
XXIX CILAMCE

November 4 th to 7 th, 2008

Mace ió - Braz i l

SURFACE MESH REGENERATION

Antonio Carlos Miranda,
Luiz Fernando Martha
amiranda@tecgraf.puc-rio.br
lfm@ tecgraf.puc-rio.br
Department of Civil Engineering and Tecgraf – Computer Graphics Technology Group
Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro RJ 22453-900,
Brazil

Abstract. This work describes an automatic algorithm for unstructured mesh regeneration on
arbitrarily shaped three-dimensional surfaces. The arbitrary surface may be: a triangulated
mesh, a set of points, or an analytical surface (such as a collection of NURBS patches). To be
generic, the algorithm requires the implementation of three abstract methods. The first, given
a point location, returns the desired characteristic size of a triangular element at this
position. The second method, given the current edge in the boundary contraction algorithm,
locates the ideal apex point that forms a triangle with this edge. And the third method, given
a point in space and a projection direction, returns the closest point on the geometrical
supporting surface. This work also describes the implementation of these three methods to
re-mesh an existing triangulated mesh that might present regions of high curvature. In order
to test the efficiency of the proposed algorithm of surface mesh generation and
implementation of the three abstract methods, results of performance and quality of generated
triangular element examples are presented..

Keywords: mesh generation, curvature surfaces, background octree, advancing-front
technique

1. INTRODUCTION
 This paper describes an algorithm for generating triangle finite-element meshes on
surfaces of arbitrary shape and curvatures. It is an extension of a previously proposed
algorithm for generating unstructured meshes in three-dimensional [1, 2] and two-
dimensional [3, 4] domains. Algorithms have been described in the literature previously that
generate 3D surface meshes by re-meshing existing triangulations [5-7], or by using analytical
surface descriptions for geometrical support [8-10]. The present algorithm generalizes the
type of geometrical support that may be used by making use of three generic functions that
abstractly represent the supporting surface. For example, the surface to be re-meshed may be
a triangulated mesh, a set of points, or an analytical surface (such as a collection of NURBS
patches). The present algorithm, as does its ancestors, incorporates well-known meshing
procedures [11-17] but also introduces some original steps. It is essentially an advancing-
front technique that takes special care to generate elements with the best possible shape. To
enhance the quality of the mesh’s element shape, an a posteriori local mesh improvement
procedure is used. In a particular case, this paper also describes an implementation of the
three generic methods for re-meshing existing surface triangulations and demonstrates the
quality of the generated meshes.
 The meshes generated by the present algorithm have similar characteristics to those
produced by its ancestors [1-4], which are summarized as follows.

1. The algorithm produces well-shaped elements, avoiding elements with poor aspect
ratio. While it does not guarantee bounds on aspect ratios of elements, care is taken
at each step to produce good-quality meshes.

2. The mesh conforms to an existing discretization on the surface’s boundary. This is
important in the generation of finite element meshes because it is usually desirable to
have a mesh that conforms to the mesh generated on adjacent patches.

3. The algorithm presents a smooth transition between regions with elements of highly
varying sizes. This a desirable feature because a finite element analysis requires high
element density in regions with high gradients of response, while a low density may
be used in other regions. It is not uncommon in problems with very high gradient
producing features (e.g. cracks or shock waves) to have element sizes that differ by
two, or in some cases three, orders of magnitude in element size. The element
transition capability is also important for surfaces with regions of high curvatures
because, in such locations, the algorithm will locally refine the mesh.

 To facilitate a smooth transition between regions and regions of high curvatures, the
present algorithm employs an octree data structure. However, unlike some authors, e.g.
Rassineux [17], who use a quadtree/octree procedure to generate internal nodes prior to
element generation, here it is used to provide local policies used to define the discretization of
the surface mesh and to define the sizes of triangular elements to be generated during the
advancing-front procedure. The authors feel that this approach tends to provide better control
over the quality of the generated mesh and to decrease the number of heuristic, clean-up
procedures.
 The remainder of the paper is organized as follows. Initially, the paper describes the
algorithm for generating unstructured triangulations for arbitrarily shaped three-dimensional
surfaces using the generic functions that abstractly represent the geometry of the supporting
surface. After that, the paper describes the implementation of the three generic functions to
re-mesh existent triangulated meshes. Four examples of triangle surface meshes are presented
in order to obtain results of performance and quality of generated triangular elements. The
final section comments on the results.

