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Abstract: A reliable and cost effective two-phase methodology is proposed and 
implemented in two pieces of software to predict fatigue crack propagation in generic 
two-dimensional structural components under complex loading. First, the fatigue crack 
path and its stress intensity factor are calculated in a specialized finite-element software, 
using small crack increments. At each crack propagation step, the mesh is automatically 
redefined based on a self-adaptive strategy that takes into account the estimation of the 
previous step stress analysis numerical errors. Numerical methods are used to calculate 
the crack propagation path, based on the computation of the crack incremental direction, 
and the stress-intensity factors KI, from the finite element response. An application 
example presents a comparison between numerical simulation results and those measured 
in physical experiments. Then, an analytical expression is adjusted to the calculated KI(a) 
values, where a is the length along the crack path. This KI(a) expression is used as an 
input to a powerful general purpose fatigue design software based in the local approach, 
developed to predict both initiation and propagation fatigue lives under complex loading 
by all classical design methods, including the S-N, the ε-N and the IIW (for welded 
structures) to deal with crack initiation, and the da/dN to treat propagation problems. In 
particular, its crack propagation module accepts any KI expression and any da/dN rule, 
using a ∆Krms or a cycle-by-cycle propagation method to deal with one and two-
dimensional crack propagation under complex loading. If requested, this latter method 
may include overload-induced crack retardation effects.  
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Introduction 
 
The fatigue crack propagation life prediction under complex loading in intricate two-

dimensional (2D) structural components is a quite interesting modeling problem, 
requiring a mixed approach to achieve its optimum solution. 

To predict the crack path and to calculate its associated stress intensity factors KI and 
KII, a finite element (FE) global discretization of the component, using appropriate crack 
tip elements, mesh generation schemes and crack increment criteria, has become a 
common engineering design practice. However, such brute force numerical calculation is 
not efficient when the load is complex, causing in the general case different crack 
increments at each load cycle, requiring remeshing and time-consuming recalculations in 
FE. Moreover, crack retardation effects compromise even more the computational 
efficiency of this approach. 

On the other hand, the local approach, based on the direct integration of the crack 
propagation rule, can be efficiently used to calculate the crack increment at each load 
cycle, considering crack retardation effects if necessary. However, it requires as input the 
stress intensity expression for the crack, which is a major drawback because it is simply 
not available for most real components. Therefore, designers must use engineering 
common sense to choose approximate KI handbook expressions to solve real problems. 
The error involved in such approximations obviously increases as the real crack deviates 
from the modeled crack, and in such cases the accuracy of the local approach is 
questionable and its predictions unreliable. 

Since the advantages of the two approaches are complementary, the problem can be 
successfully divided into two steps. First, an appropriate FE software can be used to 
calculate the (generally curved) crack path and its associated Mode I stress intensity 
factor KI(a) along the crack length a, under simple loading. Then, an analytical 
expression should be adjusted to the discrete KI(a) calculated values, to be used as input 
to a local approach software. Finally, the actual complex loading can be efficiently 
treated by the direct integration of the crack propagation rule, considering retardation 
effects if required.  

This is a simple and evident idea, but it is easier said than implemented, since FE 
experts are normally not fatigue design engineers, and vice-versa. Moreover, to achieve 
an engineering tool status, a two-step system must be numerically reliable, simple-to-use, 
versatile (since there is no universally accepted design method), and, of course, 
economic. All these constraints put a significant burden on the programming effort. 

The purpose of this paper is to describe the fundamentals of an integrated system 
composed of two complementary programs, designed to implement this two-step method. 
This system demonstrates that satisfactory fatigue life predictions under complex load for 
2D structural components can now be obtained on a PC platform. 

The paper is organized in several sections describing (i) the numerical procedures to 
compute stress intensity factors in arbitrary 2D geometries; (ii) the principles of the crack 
increment direction numerical computation problem; (iii) a summary of the main features 
of the FE software developed to handle these tasks, named QUEBRA2D; (iv) an 
experimental verification of the predictions made by this software; (v) the fundamentals 
of the local approach to predict fatigue life under complex load; (vi) the main features of 
the ViDa software developed to perform such predictions; (vii) the fundamentals of the 



 

∆Krms method numerical implementation for 1D and 2D crack growth; (viii) the 
principles of the cycle-by-cycle method numerical implementation for 1D and 2D crack 
propagation; (ix) the minimum number of features required for modeling the load cycle 
interaction problems; and finally (x) a conclusion. 

  
Numerical Computation of Stress-Intensity Factors 

 
In 2D finite element models, three methods can be chosen to compute the stress-

intensity factors along the (generally curved) crack path: the displacement correlation 
technique (DCT) [1], the potential energy release rate computed by means of a modified 
crack-closure integral technique (MCC) [2, 3], and the J-integral computed by means of 
the equivalent domain integral (EDI) together with a mode decomposition scheme [4-8]. 

 
Displacement Correlation Technique (DCT) 

 
In DCT, the displacements obtained from the finite element analysis at specific 

locations are correlated with the analytic solutions expressed in terms of the stress-
intensity factors. For quarter-point singular elements [1], the crack opening displacement 
δ is given by 
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Figure 1 – Quarter-point elements at the crack tip. 
 

where vj-1 and vj-2 are the relative displacements in the y direction, at the j−1 and j−2 
nodes, and L is the element size (Figure 1). The analytical expression for δ is 
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where κ = 3 − 4ν for plane strain, κ = (3 − ν)/(1 + ν) for plane stress, ν is the Poisson 
ratio, and µ is the shear modulus. By equating the numerical and the analytical 
expressions for δ, (1) and (2), the Mode I stress-intensity factor can be evaluated by 
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For Mode II, the crack opening displacement is replaced by the crack sliding 

displacement and, following the same steps, KII is calculated by 
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where uj-1 and uj-2 are the relative displacements in the x direction, at the j−1 and j−2 
nodes (Figure 1). 

