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 ABSTRACT

 Fatigue crack kinking and bifurcation are phenomena
capable of inducing significant growth retardation or even
crack arrest. However, bifurcated crack models available in
the literature cannot account for the subsequent propagation
behavior observed in practice. In this work, specialized
Finite Element (FE) and life assessment software are used
to predict the reduction in the propagation rates in kinked
and bifurcated cracks. The crack path and associated stress
intensity factors (SIF) of bifurcated cracks are numerically
obtained for several bifurcation angles and branch lengths.
From these results, empirical crack retardation equations are
proposed to model the retardation factor along the crack
path, allowing for a better understanding of the influence of
crack deflection in the propagation life.

 Keywords: fatigue, crack bifurcation, growth retardation.

 INTRODUCTION

 Overloads, multi-axial stresses, microstructural
inhomogeneities such as grain boundaries and interfaces, or
environment effects can significantly deviate fatigue cracks
from their Mode I growth direction, generating crack
kinking or branching [1]. A fatigue crack deviated from its

nominal Mode I plane induces mixed-mode near-tip
conditions even if the far-field stress is purely Mode I.
Since the stress intensity factors (SIF) associated to
deflected or branched fatigue cracks can be considerably
smaller than that of a straight crack with the same projected
length, such deviations can cause retardation or even arrest
of crack growth [2]. Very small differences between the
branch lengths b and c are enough to cause the shorter
branch to arrest as the larger one propagates, until reaching
approximately its pre-overload SIF and growth rate. This
typical propagation behavior has been observed on a
branched crack on an aircraft wheel rim made of 2014-T6
aluminum alloy [3].

 Analytical solutions have been obtained for the SIF of
kinked and branched cracks [2, 4-8]. However, numerical
methods such as Finite Elements (FE) and Boundary
Elements (BE) are the only means to predict the subsequent
curved propagation behavior.

 To predict the path of a branched crack and to
calculate the associated Modes I and II SIF, an interactive
FE program named Quebra2D is used [9]. This program
simulates two-dimensional fracture processes based on a FE
self-adaptive strategy, using appropriate crack tip elements
and crack increment criteria. The adaptive FE analyses are



coupled with modern and efficient automatic remeshing
schemes. The program has been validated through
experiments on ESE(T) and modified C(T) specimens made
of 4340 and 1020 steel, and from comparisons with
analytical solutions for kinked cracks. The crack path and
associated SIF are then exported to ViDa, a general-
purpose fatigue design program developed to predict both
initiation and propagation fatigue lives under variable
loading by all classical design methods [10]. This
companion life assessment program is used to estimate the
number of delay cycles associated with crack bifurcation. In
the next sections, the propagation behavior of kinked and
bifurcated (branched) cracks is calculated.

 MIXED-MODE CRACK GROWTH CALCULATIONS

In mixed-mode crack growth calculations using FE,
three methods are generally used to compute the stress
intensity factors along the (generally curved) crack path: the
displacement correlation technique [11], the potential
energy release rate computed by means of a modified crack-
closure integral technique [12-13], and the J-integral
computed by means of the equivalent domain integral (EDI)
together with a mode decomposition scheme [14-15]. The
EDI method replaces the J-integral along a contour by
another one over a finite size domain, using the divergence
theorem, which is more convenient for FE analysis. Since
Bittencourt et al. [16] showed that for sufficiently refined
FE meshes all three methods predict essentially the same
results, only the EDI method is considered in the
calculations presented here. However, the other two
methods also provide good results even for coarse meshes.

Several models have been proposed to obtain an
equivalent SIF Keq from KI, KII and KIII. Tanaka [18]
obtained an equivalent stress intensity model based on the
displacements behind the crack tip reaching a critical value,
leading to
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 where ν is Poisson’s coefficient.

Hussain et al. [19] used complex variable mapping
functions to obtain the potential energy release rate G at a
direction θ with respect to the crack propagation plane. He
assumed that crack extension occurs in a direction θ = θ0

that maximizes G, leading to the maximum fracturing
energy release rate (Gmax) criterion. Thus, an equivalent SIF
is obtained at θ = θ0 that maximizes the expression
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The computed θ0 values at each calculation step are
used to obtain the crack incremental growth direction - and
thus the fatigue crack path - in the linear-elastic regime.

