
ORIGINAL ARTICLE

Surface mesh regeneration considering curvatures

A. C. O. Miranda Æ L. F. Martha Æ P. A. Wawrzynek Æ
A. R. Ingraffea

Received: 12 February 2008 / Accepted: 7 November 2008 / Published online: 5 December 2008

� Springer-Verlag London Limited 2008

Abstract This work describes an automatic algorithm for

unstructured mesh regeneration on arbitrarily shaped three-

dimensional surfaces. The arbitrary surface may be: a tri-

angulated mesh, a set of points, or an analytical surface

(such as a collection of NURBS patches). To be generic,

the algorithm works directly in Cartesian coordinates, as

opposed to generating the mesh in parametric space, which

might not be available in all the cases. In addition, the

algorithm requires the implementation of three generic

functions that abstractly represent the supporting surface.

The first, given a point location, returns the desired char-

acteristic size of a triangular element at this position. The

second method, given the current edge in the boundary-

contraction algorithm, locates the ideal apex point that

forms a triangle with this edge. And the third method,

given a point in space and a projection direction, returns

the closest point on the geometrical supporting surface.

This work also describes the implementation of these three

methods to re-mesh an existing triangulated mesh that

might present regions of high curvature. In this imple-

mentation, the only information about the surface geometry

is a set of triangles. In order to test the efficiency of the

proposed algorithm of surface mesh generation and

implementation of the three abstract methods, results of

performance and quality of generated triangular element

examples are presented.

Keywords Mesh generation � Curvature surfaces �
Background octree � Advancing-front technique

1 Introduction

This paper describes an algorithm for generating triangle

finite-element meshes on surfaces of arbitrary shape and

curvatures. It is an extension of a previously proposed

algorithm for generating unstructured meshes in three-

dimensional (3D) [1, 2] and two-dimensional (2D) [3, 4]

domains. Algorithms have been described in the literature

previously that generate 3D surface meshes by re-mesh-

ing existing triangulations [5–7], or by using analytical

surface descriptions for geometrical support [8–10]. The

present algorithm generalizes the type of geometrical

support that may be used by making use of three generic

functions that abstractly represent the supporting surface.

For example, the surface to be re-meshed may be a tri-

angulated mesh, a set of points, or an analytical surface

(such as a collection of NURBS patches). The present

algorithm, as does its ancestors, incorporates well-known

meshing procedures [11–17] but also introduces some

original steps. It is essentially an advancing-front tech-

nique that takes special care to generate elements with

the best possible shape. To enhance the quality of the

mesh’s element shape, an a posteriori local mesh

improvement procedure is used. In a particular case, this

paper also describes an implementation of the three

generic methods for re-meshing existing surface trian-

gulations and demonstrates the quality of the generated

meshes.

A. C. O. Miranda (&) � L. F. Martha

Department of Civil Engineering and Computer Graphics

Technology Group (Tecgraf),

Pontifical Catholic University of Rio de Janeiro,

Rua Marquês de São Vicente 225-Gávea,

Rio de Janeiro, RJ 22453-900, Brazil

e-mail: amiranda@tecgraf.puc-rio.br

P. A. Wawrzynek � A. R. Ingraffea

Cornell Fracture Group, Rhodes Hall, Ithaca, NY 14850, USA

123

Engineering with Computers (2009) 25:207–219

DOI 10.1007/s00366-008-0119-9

The main objective of this implementation is shape-

quality improvement of existing surface meshes. In these

cases, surfaces are composed by a set of triangles topo-

logically arranged. This is the only available geometric

information and a parametric space is unknown. Differ-

ently than in a previous version that generates meshes in

parametric space [2], the current algorithm works directly

in Cartesian coordinates, which increases its generic

characteristics. Of course, re-triangulating an existing tri-

angulated surface with no knowledge on the original

surface analytical description will introduce some geo-

metric approximations. However, this is a very common

application and works well if the existing triangulation

does not present a course mesh in regions with high cur-

vatures. In addition, special care must be taken in the

implementation of the three generic functions that geo-

metrically represent the surface to maintain the good time

performance of the parametric space mesh generation.

The meshes generated by the present algorithm have

similar characteristics to those produced by its ancestors

[1–4], which are summarized as follows.

1. The algorithm produces well-shaped elements, avoid-

ing elements with poor aspect ratio. While it does not

guarantee bounds on aspect ratios of elements, care is

taken at each step to produce good-quality meshes.

2. The mesh conforms to an existing discretization on the

surface’s boundary. This is important in the generation

of finite-element meshes because it is usually desirable

to have a mesh that conforms to the mesh generated on

adjacent patches.