 
Modified Crack-Closure Integral (MCC) 

 
The modified crack-closure method is based on the Irwin’s crack-closure integral 

concept, which assumes that the required work to close a crack from a + δa to a is the 
same as that required to extend it from a to a + δa (Figure 2). Based on this assumption, 
the strain-energy release rates GI and GII of a mixed-mode condition are obtained by 
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Figure 2 – Analytical crack-closure integral method. 



 

In these equations, δa is the virtual crack extension; σy and σxy are the normal and 
shear stress distributions ahead of the crack tip; and v(r) and u(r) are the crack opening 
and sliding displacements at a distance r behind the new crack tip. In the original form, 
the results are obtained from two analyses: one with a crack length a and the other with a 
crack length a + δa. 

Rybicki and Kanninen [2] were the first to use this approach with a single finite 
element analysis, using models with four-noded quadrilateral elements. Raju [3] extended 
this method for non-singular and singular elements of any order. This procedure is based 
on the symmetry of the elements around the crack tip. In the numerical computation of GI 
and GII, the strain-energy release rates given by Equation 5, the stress field is assumed to 
have the classical 1/√r distribution and the displacements u(r) and v(r) are determined by 
interpolation of nodal displacements using the element shape functions. The normal and 
shear stresses are obtained from the nodal forces at and ahead of the crack tip. 

As shown by Raju [3], simplified expressions for singularity elements may be 
applied, which are easier to use than the consistent expressions. The components GI and 
GII for pure Mode I and Mode II, and for mixed mode conditions are given as 
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where Fxi, Fxj, Fyi, and Fyj are the consistent nodal forces acting on nodes i and j in the x 
and y directions (Figure 3); u and v are the nodal displacements at m, m', l and l' nodes in 
the x and y directions, respectively; and t11 = 6 − 3π/2, t12 = 6π − 20, t21 = 1/2, and        
t22 = 1. The nodes and nodal forces Fyi and Fyj are shown in Figure 3.  
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Figure 3 – Node at crack tip elements and consistent nodal forces ahead of crack tip. 

 
The nodal forces Fxi and Fyi are computed from elements 1, 2, 3 and 4, but the forces 

Fxj and Fyj are computed from element 4 only. Under linear elastic conditions (LEFM), 
the stress-intensity factors are related to the energy release rates by 
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where κ has been previously defined for plane stress and plane strain conditions. It is 
assumed that the classical ASTM E399 requirements for validating a KIC toughness test 
can also be used in fatigue crack growth to characterize a plane strain condition. 

 
J-Integral Formulation with Equivalent Domain Integral (EDI) 

 
The J-integral is a path independent contour integral introduced by Rice [9] to study 

non-linear elastic materials under small scale yielding. The equivalent domain integral 
method replaces the integration along the contour by another one over a finite size 
domain, using the divergence theorem. This definition is more convenient for finite 
element analysis. For two-dimensional problems, the contour integral is replaced by an 
area integral 
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where W is the strain energy density; q is a continuous function that allows for the 
equivalent domain integral to be treated in the finite element formulation; σij are the 
stresses at the contour C, which is any path surrounding the crack tip; ui are the 
displacements correspondent to local i-axes; ti is the crack face pressure load, and s is the 
arc length of the contour. Usually, a linear function is chosen for q, which assumes a unit 
value at the crack tip and a null value along the contour. For the linear-elastic materials 
special case, the second term in Equation 9 vanishes. The third term will vanish if the 
crack faces are not loaded, or if q = 0 at the loaded portions of the crack faces. 

The J-integral definition considers a balance of mechanical energy for a virtual 
translation field along the x-axis. In the case of either pure Mode I or pure Mode II, 
Equation 9 allows for the calculation of stress-intensity factors KI or KII. However, in the 
mixed mode case, KI and KII can not be calculated separately from this equation alone. In 
this case, other invariant integrals are used. Usually, the expression defined by Knowles 
and Sternberg [10] is adopted 
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where k is an index for local crack tip axes (x, y). These integrals were introduced 
initially for small deformation [9] and were extended by Atluri [11] for finite 
deformations. 

The integration is performed in the elements chosen to represent the domain. In this 
work, the chosen domain is the rosette of quarter-point elements at the crack tip (Figure 
1), and the standard Gaussian quadrature is used over each element. 



 

For linear elastic problems, Bui [4] proposed associated fields to decompose the 
loading modes. In this case, the first component in Equation 10 is path independent, but 
the second one is not. However, the path dependency may be eliminated if the 
displacements and the stress fields are decomposed into symmetric and anti-symmetric 
portions. Therefore, the displacement field is rewritten as 
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where u and v are displacements in x and y directions, respectively, )y,x(u)y,x(u −′=′ , 
and )y,x(v)y,x(v −′=′ ; and the superscripts I and II correspond to the symmetric and 
anti-symmetric components of the displacements field, respectively. The stress field is 
then decomposed as 
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where ( ) ( )y,xy,x ijij −= '' σσ  and 0II
zz =σ . 

New integrals JI and JII are obtained, which satisfy the condition J = JI + JII, where JI 
is associated to the symmetric field (Mode I) and JII is associated to anti-symmetric fields 
(Mode II) 
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This approach has also been applied by Atluri et al. [7, 8] with highly accurate results 

for mixed-mode problems. In addition, Eischen [12], and Kienzler and Kordisch [13] 
suggested improved methods for obtaining J-integrals for mixed-mode problems. These 
modifications and decomposition techniques permit the use of the J-integral and EDI 
approaches for a wide range of linear and non-linear deformation crack problems. 

In LEFM, J is equal to the energy release rate G, and its components JI and JII may be 
used to compute stress-intensity factors by means of Equation 8. 



