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ABSTRACT 

A reliable and cost effective two-phase methodology 
is proposed to predict crack propagation life in generic two-
dimensional structural components under complex fatigue 
loading. First, the usually curved fatigue crack path and its 
stress intensity factors are calculated at small crack incre-
ments in a specialized finite element software, using auto-
matic remeshing algorithms, special crack tip elements and 
appropriate crack increment criteria. Then, the calculated 
stress intensity factors are transferred to a powerful general 
purpose fatigue design software based in the local ap-
proach, which has been designed to predict both initiation 
and propagation fatigue lives by all classical design meth-
ods. In particular, its crack propagation module accepts any 
KI expression and any da/dN rule, considering sequence 
effects such as overload-induced crack retardation to deal 
with one and two-dimensional crack propagation under 
complex loading. Non-trivial application examples compare 
the numerical simulation results with those measured in 
physical experiments.  

INTRODUCTION 

The prediction of the fatigue crack propagation life 
under complex loading in intricate two-dimensional (2D) 
structural components is a challenging problem, that can be 
optimally solved by mixing the so-called global and local 
design approaches.  

The crack path (that is generally curved in compli-
cated structures) and its associated stress intensity factors 
KI and KII can be conveniently calculated by a finite ele-
ment (FE) global discretization of the component, using 

appropriate crack tip elements, mesh regeneration schemes 
and crack increment criteria. However, this approach is not 
computationally efficient when the load is complex, since it 
requires remeshing procedures and FE recalculations of the 
stress/strain field of the whole structure at each load event. 
Both tasks demand intensive and time-consuming numeri-
cal calculations. Moreover, the modeling of crack retarda-
tion effects increase the numerical burden and compromise 
even more the global approach efficiency. 

On the other hand, the local approach can be effi-
ciently used to calculate the crack increment at each load 
cycle, considering crack retardation effects if necessary. 
This method is based on the direct integration of the mate-
rial crack propagation rule, using the stress intensity ex-
pression for the crack. However, KI solutions are simply 
not available for most real components, and the errors in-
volved in using handbook expressions as an approximation 
increase as the real crack deviates from the tabulated one, 
making the local approach accuracy questionable and its 
predictions unreliable in those cases. 

Since the advantages of the global and the local ap-
proaches are complementary, the crack propagation prob-
lem can be successfully divided in two steps. First, the 
crack path and its associated mode I stress intensity factor 
KI(a) along the crack length a are calculated, under simple 
loading, at small discrete steps using an appropriate FE 
software. Then, an analytical expression is adjusted to the 
discrete KI(a) calculated values, and exported to a local ap-
proach software. Finally, the actual complex loading is ef-
ficiently treated by the integration of the crack propagation 
rule, considering retardation effects if required.  
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The purpose of this paper is to describe the 
fundamentals of such an integrated system composed of 
two complementary programs, designed and tested to 
implement this two-step hybrid method. This system 
demonstrates that satisfactory fatigue life predictions under 
complex load for arbitrary 2D structural components can 
now be obtained even in PC environments. The next 
section describes the numerical procedures to compute 
stress intensity factors in 2D geometries.  

NUMERICAL COMPUTATION OF STRESS-
INTENSITY FACTORS 

In 2D finite element models, three methods can be 
chosen to compute the stress-intensity factors along the 
(generally curved) crack path:  

(i) the Displacement Correlation Technique (DCT) 
[1];  

(ii) the potential energy release rate computed by 
means of a Modified Crack-Closure (MCC) inte-
gral technique [2,3]; and  

(iii) the J-integral computed by means of the Equiva-
lent Domain Integral (EDI) together with a mode 
decomposition scheme [4,5]. 

Since Bittencourt et al. [6] showed that for suffi-
ciently refined FE meshes all three methods predict essen-
tially the same results, only the DCT method is presented 
here. The other two methods provide good results even for 
relatively coarse meshes and should be used preferentialy. 
Further details can be found in Miranda et al. [7]. 