3. The algorithm presents a smooth transition between

regions with elements of highly varying sizes. This is a

desirable feature because a finite-element analysis

requires high element density in regions with high

gradients of response, while a low density may be used

in other regions. It is not uncommon in problems with

very high gradient producing features (e.g. cracks or

shock waves) to have element sizes that differ by two,

or in some cases three, orders of magnitude in element

size. The element transition capability is also impor-

tant for surfaces with regions of high curvatures

because, in such locations, the algorithm will locally

refine the mesh.

To facilitate a smooth transition between regions and

regions of high curvatures, the present algorithm employs

an octree data structure. However, unlike some authors,

e.g. Rassineux [17], who use a quadtree/octree procedure to

generate internal nodes prior to element generation, here it

is used to provide local policies used to define the dis-

cretization of the surface mesh and to define the sizes of

triangular elements to be generated during the advancing-

front procedure. The authors feel that this approach tends

to provide better control over the quality of the generated

mesh and to decrease the number of heuristic, clean-up

procedures.

The remainder of the paper is organized as follows.

Initially, the paper describes the algorithm for generating

unstructured triangulations for arbitrarily shaped 3D sur-

faces using the generic functions that abstractly represent

the geometry of the supporting surface. After that, the

paper describes the implementation of the three generic

functions to re-mesh existent triangulated meshes. Four

examples of triangle surface meshes are presented in order

to obtain results of performance and quality of generated

triangular elements. The final section comments on the

results.

2 Description of the algorithm

Figure 1 shows the process overview of the proposed mesh

generator. The input data for the present algorithm is a

polygonal description of the boundary of the surface patch

to be meshed and a 3D supporting surface that is abstractly

represented by three generic methods defined as follow:

First method: Given a point location, the method returns

the desired characteristic size of an ideal equilateral

triangular element at this position. The length of the

triangle’s side is considered as its characteristic size.

Second method: Given the current base edge in the

boundary-contraction algorithm, the method locates the

ideal apex point that forms a new triangle. The method

has two input arguments: the height of the candidate

equilateral triangle and a unit vector in the edge

perpendicular direction. This unit vector is a ‘‘surface

intersection direction’’ that defines a plane perpendicular

to the base edge at its mid point. These arguments are

used to determine an optimal triangle apex point

location.

Third method: Given a point in space, the method returns

the closest point on the geometrical supporting surface.

The method also receives a surface projection vector as

additional information. This method is used only in the

final stage of the surface mesh generation for local mesh

improvement.

The boundary information is given by a list of nodes

defined by their 3D coordinates and their normal vectors on

the surface and a list of boundary segments (or edges)

defined by their node connectivity. The input boundary

must be defined a priori. The definition of these points is

not part of the proposed algorithm and, for better results,

the boundary segment sizes should be consistent with local

surface curvatures (i.e., the boundary should be relatively

more refined in regions of relatively high curvature). The

208 Engineering with Computers (2009) 25:207–219

123

given boundary edges form the initial front that advances

as the algorithm progresses. At each step of this meshing

procedure, a new triangle is generated for each base edge

of the front. The front advances replacing the base edge

with new triangle edges. Consequently, the domain region

is contracted, possibly into several regions. The process

stops when all contracted regions result in single triangles.

As the front advances, the generic methods are called to

obtain the size of new elements and the position of an ideal

node. This is illustrated in Fig. 2 and described in more

detail below. After this process, the mesh is improved

using smoothing methods.

An R-Tree [18] structure is used in the advancing-front

process to improve the efficiency of adjacency queries

(elements adjacent to nodes) and for geometric checks

(edge intersections and points inside triangle). R-trees are

tree data structures that are similar to B-trees [19], but are

used for spatial access methods, i.e., for indexing multi-

dimensional information such as 3D coordinates. In this

work, the 3D bounding box (minimum bounding regular

hexahedron) of new triangular elements and edges is used

for indexing the auxiliary R-trees in the advancing-front

process.

2.1 Advancing-front procedure

The advancing-front technique starts with a boundary that

bounds a region to be filled with a triangulation. Triangular

elements are ‘‘extracted’’ or ‘‘pared’’ from the region one at

a time. As each element is extracted, the boundary is

updated and the process is repeated. The procedure ter-

minates when the entire region is meshed. Therefore, the

boundary of the region to be meshed is formed by edges of

the triangles created in the contraction process. These

edges are referred to as boundary edges.

In this algorithm, as in its ancestors [1–4], the advanc-

ing-front process is divided into two phases to ensure the

generation of valid triangulations. In the first phase, a

geometry-based element generation is pursued to generate

elements of optimal shapes. After this ideal phase is

exhausted and no more optimal elements can be generated,

a topology-based element generation takes place, creating

Fig. 1 Process overview of the

proposed algorithm

Fig. 2 Determination of a new

element

Engineering with Computers (2009) 25:207–219 209

123

valid, but not necessarily well shaped, elements in the

remaining region. The required steps for the advancing-

front procedure are as follows.