 

Numerical Computation of the Crack Increment Direction 
 
In 2D finite element analysis, the three most used criteria for numeric computation of 

crack (incremental) growth in the linear-elastic regime are: (a) the maximum 
circumferential stress (σθmax) [14], (b) the maximum potential energy release rate (Gθmax) 
[15], and (c) the minimum strain energy density (Sθmin) [16].  

In the first criterion, Erdogan and Sih considered that the crack extension should 
occur in the direction that maximizes the circumferential stress in the region close to the 
crack tip [14]. In the second, Hussain et al. [15] have suggested that the crack extension 
occurs in the direction that causes the maximum fracturing energy release rate. And in the 
last, Sih [16] assumed that the crack growth direction is determined by the minimum 
strain energy density value near the crack tip. Bittencourt et al. [17] have shown that, if 
the crack orientation is allowed to change in automatic fracture simulation, the three 
criteria furnish basically the same results. Since the maximum circumferential stress 
criterion is the simplest, it is the criterion described below. 

The stresses on the crack tip for Modes I and II are given by summing up the stresses 
obtained for each mode separately [18]. As a result, the following equations are obtained 
in polar coordinates 
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These expressions are valid both for plane stress and plane strain. The maximum 

circumferential stress criterion determines that the crack extension begins on a plane 
perpendicular to the direction in which σθ is maximum, thus τrθ = 0, and that the 
monotonic (non-fatigued) extension shall occur when σθmax reaches a critical value 
corresponding to a property of the material (KIC for Mode I). From Equations 15-17 and 
τrθ = 0, it is found a trivial solution θ = π±  for cos(θ /2) = 0, and a non-trivial solution 
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Analyzing Equation 18 for the two pure modes, it is found for pure Mode I that KII = 

0, KI sinθ = 0, and θ = 0°, and for pure Mode II that KI = 0, KII (3cosθ − 1) = 0, and θ = 
±75°. These θ values are the extreme values of the crack propagation angle. The 
intermediate values are found solving Equation 18 for θ considering the mixed mode 
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where the sign of θ is the opposite of the sign of KII. 



 

Finite Element Crack Propagation Simulation 
 
The computational models described above were implemented in a software called 

QUEBRA2D (meaning 2D fracture in Portuguese) [19, 20], which is an interactive 
graphical software for simulating two-dimensional fracture processes based on a finite 
element adaptive mesh generation strategy [21]. The adaptive process first requires the 
results from the analysis of an initial finite element mesh, usually rough, with the 
geometric descriptions, the boundary conditions, and their attributes. Then a 
discretization of the domain’s region boundary is performed based on the geometric 
properties and on the characteristic sizes of the boundary elements, determined from the 
error estimate resulting from the previous step FE analysis. 

It is important to point out that one advantage of this strategy is that the boundary 
curve is discretized independently from the model’s domain, thus resulting in a more 
regular boundary discretization. From this discretization, the new mesh is generated [22], 
based on quadtree [23] and Delaunay [24] triangulation techniques. The quadtree 
generates the mesh in the interior of the model, leaving a band near the boundary to be 
discretized by the Delaunay triangulation. This process is repeated until the estimate 
discretization error reaches a predefined value [19, 21]. 

Some other QUEBRA2D highlights are: (i) visualization of iso-strips and iso-lines 
from scalar results at the nodes and at the Gauss points; (ii) stress-intensity factor and 
crack propagation direction computation by means of all methods described above; (iii) 
vectorial or scalar plotting for visualizing the principal stress results; (iv) visualization of 
the model's deformed configuration, with zoom, distortion, and translation specification; 
(v) visualization of the model’s animation along the several steps; and (vi) option of the 
interface language. 

The software has been implemented in C language, using the IUP/LUA interface 
system (http://www.tecgraf.puc-rio.br/manual/iup) and the CD graphic system 
(http://www.tecgraf.puc-rio.br/manual/cd). This environment allows, without any code 
modification, automatic portability to several platforms, including workstations based on 
the Unix operating system and PCs running under Windows 98/2000 or NT. 

 
Experimental Verification of the Crack Path Prediction 

 
A simple test was performed to verify the crack path predicted by the QUEBRA2D 

software and to demonstrate its capabilities. A crack was fatigue propagated in a SEN 
specimen with a hole slightly to the left of the starting notch (created using a 0.3mm 
jeweler’s saw), loaded in four-point bending (Figure 4). Due to the hole, the crack does 
not follow a straight line path, but curves toward the hole. 

The material used in the experiment was a 1020 steel (analyzed composition: C 0.19; 
Mn 0.46; Si 0.14; Ni 0.052; Cr 0.045; Mo 0.007; Cu 0.11; Nb 0.002; Ti 0.002; Fe 
balance) with Young modulus E = 205GPa, yielding strength SY = 285MPa, ultimate 
strength SU = 491MPa, and area reduction RA = 54%. Two crack growth equations were 
fitted to experimental data (obtained testing CTS in a servohydraulic test machine under 
sinusoidal load at 20Hz): the Paris equation, yielding da/dN = 8.5⋅10-14⋅∆K4.2, and a 
modified Elber equation, da/dN = 4.5⋅10-10⋅(∆K − ∆Kth)2.1, where the threshold stress 
intensity range ∆Kth = 11.6MPa√m. 
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Figure 4 – SEN specimen with a hole to the left of the starting notch (dimensions in mm). 

 
The experiment was performed under constant stress intensity range ∆K=18.0MPa√m 

and R = 0.1. The maximum loads varied from 11.0kN to 2.8kN to keep ∆K constant as the 
crack propagated from 2.5mm to 16.5mm (measured along the crack path). 