In the DCT method, the displacements obtained from 
the finite element analysis at specific locations are corre-
lated with the analytic solutions expressed in terms of the 
stress-intensity factors. For quarter-point singular elements 
[1], the crack opening displacement δ is given by: 
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where vj-1 and vj-2 are the relative displacements in the y 
direction at the j-1 and j-2 nodes (see Figure 1), L is the 
element size, κ = 3 - 4ν in plane strain, κ = (3 - ν)/(1 + ν) in 
plane stress, ν is the Poisson ratio, and µ is the shear 
modulus. From Eq. (1), the Mode I (and analogously the 
Mode II) stress-intensity factor can be evaluated by: 
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where uj-1 and uj-2 are the relative displacements in the x 
direction at the j-1 and j-2 nodes near the crack tip, see 
Figure 1. 
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Figure 1. Quarter-point elements at the crack tip. 

 
NUMERICAL COMPUTATION OF THE CRACK 
INCREMENT DIRECTION 

Fatigue cracks almost always propagate in mode I, 
curving their paths if necessary to avoid rubbing their faces. 
To simulate this behavior in 2D finite element analysis, the 
three most used criteria for numerical computation of crack 
growth in the linear-elastic regime are: (i) the Maximum 
Circumferential Stress (σθmax); (ii) the Maximum Potential 
Energy Release Rate (Gθmax); and (iii) the Minimum Strain 
Energy Density (Sθmin).  

In the first criterion, Erdogan and Sih [8] considered 
that the crack extension should occur in the direction that 
maximizes the circumferential stress in the region close to 
the crack tip. In the second, Hussain et al. [9] have sug-
gested that the crack extension occurs in the direction that 
causes the maximum fracturing energy release rate. And in 
the last criterion, Sih [10] assumed that the crack growth 
direction is determined by the minimum strain energy den-
sity value near the crack tip. Bittencourt et al. [6] have 
shown that if the crack orientation is allowed to change in 
automatic fracture simulation, the three criteria furnish ba-
sically the same numerical results. Since the Maximum 
Circumferential Stress criterion is the simplest, even pre-
senting a closed form solution, it is the criterion described 
below. 

The stresses at the crack tip for Modes I and II are 
given by summing up the stress fields generated by each 
mode: 
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where σr is the normal stress component in the radial direc-
tion, σθ is the normal stress component in the tangential di-
rection, and τrθ is the shear stress component.These expres-
sions are valid both for plane stress and plane strain. The 
Maximum Circumferential Stress criterion assumes that 
crack extension begins on a plane perpendicular to the di-
rection in which σθ is maximum (and thus τrθ = 0). Mono-
tonic extension shall occur when σθmax reaches a critical 
value corresponding to a property of the material (KIC for 
Mode I). Using τrθ = 0, Eqs. (4-5) have a trivial solution θ 
= π±  for cos(θ/2) = 0, and a non-trivial solution other-
wise: 

KI sinθ + KII (3cosθ−1) = 0  (6) 

Analyzing Eq. (6) for pure Mode I, it is found that KII 
= 0, KIsinθ = 0 and θ = 0o, and for pure Mode II that KI = 
0, KII (3cosθ−1) = 0 and θ = ±70.5o. These are the extreme 
θ values of the crack propagation angles. The mixed mode 
intermediary values are found by solving Eq. (6) for θ, re-
sulting in: 
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where the sign of θ is the opposite of the sign of KII. 

The computational models described above have been 
implemented in a software called Quebra2D (meaning 
2D fracture in Portuguese) [10, 11], an interactive graphics 
software for simulating two-dimensional fracture processes. 
This software use a finite element automatic mesh genera-
tion algorithm devised specifically for this software [12]. 