2.1.1 Front initialization based on given boundary edges

The process starts with the creation of the initial advancing

front, which is formed by the given boundary segments.

The current boundary edges are stored in two separate

doubly linked lists. The first is a list of active edges, which

includes all boundary edges that have not been used in an

attempt to generate valid triangles. The other is a list of

rejected edges, which have failed in the generation of

elements for the current phase. Initially, all segments of the

given boundary refinement are stored in the first list.

The initial list of active edges on the boundary is sorted

by the length of the edges. This has been recommended by

other authors [16] to prevent large elements from pene-

trating regions with small-length edges. This criterion is

only used in the initial boundary edge list.

It was also found convenient for some steps in the

algorithm to have an additional data structure storing a list

of adjacent boundary edges for each node on the current

advancing front. This data structure is initialized for

all nodes of the given boundary, and is updated as the

boundary-contraction procedure progresses.

The data structure also stores normal vectors for all

triangular elements, nodes, and edges. These normal vec-

tors are used to improve the efficiency of edge intersection

geometric checks, as described in next section. The normal

vectors are computed in the following way. The normal

vector of a node is computed as the average of the normal

vectors of adjacent elements. The normal vector of an edge

is the average of normal vector of its end nodes.

2.1.2 Front contraction (geometry-based element

generation)

Ideally, the entire mesh will be generated in the geometry-

based phase. This depends on the geometry and topology of

the given boundary model and, as observed, is strongly

related to the segment-size disparity of the given boundary

refinement. In this phase, for each base edge on the

advancing front, the following is performed (see Fig. 2):

• The optimal location N1 for the vertex of an equilateral

triangle to be formed is determined employing the First

and Second methods. Using the base edge middle point

(M) as input, First method returns the target triangle

characteristic size (the length of the equilateral triangle

side) at this point location. With this size, the height of

the candidate triangle is obtained. Then, using the

Normal 9 Tangent vector at the middle point M as

the required unit vector (surface intersection direction)

in the edge perpendicular direction and the triangle

height, Second method returns the desired N1 location

on the support surface.

• The optimal point defines an optimal region in which

the vertex of the triangle to be should be located. This

region is a sector of a sphere whose center is the

optimal point and whose radius is proportional to the

height of element. In the current implementation a

proportionality constant of 0.85 was adopted. This

sphere defines an upper bound for the distance between

the target vertex of the triangle and the middle point of

the base edge. A lower bound is defined to ensure that

the generated triangle will have area greater than the

smallest acceptable area. In the current implementation,

this lower bound is defined by a triangle with height

equal to 1/10 of the base edge. The optimal region is

used for two reasons: first, to ensure shape quality of

the elements to be generated; and, second, to ensure

that new internal nodes will be created only when it is

strictly necessary and always in good positions.

• If no existing node is inside the optimal region, a new

node is inserted at the optimal location N1 and an

element is generated using this node. If only one node

exists in the region, this node is used to generate the

element. If more than one node is found in the region,

they are ranked according to the included angle with

respect to the base edge. The node with the maximum

included angle is used to generate the element. A heap

list is used to efficiently implement this priority queue.

• Additional geometric checks are performed to ensure

that the edges of the new triangular element do not

intersect any existing edge of the advancing front and

that the new triangle apex does not lie inside any other

existing triangle. In both cases, the new element is

rejected. These checks are not trivial in 3D space.

However, they are performed in a local 2D system on

the plane of the new triangular element, avoiding

complex geometry checks in 3D space. As mentioned,

the algorithm uses an auxiliary R-Tree structures to

improve queries for adjacent edges and elements around

a candidate triangular element. The 3D bounding box of

this triangle is used as an index to the R-Tree. The new

edges and adjacent elements edges are transformed to

the local 2D system on the plane of the new triangular

element and all checks are made in this local system.

• Once a valid triangle is generated for the current base

edge, the list of active edges is updated. This is done

through the following steps: first, the base edge is

removed from the list; then, for the other edges of the

element, the edge is either deleted, if it coincides with

an edge already in the list, or inserted in the list as a

new one.

210 Engineering with Computers (2009) 25:207–219

123

• Due to restrictions on the allowable range of element

shape metrics, there are situations in which the

algorithm fails in forming a valid triangle for the current

boundary’s base edge. In these cases, the current base

edge is removed from the list of active edges and is

stored in the separate list of rejected edges. It might

happen that an edge is subsequently removed from this

latter list if it is used as part of a valid triangle for an

adjacent base edge.

• When there are no more edges in the list of active

edges, the algorithm tries to generate elements using

the edges that were previously rejected. It might be the

case that base edges that previously failed may now

work because the front has changed with the addition of

elements. The geometry-based element-generation

phase ends when either there are no edges left in the

boundary-contraction lists (in which case an optimal

mesh was generated) or when a rejected edge fails for a

second time.