2. Description of the algorithm
 Figure 1 shows the process overview of the proposed mesh generator. The input data for
the present algorithm is a polygonal description of the boundary of the surface patch to be
meshed and a 3D supporting surface that is abstractly represented by three generic methods
defined as follow:

• 1st Method - Given a point location, the method returns the desired characteristic size
of an ideal equilateral triangular element at this position. The length of the triangle’s
side is considered as its characteristic size.

• 2nd Method - Given the current base edge in the boundary contraction algorithm, the
method locates the ideal apex point that forms a new triangle. The method has two
input arguments: the height of the candidate equilateral triangle and a unit vector in
the edge perpendicular direction. This unit vector is a “surface intersection direction”
that defines a plane perpendicular to the base edge at its mid point. These arguments
are used to determine an optimal triangle apex point location.

• 3rd Method - Given a point in space, the method returns the closest point on the
geometrical supporting surface. The method also receives a surface projection vector
as additional information. This method is used only in the final stage of the surface
mesh generation for local mesh improvement.

Figure 1 - Process overview of the proposed algorithm.

 The boundary information is given by a list of nodes defined by their 3D coordinates and
their normal vectors on the surface and a list of boundary segments (or edges) defined by their
node connectivity. The input boundary must be defined a priori. The definition of these
points is not part of the proposed algorithm and, for better results, the boundary segment sizes
should be consistent with local surface curvatures (i.e., the boundary should be relatively
more refined in regions of relatively high curvature). The given boundary edges form the
initial front that advances as the algorithm progresses. At each step of this meshing

procedure, a new triangle is generated for each base edge of the front. The front advances
replacing the base edge with new triangle edges. Consequently, the domain region is
contracted, possibly into several regions. The process stops when all contracted regions result
in single triangles. As the front advances, the generic methods are called to obtain the size of
new elements and the position of an ideal node. This is illustrated in Figure 2 and described
in more detail below. After this process, the mesh is improved using smoothing methods.

Figure 2 - Determination of a new element.

 An R-Tree [18] structure is used in the advancing-front process to improve the efficiency
of adjacency queries (elements adjacent to nodes) and for geometric checks (edge
intersections and points inside triangle). R-trees are tree data structures that are similar to B-
trees [19], but are used for spatial access methods, i.e., for indexing multi-dimensional
information such as 3D coordinates. In this work, the 3D bounding box (minimum bounding
regular hexahedron) of new triangular elements and edges is used for indexing the auxiliary
R-trees in the advancing-front process.

2.1 Front initialization based on given boundary edges
 The advancing-front technique starts with a boundary that bounds a region to be filled
with a triangulation. Triangular elements are “extracted” or “pared” from the region one at a
time. As each element is extracted, the boundary is updated and the process is repeated. The
procedure terminates when the entire region is meshed. Therefore, the boundary of the region
to be meshed is formed by edges of the triangles created in the contraction process. These
edges are referred to as boundary edges.
In this algorithm, as in its ancestors [1-4], the advancing-front process is divided into two
phases to ensure the generation of valid triangulations. In the first phase, a geometry-based
element generation is pursued to generate elements of optimal shapes. After this ideal phase
is exhausted and no more optimal elements can be generated, a topology-based element
generation takes place, creating valid, but not necessarily well shaped, elements in the
remaining region. The required steps for the advancing-front procedure are as follows.
 Front initialization based on given boundary edges. The process starts with the creation
of the initial advancing front, which is formed by the given boundary segments. The current
boundary edges are stored in two separate doubly linked lists. The first is a list of active
edges, which includes all boundary edges that have not been used in an attempt to generate
valid triangles. The other is a list of rejected edges, which have failed in the generation of
elements for the current phase. Initially, all segments of the given boundary refinement are
stored in the first list.
 The initial list of active edges on the boundary is sorted by the length of the edges. This
has been recommended by other authors [16] to prevent large elements from penetrating
regions with small-length edges. This criterion is only used in the initial boundary edge list.