Figure 5 shows the FE mesh automatically generated for the final crack configuration. 
Figure 6 compares the predicted crack path with the actual one. The crack path was 
predicted by the σθmax method and KI was computed by the MCC technique. For refined 
meshes such as the one shown in Figure 5, all methods predict essentially the same 
results, as discussed in [17]. Finally Figure 7 presents the calculated Mode I stress 
intensity factor along the crack path, KI(a). This is the information that the local approach 
uses for calculating the fatigue life under complex loading. 

 

 
 

Figure 5 – FE mesh automatically generated for the final crack configuration. 
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Figure 6 – Predicted and measured crack path. 
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Figure 7 – Calculated KI(a) along the crack path for the holed and regular SEN. 

 
Automation of the Fatigue Crack Propagation Calculation under Complex Loading 

 
The modeling and the calculation automation of the LEFM Mode I fatigue crack 

propagation under complex loading by the local approach are discussed below. Both 1D 
and 2D cracks are studied, even though these last are not dealt with in the FE modeling 
discussed above. The loading complexity, whose amplitude can randomly vary in time, is 
not limited. Sequence effects, such as overload-induced crack retardation or arrest are 
also considered. Only Mode I is discussed, since fatigue cracks almost always propagate 
perpendicular to the maximum tensile stress. 



 

The local approach is so-called because it does not require the global solution of the 
structure’s stress field, because it is based on the direct integration of the fatigue crack 
propagation rule of the material, da/dN = F(∆K, R, ∆Kth, KC, ...), where ∆K is the stress 
intensity range, R = Kmin/Kmax is a measure of the mean load, ∆Kth is the fatigue crack 
propagation threshold, and KC is the toughness of the material-structure. Appropriate 
stress intensity factor expression for ∆K and da/dN rule must be used to obtain 
satisfactory predictions. Therefore, neither the ∆K expression nor the type of crack 
propagation rule should have their accuracy compromised when using this approach. 

The interaction with the environment and out-of-phase loading at multiple origins, 
which induce stresses whose principal directions vary significantly in time, are 
considered out of the scope of this discussion. In the same way, it does not consider the 
small crack problem, whose size is of the order of (i) the size parameter that characterizes 
the intrinsic anisotropy of the material (e.g., grain size), or (ii) the plastic zone associated 
to the crack tip or to the notch in which the (short) crack is built-in.  

In the sequence of this text, first the main features of the software ViDa (which means 
life in Portuguese) are concisely described. This software has been developed to automate 
all the traditional local approach methods used in fatigue design [25, 26], including the S-
N, the IIW (for welded structures) and the ε-N for crack initiation, and the da/dN for crack 
propagation. Then the following topics are discussed: (i) the ∆Krms method, including the 
differences between 1D and 2D crack propagation modeling; (ii) the cycle-by-cycle 
method, also emphasizing the differences between the 1D and the 2D problems; (iii) 
some proposals for increasing the computational efficiency of the models; and (iv) the 
modeling of load sequence effects. Finally, the advantages and limitations of the several 
studied models are evaluated.  

 
The ViDa Software 

 
The objective of this software is to automate all the calculations required to predict 

fatigue life under complex loading using the local approach. It runs on PCs under 
Windows 95 or better operating system, and it includes all the necessary tools to perform 
the predictions, such as intuitive and friendly graphic interfaces in multiple idioms; 
intelligent databases for stress concentration and intensity factors, crack propagation 
rules, material properties, and the like; traditional and sequential rain-flow counters, 
graphic generators of elastoplastic hysteresis loops and of 2D cracks fronts; automatic 
adjustment of crack initiation and propagation experimental data; an equation interpreter, 
etc. The software calculates crack growth considering any propagation rule and any ∆K 
expression that can be written in a BASIC syntax (making it an ideal companion to 
QUEBRA2D software, which can be used to generate the ∆K(a) expression if it is not 
available in its database).  

The loading can be given by a sequential list of peaks (σmax) and valleys (σmin), or 
else by the equivalent sequence of the number of reversions (n/2) of alternate (σa) and 
mean (σm) stresses. The loading can also be specified in strain instead of stress. The data 
can be typed or imported from any text file, including those experimentally generated 
(e.g. by strain-gages).   



 

The propagation is calculated at each load event. An event is defined by a block of 
simple load, in which σa and σm remain constant during n cycles, or at each variation of 
the load amplitude in the complex case. In any case, the software automatically stops the 
calculations, and indicates the value of the parameters that caused the stop, if during the 
loading it detects that: (i) Kmax = KC ; (ii) the crack reaches its maximum specified size; 
(iii) the stress in the residual ligament reaches the rupture strength of the material SU;   
(iv) the crack propagation rate da/dN reaches 0.1mm/cycle (above this rate fracturing 
occurs, not fatigue cracking); or (v) one of the borders of the piece is reached by the front 
of the crack, in the 2D crack propagation case. However, for some geometries, the 
software is able to calculate 2D crack propagation even after the borders of the piece are 
reached, by modeling the stress intensity factors of the transition from part-through to 
through cracks. 

Moreover, the software informs when there is yielding in the residual ligament before 
the maximum specified crack size or number of load cycles is reached. In this way, the 
calculated values can be used with the guarantee that the limit of validity of the 
mathematical models is never exceeded.  

 
The ∆∆∆∆Krms Method  

 
The stress intensity factor range is expressed as ∆K = ∆σ⋅[√(πa)⋅f(a/W)], where ∆σ is 

the nominal stress range (in relation to which the ∆K expression is defined), a is the crack 
length, f(a/W) is a non-dimensional function of a/W, and W is a characteristic size of the 
structure. Therefore, ∆σ quantifies the influence of the loading and √(πa)⋅f(a/W) 
quantifies the effect of the geometry of the piece and of the crack shape and size in ∆K.  