The mesh generation algorithm may be optionally 
used in an adaptive mesh generation scheme that is based 
on an a priori boundary refinement, such as the scheme de-
vised by Paulino et al. [13]. In this case, the adaptive proc-
ess first requires the analysis results from an initial finite 
element mesh, usually rough, with the geometric descrip-
tions, boundary conditions, and their attributes. Then a dis-
cretization of the domain’s region boundary is performed, 
based on the geometric properties and on the characteristic 
sizes of the boundary elements (adjacent to the boundary 
curves), determined from the error estimate from the previ-
ous step of the finite element analysis. From this discretiza-

tion, a new mesh is generated using the algorithm described 
above with one minor improvement: as the quadtree struc-
ture is used to guide the size of the generated elements, an 
additional quadtree refinement is performed after the initial 
quadtree is generated. This additional refinement takes into 
account the characteristic element sizes that are determined 
by the error estimation analysis. 

THE MODELING OF FATIGUE CRACK GROWTH 
UNDER COMPLEX LOADING BY THE LOCAL AP-
PROACH 

The modeling and calculation automation of the 
LEFM mode I fatigue crack propagation under complex 
loading by the local approach are discussed below. The 
loading complexity, whose amplitude can randomly vary in 
time, is unlimited. Sequence effects, such as overload-
induced crack retardation or arrest are also considered. 
Only mode I is discussed, since fatigue cracks almost al-
ways propagate perpendicular to the maximum tensile 
stress. 

The local approach is so called because it does not re-
quire the global solution of the whole  structure’s stress 
field. It is based on the direct integration of the fatigue 
crack propagation rule of the material, da/dN = F(∆K, R, 
∆Kth, KC, ...), where ∆K is the stress intensity range of the 
propagating crack, R = Kmin/Kmax is a measure of the mean 
load, ∆Kth is the fatigue crack propagation threshold, and 
KC is the fracture toughness. Therefore, neither the ∆K ex-
pression nor the crack propagation rule should have their 
accuracy compromised in name of mathematical simplicity 
when using this approach.  

Most environmental effects can be dealt with an ap-
propriate da/dN rule. However, multiple origins loading 
which induce stresses whose principal directions vary sig-
nificantly in time are considered beyond the scope of this 
discussion. 

In the sequence, first the main features of the software 
 (which means life in Portuguese, but also stands 

for Visual Damagemeter) are concisely described. This 
software has been developed to automate all the traditional 
local approach methods used in fatigue design [14, 15], in-
cluding the SN, the IIW (for welded structures) and the εN 
for crack initiation, and the da/dN for crack propagation. 
Then the cycle-by-cycle method and the modeling of load 
sequence effects are discussed. 

THE  SOFTWARE - The objective of this 
software is to automate in a friendly environment all the 
calculations required to predict fatigue life under complex 
loading by the local approach. It runs on PCs under Win-
dows 95/NT or better operating system, including all the 
necessary tools to perform the predictions, such as: intuitive 
and friendly graphical interfaces in six idioms; intelligent 
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databases for stress concentration and intensity factors, 
crack propagation rules, material properties and the like; 
traditional and sequential rain-flow counters; graphic out-
put for all calculated results, including elastic-plastic hys-
teresis loops and of 2D crack fronts; automatic adjustment 
of crack initiation and propagation experimental data; an 
equation interpreter, etc. The crack growth can be calcu-
lated considering any propagation rule and any ∆K expres-
sion that can be typed in (making it an ideal companion to 
the Quebra2D software, which can be used to generate 
the ∆K(a) expression if it is not available in its database).  

The software has safety features for automatically 
stopping the calculations if during any loading event it de-
tects that: (i) Kmax = KC; (ii) the crack reaches its maximum 
specified size; (iii) the stress in the residual ligament 
reaches the rupture strength of the material SU; (iv) da/dN 
reaches 0.1mm/cycle (above this rate the problem is frac-
turing, not fatigue cracking); or else if (v) one of the bor-
ders of the piece is reached by the crack front, in the 2D 
crack propagation case (however, for some geometries the 
software is able to model the transition from 2D part-
through to 1D through cracks). Moreover, it informs when 
there is yielding in the residual ligament before the maxi-
mum specified crack size or number of load cycles is 
reached. In this way, the calculated values can be used with 
the guarantee that the limit of validity of the mathematical 
models is never exceeded.  