2.1.3 Front contraction (topology-based element

generation)

The objective of this phase of the algorithm is to force the

generation of valid triangles, even if a measure of the

quality of the shape of the element does not fall within

the allowable range used in the previous phase. The

topology-based element-generation phase starts when a

boundary edge fails twice in trying to generate an optimal

element. The list of rejected edges of the previous phase

is transformed into a list of active edges and, similarly to

the geometry-based phase, a list of rejected edges is

created for edges that eventually fail in generating valid

triangles.

In the topology-based element-generation phase, any

node close to the current base edge is selected and stored in

a priority queue of candidate nodes. The node that has the

maximum included angle with respect to the base edge is

chosen for the generation of the new triangle. If the edges

of this triangle do not intercept any other edge of the

current advancing front, the element is created and the

boundary is contracted accordingly. The topology-based

phase ends when the lists of active and rejected edges are

empty. This phase always generates a valid, even though

non-optimal, mesh.

2.2 Local mesh improvement

A smoothing technique is used to improve mesh quality by

relocating nodes within a patch. A general formulation for

this technique is given by (1), which is a generic form of a

weighted Laplacian function [20]:

Xnþ1
0 ¼ Xn

0 þ /

Pm
i¼1 wi0ðXn

i � Xn
0ÞPm

i¼1 wi0
: ð1Þ

In this equation, m is the number of nodes connected to

node O, X0
n?1 is the position of node O at smoothing

iteration n ? 1, wi0 is the weighted function between nodes

i and O, and / is a relaxation parameter which is normally

set in the interval (0, 1]. In this work / = wi0 = 1.0, which

means that the right side of (1) is reduced to an average of

the adjacent points. The smoothing procedure is repeated

twice for all internal nodes.

In general, the surface mesh smoothing (1) will move

node O to a position off of the surface. The Third method is

employed after each smoothing procedure as a ‘‘pull back’’

operation, moving the target node back to the geometric

supporting surface.

In theory, Laplace smoothing and the ‘‘pull back’’ pro-

cedure can cause mesh ‘‘folding’’. A check is made and a

node is not moved if doing so will cause an invalid mesh.

In practice, there has been no need to enforce this restric-

tion for any of the test cases.

3 Application: re-meshing

To demonstrate the performance and the efficiency of

the proposed surface meshing algorithm, this section

describes an implementation of the three generic methods

for re-meshing existing surface triangulations. This

application is very useful when an existing surface mesh

needs to be refined, coarsened, improved or changed to

conform to a pre-existing boundary discretization. For

example, Fig. 3 (left) presents a mesh with triangular

elements and four holes. Mainly, in the surface domain,

the elements have similar shape and size. However, the

boundary mesh presents many poorly-shaped elements

(red arrows in right of Fig. 3). In the context of finite-

element analysis, these elements are not desirable because

they can cause inaccurate results in an important region of

the domain.

It is important to mention that the three generic methods

described in this section are considering a surface com-

posed solely of a set of triangles. In this implementation, it

is considered that there is no information about the original

surface on which the existing triangulation was built.

Different implementation strategies than the ones described

in this section should be adopted for surfaces composed by

a set of points or surfaces with an analytical description

(with or without a parametric space).

This application requires a minimum set of information

about the supporting mesh. The existing triangulation

must have one continuous domain, with any number of

boundary loops (holes). The nodal incidence of adjacent

Engineering with Computers (2009) 25:207–219 211

123

triangular elements must have a consistent order. This

nodal incidence (e.g., in counter-clockwise order) defines

a normal direction of triangular elements. The given

normal directions of the input boundary nodes, as shown

in Fig. 1, must be consistent with the triangles normal

directions.

3.1 First generic method implementation

The first generic method of the proposed surface mesh

generation obtains the desired characteristic size of a tri-

angular element given the position of a point on the

surface. It is important that the algorithm presents a smooth

transition between regions with elements of highly varying

sizes. Therefore, an auxiliary background data structure is

used to store the distribution of characteristic triangle sizes

in space.

Many background structures are published in the liter-

ature [21–29] in the context of mesh generation. In the

present work, as well as in its ancestors [1–4], an octree

structure is used. An octree is a tree data structure based on

a cell with eight children. Each cell of an octree represents

a cube in physical space. Each child represents one octant

of its parent. Figure 4 shows an example in which the tree

has been refined twice. First, the root cell is subdivided into

eight cells, each representing an octant of the root’s

domain. Then, one of root’s children is recursively subdi-

vided into eight cells.

