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Abstract: There is a vast literature on linear-elastic stress concentration factors Kt (Peterson,
1997), which depend solely on the specimen/notch geometry and on the type of loading. However,
in the presence of plasticity at the notch root, the actual stress concentration factor Kσ is found to
be smaller than the tabulated Kt, mainly due to the stress redistribution at the yielding zone. In turn,
the strain concentration factor Kε at the notch root, which strongly affects the fatigue life predicted
by the εN method, can be much larger than Kt. Several models have been proposed to assess the
elastic-plastic behavior at the notch root, such as the rules proposed by Neuber (1961), Glinka
(1985), Topper et al. (1969), Seeger et al. (1980), and Hoffman et al. (1985). In many cases, these
models may provide reasonable estimates of the maximum stresses and strains at the notch root;
however, the differences among the fatigue life predictions by each rule can be unacceptably large.
In addition, these methods do not account for the geometrical changes at the notch root under large
displacements, leading to further errors. In this work, 2D finite element analyses are carried out to
evaluate elastic-plastic stress and strain distributions ahead of a notch under large deformations, at
several load levels. Based on this analysis, the main strain concentration rules proposed in the
literature are evaluated and their applicability verified. In particular, it is verified that Neuber’s
rule is able to predict reasonable estimates of the concentration factors, as long as both nominal
and notch-root stresses are modeled as elastic-plastic, as stated by Meggiolaro et al. (2002). It is
concluded that several claims of Neuber’s underestimation of Kσ and overestimation of Kε are in
fact a product of inappropriate simplifications in the material modeling and high sensitivity to the
inherent finite element calculation errors.
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1. INTRODUCTION

The εN is a modern fatigue design method (Dowling, 1993; Fuchs and Stephens, 1980; Rice,
1988; Sandor, 1972) in which Neuber is the most used equation to correlate the nominal stress σn

and strain εn ranges with the stress σ and strain ε ranges they induce at a notch root. The Neuber
equation states that the product between the stress concentration factor Kσ (defined as σ/σn) and the
strain concentration factor Kε (defined as ε/εn) is constant and equal to the square of the geometric
stress concentration factor Kt, thus
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Some authors prefer to use Kf, the fatigue concentration factor, instead of Kt in this equation
(Topper et al., 1969). When the nominal stresses are lower than SYc, the cyclic yielding strength, it
is common practice to model them as Hookean and, therefore, to use the Neuber equation in the
simplified form:
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Ramberg-Osgood is one of many empirical relations that can be used to model the cyclic
response of the materials. Its main limitation is to not recognize a purely elastic behavior, and its
main advantage is its mathematical simplicity. It can be used to describe the stresses and strains at
the notch root by
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in which E is the Young’s modulus, Hc is the hardening coefficient and hc is the hardening
exponent of the cyclically stabilized σε curve.

Eliminating ∆ε from Equations (2) and (3), σn is directly related to ∆σ by
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However, the above equation is logically incongruent, since it treats the very same material by
two different constitutive models: Ramberg-Osgood at the notch root and Hooke at the nominal
region. Moreover, this procedure can generate significant numerical errors even when the nominal
stresses are much lower than the material cyclic yielding strength, as it will be discussed next.

2. LIMITATIONS OF THE SIMPLIFIED NEUBER APPROACH

To avoid the errors induced by the simplified (Hookean) Neuber approach, it is necessary to use
the Ramberg-Osgood model to describe not only the stresses at the notch root, but also to describe
the nominal stresses, writing
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In this case, given the nominal stress range ∆σn, the stress range at the notch root ∆σ can be
calculated from Equations (1), (3), and (5), yielding
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Figure (1) shows a comparison between the stress Kσ and strain Kε concentration factors
predictions made by the simplified Neuber approach using Equation (4), and the general (corrected)
ones obtained using Equation (6), for a SAE 1009 steel when the notch root has a Kt of 3.

As it can be seen in the figure, for nominal stress amplitudes σn smaller than 0.5⋅SYc both
predictions result in roughly the same concentration factors. However, for larger nominal stress
values the predictions diverge, and the classical Neuber approach wrongfully predicts ever
increasing strain concentration factors Kε and even stress concentration factors Kσ smaller than
unity, a complete non-sense.
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Figure 1 - Calculated stress and strain concentration factors (SAE 1009 steel, Kt = 3).

Note also that the general (elastic-plastic) Neuber formulation implies that both Kσ and Kε tend
to a constant value as the nominal stress amplitude is increased. According to Neuber's equation,
any material that follows Ramberg-Osgood's equation presents this same behavior. These constant
values can be calculated from Equation (6), assuming that the elastic component of both nominal
and notch-root strains are negligible compared to the respective plastic strain components, resulting
in:
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From Equation (7) and using that Kσ⋅Kε = Kt
2, then lower and upper bounds can be calculated

for Kσ and Kε
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In addition, it is found that the errors in σ are not a strong function of Kt, being mainly
dependent on the nominal stress range σn. These errors tend to slightly decrease as Kt is increased,
reaching a constant value for very high stress concentration factors. Therefore, the behavior shown
for Kt equal to 3 can be extended to any stress concentration factor.