CYCLE-BY-CYCLE INTEGRATION METHOD - 
The basic idea of this method is to associate to each load 
reversion the growth that the crack would have if that 1/2 
cycle was the only one to load the piece. Using this as-
sumption, it is easy to write a general expression for the cy-
cle-by-cycle crack growth, by any crack propagation rule: 
if da/dN = F(∆K, R, ∆Kth, KC,...), and if in the i-th 1/2 cy-
cle of the loading the length of the crack is ai, the stress 
range is ∆σi and the mean load causes Ri, then the crack 
grows by a δai given by:  

...)K,K),,(R),a,(K(F
2
1a cthmaxiiii i

∆σσ∆σ∆∆⋅=δ  (8) 

The total growth of the crack is quantified by Σ(δai). 
Therefore, the cycle-by-cycle rule is similar in concept to 
the linear damage accumulation used in the SN and εN fa-
tigue design methods. As in Miner’s rule, it requests that all 
the events that cause fatigue damage be recognized before 
the calculation, e.g. by rain-flow counting the loading. But 
since it must be applied sequentially, it can be used recog-
nize load interaction effects.  

The traditional rain-flow counting algorithm alters the 
loading order, as shown in Figure 2. This can cause serious 
problems in the predictions, since the loading order effects 
in crack propagation are of two different natures: (i) de-
layed effects, that can retard or stop the subsequent growth 

of the crack due, e.g., to plasticity-induced Elber-type crack 
closure [16] or to crack tip bifurcation (these interaction 
effects among the loading cycles normally increase the 
crack life and, if neglected, may induce excessively conser-
vative predictions); and (ii) instantaneous fracture, that oc-
curs in the first load peak where Kmax ≥ KC, an event which 
must, of course, be precisely predicted.  
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Figure 2. Traditional rain-flow counting (anticipating the 
large load events). 
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Figure 3. Sequential rain-flow counting (preserving most of 

the loading order). 

Since the  loading input can preserve the 
time order information, a sequential rain-flow counting op-
tion was introduced in that software. With this technique, 
the effect of each large loading event is counted when it 
happens (and not before its occurrence, as in the traditional 
rain-flow method), see Figure 3. 

The main advantage of the sequential rain-flow count-
ing algorithm is to avoid the premature calculation of the 
overload effects, which can cause non-conservative crack 
propagation life predictions: as K(σ, a) in general grows 
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with the crack, a given overload applied when the crack is 
large can be much more harmful than applied when the 
crack is small. The sequential rain-flow avoids most se-
quencing problems caused by the traditional method, and it 
is certainly an advisable option since it presents advantages 
over the original algorithm, maintaining its main features 
without increasing its difficulty.  

The computational implementation of Eq. (8) is not 
numerically efficient, even if the compressive peaks and 
valleys are pre-zeroed and/or the loading is range filtered to 
eliminate the small events which do not cause fatigue dam-
age. For this reason, an additional feature was introduced to 
reduce the computational time: an option for maintaining 
the geometrical part of ∆K constant during small variations 
in crack size. 

As ∆K = ∆σ⋅[√(πa).f(a/W)], where f(a/W) is a non-
dimensional function (usually quite complex) that depends 
only on the piece and crack geometry and not on the load-
ing, it can be said that the range of the stress intensity factor 
∆Ki at each load reversion depends on two variables of dif-
ferent nature: (i) on the stress range ∆σi in that event, and 
(ii) on the length of the crack ai in that instant.  

∆σi, of course, can vary significantly at each event 
when the loading is complex, but fatigue cracks always 
grow very slowly. In fact, at least in structural metals, the 
largest rates of stable crack growth observed in practice are 
on the order of µm/cycle, and during most of their life the 
fatigue crack growth rates are better measured in nm/cycle.  