Sih [20] proposed a criterion for mixed-mode loading
based on the strain energy density S around the crack tip. It
is assumed that the crack propagates in a direction θ = θ0’
that minimizes S. The associated equivalent SIF is then
calculated at θ = θ0’ that minimizes the expression
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Erdogan and Sih [21] proposed the maximum
circumferential stress (σθmax) criterion, which considers that
crack growth should occur in the direction that maximizes
the circumferential stress in the region close to the crack tip.
They considered the stresses at the crack tip under
combined Mode I and II loading, given by summing up the
stress fields generated by each mode:
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where σr is the normal stress component in the radial
direction, σθ is the normal stress component in the
tangential direction and τrθ is the shear stress component.
These expressions are valid both for plane stress and plane
strain. The Maximum Circumferential Stress criterion
assumes that crack growth begins on a plane perpendicular
to the direction in which σθ is maximum. The maximum
value of σθ is obtained when ∂σθ/∂θ is zero, which is
equivalent to equating τrθ = 0, according to Equation (6).
The equation τrθ = 0 has a trivial solution θ = ±π (for
cos(θ/2) = 0), and a non-trivial solution θ = θ0” given by
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where the sign of θ0” is the opposite of the sign of KII.
According to the σθmax criterion, the equivalent SIF is
calculated at the value θ = θ0”, which maximizes the
expression
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The above models have notable differences if the
amount of Mode II loading is significant. For instance,
under pure Mode II loading, the propagation angle θ is
±70.5o, ±75o and ±82o according to the σθmax, Gmax and Smin

models, respectively, leading to Keq values of approximately
1.15⋅KII, 1.60⋅KII and 1.05⋅KII (assuming ν = 0.3). In
addition, Tanaka’s model results in this case in Keq =
1.68⋅KII. The values of θ and Keq obtained from each model
are plotted in Figures 1 and 2 as a function of the KII/KI
ratio.

Figure 1. Crack propagation direction θ as a function of the
KII/KI ratio according to the σθmax, Gmax and Smin models.

Figure 2. Equivalent SIF Keq as a function of the
KII/KI ratio according to several models.

The differences among the studied models might be
significant for mixed-mode fracture predictions, however
they are negligible for fatigue crack propagation
calculations. In fact, since all above models predict crack
path deviation (θ ≠ 0) under any KII different than zero (see
Figure 1), they imply that fatigue cracks will always attempt
to propagate in pure Mode I, minimizing the amount of
Mode II loading, curving their paths if necessary to avoid
rubbing their faces. As soon as the crack path is curved to
follow pure Mode I, all models agree that Keq is equal to KI.
Therefore, not only the crack path but also the SIF values
calculated by any of the above criteria are essentially the
same. This has been verified by Bittencourt et al. [16], who
concluded from FE simulations that these criteria provide
basically the same numerical results. Since the Maximum
Circumferential Stress criterion is the simplest, presenting a
closed form solution, it is the one adopted in the present
work.

 CRACK BIFURCATION PREDICTIONS

In this section, the Modes I and II SIF are evaluated
for cracks of length a with a small bifurcation of branch
lengths b0 and c0 (b0 ≥ c0) forming an angle 2θ, see Figure
3(a). To perform the calculations, a standard C(T) specimen
is FE modeled using Quebra2D with width w = 32.0mm,
crack length a = 14.9mm, and bifurcations with initial crack
branch lengths b0 = 10µm and c0 = 5, 7, 8, 9, 9.5 and 10µm.
The Modes I and II SIF k1 and k2 of each crack branch are
obtained considering bifurcation angles 2θ between 40o and
168o. Note that typical overload-induced bifurcated cracks
can have initial branch lengths between 10 and 100µm, with
2θ varying between 30o, e.g. for very brittle materials such
as glass, and 180o, e.g. in the vicinity of the interface of a
bi-material composite, when a crack propagates from the
weak to the strong material [22].

    (a) (b)
Figure 3. Schematic representation of a branched crack at
the onset of propagation (a) and during propagation (b).

Note that an efficient meshing algorithm is
fundamental to avoid elements with poor aspect ratio, since
the ratio between the size scale of the larger and smaller
elements is above 1,000 in this case. To accomplish that,
Quebra2D uses an innovative algorithm incorporating a
quadtree procedure to develop local guidelines to generate
elements with the best possible shape. The internal nodes
are generated simultaneously with the elements, using the



quadtree procedure only as a node-spacing function. This
approach tends to give a better control over the generated
mesh quality and to decrease the amount of heuristic
cleaning-up procedures. Moreover, it specifically handles
discontinuities in the domain or boundary of the model.
Finally, to enhance the quality of the shape of the mesh
element, an a posteriori local mesh improvement procedure
is used [23].