In the current application the size of the leaf cells in a

region of a domain are used as the size of the desired

characteristic element size in this region. The creation of

the background octree from an input surface follows five

steps (see Fig. 5):

1. Octree initialization based on given boundary edges:

Each segment of the input boundary data is used to

determine the local subdivision depth of the octree as

shown in Fig. 5a.

2. Refinement to force maximum cell size—Fig. 5b: The

octree is refined to guarantee that no cell in its interior

is larger than the largest cell at the boundary.

3. Refinement to provide minimum size disparity for

adjacent cells—Fig. 5c: This additional refinement

forces only one level of tree depth between neighbor-

ing cells and provides a natural transition between

regions of different degrees of mesh refinement.

4. Refinement to account for surface curvatures—

Fig. 5d: The center and the bounding box of each

element of the existing supporting mesh are deter-

mined and stored, in an R-tree structure. For each

element (element A), the algorithm finds the cell in the

octree that contains its center. A second element

(element B) is selected from the neighboring elements

as to maximizes the angle between normal element

vectors NA and NB, or similarly, that minimizes the

cosine angle between NA and NB:

cos h ¼ NA � NB

NAk k NBk k ð2Þ

If cosh is less than a minimum value, cosminh, then a

new cell size, Hnew, is obtained:

Hnew ¼
d � 0:5

sinðh � 0:5Þ � hmax ð3Þ

in which d is the distance between the centers of elements

A and B, and hmax is the maximum angle allowed between

normal vector of elements. This new size is used to locally

refine both cells of elements A and B in the octree. This

step is applied to all elements in the supporting mesh.

Fig. 3 Example of a mesh with

badly-shape elements (red
arrows)

Fig. 4 An octree with two levels of refinement

212 Engineering with Computers (2009) 25:207–219

123

5. Refinement to provide minimum size disparity for

adjacent cells—Fig. 5e: Step 3 is repeated for the

updated octree.

3.2 Second generic method implementation

The second generic method returns the ideal apex point that

forms a candidate equilateral triangle for a given current

base edge in the boundary-contraction algorithm (Fig. 6a).

In addition to the base edge, the height of the candidate

triangle and a ‘‘surface intersection’’ direction are given, as

shown in Fig. 6b.

Two different approaches to this task are described in

the literature. Lohner [6] tries to find a host triangle, where

the ideal node lies, using a neighbor-to-neighbor search. If

this fails, octrees are employed. Finally, if this approach

fails again, a brute force search over all the surface ele-

ments is performed. Carlos et al. [5] use a procedure that

guarantees that the new triangle sides have exactly the

desired length. This procedure considers the equation of a

sphere, and finds the intersections between the sphere and

the mesh. The approach used in this work is similar to this

one, employing the circle equation in a 2D coordinate

system.

Figure 6 illustrates how to obtain the target apex point in

the present implementation. A local search based on the

auxiliary R-Tree structure creates a list of all neighborhood

elements around the middle base edge point. A plane of

intersection, containing the given surface intersection

direction, is created at this point. The intersection of the

neighbor triangles with the plane of intersection forms a

poly-line, as shown in Fig. 6b. A 2D local coordinate

system is created on the plane of intersection and points of

the intercepting poly-line are transformed to this coordinate

system. The ideal node position is computed by intersect-

ing a circle, whose center is the base edge middle point and

radius is the height of the candidate triangle, with this poly-

line. Finally, the point is transformed to the 3D coordinate

system. Depending on the irregularity of the support mesh,

it might happen that the intersection of a neighbor triangle

Fig. 5 Refinement of

background octree

Fig. 6 Obtaining ideal node

position in second generic

method (top view on the left and

lateral view on the right)

Engineering with Computers (2009) 25:207–219 213

123

causes a self-crossing poly-line configuration. This is

solved by considering the interception segment that best

approximates the given surface intersection direction.

3.3 Third generic method implementation

The third generic method returns the point on the geometric

supporting surface that is closest to a given point near to,

but not necessarily on, the surface. During the nodal

smoothing phase, points may be moved off the surface.

This method is used to move the points back to the surface.

As input, the method receives the current node location and

its current normal vector. The implementation of this

function is quite simple (see Fig. 7): First, a local search

based on the auxiliary R-Tree structure creates a list of all

neighborhood triangles of the geometric supporting surface

around the given node. Second, the node is projected on

each neighbor triangle plane, using the given projection

direction [30]. Finally, the selected new node location is

the one that lies inside one of the neighbor triangles.

Figure 8 presents an example with several phases of the

advancing boundary-contraction process. Figure 8a shows

the supporting mesh surface, which is a half-torus form.

Figure 8f shows the final mesh. The next section presents

more examples.