Therefore, advantage was taken of the small changes 
in f(a/W) during small increments in crack length. Instead 
of calculating ∆Ki = ∆σi⋅[√(πai)⋅f(ai/W)] at each load cycle, 
a task that demands great computational effort, a feature 
was introduced to hold  f(ai/W) constant during a (small) 
percentage of crack increment δa% (specifiable by the 
software user depending on the desired precision), an inte-
gration method that is numerically much more efficient.  

LOAD INTERACTION MODELS - It is well known 
that load cycle interactions effects can be very important 
when predicting fatigue crack growth. There is a vast litera-
ture proving that tensile overloads can cause retardation or 
arrest of the subsequent crack growth, and that even com-
pressive underloads can sometimes affect the rate of crack 
propagation [16, 17, 18]. 

Neglecting load interaction effects in fatigue life cal-
culations can completely invalidate the predictions. In fact, 
only after considering overload induced retardation effects 
can the life reached by real structural components be justi-
fied when modeling many practical problems. However, the 
generation of an universal algorithm to quantify these ef-
fects is particularly difficult, due to the number and to the 
complexity of the mechanisms involved, such as plasticity-

induced crack closure, blunting and/or bifurcation of the 
crack tip, residual stress and/or strain fields, strain-
hardening and/or strain-induced fase transformation, crack 
face roughness, and oxidation of the crack faces, e.g. Be-
sides, depending on the case, several of these mechanisms 
may act concomitantly or competitively, as a function of 
factors such as crack size, material microstructure, domi-
nant stress state, and environment. 

On the other hand, the principal characteristic of fa-
tigue cracks is to propagate cutting a material that has al-
ready been deformed by the plastic zone that always ac-
companies their tips. The fatigue crack faces are embedded 
in an envelope of (plastic) residual strains and, conse-
quently they compress their faces when completely dis-
charged, and open alleviating in a progressive way the 
(compressive) load transmitted through their faces. 

According to Elber [19], only after completely open-
ing the crack at a load Kop, would the crack tip be stressed. 
Therefore, the bigger the Kop, the less would be the effec-
tive stress intensity range ∆Keff = Kmax − Kop, and this 
∆Keff  instead of ∆K would be the fatigue crack propaga-
tion rate controlling parameter. Most load interaction mod-
els are, although indirectly, based in this idea. This impli-
cates in the supposition that the principal retardation 
mechanism is caused by plasticity induced crack closure: in 
these cases, the opening load should increase when the 
crack penetrates into the plastic zone inflated by the over-
load, reducing the ∆Keff and stopping or delaying the crack, 
while the plastic zones associated with the loading are con-
tained in the overload induced plastic zone. 

Several mathematical models have been developed to 
account for load interaction in crack propagation based on 
Elber’s crack closure idea. In these methods, the retardation 
mechanism is only considered within the plastic zone situ-
ated in front of the crack tip. According to these proce-
dures, a larger plastic zone Zol is created by means of an 
overload, see Figure 4. When the overload is removed, an 
increased compressive stress state is set up in the volume of 
its plastic zone, reducing crack propagation under a smaller 
succeeding load cycle.  

The detailed discussion of this complex phenomenol-
ogy is considered beyond the scope of this work, but a revi-
sion of the phenomenological problem can be found in 
[16]. A taxonomy of the load interaction models has been 
introduced by Meggiolaro and Castro [18], including pro-
posed modifications to better model such effects as crack 
arrest, crack acceleration due to compressive underloads, 
and the effect of small cracks. They classified these models 
in 4 categories: (i) da/dN models, such as the Wheeler 
model, which use retardation functions to directly reduce 
the calculated crack propagation rate da/dN; (ii) ∆K mod-
els, such as the Modified Wheeler model, which use retar-
dation functions to reduce the value of the stress intensity 
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factor range ∆K; (iii) Reff models, such as the Willenborg 
model, which introduce an effective stress ratio Reff, calcu-
lated by reducing the maximum and minimum stress inten-
sity factors acting on the crack tip, however not necessarily 
changing the value of ∆K; and (iv) Kop models, such as the 
strip yield model, which use estimates of the opening stress 
intensity factor Kop to directly account for Elber-type crack 
closure. 