It is reasonable to assume that this interesting result can be efficiently verified by non-linear
finite element (FE) calculations. However, this comparison must be carefully made, because even
after considering elastic-plastic nominal stresses in the modeling, the numerical errors inherent to
FE calculations can still lead to quite wrong predictions, as discussed next.



3. NUMERICAL SENSITIVITY WITH THE HARDENING EXPONENT

In this section, a sensitivity analysis is presented to evaluate the errors in the strain predictions at
the notch root using finite elements. The FE method is a numerical method prone to some errors due
to its particular formulation and implementation. Errors are introduced as the domain is divided into
several small (but finite) elements, and polynomials or harmonic functions are used to represent the
entire behavior of the calculated quantities. Other sources of errors come from the algorithms used
to solve the system equations, such as the return algorithm necessary for nonlinear analyses, the
tolerance used in the balance between internal and external forces, etc.
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Figure 2 – Constitutive models used in the sensitivity analysis.
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Figure 3 – Strain/stress sensitivity for the considered constitutive models.



Four constitutive models based on the Ramberg-Osgood equation were considered for the
sensitivity analysis, as shown in Figure (2). These models have in common the same Young
modulus of 210GPa and yielding strength of 400MPa. The monotonic hardening exponents, h, are
fixed as 0.05, 0.10, 0.20 and 0.40, and the monotonic hardening coefficients, H, are computed as
546, 745, 1386 and 4084 MPa, respectively. These models will be herein described as Models A, B,
C and D, respectively.

The objective of this analysis is to obtain the errors in the calculated strains at a notch root
generated by errors in the FE-obtained stresses. It is assumed that the errors in stress are either of
the order of 1%, 2% or 4%, which are typical values in FE analyses with increasingly coarse
meshes. The associated percentage errors in strain are shown in Figure (3) as a function of the errors
in stress and of the nominal stress σn normalized by the yielding strength SY. The graphs are
generated using Equation (6) assuming a notch with Kt = 2.5 and the monotonic properties of each
of the four considered constitutive models.

Based on the graphs presented in Figure (3), it is seen that the strain errors are more sensitive to
the stress errors when the material hardening exponent is smaller – in this case, in Model (A). This
is not a surprise, since a material that approaches the elastic-perfectly plastic behavior is highly
sensitive to stress changes beyond yielding levels. This high sensitivity may compromise any
attempt to predict the notch-root plastic behavior using FE. Therefore, without loss of generality,
the constitutive model (D) is used in the following section to minimize the calculation errors. The
constitutive model (A) will only be used to exemplify the magnitude of the errors generated by FE.

4. RESULTS

In this section, numerical FE analyses are performed to calculate the notch-root stresses and
strains in five different geometries, with either holes or notches. The details of the geometries and
employed meshes are presented, and the results are plotted as Kσ and Kε graphs to compare the FE
analysis and Neuber predictions.

The numerical analysis is performed using a piece of software called Quebra2D (Miranda et al.
2003), an interactive graphical program that simulates 2D fracturing processes based on a FE auto-
adaptive strategy. The program contains a specially developed algorithm to deal with fracture
cracks and with internal restrictions to element sizes, allowing for a better local refinement of the
mesh. This strategy is shown in Figure (4), where in certain points in the geometric model internal
restrictions on the size of the elements are placed near the notch root. In this way, the elements
generated by the algorithm obey a specific element size, which is critical to guarantee an
appropriate precision in the presence of stress raisers such as in the geometries considered in this
work.

Figure 4 – Mesh generation strategy at the notch root using internal restrictions.

Five different geometries are generated for the analysis, as shown in Figure (5). Geometries 1, 2
and 3 consist of plates under tension with holes with radius sizes r = 0.1, 1 and 4 length units,
respectively. Geometries 4 and 5 also consist of plates under tension, but with two lateral semi-
circular notches with radius r = 1 and 3 length units, respectively. Values related to the FE meshes
and Kt values at the notch root are presented in Table (1). Additionally, Figure (6) shows a detail of
the generated FE meshes at the notch root for the several geometries.
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Figure 5 – Details of the considered geometries.

Table 1 – Data on the mesh and Kt for Geometries 1 through 5.

Number of
elements

Number of
nodes

Elements at
the notch Kt

Geometry 1 7764 15704 40 2.97
Geometry 2 4892 9960 40 2.73
Geometry 3 2260 4700 40 2.24
Geometry 4 3538 7427 20 2.80
Geometry 5 5522 11415 50 2.33

           
            Geom. (1)                         Geom. (2)                          Geom. (3)             Geom. (4)      Geom. (5)

Figure 6 – Details of the FE meshes generated by Quebra2D’s algorithm.