It was also found convenient for some steps in the algorithm to have an additional data
structure storing a list of adjacent boundary edges for each node on the current advancing
front. This data structure is initialized for all nodes of the given boundary, and is updated as
the boundary-contraction procedure progresses.
 The data structure also stores normal vectors for all triangular elements, nodes, and
edges. These normal vectors are used to improve the efficiency of edge intersection
geometric checks, as described in next section. The normal vectors are computed in the
following way. The normal vector of a node is computed as the average of the normal vectors
of adjacent elements. The normal vector of an edge is the average of normal vector of its end
nodes.
 Front contraction (geometry-based element generation). Ideally, the entire mesh will be
generated in the geometry-based phase. This depends on the geometry and topology of the
given boundary model and, as observed, is strongly related to the segment-size disparity of
the given boundary refinement. In this phase, for each base edge on the advancing front, the
following is performed (see Figure 2):

• The optimal location N1 for the vertex of an equilateral triangle to be formed is
determined employing the 1st and 2nd Methods. Using the base edge middle point
(M) as input, 1st Method returns the target triangle characteristic size (the length of
the equilateral triangle side) at this point location. With this size, the height of the
candidate triangle is obtained. Then, using the Normal x Tangent vector at the middle
point M as the required unit vector (surface intersection direction) in the edge
perpendicular direction and the triangle height, 2nd Method returns the desired N1
location on the support surface.

• The optimal point defines an optimal region in which the vertex of the triangle to be
should be located. This region is a sector of a sphere whose center is the optimal point
and whose radius is proportional to the height of element. In the current
implementation a proportionality constant of 0.85 was adopted. This sphere defines
an upper bound for the distance between the target vertex of the triangle and the
middle point of the base edge. A lower bound is defined to ensure that the generated
triangle will have area greater than the smallest acceptable area. In the current
implementation, this lower bound is defined by a triangle with height equal to 1/10 of
the base edge. The optimal region is used for two reasons: first, to ensure shape
quality of the elements to be generated; and, second, to ensure that new internal nodes
will be created only when it is strictly necessary and always in good positions.

• If no existing node is inside the optimal region, a new node is inserted at the optimal
location N1 and an element is generated using this node. If only one node exists in the
region, this node is used to generate the element. If more than one node is found in
the region, they are ranked according to the included angle with respect to the base
edge. The node with the maximum included angle is used to generate the element. A
heap list is used to efficiently implement this priority queue.

• Additional geometric checks are performed to ensure that the edges of the new
triangular element do not intersect any existing edge of the advancing front and that
the new triangle apex does not lie inside any other existing triangle. In both cases, the
new element is rejected. These checks are not trivial in 3D space. However, they are
performed in a local 2D system on the plane of the new triangular element, avoiding
complex geometry checks in 3D space. As mentioned, the algorithm uses an auxiliary
R-Tree structures to improve queries for adjacent edges and elements around a
candidate triangular element. The 3D bounding box of this triangle is used as an index
to the R-Tree. The new edges and adjacent elements edges are transformed to the

local 2D system on the plane of the new triangular element and all checks are made in
this local system.

• Once a valid triangle is generated for the current base edge, the list of active edges is
updated. This is done through the following steps: first, the base edge is removed
from the list; then, for the other edges of the element, the edge is either deleted, if it
coincides with an edge already in the list, or inserted in the list as a new one.

• Due to restrictions on the allowable range of element shape metrics, there are
situations in which the algorithm fails in forming a valid triangle for the current
boundary’s base edge. In these cases, the current base edge is removed from the list of
active edges and is stored in the separate list of rejected edges. It might happen that an
edge is subsequently removed from this latter list if it is used as part of a valid triangle
for an adjacent base edge.

• When there are no more edges in the list of active edges, the algorithm tries to
generate elements using the edges that were previously rejected. It might be the case
that base edges that previously failed may now work because the front has changed
with the addition of elements. The geometry-based element-generation phase ends
when either there are no edges left in the boundary-contraction lists (in which case an
optimal mesh was generated) or when a rejected edge fails for a second time.

Front contraction (topology-based element generation). The objective of this phase of
the algorithm is to force the generation of valid triangles, even if a measure of the quality of
the shape of the element does not fall within the allowable range used in the previous phase.
The topology-based element-generation phase starts when a boundary edge fails twice in
trying to generate an optimal element. The list of rejected edges of the previous phase is
transformed into a list of active edges and, similarly to the geometry-based phase, a list of
rejected edges is created for edges that eventually fail in generating valid triangles.

In the topology-based element-generation phase, any node close to the current base edge
is selected and stored in a priority queue of candidate nodes. The node that has the maximum
included angle with respect to the base edge is chosen for the generation of the new triangle.
If the edges of this triangle do not intercept any other edge of the current advancing front, the
element is created and the boundary is contracted accordingly. The topology-based phase
ends when the lists of active and rejected edges are empty. This phase always generates a
valid, even though non-optimal, mesh.