overload instant: crack length aov 
aov ZPov 

aov 

aov 

ZPov 

ZPov 

ai 
ZPi

ai 
ZPi 

retardation zone: ai + ZPi < aov + ZPov 

retardation end: aj + ZPj = aov + ZPov  
Figure 4. Yield zone crack growth retardation region used 
by the Wheeler and Willenborg load interaction models. 

There are other retardation models, but none of those 
that can be implemented in a local approach code has de-
finitive advantages over the models discussed above. This 
is no surprise, since single equations are too simplistic to 
model all the several mechanisms that can induce retarda-
tion effects. Therefore, in the same way that a curve da/dN 
vs. ∆K is experimentally measured, a propagation model 
should be adjusted to experimental data to calibrate the re-
tardation models, as recommended by Broek [17]. 

The numerical implementation of these retardation 
models in a cycle-by-cycle algorithm is not conceptually 
difficult, but it requires a considerable programming effort 
[18]. All load interaction models presented in that paper 
have been implemented in the  software. 

EXPERIMENTAL VERIFICATION OF THE CRACK 
PROPAGATION MODELING PROCEDURES IN 
ARBITRARY 2D GEOMETRIES 

This section describes the modeling and testing pro-
cedures used for studying the fatigue crack propagation 

problem in modified four point bending single edge notch 
(SEN) and compact tension (CT) test specimens, in which 
holes were machined to curve the crack propagation path, 
see Figures 5 and 6.  

 
Figure 5 – Details of the modified SEN specimen. 

The tested material was a cold rolled SAE 1020 steel, 
with the analyzed weight per cent composition: C 0.19, Mn 
0.46, Si 0.14, Ni 0.052, Cr 0.045, Mo 0.007, Cu 0.11, Nb 
0.002, Ti 0.002, Fe balance. E = 205GPa was the Young’s 
modulus, SY = 285MPa the yield strength, SU = 491MPa 
the ultimate strength, and RA = 53.7% the area reduction. 
These properties were measured according to the ASTM E 
8M-99 standard. The da/dN vs. ∆K data, obtained under a 
stress ratio R = 0.1 and measured following ASTM E 647-
99 procedures, was fitted by the modified Elber equation 
da/dN = 4.5⋅10-10⋅(∆K − ∆Kth)2.05, where the threshold 
stress intensity range was ∆Kth = 11.6MPa√m.  

 
Figure 6 – Details of the modified CT specimens. 

Before the tests, the hole-modified SEN and CT 
specimens were FE modeled following the procedures de-
scribed above. Then the hole position was varied in the 
models to obtain the most interesting curved crack path, by 
a simple trial-and-error process. The chosen specimen ge-
ometries were machined, measured and FE remodeled, to 
account for small deviations in the manufacture. In this 
way, it could be assured that the numeric models used in 
the predictions reproduced the real geometry of the tested 
specimens.  

The FE models generated KI values computed by the 
MCC technique at short but discrete intervals along the pre-
dicted crack paths, which were calculated by the σθmax 
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method. The PC used for the numeric procedures was a 
Pentium 650MHz with 128 Mb of RAM, running under 
Windows 98 operating system. The FE models were easily 
created with the friendly interactive graphic facilities of the 
Quebra2D software, where the incremental crack 
growth simulation is automatic, after specifying its initial 
size and desired growth step. 

 Shortly, the automatic calculation procedure was: (i) 
the FE model of the holed specimen with the specified ini-
tial crack was solved to obtain its KI and KII stress-
intensity factors and the corresponding propagation direc-
tion; (ii) the crack was incremented in the growth direction 
by the (small) required step; (iii) the model was remeshed 
to account for the new crack size; and (iv) the process was 
iterated until the required final crack size was reached.  