Figure 4 shows the FE results for the SIF k1 and k2
(normalized by the Mode I SIF KI of the straight crack) of
symmetrically bifurcated cracks (which have b0 = c0). Note
that k2 vanishes for a bifurcation angle 2θ = 2θ* = 53o. The
bifurcation angle 2θ* for which k2 vanishes on a
symmetrically branched crack is a very important
parameter, because it is associated with a self-similar
propagation of the crack branches. Since k2 is equal to zero,
no path deflection will occur in this case, thus both branches
will continue propagating at an angle θ* = ±26.5o with
respect to the horizontal. Note however that the value of
2θ* is a function of the ratio b0/a. For b0/a < 0.001, 2θ*
tends to approximately 53o, but for b0/a = 0.025 the value of
2θ* drops to 36o [24] and for b0/a = 0.1 it has been
predicted that 2θ* = 32o [25]. Therefore, the infinitesimal
kink solution shown in Figure 4 can only be numerically
reproduced using very refined FE calculations with b0/a
ratios much smaller than 0.1 or 0.025, such as the
considered b0/a = 10µm/14.9mm = 6.7⋅10−4.

 Figure 4. Normalized stress intensity factors for
symmetrically bifurcated cracks.

The FE-obtained k1 and k2 are now used to compute,
using Equation (8), an equivalent SIF Kb0 of both branches
that will characterize the propagation behavior immediately
after the bifurcation event. Note from Figure 4 that Kb0 is
approximately constant for symmetrically bifurcated cracks
with 2θ < 140o, estimated equal to 0.75 within 3%.

Special care must be taken when calculating the SIF
of bifurcated cracks with 2θ approaching 180o. In this case,
the effective SIF increases considerably at the very

beginning of the propagation. For instance, a symmetrically
bifurcated crack with 2θ = 160o has Kb0/KI equal to 0.688
for both branches (as suggested in Figure 4), however after
a brief propagation of less than 0.1⋅b0 this value jumps to
0.751. Therefore, the decrease in Kb0 for 2θ > 140o shown
in Figure 4 is only valid at the onset of propagation, almost
immediately increasing to approximately 0.75 after that. It
is concluded from further simulations that Kb0 can be
estimated as 0.75 within 3% for all symmetrically bifurcated
cracks with 40o ≤ 2θ ≤ 168o.

Figure 5 shows the FE results for the equivalent SIF
Kb0 and Kc0 of the longer and shorter branches respectively
(normalized by the Mode I SIF KI of the straight crack) of
both symmetrically and asymmetrically bifurcated cracks.
Note once again the apparent decrease in Kb0 for 2θ > 140o,
an effect that disappears soon after the propagation starts.
This high initial sensitivity can be explained by the small
projected length of crack branches with 2θ approaching
180o. This projected length is easily overcome even by a
very small propagation step, significantly changing the
crack geometry and SIF. For instance, it is found that a
bifurcated crack with 2θ = 170o has an initial propagation
angle around 35o, thus the crack branch b0 has the same
projected length as the one generated by a propagation step
of only b0⋅cos(0.5⋅170o)/cos(35o) ≅ 0.11⋅b0.

 Figure 5. Normalized equivalent stress intensity factors for
symmetrically and asymmetrically bifurcated cracks.

 Another interesting conclusion is that the initial
propagation direction of the longer branch is always below
40o (with respect to the pre-overload growth direction),
independently of the considered bifurcation angle 2θ.
Therefore, for values of 2θ greater than 80o, a sharp
deflection can be clearly noted in the beginning of the
propagation. This deflection has been experimentally
confirmed by Lankford and Davidson [1], who carried out
overload fatigue crack tests on a 6061-T6 aluminum alloy in
a scanning electron microscope using a special in-situ
servo-controlled hydraulic loading stage, obtaining growth



retardation caused by crack bifurcation. They have found
that the bifurcated crack would grow only a short distance
in the same direction of the overload-induced bifurcation,
before a sharp deflection in the crack path would occur.
This deflection causes a sudden increase in the Mode I SIF
almost immediately after the propagation begins, resulting
in a significantly smaller retardation effect if compared to
simplistic predictions based on branched crack solutions
that do not include the propagation phase. However, if the
equivalent stress intensity ranges of both branches are
below the threshold SIF ∆Kth, then the entire crack arrests
and therefore no sharp deflection has the chance to develop.