3.4 Example: performance mesh and quality

This section presents additional examples of finite-element

meshes generated on 3D surfaces using the proposed

algorithm. The main objectives of this section are to: (1)

estimate the expected performance of the surface mesh

generation algorithm, (2) analyze the visual aspect of

generated triangle surface meshes, comparing the results

with and without considering surface curvatures, and (3)

assess the quality of generated triangular elements.

Figure 9 shows four examples of triangle surface

meshes to be re-meshed with the present algorithm. The

first one, Fig. 9a, is an open cylinder. The second, Fig. 9b,

is a geological salt-dome surface. The third, Fig. 9c, is a

geological surface with four internal loops (this is the same

surface presented in Fig. 3 with poorly-shaped elements on

the boundary). The final example, Fig. 9d, is a surface with

many irregularities in its curvatures.

The observed processing times for generating refined

meshes for the four example problems are reported in

Table 1. These processing times were measured on a

Pentium-2.66 GHz PC with 1 GB of RAM, under Win-

dows XP operating system. In addition to the total time,

Table 1 also shows partial processing times to build the

background octree, to accomplish the advancing-front

process, and to improve the quality of the mesh by

smoothing. It is clear that most of the computational effort

is spent in the advancing-front process.

The data reported in Table 1 contain results for a

number of different levels of mesh refinement for each of

the example problems. The degree of mesh refinement was

controlled by changing the size of the input boundary

segments. For these cases, the boundary curves were dis-

cretized with uniform segment sizes. No attempt was made

to use relatively shorter boundary segments in regions of

high curvature. Doing so would improve the quality of

some of the generated meshes. However, uniform boundary

segments were used to minimize the influence of the

boundary discretization on the measured quality of the

element shapes in the resulting meshes.

A formal analysis of the computational complexity of the

proposed algorithm would be very difficult, especially

considering input data-specific steps such as the generic

methods. Nevertheless, a realistic estimate of the expected

performance of the algorithm is desirable for its practical

use. Figure 10 shows a plot of the elapsed processing time

as a function of the number of elements generated. A

computational complexity of O(NlogN) has been proposed

in the literature for the best case performance for advancing-

front meshing techniques [31]. The equation of a least-

squares fit to times reported in Table 1 is t = 2 9 10-5N1.18,

where N is the number of generated elements. Using this fitting

equation, one may infer that the algorithm’s performance is

close to O(NlogN).

Figure 11 shows some of the refined meshes for these

examples. In Fig. 11c, one may note that the uniform

boundary discretization eliminated poorly-shaped ele-

ments, when compared to the same region shown in Fig. 3.

Figure 11d demonstrates the importance of considering

curvatures of the supporting surface in the algorithm. In

this figure, the generated mesh was more refined in regions

with high curvatures of the supporting mesh. The algorithm

is able to handle this effect, providing good mesh transition

between regions with distinct element characteristic sizes.

For this example, Fig. 12 shows in detail the influence of

the surface curvature: Fig. 12a shows a mesh generated

without considering curvatures, and Fig. 12b shows a mesh
Fig. 7 Projecting a node in space on the supporting surface in the

third generic method

214 Engineering with Computers (2009) 25:207–219

123

considering theses curvatures. Note that the surface

boundary is refined uniformly. In this example, the refine-

ment of boundary curves in locations of high curvature

would improve even further the quality of the generated

mesh.

In order to study the quality of the shapes of the gen-

erated elements a normalized ratio quality measure, c/c*, is

adopted [2]. In this measure c is the ratio between the root

mean square of the lengths (Si) of a triangle’s edges and the

triangle’s area, and c* is the corresponding value for an

equilateral triangle:

c ¼
1
3

P3
i¼0 S2

i

Area
: ð4Þ

The c/c* quality measure has a valid interval between

1.0 and infinity, with high quality elements, those close to

an equilateral triangle, having values close to 1.0.

The quality of generated meshes is presented in the form

of a histogram such as the one shown in Fig. 13. In this

histogram, the horizontal axis corresponds to the c/c*

quality measure in intervals represented by triangular

shapes that are shown below the histogram. The vertical

axis corresponds to the percentage of elements in each

interval of the quality measure. These results demonstrate

that the proposed algorithm generates meshes with good

quality for the great majority of elements. Note that the

quality of meshes in all examples is below 1.5, an indica-

tion of very well-shaped elements.