2.2 Local mesh improvement

A smoothing technique is used to improve mesh quality by relocating nodes within a
patch. A general formulation for this technique is given by equation (1), which is a generic
form of a weighted Laplacian function [20]:

0 0
1 1

0 0

0
1

()
m

n n
i i

n n i
m

i
i

w X X
X X

w
φ+ =

=

−
= +

∑

∑
 (1)

In this equation, m is the number of nodes connected to node O,
1

0
+nX is the position of

node O at smoothing iteration n+1, wi0 is the weighted function between nodes i and O, and φ
is a relaxation parameter which is normally set in the interval (0,1]. In this work φ = wi0 =
1.0, which means that the right side of equation (1) is reduced to an average of the adjacent
points. The smoothing procedure is repeated twice for all internal nodes.

In general, the surface mesh smoothing equation (1) will move node O to a position off of
the surface. The 3rd Method is employed after each smoothing procedure as a "pull back"
operation, moving the target node back to the geometric supporting surface.

In theory, Laplace smoothing and the "pull back" procedure can cause mesh "folding". A
check is made and a node is not moved if doing so will cause an invalid mesh. In practice,
there has been no need to enforce this restriction for any of the test cases.

3. Application: re-meshing

To demonstrate the performance and the efficiency of the proposed surface meshing
algorithm, this section describes an implementation of the three generic methods for re-
meshing existing surface triangulations. This application is very useful when an existing
surface mesh needs to be refined, coarsened, improved or changed to conform to a pre-
existing boundary discretization. For example, Figure 3 (left) presents a mesh with triangular
elements and four holes. Mainly, in the surface domain, the elements have similar shape and
size. However, the boundary mesh presents many poorly-shaped elements (red arrows in
right of Figure 3). In the context of finite element analysis, these elements are not desireable
because they can cause inaccurate results in an important region of the domain.

Figure 3 - Example of a mesh with badly-shape elements (red narrows).

This application requires a minimum set of information about the supporting mesh. The

existing triangulation must have one continuous domain, with any number of boundary loops
(holes). The nodal incidence of adjacent triangular elements must have a consistent order.
This nodal incidence (e.g., in counter-clockwise order) defines a normal direction of
triangular elements. The given normal directions of the input boundary nodes, as shown in
Figure 1, must be consistent with the triangles normal directions.

3.1. First generic method implementation

The first generic method of the proposed surface mesh generation obtains the desired
characteristic size of a triangular element given the position of a point on the surface. It is
important that the algorithm presents a smooth transition between regions with elements of
highly varying sizes. Therefore, an auxiliary background data structure is used to store the
distribution of characteristic triangle sizes in space.

Many background structures are published in the literature [22-30] in the context of mesh
generation. In the present work, as well as in its ancestors [1-4], an octree structure is used.
An octree is a tree data-structure based on a cell with eight children. Each cell of an octree
represents a cube in physical space. Each child represents one octant of its parent. Figure 4

shows an example in which the tree has been refined twice. First, the root cell is subdivided
into eight cells, each representing an octant of the root's domain. Then, one of root's children
is recursively subdivided into eight cells.

Figure 4 - An octree with two levels of refinement.

In the current application the size of the leaf cells in a region of a domain are used as the

size of the desired characteristic element size in this region. The creation of the background
octree from an input surface follows five steps (see Figure 5):

• Octree initialization based on given boundary edges. Each segment of the input
boundary data is used to determine the local subdivision depth of the octree as shown
in Figure 5-a.

• Refinement to force maximum cell size – Figure 5-b. The octree is refined to guarantee
that no cell in its interior is larger than the largest cell at the boundary.

• Refinement to provide minimum size disparity for adjacent cells – Figure 5-c. This
additional refinement forces only one level of tree depth between neighboring cells
and provides a natural transition between regions of different degrees of mesh
refinement.

• Refinement to account for surface curvatures – Figure 5-d. The center and the
bounding box of each element of the existing supporting mesh are determined and
stored, in an R-tree structure. For each element (element A), the algorithm finds the
cell in the octree that contains its center. A second element (element B) is selected
from the neighboring elements as to maximizes the angle between normal element
vectors NA and NB, or similarly, that minimizes the cosine angle between NA and
NB:

cos A B

A B

N N
N N

θ ⋅
=

 (2)
If cosθ is less than a minimum value, cos minθ, then a new cell size, Hnew, is obtained:

() max
0.5

sin 0.5new
dH θ
θ
⋅

= ⋅
⋅ (3)

in which d is the distance between the centers of elements A and B, and θmax is the
maximum angle allowed between normal vector of elements. This new size is used to
locally refine both cells of element A and B in the octree. This step is applied to all
elements in the supporting mesh.