 The FE-obtained results shown in Figure 5 are used to
fit empirical equations to the initial SIF Kb0 and Kc0 of the
longer and shorter branches, resulting in:
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Equations (9-10) result in errors smaller than 2% for
40o ≤ 2θ ≤ 168o and 0.7 ≤ c0/b0 ≤ 1.0. Figure 6 plots the FE
results against the proposed equations, showing a good fit.
In the next section, further FE analyses are conducted to
evaluate the subsequent propagation behavior of these
bifurcated cracks.

 Figure 6. Initial equivalent SIF of both branches of a
bifurcated crack as a function of the asymmetry ratio c0/b0

and bifurcation angle 2θ.

 PROPAGATION OF BRANCHED CRACKS

The growth of branched cracks is studied in the
Quebra2D program using the same CT specimens described
above. A fixed crack growth step of ∆b = 3µm (or 1µm
during the first propagation steps) is considered for the
propagation of the longer branch b. This growth step is

calculated in the direction defined by the σθmax criterion.
Due to the differences in the crack growth rate, a growth
step ∆c smaller than ∆b is expected for the shorter branch.
This smaller step is obtained assuming a Paris crack
propagation law,
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where A and m are material constants. If ∆Kb and ∆Kc are
respectively the stress intensity ranges of the longer and
shorter branches, then the growth step ∆c of the shorter
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Interestingly, the ratio between the propagation rates of the
two branches is independent of the material constant A. In
this analysis, the exponent m is assumed to be 2.0, 3.0, and
4.0, which are representative values for steels.

Once a (small) growth step ∆b is chosen for the
numerical propagation of the longer branch, the growth of
the shorter branch ∆c is readily obtained from Equation
(12). Both the crack path and the associated SIF along each
branch are then obtained using the FE program. It must be
noted, however, that linear-elastic FE calculations can only
lead to accurate solutions if the lengths of the crack
branches b and c are significantly larger than the size scale
of both the microstructure and the near-tip plastic (or
process) zone. But as the crack branches grow further, the
FE method can give a reasonable estimate of their behavior
where LEFM is applicable. In addition, the growth of
branched cracks is typically transgranular, as verified from
optical microscope observations performed by Shi et al.
[26], which is one of the requirements to allow for the
simulation of fatigue behavior in isotropic linear-elastic
regime.

The propagation behavior of branched cracks is
studied using FE considering no closure effects (Kop = 0).
Figure 7 shows the contour plots of the stress in the load
direction axis and propagation results for a bifurcated crack
with angle 2θ = 150o, obtained from the FE analysis for
c0/b0 = 0.91, m = 2 and no closure.  In this figure, the
deformations are highly amplified to better visualize the
crack path. Note that the crack path deviates from the
original branch angles, deflecting from ±75o to
approximately ±28o. In addition, the originally shorter
branch arrests after propagating (only) about 29µm, while
the longer branch returns to the pre-overload growth
direction and SIF (even though the subsequent crack growth
plane may be offset from the pre-overload one, see Figure
7).



Figure 7. Propagation simulation of a bifurcated crack on a
CT specimen (left), with a close-up of the two original
11µm and 10µm branches with angle 2θ = 150o (right).

Figure 8 shows the crack paths obtained from the FE
analyses of bifurcated cracks with 2θ = 130o and c0/b0 =
{0.5, 0.8, 0.95, 1}, considering m = 2 and no closure
effects. The dashed lines show the theoretical propagation
behavior of a perfectly symmetric bifurcation (c0/b0 = 1). In
this case, the retardation effect would never end because
both branches would propagate symmetrically without
arresting. Clearly, such behavior is not observed in practice,
since the slightest difference between b0 and c0 would be
sufficient to induce an asymmetrical behavior.

Figure 8. Bifurcated crack paths for several c0/b0 ratios.

The angles of the symmetrical dashed lines in Figure 8
for small b0/a ratios are found to be θ* = ±26.5o with
respect to the horizontal, where 2θ* has been previously
defined as the bifurcation angle for which k2 vanishes on a
symmetrically branched crack. As the symmetrical branches
grow following the ±26.5o directions, it is found that the
ratio between the equivalent SIF and the SIF of a straight
crack with same projected length is approximately constant
and equal to 0.757, a value compatible with the 0.75
estimate for Kb0. Note that the directions ±26.5o are
independent of 2θ and m, therefore symmetrical
bifurcations with any initial angle 2θ would tend to the self-
similar solution 2θ* = 53o as long as the ratio b/a of the
propagating branches is sufficiently small. FE calculations
also showed that the slopes of the dashed lines are gradually

decreased as both branches grow, resulting in angles ±18o in
the vicinity of b/a = 0.025, ±16o close to b/a = 0.1, and
±15.3o for b/a >> 1. This last result has been obtained from
a FE analysis of a symmetrical bifurcation starting at the
edge of a very large plate (therefore with a = 0 and b/a →
∞).