4 Conclusion

This paper has described an algorithm for regenerating

triangle finite-element meshes on surfaces of arbitrary

Fig. 8 Example of advancing

boundary-contraction process

for a half-torus surface

Engineering with Computers (2009) 25:207–219 215

123

Fig. 9 Examples of surfaces

with their initial triangle meshes

Table 1 Processing times for re-meshing example surfaces

Example Number of elements Background Boundary Smoothing Total

Octree Contraction

(s) (%) (s) (%) (s) (%) (s)

Example 1-1 3,906 0.031 9 0.313 87 0.016 4 0.36

Example 1-2 15,872 0.094 6 1.391 91 0.047 3 1.532

Example 1-3 63,746 0.563 7 7.610 91 0.203 2 8.376

Example 1-4 79,872 0.579 6 8.406 91 0.235 3 9.22

Example 1-5 84,048 0.578 5 11.140 93 0.250 2 11.968

Example 2-1 2,454 0.015 7 0.188 93 0.000 0 0.203

Example 2-2 9,480 0.078 9 0.781 89 0.015 2 0.874

Example 2-3 42,791 0.578 12 4.172 87 0.031 1 4.781

Example 2-4 60,091 0.578 8 6.328 90 0.109 2 7.015

Example 2-5 72,715 0.609 5 10.687 94 0.125 1 11.421

Example 3-1 6,111 0.109 13 0.672 81 0.047 6 0.828

Example 3-2 24,136 0.578 15 3.188 82 0.125 3 3.891

Example 3-3 34,272 0.610 10 5.562 88 0.140 2 6.312

Example 3-4 97,039 4.500 16 23.093 82 0.547 2 28.14

Example 4-1 7,652 0.094 12 0.656 86 0.031 4 0.781

Example 4-2 29,343 0.578 15 3.078 82 0.110 3 3.766

Example 4-3 33,782 0.578 13 3.859 84 0.110 2 4.547

Example 4-4 42,359 0.609 9 5.734 85 0.157 2 6.500

216 Engineering with Computers (2009) 25:207–219

123

shape and with varying curvature. The algorithm incorpo-

rates aspects of well-known meshing procedures and

includes some original steps. This algorithm is an extension

of a previously proposed algorithm for generating

unstructured meshes in 3D and 2D domains.

The input data for the present algorithm is a generic

supporting surface and a polygonal description of the

boundary on the surface patch to be meshed. The sup-

porting surface is represented abstractly by three generic

methods:

• The first, given a point location, returns the desired

characteristic size of a triangular element at this

position.

• The second, given the current edge in the boundary-

contraction algorithm, locates the ideal apex point that

forms a triangle with this edge.

• The third, given a point in space and a projection

direction, returns the closest point on the geometrical

supporting surface.

These three generic methods are used in the proposed

two-pass advancing-front procedure to generate elements

on the supporting surface. In the first pass, elements are

generated based on geometrical criteria, which produces

well-shaped elements. In the second pass, triangular ele-

ments are generated based solely on topology criteria.

The three generic methods were implemented to

regenerate triangle mesh surfaces, where the only infor-

mation about the surface is a set of triangles. This approach

is very useful when a mesh needs to be refined, coarsened

or improved. Some examples have demonstrated the

Fig. 10 Generation times for re-meshing the example surfaces

Fig. 11 Final triangle meshes

of example surfaces

Engineering with Computers (2009) 25:207–219 217

123

quality of the generated meshes and the importance of

considering surface curvatures in local mesh refinement.

Acknowledgments The first author acknowledges a post-doctoral

fellowship provided by the Brazilian agency CAPES, process 2183-

06, and the Cornell Fracture Group. The second author has a PQ grant

from CNPq. This work has been developed in the Cornell Fracture

Group and in Tecgraf/PUC-Rio, Computer Graphics Technology

Group. Tecgraf/PUC-Rio is partially supported by PETROBRAS.