• Refinement to provide minimum size disparity for adjacent cells – Figure 5-e. Step 3
is repeated for the updated octree.

Figure 5 - Refinement of background octree.

3.2. Second generic method implementation

The second generic method returns the ideal apex point that forms a candidate equilateral
triangle for a given current base edge in the boundary contraction algorithm (Figure 6-a). In
addition to the base edge, the height of the candidate triangle and a “surface intersection”
direction are given, as shown in Figure 6-b.

 (a) (b)

Figure 6 - Obtaining ideal node position in second generic method (top view on the left and
lateral view on the right).

Two different approaches to this task are described in the literature. Lohner [6] tries to

find a host triangle, where the ideal node lies, using a neighbor-to-neighbor search. If this
fails, octrees are employed. Finally, if this approach fails again, a brute force search over all
the surface elements is performed. Carlos et al. [5] use a procedure that guarantees that the
new triangle sides have exactly the desired length. This procedure considers the equation of a

sphere, and finds the intersections between the sphere and the mesh. The approach used in
this work is similar to this one, employing the circle equation in a 2D coordinate system.

Figure 6 illustrates how to obtain the target apex point in the present implementation. A
local search based on the auxiliary R-Tree structure creates a list of all neighborhood elements
around the middle base edge point. A plane of intersection, containing the given surface
intersection direction, is created at this point. The intersection of the neighbor triangles with
the plane of intersection forms a poly-line, as shown in Figure 6-b. A 2D local coordinate
system is created on the plane of intersection and points of the intercepting poly-line are
transformed to this coordinate system. The ideal node position is computed by intersecting a
circle, whose center is the base edge middle point and radius is the height of the candidate
triangle, with this poly-line. Finally, the point is transformed to the 3D coordinate system.
Depending on the irregularity of the support mesh, it might happen that the intersection of a
neighbor triangle causes a self-crossing poly-line configuration. This is solved by considering
the interception segment that best approximates the given surface intersection direction.

3.3. Third generic method implementation

The third generic method returns the point on the geometric supporting surface that is
closest to a given point near to, but not necessarily on, the surface. During the nodal
smoothing phase, points may be moved off the surface. This method is used to move the
points back to the surface. As input, the method receives the current node location and its
current normal vector. The implementation of this function is quite simple (see Figure 7):
First, a local search based on the auxiliary R-Tree structure creates a list of all neighborhood
triangles of the geometric supporting surface around the given node. Second, the node is
projected on each neighbor triangle plane, using the given projection direction [31]. Finally,
the selected new node location is the one that lies inside one of the neighbor triangles.

Figure 7 - Projecting a node in space on the supporting surface in the third generic method.

Figure 8 presents an example with several phases of the advancing boundary contraction

process. Figure 8-a shows the supporting mesh surface, which is a half-torus form. Figure 8-
f shows the final mesh. The next section presents more examples.

3.4 Example: performance mesh and quality

This section presents additional examples of finite-element meshes generated on 3D
surfaces using the proposed algorithm. The main objectives of this section are to: 1) estimate
the expected performance of the surface mesh generation algorithm, 2) analyze the visual
aspect of generated triangle surface meshes, comparing the results with and without
considering surface curvatures, and 3) assess the quality of generated triangular elements.

Figure 9 shows four examples of triangle surface meshes to be re-meshed with the present
algorithm. The first one, Figure 9-a, is an open cylinder. The second, Figure 9-b, is a

geological salt-dome surface. The third, Figure 9-c, is a geological surface with four internal
loops (this is the same surface presented in Figure 3 with poorly-shaped elements on the
boundary). The final example, Figure 9-d, is a surface with many irregularities in its
curvatures.

(a) Supporting mesh

(b)

(c)

(d)

(e)

(f) Final mesh

Figure 8 - Example of advancing boundary contraction process for a half-torus surface.

The observed processing times for generating refined meshes for the four example

problems are reported in Table 1. These processing times were measured on a Pentium-

2.66GHz PC with 1 GB of RAM, under Windows XP operating system. In addition to the
total time, Table 1 also shows partial processing times to build the background octree, to
accomplish the advancing front process, and to improve the quality of the mesh by smoothing.
It is clear that most of the computational effort is spent in the advancing front process.