The simplest way to treat the fatigue life prediction under a complex loading problem 
is to substitute a simple equivalent loading, causing the same growth of the crack. It has 
been experimentally discovered that ∆Krms, the root mean square value of the stress 
intensity range, can in some cases be used for this purpose [18].  

According to Hudson [27], ∆Krms can be calculated from the rms values of the 
positive peaks and valleys of the loading (since the crack does not grow while closed, the 
compressive part of the loading should be discarded). Therefore  
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As ∆Krms = ∆σrms⋅[√(πa)⋅f(a/W)], the number of cycles the crack takes to grow from 
the initial length a0 to the final one af  is given by  
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In the ViDa software, a variation of the Simpson's algorithm can be used for the 
numerical integration of the simple loading case and, consequently, also for the ∆Krms 
method. Crack increments δa > 0.1µm for the discretization of the integral can be 
specified by the user, who can also choose an integration method based on adjustable 
steps depending on the variation of the crack length, as will be discussed later on the 
study of the cycle-by-cycle method.  

It should be mentioned that the ∆Krms value of a complex loading is similar but not 
identical to the ∆K of a simple loading. As with any statistics, ∆Krms does not recognize 
temporal order, and cannot detect some important problems such as: sudden fracture 
caused by a single large peak during the complex loading (in order to start the fracture 
process, it is enough that in just one event Kmax = KC); or any interaction among the 
loading cycles (e.g. the crack retardation or arrest phenomena after an overload). Also, it 
is not possible to guarantee the inactivity of the crack if ∆Krms(a0) < ∆Kth(Rrms).  

In complex loading, this latter problem can be caused by all the (∆σi, Ri) events that 
induce ∆Ki > ∆Kth(Ri), which can make the crack grow even if ∆Krms < ∆Kth(Rrms). 
Therefore, as ∆Ki depends both on the stress range ∆σi and on the crack size ai in that 
event, even if the value of ∆σrms stays constant, the same cannot be guaranteed for ∆Krms.  

 
The ∆Krms Method for 2D Cracks 

 
Equation 22 can only be applied to 1D cracks, but in practice many times it is 

necessary to study surface, corner, or internal cracks that propagate in 2D. The principal 
characteristic of these cracks is a non-homologous fatigue propagation: in general, the 
crack front tends to change form from cycle to cycle, because ∆K varies from point to 
point along the crack front.  

There are analytical expressions for the stress intensity factor of some 2D cracks. If 
the cracks have ellipsoidal fronts built in a plate of width W or 2W and thickness t, ∆K is 
function of ∆σ, a, a/c, a/t, c/W and θ [28-30], where a and c are the ellipsis semi-axes, 
and θ is defined in Figure 8. 

The 2D ellipsoidal crack propagation problem is a reasonable approximation for 
many actual surface, corner, or internal cracks. Fractographic observations indicate that 
the successive fronts of those cracks tend to achieve an elliptical form, see Figure 9, and 
to stay approximately elliptic during their fatigue propagation, even when the initial crack 
shape is far from an ellipsis [31, 32]. Therefore, it can be quite reasonable to assume in 
the modeling that the fatigue propagation just changes the shape of the 2D cracks (given 
by the ratio a/c between the ellipsis semi-axes, which quantifies how elongated the cracks 
are), but preserves their basic ellipsoidal geometry.  

As an ellipsis is completely defined by its two semi-axes, to predict the growth of 2D 
(elliptical) cracks, including their shape changes, it is enough to calculate at each load 
cycle the lengths of the ellipsis axes a and c, jointly solving the da/dN and the dc/dN 
propagation problems.  

  



 

  
 

Figure 8 − Surface semi-elliptical, corner quart-elliptical, and internal elliptical cracks. 
 

 
 

Figure 9 − A surface fatigue crack that started from a sharp rectangular notch and 
grew with an approximately semi-elliptical front. 

 
To exemplify the simplest case of this type of problem, the semi-elliptical surface 

crack with a < c under pure normal loading ∆σ is briefly analyzed. The expression for 
∆K(a) = ∆σ⋅[√(πa)⋅fa(a/c, a/t, c/W)] from the Newman and Raju solution [29] is quite 
complex, although the ratio ∆K(a)/∆K(c) is relatively simple, allowing for the 
visualization of the basic ideas of the calculation methodology  
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The calculation model requires the crack type and initial size a0 and c0, the bar 
geometry, the loading type, the mechanical properties, and the crack propagation rule 
da/dN = F(∆K, R, ∆Kth, Kc, ...) of the material. A small crack increment δa must also be 
specified (50µm, a number of the order of the resolution threshold of the crack 
measurement methods in fatigue tests, can be a good choice both from the physical and 
from the numeric points of view). From the complex loading, ∆σrms and Rrms are 
calculated to obtain  

 
 ∆Krms(a0) = ∆σrms⋅[√(πa0)⋅fa(a0/c0, a0/t, c0/W)]               (24)  

 
The number of cycles N0 the crack takes to grow from a0 to a0 + δa is given by  
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∆Krms(c0) can be calculated by Equation 23, or by an expression similar to Equation 24, 
to get the correspondent growth in the direction of the semi-axis c, δc0, which is given by  

 
  ,...)K,K,R),c(K(FNc cthrms0rms00 ∆∆δ ⋅=        (26) 

  
The numerical calculation process can now start the coupled interactions making    

∆Krms(a1) = ∆Krms(a0 + δa) and calculating N1 = δa/F(∆Krms(a1), Rrms, ∆Kth, Kc,...), in 
order to get ,...)K,K,R),c(K(FNc cthrms1rms11 ∆∆δ ⋅= , where c1 = c0 + δc0, etc. The 
precision of the methodology can be adjusted by the value of δa.  