Each calculation step, including the automatic 
remeshing and the FE solution for KI, KII and the incre-
mental growth direction lasted about four seconds in the 
used PC. With an average of thirty increments to simulate 
the whole crack growth, the total calculation process con-
sumed about two minutes. Therefore, it was indeed practi-
cal to implement the trial-and-error procedure to optimize 
the test specimens.  

Although the crack path geometry is 2D, once it is 
known the crack itself can be described by its (one dimen-
sional) length a measured along the crack path. Hence, its 
KI can be written as a function of a, 

)w/a(fa)a(K I ⋅πσ= . The discretely calculated values of 
the geometry factor f(a/w) were exported to the  
software, where they were automatically adjusted by an ap-
propriate continuous analytical function.  

Then the load programs that would be applied during 
the tests were calculated to maintain a quasi-constant stress 
intensity range around ∆KI ≈ 20MPa√m, with R = 
Kmin/Kmax = 0.1. These loading values induce a stage II 
(Paris regime) fatigue crack growth in the 1020 steel da/dN 
vs. ∆K curve. The fatigue lives associated with the load 
programs were predicted in about 3 seconds. 

The experimental procedures used during the tests 
were very similar to those used in the standard measure-
ment of da/dN vs. ∆K curves. All the tests were run at a 20 
Hz frequency in a 250kN computer controlled servo-
hydraulic testing machine. The loads were regularly ad-
justed to maintain the specified quasi-constant ∆KI. The 
only difference was the use of a digital camera and an im-
age analysis program to measure the crack size and path. 
This is a precise and know also quite economical option to 
automate those measurements, but its details are considered 
beyond the scope of this paper.  

Following the tests, the real crack path was measured 
and the lives at each load step were compared with the pre-
dicted ones. These results are discussed below. 

SEN SPECIMEN - A crack was fatigue propagated in 
a SEN specimen with a hole slightly to the left of the start-
ing notch (created using a 0.3mm jeweler’s saw), as shown 
in Figure 5. The final FE mesh automatically generated for 
predicting the propagation path is illustrated in Figure 7. 
Note the density of the mesh around the crack path and, 
particularly, around its tip. The initial mesh had 1995 ele-
ments and 4185 nodes, and the final one 2585 elements and 
5467 nodes. 

 Figure 8 compares the f(a/w) expression calculated 
for this holed test specimen with the standard SEN expres-
sion obtained from the literature[17]. It can be observed 
that the hole has a significant influence in the f(a/w) value.  

Figure 9 shows a picture of the real crack path after 
the test and the FE crack path prediction made before the 
test. This modeling has been indeed quite satisfactory. 
Therefore, the calculated KI values could also be used to 
check the predicted fatigue life. 

 
Figure 7 – FE mesh automatically generated for the modi-

fied SEN specimen. 

However, a significant deviation was observed when 
comparing the experimental data with the predicted life. 
They only agreed during part of test, as shown in Figure 10.  
But after about 440,000 load cycles, a clear deviation was 
present in the a vs. N graph. The initial agreement indicated 
that the predicted KI were reproducing the expected crack 
growth rate, a renewed indication that the modeling was 
obtaining satisfactory results. As the modeling was con-
stant, it was concluded that an unplanned accident occurred 
during the test. 
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Figure 8 – f(a/w) expression for the modified SEN speci-

men. 
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Figure 9 – The real and the predicted crack paths for the 

modified SEN specimen. 
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Figure 10 – Predicted and measured fatigue crack 

propagation behavior for the modified SEN specimen. 

Indeed, a review of the loading history identified that 
an accidental 60% overload had occurred at around 440k 

cycles during a load adjustment procedure, and this was 
confirmed by a larger plastic zone observed on the crack 
path at that point. This single overload was then simulated 
on the  software, using its retardation modeling 
facilities. The Modified Wheeler model, which has quite 
interesting features as discussed by Meggiolaro & Castro 
[18], was used with an exponent γ = 1.43 to simulate this 
crack growth retardation problem. The simulation satisfac-
torily reproduced the whole crack growth behavior ob-
served during the test of the holed SEN, as also shown in 
Figure 10. 