(a) Example 1

(b) Example 2

(c) Example 3

(d) Example 4

Figure 9 - Examples of surfaces with their initial triangle meshes.

The data reported in Table 1 contain results for a number of different levels of mesh

refinement for each of the example problems. The degree of mesh refinement was controlled
by changing the size of the input boundary segments. For these cases, the boundary curves
were discretized with uniform segment sizes. No attempt was made to use relatively shorter
boundary segments in regions of high curvature. Doing so would improve the quality of some
of the generated meshes. However, uniform boundary segments were used to minimize the
influence of the boundary discretization on the measured quality of the element shapes in the
resulting meshes.

A formal analysis of the computational complexity of the proposed algorithm would be
very difficult, especially considering input data specific steps such as the generic methods.
Nevertheless, a realistic estimate of the expected performance of the algorithm is desirable for

its practical use. Figure 10 shows a plot of the elapsed processing time as a function of the
number of elements generated. A computational complexity of O(NlogN) has been proposed
in the literature for the best case performance for advancing front meshing techniques [32].
The equation of a least-squares fit to times reported in Table 1 is

5 1.182 10t x N−= , where N is
the number of generated elements. Using this fitting equation, one may infer that the
algorithm's performance is close to O(NlogN).

Table 1 – Processing times for re-meshing example surfaces.

Example Number of Background Boundary Smoothing Total

 Elements Octree Contraction

 (sec.) (%) (sec.) (%) (sec.) (%) (sec.)
Example 1 - 1 3906 0.031 9 0.313 87 0.016 4 0.36

Example 1 - 2 15872 0.094 6 1.391 91 0.047 3 1.532

Example 1 - 3 63746 0.563 7 7.610 91 0.203 2 8.376

Example 1 - 4 79872 0.579 6 8.406 91 0.235 3 9.22

Example 1 - 5 84048 0.578 5 11.140 93 0.250 2 11.968

Example 2 - 1 2454 0.015 7 0.188 93 0.000 0 0.203

Example 2 - 2 9480 0.078 9 0.781 89 0.015 2 0.874

Example 2 - 3 42791 0.578 12 4.172 87 0.031 1 4.781

Example 2 - 4 60091 0.578 8 6.328 90 0.109 2 7.015

Example 2 - 5 72715 0.609 5 10.687 94 0.125 1 11.421

Example 3 - 1 6111 0.109 13 0.672 81 0.047 6 0.828

Example 3 - 2 24136 0.578 15 3.188 82 0.125 3 3.891

Example 3 - 3 34272 0.610 10 5.562 88 0.140 2 6.312

Example 3 - 4 97039 4.500 16 23.093 82 0.547 2 28.14

Example 4 - 1 7652 0.094 12 0.656 86 0.031 4 0.781

Example 4 - 2 29343 0.578 15 3.078 82 0.110 3 3.766

Example 4 - 3 33782 0.578 13 3.859 84 0.110 2 4.547

Example 4 - 4 42359 0.609 9 5.734 85 0.157 2 6.500

Figure 11 shows some of the refined meshes for these examples. In Figure 11-c, one may
note that the uniform boundary discretization eliminated poorly-shaped elements, when
compared to the same region shown in Figure 3. Figure 11-d demonstrates the importance of
considering curvatures of the supporting surface in the algorithm. In this figure, the generated
mesh was more refined in regions with high curvatures of the supporting mesh. The
algorithm is able to handle this effect, providing good mesh transition between regions with
distinct element characteristic sizes. For this example, Figure 12 shows in detail the influence
of the surface curvature: Figure 12-a shows a mesh generated without considering curvatures,

and Figure 12-b shows a mesh considering theses curvatures. Note that the surface boundary
is refined uniformly. In this example, the refinement of boundary curves in locations of high
curvature would improve even further the quality of the generated mesh.

(a) Example 1

(b) Example 2

(c) Example 3

(d) Example 4

Figure 11 - Final triangle meshes of example surfaces.

In order to study the quality of the shapes of the generated elements a normalized ratio

quality measure, γ/γ*, is adopted [2]. In this measure γ is the ratio between the root mean
square of the lengths (Si) of a triangle’s edges and the triangle’s area, and γ* is the
corresponding value for an equilateral triangle:

3
21

3
0

i
i

S Areaγ
=

= ∑
 (4)

The γ/γ* quality measure has a valid interval between 1.0 and infinity, with high quality
elements, those close to an equilateral triangle, having values close to 1.0.