References

1. Cavalcante Neto JB, Wawrzynek PA, Carvalho MTM, Martha

LF, Ingraffea AR (2001) An algorithm for three-dimensional

mesh generation for arbitrary regions with cracks. Eng Comput

17(1):75–91

2. Miranda ACO, Martha LF (2002) Mesh generation on high curva-

ture surfaces based on background Quadtree structure. In: Pro-

ceedings of 11th International Meshing Roundtable 1, pp 333–341

3. Miranda ACO, Cavalcante Neto JB, Martha LF (1999) An

algorithm for two-dimensional mesh generation for arbitrary

regions with cracks, SIBGRAPI’99. In: Stolfi J, Tozzi C (eds) XII

Brazilian Symposium on Computer Graphics, Image Processing

and Vision, IEEE Computer Society Order Number PRO0481,

ISBN 0-7695-0481-7, pp 29–38

4. Miranda ACO, Meggiolaro MA, Castro JTP, Martha LF, Bitten-

court TN (2003) Fatigue life and crack path predictions in generic

2D structural components. Eng Fract Mech 70(10):1259–1279

5. Carlos J, Scheidegger E, Fleishman S, Silva CT (1996) Direct

(re)meshing for efficient surface processing. Comput Graph

Forum 25(3):527–536

6. Lohner R (1996) Regridding surface triangulations. J Comput

Phys 126(1):1–10

7. Shostko AA, Lohner R, Sandberg WC (1999) Surface triangu-

lation over intersecting geometries. Int J Numer Meth Eng

44:1359–1376

8. Nakahashi K, Sharov D (1995) Direct surface triangulation using

the advancing front method. AIAA, pp 442–451

9. Lau TS, Lo SH (1996) Finite element mesh generation over

analytical curved surfaces. Comput Struct 59(2):301–309

10. Lo SH, Lau TS (1998) Mesh generation over curved surfaces

with explicit control on discretization error. Eng Comput Int J

Comput Eng 15(3):357–373

11. Chan CT, Anastasiou K (1997) An automatic tetrahedral mesh

generation scheme by the advancing front method. Commun

Numer Methods Eng 13:33–46

12. Jin H, Tanner RI (1993) Generation of unstructured tetrahedral

meshes by advancing front technique. Int J Numer Methods Eng

36:1805–1823

13. Lo SH (1985) A new mesh generation scheme for arbitrary planar

domains. Int J Numer Methods Eng 21:1403–1426

14. Lohner R, Parikh P (1988) Generation of three-dimensional

unstructured grids by the advancing-front method. Int J Numer

Methods Fluids 8:1135–1149

15. Moller P, Hansbo P (1995) On advancing front mesh generation

in three dimensions. Int J Numer Methods Fluids 38:3551–3569

16. Peraire J, Peiro J, Formaggia L, Morgan K, Zienkiewicz OC

(1988) Finite Euler computation in three-dimensions. Int J Numer

Methods Fluids 26:2135–2159

17. Rassineux A (1998) Generation and optimization of tetrahedral

meshes by advancing front technique. Int J Numer Methods

Fluids 41:651–674

18. Guttman A (1984) Rtrees: a dynamic index structure for spatial

searching. In: Proceedings of ACM SIGMOD International

Conference on Management of Data, pp 47–57

19. Rudolf B (1971) Binary B-Trees for virtual memory. ACM-

SIGFIDET Workshop, San Diego, California, Session 5B,

pp 219–235

20. Foley TA, Nielson GM (1989) Knot selection for parametric

spline interpolation. In: Schumaker L (ed) Mathematical methods

in CAGD. Academic Press, New York, pp 445–467

Fig. 12 Differences between meshes for Example 4 with (a) no

consideration of curvature and (b) considering curvatures

Fig. 13 Histogram of element quality for re-meshing the example

surfaces

218 Engineering with Computers (2009) 25:207–219

123

21. Borouchaki H, Hecht F, Frey PJ (1997) Mesh gradation control.

In: Proceedings of 6th International Meshing Roundtable, Sandia

National Laboratories, pp 131–141

22. Owen SJ, Saigal S (1997) Neighborhood-based element sizing

control for finite element surface meshing. In: Proceedings of 6th

International Meshing Roundtable, Sandia National Laboratories,

pp 143–154

23. George PL, Seveno E (1994) The advancing-front mesh genera-

tion method revisited. Int J Numer Methods Fluids 37:3605–3619

24. Borouchaki H, Hecht F, Frey PJ (1997) H-Correction. INRIA

Report No. 3199, INRIA, pp 29

25. Lohner R, Parikh P, Gumbert C (1988) Interactive generation of

unstructured grid for three dimensional problems. Numerical grid

generation in computational fluid mechanics ‘88. Pineridge Press,

Swansea, pp 687–697

26. Owen SJ, Saigal S (2000) Surface mesh sizing control. Int J

Numer Methods Fluids 47(1):289–312

27. Mello UT, Cavalcanti PR (2000) A point creation strategy for

mesh generation using crystal lattices as templates. In: Proceed-

ings of 9th International Meshing Roundtable, Sandia National

Laboratories, pp 253–261

28. Zhu J (2003) A new type of size function respecting premeshed

entities. In: Proceedings of 12th International Meshing Round-

table, Sandia National Laboratories, pp 403–413

29. Persson P (2004) PDE-based gradient limiting for mesh size

functions. In: Proceedings of 13th International Meshing

Roundtable, Sandia National Laboratories, pp 377–388

30. Moller T, Trumbore B (1997) Fast, minimum storage ray-triangle

intersection. J Graphics Tools 2(1):21–28

31. Krysl P (2005) Computational complexity of the advancing front

triangulation. Eng Comput 12:16–22

Engineering with Computers (2009) 25:207–219 219

123

	Surface mesh regeneration considering curvatures
	Abstract
	Introduction
	Description of the algorithm
	Advancing-front procedure
	Front initialization based on given boundary edges
	Front contraction (geometry-based element generation)
	Front contraction (topology-based element generation)

	Local mesh improvement

	Application: re-meshing
	First generic method implementation
	Second generic method implementation
	Third generic method implementation
	Example: performance mesh and quality

	Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