When compared to the 1D growth, the application of the ∆Krms method to the 2D 
problem is more laborious and uses a less efficient integration method but does not 
present supplementary conceptual difficulties. However, it should be noticed that the 2D 
propagation presents some particularities that differentiate it from the 1D case. As these 
cracks have different values for ∆K(a) and ∆K(c), there are three distinct 2D propagation 
cases under simple loading (assuming ∆K(a) > ∆K(c) to start with)  
1) ∆K(a0) and ∆K(c0) > ∆Kth: the crack spreads in both directions, changing shape at 

each i-th load cycle depending on the ratio ∆K(ai)/∆K(ci).  
2) ∆K(a0) > ∆Kth and ∆K(c0) < ∆Kth: the crack grows only in the a direction, until its size 

is big enough to make ∆K(c0) > ∆Kth, when the problem reverts to Case 1 (there are, 
however, pathological cases in which ∆K(a) decreases with a, and in these cases a 
crack can start spreading to later on stop if it reaches ∆K(a) < ∆Kth). Moreover, it is 
worth mentioning that this Case 2 is particularly deceiving in inspections, since the 
trace of a surface crack can remain constant during millions of cycles [32], apparently 
hinting that it is inactive, when in fact it is growing toward the inside of the piece, 
until reaching ∆K(c0) > ∆Kth, when it starts to spread laterally in a relatively fast rate. 

3) ∆K(a0) and ∆K(c0) < ∆Kth: the crack does not propagate.  



 

In the complex loading case there are other details to consider. For instance, it is not 
possible to guarantee 2D crack inactivity if ∆Krms(a0) and ∆Krms(c0) < ∆Kth. But, due to 
space limitations, the study of these details is left for another work.  

To conclude, it is worthwhile remembering that the ∆Krms method is the simplest way 
to treat a complex loading problem, but it should only be used, as with any model, with 
the due appreciation of its limitations.  

 
The Cycle-by-Cycle Method 

 
In the cycle-by-cycle method, each load reversion is associated to the crack growth it 

would cause if it was the only one to load the piece (this implicates neglecting interaction 
effects among the several events of a complex loading, such as overload-induced 
retardation or arrest in the crack growth). Using this assumption, it is easy to write a 
general expression for the cycle-by-cycle crack growth, by any crack propagation rule: if 
da/dN = F(∆K, R, ∆Kth, KC,...), and if in the i-th 1/2 cycle of the loading the length of the 
crack is ai, the stress range is ∆σi and the mean load causes Ri, then the crack grows by a 
δai given by  
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The total growth of the crack is quantified by Σ(δai). Therefore, the cycle-by-cycle 

rule is similar in concept to the linear damage accumulation used in the SN and εN fatigue 
design methods. And, as in Miner’s rule, it requests that all the events that cause fatigue 
damage be recognized before the calculation, by rain-flow counting the loading.  

However, this counting algorithm alters the order of the loading, as shown in Figure 
10. This can cause serious problems in the predictions, because the loading order effects 
in crack propagation are of two different natures.  
•  Delayed effects can retard or stop the subsequent growth of the crack due, e.g., to 

plasticity-induced Elber-type crack closure [33] or to crack tip bifurcation. These 
interaction effects among the loading cycles normally increase the crack life and, if 
neglected in the calculation, may induce excessively conservative predictions.  

•  Instantaneous fracture occurs when Kmax = KC in one event, which must be precisely 
predicted.  
As already mentioned above, the loading input in the ViDa software is sequential, and 

preserves the time order information that is lost when histograms or any other loading 
statistics are generated. To take advantage of this feature, a sequential rain-flow counting 
option was introduced in the software (Figure 10). The sequential rain-flow reorders the 
results from the traditional rain-flow based on the ending point location of each counted 
range pair [25]. With this technique, the effect of each large loading event is counted 
when it happens (and not before its occurrence, as in the traditional rain-flow method). 
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Figure 10 − Traditional rain-flow counting, anticipating the large load events, and 
sequential rain-flow counting, which preserves most of the loading order. 

 
The main advantage of the sequential rain-flow counting algorithm is to avoid the 

premature calculation of the overload effects, which can cause non-conservative crack 
propagation life predictions (as K(σ, a) in general grows with the crack, a given overload 
applied when the crack is large can be much more harmful than applied when the crack is 
small). The sequential rain-flow does not eliminate all the sequencing problems caused 
by the traditional method, but it is certainly an advisable option because it presents 
advantages over the original algorithm, without increasing its difficulty.  

As discussed in the ∆Krms method, the compressive part of the loading can be 
discarded in the calculations, that is, the negative peaks and valleys can be zeroed before 
the computations to decrease the numerical effort of the cycle-by-cycle method. And, in 
the same way, a range filtering option can be very useful to discard small loads that cause 
no damage inducing ∆Ki <∆Kth(Ri), following the ideas of the race-track method [34].  

The range filtering can indeed significantly reduce the computational effort in fatigue 
damage calculations if the complex loading history is long. But this procedure is 
intrinsically non-conservative, because it can disregard damaging events as ∆Ki is not 
available before the crack growth calculations (∆K depends not only on the loads, but 
also on the size of the crack). In consequence, the conservative rule is to limit the cut of 
the loading to the pairs (∆σi, Ri) that cause ∆K(af) < ∆Kth[R(af)], where af is the expected 
final length for the crack. But, in practice it can be easier numerically to try decreasing 
the ranges for the filtering, until there is no significant variation in the results.  

The computational implementation of Equation 27, even with the pre-zeroing of the 
compressive peaks and valleys and with the range filtering of the loading, is still not 
numerically efficient. For this reason, an additional feature to reduce the computational 
time can be quite useful: the option of maintaining the geometrical part of ∆K constant 
during small variations in crack size. 