The quality of generated meshes is presented in the form of a histogram such as the one
shown in Figure 13. In this histogram, the horizontal axis corresponds to the γ/γ* quality
measure in intervals represented by triangular shapes that are shown below the histogram.
The vertical axis corresponds to the percentage of elements in each interval of the quality
measure. These results demonstrate that the proposed algorithm generates meshes with good

quality for the great majority of elements. Note that the quality of meshes in all examples is
below 1.5, an indication of very well shaped elements.

(a)

(b)

Figure 12 - Differences between meshes for Example 4 with (a) no consideration of curvature
and (b) considering curvatures.

4. Conclusion

This paper has described an algorithm for regenerating triangle finite-element meshes on
surfaces of arbitrary shape and with varying curvature. The algorithm incorporates aspects of
well-known meshing procedures and includes some original steps. This algorithm is an

extension of a previously proposed algorithm for generating unstructured meshes in three-
dimensional and two-dimensional domains.

The input data for the present algorithm is a generic supporting surface and a polygonal
description of the boundary on the surface patch to be meshed. The supporting surface is
represented abstractly by three generic methods:

• The first, given a point location, returns the desired characteristic size of a triangular
element at this position.

• The second, given the current edge in the boundary contraction algorithm, locates the
ideal apex point that forms a triangle with this edge.

• The third, given a point in space and a projection direction, returns the closest point on
the geometrical supporting surface.

These three generic methods are used in the proposed two-pass advancing-front procedure
to generate elements on the supporting surface. In the first pass, elements are generated based
on geometrical criteria, which produces well-shaped elements. In the second pass, triangular
elements are generated based solely on topology criteria.

The three generic methods were implemented to regenerate triangle mesh surfaces. This
approach is very useful when a mesh needs to be refined, coarsened or improved. Some
examples have demonstrated the quality of the generated meshes and the importance of
considering surface curvatures in local mesh refinement.

Figure 13 - Histogram of element quality for re-meshing the example surfaces.

5. Acknowledgements

The first author acknowledges a post-doctoral fellowship provided by the Brazilian
agency CAPES, process 2183-06, and the Cornell Fracture Group. The second author has a
PQ grant from CNPq. This work has been developed in the Cornell Fracture Group and in
Tecgraf/PUC-Rio – Computer Graphics Technological Group. Tecgraf/PUC-Rio is partially
supported by PETROBRAS.

6. References
[1] Cavalcante Neto J B, Wawrzynek P A, Carvalho M T M, Martha L F, and Ingraffea A R

(2001) An Algorithm for Three-Dimensional Mesh Generation for Arbitrary Regions
with Cracks. Engineering with Computers 17(1):75-91.

[2] Miranda A C O and Martha L F (2002) Mesh Generation on High Curvature Surfaces
Based on Background Quadtree Structure. Proceedings of 11th International Meshing
Roundtable 1:333-341.

[3] Miranda A C O, Cavalcante Neto J B, and Martha L F (1999) An Algorithm for Two-
dimensional Mesh Generation for Arbitrary Regions with Cracks, SIBGRAPI’99. XII
Brazilian Symposium on Computer Graphics, Image Processing and Vision, IEEE
Computer Society Order Number PRO0481, ISBN 0-7695-0481-7, Eds.: J. Stolfi & C.
Tozzi, pp.29-38.

[4] Miranda A C O, Meggiolaro M A, Castro J T P, Martha L F, and Bittencourt T N (2003)
Fatigue Life and Crack Path Predictions in Generic 2D Structural Components.
Engineering Fracture Mechanics 70(10):1259-1279.

[5] Carlos J, Scheidegger E, Fleishman S, and Silva C T (1996) Direct (Re)Meshing for
Efficient Surface Processing. Comp. Graph. Forum 25(3):527-536.

[6] Lohner R (1996) Regridding Surface Triangulations. Journal of Computational Physics
126(1):1-10.

[7] Shostko A A, Lohner R, Sandberg W C (1999) Surface Triangulation over Intersecting
Geometries. Int. J. Numer. Meth. Engrg. 44:1359-1376.

[8] Nakahashi K, Sharov D (1995) Direct Surface Triangulation Using the Advancing Front
Method. AIAA, pp. 442-451.