The numerical analysis is performed using the ABAQUS FE program. The FE input file,
however, is generated using the Quebra2D software, which exports a neutral format file and
automatically runs ABAQUS, using an analysis module called Standard. The elements used are
triangular with 6 nodes under plane stress. In all performed analyses, fifty load increments are
applied in order to minimize the convergence error. The tolerance used for internal/external force
balance in the nonlinear analysis is 10−9 with respect to the load increment. The stress/strain
relationship is inserted into ABAQUS’s input file using the option



*DEFORMATION PLASTICITY
E, ν, SY, n, α (9)

in which E is the Young modulus, ν is the Poisson coefficient, SY is the yielding strength, and n and
α are material constants computed using the equations
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To exemplify the issue raised in the previous section regarding the strain/stress sensitivity,
Geometry 1 is now analyzed using the constitutive curve of Model (A). The results, presented in
Figure (7), show little difference between Neuber’s rule and FE in the computation of notch-root
stress. The maximum difference obtained for the stress is 1.5%. However, the notch-root strain
presents a significant difference, with maximum errors of about 15% to 30%. As it was shown in
the previous section, the strain in Model (A) has a greater sensitivity to stress errors. Therefore,
using this model it is impossible to distinguish whether the differences between Neuber’s and FE
predictions are due to inadequacies in Neuber’s rule or simply FE discretization errors.
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Figure 7 – Concentration factors predicted using FE or Neuber’s rule using Model (A) for
Geometry 1 (left), and percentage differences between them (right).

Figures (8) through (12) show the Neuber and FE estimates for the geometries presented in
Figure (5) using the material from Model (D). The graphs to the left show Kε and Kσ values
normalized by the respective Kt’s presented in Table (1) for several levels of nominal stress σn. The
graphs to the right show the differences in Kε and Kσ between Neuber’s and FE predictions, for
several nominal stress levels.

Figure (8) shows the results for the plate under tension with a hole of radius r = 0.1 length units
(Geometry 1). In this case, the maximum difference between Neuber’s and FE predictions in Kσ is
1.5%, and 3% in Kε, bearing in mind that these differences can be either positive or negative
depending on the load level. Figure (9) shows the results for the same geometry with r = 1 length
unit (Geometry 2), where the maximum difference in Kσ is 1.7% and in Kε 3.2%. However, with an
increase in the hole to r = 4 length units (Geometry 3), as shown in Figure (10), the differences
between the predictions are slightly increased to 2.8% in Kσ and 6.3% in Kε.
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Figure 8 – Concentration factors predicted using FE or Neuber’s rule using Model (D) for
Geometry 1 (left), and percentage differences between them (right).
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Figure 9 – Concentration factors predicted using FE or Neuber’s rule using Model (D) for
Geometry 2 (left), and percentage differences between them (right).
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Figure 10 – Concentration factors predicted using FE or Neuber’s rule using Model (D) for
Geometry 3 (left), and percentage differences between them (right).

The plates under tension with two lateral semi-circular notches presented results similar to the
holed plates. As it can be seen in Figure (11), when the radius of the lateral notches are r = 1 length
units (Geometry 4), the maximum difference between Neuber’s and FE predictions in Kσ is 1.0%



and in Kε 3%, with a behavior similar to the one from Geometry 2 (which had the same radius r). In
Figure (11), with the radius of the lateral notches r = 3 length units (Geometry 5), the maximum
difference in Kσ raises to 4.5% and in Kε to 10.0%.
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Figure 11 – Concentration factors predicted using FE or Neuber’s rule using Model (D) for
Geometry 4 (left), and percentage differences between them (right).
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Figure 12 – Concentration factors predicted using FE or Neuber’s rule using Model (D) for
Geometry 5 (left), and percentage differences between them (right).

5. CONCLUSIONS

In this work, numerical analyses were performed to compare predictions of notch root stress and
strain concentration factors using Neuber’s rule and FE calculations. Five plate geometries were
considered, including holes and semi-circular notches of different diameters. It was found that the
correct use of Neuber’s rule, considering elastic-plastic nominal stresses, is fundamental to obtain
reasonable estimates of the concentration factors. This general formulation must be used even if the
notch root stresses are as low as 10% the material yielding strength when the strain hardening
exponent is high, such as those encountered in austenitic stainless steels, e.g., otherwise nonsense
predictions may arise such as Kε tending to infinity or Kσ lower than unity. Many claims of
Neuber’s rule overestimating Kε are in fact a result of inappropriate Hookean modeling of nominal
stresses.

In addition, it is found that the reliable FE results under plane stress and high hc agree well with
Neuber’s rule. The theoretical lower and upper bounds for Kσ and Kε are verified in the



calculations. However, a sensitivity analysis demonstrated that very small FE calculation errors in
stress result in large errors in strain for materials with low hardening exponents. For these materials,
the stress calculations would need a tolerance between 0.01% to 0.1% to result in reasonable strain
predictions, which cannot be delivered by most elastic-plastic FE packages and standard meshing
techniques. Therefore, numerical evaluations of strain concentration rules must include a sensitivity
analysis such as the one presented here, otherwise completely wrong predictions may be obtained,
in special for materials that do not strain harden significantly. This suggests that differences found
in the literature between Neuber’s and FE predictions might be in fact due to convergence problems
in the FE analysis rather than to shortcomings of Neuber’s strain concentration rule.
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