As ∆K = ∆σ⋅[√(πa).f(a/W)], where f(a/W) is a non-dimensional function (usually 
complicated) that depends only on the piece and crack geometry and not on the loading, it 



 

can be said that the range of the stress intensity factor ∆Ki at each load reversion depends 
on two variables of different nature:  
1. on the stress range ∆σi in that event, and  
2. on the length of the crack ai in that instant.  
∆σi, of course, can vary significantly at each load reversion when the loading is complex, 
but fatigue cracks always grow very slowly. In fact, at least in structural metals, the 
largest rates of stable crack growth observed in practice are of the order of µm/cycle, and 
during most of the life the crack growth rates are better measured in nm/cycle.  

However, as in general the usually complicated  f(a/W) expressions do not present 
discontinuities, one can take advantage of the small changes in f(a/W) during small 
increments in crack length. In this way, instead of calculating at each load cycle the value 
of ∆Ki = ∆σi⋅[√(πai)⋅f(ai/W)], a task that demands great computational effort, it is more 
efficient to hold  f(ai/W) constant during a (small) percentage of crack increment δa%, 
that should be specifiable by the calculation software user. The errors introduced by this 
procedure are non-conservative, but they decrease quickly with the value specified for 
δa%. Convergence is assumed when decreasing values of δa% do not influence 
significantly the calculated crack growth. In practice, δa% values of the order of 0.5% 
result in adequate predictions for most calculations [25]. 

 
Two-Dimensional Crack Growth by the Cycle-by-Cycle Method 

  
The 2D growth of elliptical cracks problem can be treated in manner similar to that 

already discussed in the ∆Krms method: if in the i-th loading event the ellipsoidal crack 
has semi-axes ai and ci, under 

 
∆K(ai) = ∆σi⋅[√(πai)⋅fa(ai/ci, ai/t, ci/W)]  and ∆K(ci) = ∆σi⋅[√(πai)⋅fc(ai/ci, ai/t, ci/W)]  (28) 

 
stress intensity ranges, and if da/dN = F(∆K, R, ∆Kth, KC,...) is the crack growth rule of 
the material, then the crack increment in this i-th 1/2 cycle is given by  
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The crack growth is calculated by the simultaneous solution of Σδai and Σδci. As the 

crack increments δai and δci depend on both ai and ci, the coupled 2D growth is well 
characterized.  

It is worth mentioning that all the comments made above about the filtering and the 
counting of the loading can be also applied to 2D crack growth. In the same way, the 
maintenance of  fa and  fc constant during a small δa% (or δc%) variation in crack length 
is still more useful in 2D calculations, because the analytical expressions for fa and fc are 
generally very complex, and demand great numerical effort. But, besides the 



 

computational complexity, the 2D cycle-by-cycle problem does not present significant 
supplementary conceptual difficulties over the 1D case.  

 
Load Cycle Interaction Effects 

 
It is a well-known fact that interaction problems among load cycles can have a very 

significant effect in the prediction of fatigue crack growth. There is a vast literature 
proving that tensile overloads, when applied over a loading whose amplitude otherwise 
stays constant, can cause retardation or arrest in the crack growth, and that even 
compressive overloads can sometimes affect the rate of subsequent crack propagation 
[33, 35, 36].  

Neglecting these effects in fatigue life calculations can completely invalidate the 
predictions. In fact, only after considering overload induced retardation effects can the 
life reached by real structural components be justified when modeling many practical 
problems. However, the generation of an universal algorithm to quantify these effects is 
particularly difficult, due to the number and to the complexity of the mechanisms 
involved in fatigue crack retardation, among them: plasticity-induced crack closure; 
blunting and/or bifurcation of the crack tip; residual stresses and/or strains; strain-
hardening; crack face roughness, and oxidation of the crack faces.  

Besides, depending on the case, several of these mechanisms may act concomitantly 
or competitively, as a function of factors such as: size of the crack; microstructure of the 
material; dominant stress state, and environment.  

The detailed discussion of this complex phenomenology is considered beyond the 
scope of this work (a revision of the phenomenological problem can be found in [33]). 
Moreover, the relative importance of the several mechanisms can vary from case to case, 
and there is, so far, no universally accepted single equation capable of describing the 
whole problem. Therefore, from the designer’s point of view it must necessarily be 
treated in the most reasonably simplified way. 

A simplified model can not be unrealistic so it is worthwhile mentioning that some 
simplistic models are unacceptable. For example, attributing the overloads to a significant 
variation in the residual stress state at the crack tip in order to justify the retardation 
effects is not reasonable. This is mechanically impossible: the tensile yielding during the 
loading and the compressive yielding during the unloading close to the crack tip during 
fatigue crack propagation prevent any significant variation in the residual stress state at 
the crack tip after an overload. On the other hand, the principal characteristic of fatigue 
cracks is to propagate cutting a material that has already been deformed by the plastic 
zone that always accompanies their tips. In this way, the fatigue crack faces are 
embedded in an envelope of (plastic) residual strains and, consequently, they compress 
their faces when completely discharged, and they open alleviating in a progressive way 
the (compressive) load transmitted through their faces.  

According to Elber [37], only after completely opening the crack at a load Kop, would 
the crack tip be stressed. Therefore, the bigger the Kop, the less would be the effective 
stress intensity range ∆Keff = Kmax − Kop, and this ∆Keff  instead of ∆K would be the crack 
propagation rate controlling parameter. Most load interaction models are, although 
indirectly, based in this idea. This implicates in the supposition that the principal 
retardation mechanism is caused by plasticity induced crack closure: in these cases, the 



 

opening load should increase when the crack penetrates into the plastic zone inflated by 
the overload, reducing the ∆Keff  and stopping or delaying the crack, while the plastic 
zones associated with the loading are contained in the overload induced plastic zone. 