[9] Lau T S and Lo S H (1996) Finite Element Mesh Generation over Analytical Curved
Surfaces. Computers and Structures 59(2):301-309.

[10] Lo S H and Lau T S (1998) Mesh Generation over Curved Surfaces with Explicit Control

on Discretization Error. Engineering Computations: Int. J. for Computer-Aided
Engineering 15(3):357-373.

[11] Chan C T and Anastasiou K (1997) An Automatic Tetrahedral Mesh Generation Scheme
by the Advancing Front Method. Communications in Numerical Methods in Engineering
13:33-46.

[12] Jin H and Tanner R I (1993) Generation of Unstructured Tetrahedral Meshes by
Advancing Front Technique. International Journal for Numerical Methods in Engineering
36:1805-1823.

[13] Lo S H (1985) A New Mesh Generation Scheme for Arbitrary Planar Domains.
International Journal for Numerical Methods in Engineering 21:1403-1426.

[14] Lohner R and Parikh P (1988) Generation of Three-dimensional Unstructured Grids by
the Advancing-front Method. International Journal for Numerical Methods in Fluids 8:
1135-1149.

[15] Moller P and Hansbo P (1995) On Advancing Front Mesh Generation in Three
Dimensions. International Journal for Numerical Methods in Engineering 38:3551-3569.

[16] Peraire J, Peiro J, Formaggia L, Morgan K, and Zienkiewicz O C (1988) Finite Euler
Computation in Three-Dimensions. International Journal for Numerical Methods in
Engineering 26:2135-2159.

[17] Rassineux A (1998) Generation and Optimization of Tetrahedral Meshes by Advancing
Front Technique. International Journal for Numerical Methods in Engineering 41:651-
674.

[18] Guttman A, (1984) Rtrees: A Dynamic Index Structure for Spatial Searching. in
Proceedings of ACM SIGMOD International Conference on Management of Data, pp
47-57.

[19] Rudolf Bayer (1971) Binary B-Trees for Virtual Memory. ACM-SIGFIDET Workshop,
San Diego, California, Session 5B, pp. 219-235.

[20] Foley T A and Nielson G M (1989) Knot Selection for Parametric Spline Interpolation.
Mathematical Methods in CAGD, Ed. L. Schumaker, Academic Press, pp 445-467.

[21] Taubin G (2000) Geometric signal processing on polygonal meshes. In
EUROGRAPHICS '2000.

[22] Borouchaki H, Hecht F, Frey P J (1997) Mesh Gradation Control. Proceedings of 6th
International Meshing Roundtable, Sandia National Laboratories, pp 131-141.

[23] Owen S J, Saigal S (1997) Neighborhood-Based Element Sizing Control for Finite
Element Surface Meshing. Proceedings of 6th International Meshing Roundtable, Sandia
National Laboratories, pp143-154.

[24] George P L, Seveno E (1994) The Advancing-Front Mesh Generation Method Revisited.
International Journal for Numerical Methods in Engineering 37:3605-3619.

[24] Borouchaki H, Hecht F, Frey P J, (1997) H-Correction. INRIA Report No. 3199, INRIA,
pp 29.

[26] Lohner R, Parikh P, Gumbert C, (1988) Interactive Generation of Unstructured Grid for
Three Dimensional Problems. Numerical Grid Generation in Computational Fluid
Mechanics `88, Pineridge Press, pp 687-697.

[27] Owen S J, Saigal S, (2000) Surface Mesh Sizing Control. International Journal for
Numerical Methods in Engineering 47(1):289-312.

[28] Mello U T, Cavalcanti P R (2000) A Point Creation Strategy for Mesh Generation Using
Crystal Lattices as Templates. Proceedings of 9th International Meshing Roundtable,
Sandia National Laboratories, pp 253-261.

[29] Zhu J (2003) A New Type of Size Function Respecting Premeshed Entities. Proceedings
of 12th International Meshing Roundtable, Sandia National Laboratories, pp 403-413.

[30] Persson P (2004) PDE-Based Gradient Limiting for Mesh Size Functions. Proceedings of
13th International Meshing Roundtable, Sandia National Laboratories, pp 377-388.

[31] Moller T and Trumbore B (1997) Fast, Minimum Storage Ray-Triangle Intersection. J.
Graphics Tools 2(1):21-28.

[32] Krysl P (2005) Computational Complexity of the Advancing Front Triangulation.
Engineering with Computers 12:16-22.