CT SPECIMEN - Four modified CT specimens were 
tested. Each one had a 7mm diameter hole positioned at a 
horizontal A and a vertical B distance from the notch root, 
as shown in Figure 6. This odd configuration was chosen 
because two different crack growth behaviors were pre-
dicted by the FE modeling the holed specimen, depending 
on the hole position. The fatigue crack was always attracted 
by the hole, but it could grow toward it or just be deflected, 
missing the hole and continuing to propagate after passing 
it. Figure 11 illustrates these predicted crack paths. The ini-
tial meshes in the FE models had about 1300 elements and 
2300 nodes, and the final ones after the simulated crack 
propagation had about 2200 elements and 5500 nodes. The 
calculated KI values are presented and compared to the 
standard CTS values in Figure 12. 

To test the accuracy of the FE modeling, the transition 
point between the “sink in the hole” and the “miss the hole” 
crack growth behaviors was identified. Then, two border-
line specimens were dimensioned: one with the hole just 
half a millimeter below that point and the other with the 
hole half a millimeter above it. Due to machining toler-
ances, the actual difference between the holes vertical posi-
tion in specimens CT1 and CT2 turn out to be 1.2mm in-
stead. These specimens were remodeled to predict the ac-
tual crack path. The measured and the predicted crack paths 
are compared in Fig. 13.  

This result was so encouraging that two other speci-
mens, CT3 and CT4, were built to check it. This time, the 
vertical distance between their holes was 1.4mm, and they 
were also FE remodeled to account for this deviation. How-
ever, the crack path in these specimens were not as well 
predicted as they were in CT1 and CT2, as shown in Figure 
13. The predicted paths in fact were in between the meas-
ured ones in the two faces of the specimens, and this was 
an indication that an unwanted transversal moment had also 
loaded them. Indeed, after the latter tests frictional 
problems were found in the universal joint of the load train, 
which had to be substituted. But these not so good results 
are presented here to illustrate the mean path FE prediction. 
The predicted and measured fatigue lives are shown in Fig-
ures 14 to 17.  
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Figure 11 – FE mesh automatically generated for the modi-

fied CT specimens. 

CONCLUSIONS  

A two-phase methodology was presented to predict 
fatigue crack propagation in generic 2D structures under 
complex loading. First, self-adaptive finite elements were 
used to calculate, by three different methods, the fatigue 
crack path and the stress intensity factors along the crack 
length KI(a) and KII(a), at each propagation step. The cal-
culated KI(a) was then used to predict the propagation fa-
tigue life by the local approach, using the cycle-by-cycle 
integration methods considering overload-induced crack 
retardation effects. Two complementary software were de-

veloped to implement this methodology. The first one is an 
interactive graphical program for simulating two-
dimensional fracture processes based on a finite element 
adaptive mesh generation strategy. The second is a general 
purpose fatigue design software developed to predict both 
initiation and propagation fatigue lives under complex 
loading by all classical design methods. In particular, its 
crack propagation module accepts any stress intensity fac-
tor expression, including the ones generated by the finite 
element software. Experimental results showed that the 
presented methodology and its software implementation 
could effectively predict the crack propagation paths and 
the fatigue lives of arbitrary two-dimensional structural 
components. 
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Figure 12 – f(a/w) curves for the standard and for the modi-

fied CT specimens. 
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Figure 13 – Predicted and measured crack paths for the 
modified CT specimens. 
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Figure 14 – Predicted and measured fatigue life for CT2. 
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Figure 15 – Predicted and measured fatigue life for CT2. 
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Figure 16 – Predicted and measured fatigue life for CT3. 
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Figure 17– Predicted and measured fatigue life for CT4. 
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