It is very important to emphasize that this is by no means the only mechanism that can 
induce crack retardation. For example, Castro and Parks [38] showed that, under 
dominant plane strain conditions, overload induced fatigue crack retardation or arrest can 
occur while ∆Keff  increases. The principal retardation mechanism in those cases was 
bifurcation of the crack tip. 

The Wheeler model is the most popular retardation model [35]. The model is 
simplistic and assumes, more or less arbitrarily, that while the loading plastic zone ZPi is 
embedded in the overload plastic zone ZPov, the crack growth rate retardation depends on 
the distance from the border of ZPov to the tip of the crack, see Figure 11.  

The retardation is maximum just after the overload, and stops when the border of ZPi 
touches the border of ZPov. Therefore, if aov and ai are the crack sizes at the instant of the 
overload and at the i-th cycle, and (da/dN)reti and (da/dN)i are the retarded and the non-
retarded crack growth rate (at which the crack would be growing in the i-th cycle if the 
overload had not occurred), then, according to Wheeler  
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where β is an experimentally adjustable constant. Broek [35, 36] mentions Wheeler’s 
data for steels (β = 1.43) and for Ti-6AL-4V (β = 3.4), and suggests that other typical 
values for β are between 0 and 2.  
 

 
 

Figure 11 − Wheeler crack growth retardation model. 
 
It should be noticed that this model cannot predict crack arrest that has been observed. 

As ZP ≈ (Kmax/SY)2, where SY is the yielding strength of the material, the maximum value 
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of the predicted retardation happens immediately after the overload, and is equal to 
(Kmax/Kov)2β, where Kmax is the maximum load in the cycle just after the overload, and 
Kov is the overload peak. Therefore, the phenomenology of the load cycle interaction 
problem is not completely reproducible by the Wheeler original model. However, also to 
model crack arrest, a simple modification that seems reasonable is to use a Wheeler-like 
parameter to multiply ∆K instead of da/dN after the overload  
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where ∆Kret(ai) and ∆K(ai) are the values of the stress intensity factors that would be 
acting at ai with and without retardation due to the overload, and γ is in general different 
from the original model exponent β.  This simple modification can be used with any of 
the propagation rules that recognize ∆Kth to predict both the retardation and the stop of 
fatigue cracks after an overload (the stop occurring if ∆Kret(ai) < ∆Kth).  

The numeric implementation of these retardation models in a cycle-by-cycle 
algorithm is not conceptually difficult, but it requires a considerable programming effort. 
To illustrate the main ideas, a simplified flow-chart of the calculation algorithm used in 
the ViDa software is shown in Figure 12.  
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Figure 12 − Simplified flow-chart of the calculation algorithm used in the ViDa software 
to predict fatigue crack propagation under complex loading. 



 

Some calculation details are worth mentioning. The first one refers to the use of the 
δa% filter, since crack size increments that work well otherwise can cause troubles with 
the retardation models, as the plastic zone sizes can be very small compared to the crack 
size. In order to quantify the propagation gradient inside the overload affected zone, δa% 
must be much smaller than ZPov.  

A second one can save a lot of computational time when the loading is complex. 
Small variations in the loading amplitude do not cause experimentally detectable crack 
retardation, and they should not be considered as overloads in the calculation model. 
Therefore, a numerical filter for overloads can be profitably introduced in the algorithm, 
specifying that there is no overload effect if σj/σj-1 < α, where σj-1 and σj are successive 
peaks of the loading and α is an adjustable constant (that, in the absence of better 
information, can be chosen as 1.25 or 1.3).  

There are several other retardation models [33, 39], but none of those that can be 
implemented in a local approach code has definitive advantages over the simpler Wheeler 
models discussed above. This is no surprise, since single equations are too simplistic to 
model all the several mechanisms that can induce retardation effects. Therefore, in the 
same way that a curve da/dN vs. ∆K is experimentally measured, a propagation model 
can be adjusted to experimental data to calibrate the exponents of Equations 31 or 32, as 
recommended by Broek [35]. 

Using these same concepts, it is not particularly difficult to model retardation effects 
in 2D crack propagation. The idea is to maintain the fundamental hypothesis of the 
ellipsoidal geometry preservation, accounting for the coupled growth of the semi-axes a 
and c. However, as the size of the plastic zones depends on the value of ∆K, and as in 
general ∆K(a) ≠ ∆K(c), the retardation effects in 2D growth can be different in each 
direction. Thus, after each overload the value of ∆Kret(ai) and ∆Kret(ci) are calculated by  
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From these values, it is easy to calculate the crack growth in the two elliptic semi-

axes directions during the i-th 1/2 cycle of the loading  
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Only the modified Wheeler model is presented above, but it is trivial to write similar 

equations for the original model. Finally, it should be mentioned that all the filtering 
remarks already discussed are also applied to the 2D case.  



 

Conclusions  
 
In this paper, a two-phase methodology was presented to predict fatigue crack 

propagation in generic 2D structures under complex loading. First, self-adaptive finite-
elements were used to calculate, by three different methods, the fatigue crack path and 
the stress intensity factors along the crack length KI(a) and KII(a), at each propagation 
step. The calculated KI(a) was then used to predict the propagation fatigue life of the 
structure by the local approach, using the root mean square or the cycle-by-cycle 
integration methods, even considering overload-induced crack retardation effects in this 
latter one. Two complementary software programs were developed to implement this 
methodology. The first software package is an interactive graphics program for 
simulating two-dimensional fracture processes based on a finite element adaptive mesh 
generation strategy. The second is general purpose fatigue design software developed to 
predict both initiation and propagation fatigue lives under complex loading by all 
classical design methods. In particular, its crack propagation module accepts any stress 
intensity factor expressions, including the ones generated by the finite-element software. 
Experimental results showed that the presented methodology and its software 
implementation could effectively predict fatigue crack propagation in an arbitrary two-
dimensional structural component. 
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