modeling arbitrary crack growth in three-dimensional solid and shell structures. This program
has capabilities for modeling multiple, non-planar, arbitrary shaped cracks. From FEM
numerical results, stress intensity factors along the crack fronts are determined. Currently,
crack fronts are propagated by assuming that plane strain equations are valid at discrete points
along the crack front.

 FRANC3D was completely integrated with the parallel mesh generator and parallel FEM
analysis program, described above. Automatic propagation of an arbitrary 3-D crack in an
arbitrary 3-D structure is possible through the use of the implemented programs.

3. EXAMPLE

 In this section, a model of a concrete dam with a external half-penny shape crack is
presented. Figure 2 shows the model and crack details. Three steps of crack growth are
simulated.

 A Dell PowerEdge computer with four Pentium III Xeon 500 MHz processors is used as
computing environment, running Windows 2000 and Cygwin tools. MPI/Pro version 1.6.3
provides message passing for parallel computing.
 Figure 3 shows detailed processing time for each crack propagation step: time consumed
for parallel mesh generation and parallel FEM analysis, and total time consumed for each
step, using 1 to 4 processors. Figure 4 shows total time consumed for simulate three steps of
crack growth, using again 1 to 4 processors. Figure 5 presents the speed-up obtained for mesh
generation, FEM analysis and complete simulation. Finally, Figure 6 shows final crack shape
after three propagation steps.

 Figures 3 and 4 show that the parallel system has a good scalability, reducing simulation
time with increment of number of processors used.

 Figure 5 shows that mesh generation has a very good speed-up, but speed-up of complete
simulation is decreased by FEM analysis performance. This analysis performance can be
explained by the fact that the number of generated elements increases with the number of
processors used, increasing the number of degrees of freedom of the model. It has been shown
in a previous work (Moretti,2000), that, if the analysis is performed for a model with a fixed
number of elements, the present FEM parallel analysis program provides an excellent speed-
up result. As a future work, it is necessary to reduce the number of generated elements when
the number of subdomains is increased. This can be done modifying the interface refinement
between subdomains.

(a)

(b)

(c)

Figure 2 - Concrete dam and crack details: (a) entire model; (b) surface mesh of crack region;
(c) mesh of initial crack.

1 2 3 4
number of processors

0

50

100

150

200

250

300

350

400

450

500

tim
e

(s
ec

.)

step #1
step #2
step #3

Processing time for each crack propagation step
(mesh generation / analysis / total)

Figure 3 - Detailed processing time using 1 to 4 processors: mesh generation, analysis and

total time consumed for each crack propagation step.

1 2 3 4
number of processors

0

250

500

750

1000

1250

1500

tim
e

(s
ec

.)

Total processing time
example of a concrete dam

Figure 4 - Total processing time.

1 2 3 4
number of processors

1

1.5

2

2.5

3

3.5

4

sp
ee

d-
up

linear
total
mesh generation
FEM analysis

Speed-up
example of a concrete dam

Figure 5 - Speed-up of mesh generation, FEM analysis and entire simulation. The linear

speed-up represents a system with ideal scalability.

Figure 6 - Crack propagation after three steps.

4. CONCLUSIONS

 In this work, a parallel system for automatic 3-D crack growth simulation was presented.
The main objectives of this system are to improve speed of mesh generation and FEM
analysis, allowing simulation of large scale cracked models. These objectives were attained
through development of a parallel volumetric mesh generator and a parallel FEM analysis
program, and integration of these programs with FRANC3D, creating a system capable to
perform automatic crack growth simulation in a fast and accurate way. A system with these
features can be a valuable tool for engineers and scientists to simulate realistic 3-D fracture
processes.

REFERENCES

Cannan, S.A., Tristano, J.R., Staten, M.L., “An Approach to Combined Laplacian and

Optimazation-based Smoothing for Triangular, Quadrilateral, and Quad-dominant
Meshes”, Technical Report, ANSYS, Inc., 1998.

Carter, B.J., Wawrzynek, P.A., Ingraffea, A.R., “An Automatic 3-D Crack Growth
Simulation”, International Journal for Numerical Methods in Engineering, v. 47, pp. 229-
253, 2000.

Cavalcante Neto, J.B., Wawrzynek, P.A., Carvalho, M.T.M., Martha, L.F., Ingraffea, A.R.,
“An Algorithm for Three-Dimensional Mesh Generation for Arbitrary Regions with
Cracks”, Engineering with Computers, v. 17, no. 1, pp. 75-91, 2001.

Fujii, G., Análise de Estruturas Tridimensionais: Desenvolvimento de uma Ferramenta
Computacional Orientada para Objetos, Dissertação de Mestrado, Dep. de Engenharia de
Estruturas e Fundações (PEF), Escola Politécnica, USP, 1997.

Guimarães, L.G.S., Menezes, I.F.M., Martha, L.F.: Object Oriented Programming Discipline
for Finite Element Analysis Systems (in Portuguese), Proceedings of XIII CILAMCE,
Porto Alegre, RS, Brasil, Vol. 1, pp. 342-351, 1992.

Karypis, G., Kumar, V., “Metis – a software package for partitioning unstructured graphs,
partitioning meshes, and computing fill-reducing orderings of sparse matrices – version
3.0.3”, Technical report, University of Minnesota, 1997.

Karypis, G., Kumar, V., “A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs”, Technical Report 95-035, University of Minnesota, 1998.

Lau, T.S., Lo, S.H.: Finite Element Mesh Generation Over Analytical Curved Surfaces,
Computers and Structures, vol. 59, pp. 301-309, 1996.

Lewis, R.W., Zheng, Y., Gethin, D.T.: Three-dimensional unstructured mesh generation: Part
2, Surface Meshes, Comput. Math. Appli. Mech., vol. 134, pp. 269-284, 1996.

Martha, L.F., “Topological and Geometrical Modeling Approach to Numerical Discretization
and Arbitrary Crack Propagation in Three-Dimensions”, PhD Dissertation, School of
Civil Engineering, Cornell University, 1989.

Martha, L.F., Menezes, I.F.M., Lages, E.N., Parente Jr., E., Pitangueira, R.L.S.: An OOP
Class Organization for Materially Nonlinear Finite Element Analysis, Joint Conference of
Italian Group of Computational Mechanics and Ibero-Latin American Association of
Computational Methods in Engineering, Padova, Italy, Sep. 1996, pp. 229-232, 1996.

Moretti, C.O., Bittencourt, T.N., Martha, L.F.: A Low Cost Distributed System for FEM
Parallel Structural Analysis, VECPAR'98 - 3rd International Meeting on Vector and
Parallel Processing, Porto, Portugal, June 21-23, pgs 1063-1075, 1998.

Moretti, C.O.; Cavalcante Neto, J.B.; Bittencourt, T.N.; Martha, L.F., “A Parallel
Environment for Three-Dimensional Finite Element Method Analysis”, Developments in
Engineering Computational Technology, B.H.V. Topping (Editor), Civil-Comp Press,
Edinburgh, UK, ISBN 0-948749-70-9, pp. 283-287, 2000.