Figure 8 also shows that lower c0/b0 ratios result in
premature crack arrest, leading to smaller retardation zones.
Also, the propagation path of the longer branch is usually
restrained to the region within the dashed lines, while the
shorter one is “pushed” outside that envelope due to
shielding effects.

The size of the retardation zone can be estimated from
the ratio bf/b0, where bf is the value of the length parameter
b of the longer branch beyond which the retardation effect
ends (in the same way that it was defined for kinked
cracks). The ratio bf/b0 is then calculated through FE
propagation simulations for all combinations of c0/b0 =
{0.5, 0.8, 0.9, 0.95}, 2θ = {40o, 80o, 130o, 168o} and m =
{2, 3, 4}, and fitted by the proposed empirical function:
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Figure 9 shows a comparison between the fitted and
the FE-obtained data. Note that a greater symmetry between
the branches (as c0/b0 approaches 1.0) results in a longer
retardation zone, as expected from the delayed arrest of the
shorter branch.

Figure 9. Normalized process zone size as a function of the
bifurcation angle and branch asymmetry c0/b0 (m=3).

The FE-calculated equivalent SIF Kb and Kc of the
longer and shorter branches are now evaluated along the
obtained crack paths. Figure 10 plots the crack retardation
factors (defined as the ratios between Kb or Kc and the
Mode I SIF KI of a straight crack) for 2θ = 130o and m = 2,
as a function of the normalized length (b−b0)/b0 of the



longer branch (measured along the propagation path).
Because of the different crack branch lengths, the SIF at the
longer is much higher than that at the shorter branch.
Assuming Kb and Kc to be the crack driving force, it can be
seen from Figure 10 that the longer branch reaches its
minimum propagation rate right after the bifurcation occurs,
returning to its pre-overload rate as the crack tip advances
away from the influence of the shorter branch. As seen in
the figure, the retardation behavior is misleadingly similar
to closure-related effects, even though no closure is present
in that case.

Figure 10. Normalized equivalent SIF for the longer (top)
and shorter (bottom) branches of a bifurcated crack during

its propagation (2θ = 130o, m = 2).

In addition, as the length difference between both
branches increases, it is expected that the propagation rate
of the shorter one is reduced until it arrests, after which the
larger branch will dominate. Note that even small
differences between the branch lengths (such as in the case
c0/b0 = 0.95 shown in Figure 10) are sufficient to cause
subsequent arrest of the shorter branch.

Figure 11 shows the effect of the bifurcation angle 2θ
on the retardation factor Kb/KI for c0/b0 = 0.9 and m = 3.
Note that the retardation effect lasts longer for larger

bifurcation angles, not only because the associated Mode I
SIF is smaller, but also because the shielding effect is
weaker since both branch tips are further apart, delaying the
arrest of the shorter one.

Figure 11. Normalized SIF Kb/KI of the longer branch
during its propagation as a function of the normalized

length (b−b0)/b0 for c0/b0 = 0.9, m = 3.

An empirical expression is here proposed to model the
SIF Kb of the longer branch during the transition between
Kb0 (immediately after the bifurcation event) and the
straight-crack KI (after the end of the retardation effect),
valid for b0 ≤ b ≤ bf and 0.7 < c0/b0 < 1:
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Note that all proposed empirical equations are, at least
in theory, applicable to any bifurcated crack in any
specimen, provided that the crack branches are small if
compared to the specimen geometry and that the
propagation behavior of the material can be described using
Equation (11). It must be pointed out, however, that the
presented FE results and empirical models might have some
limitations, because actual bifurcations can be of a size
comparable to the scale of local plasticity (e.g. the plastic
zone size) or microstructural features (e.g. grain size).
Moreover, possible closure and environmental effects
should be considered when comparing the bifurcation
model predictions with measured crack growth rates [2].

 CONCLUSIONS

In this work, a specialized FE program was used to
calculate the propagation path and associated stress
intensity factors (SIF) of kinked and bifurcated cracks,
which can cause crack retardation or even arrest. Several
crack propagation simulations were obtained to fit empirical
equations to the process zone size and crack retardation
factor along the curved crack path. In particular, the



bifurcation simulations included several combinations of
bifurcation angles 2θ = {40o, 80o, 90o, 130o, 168o}, branch
asymmetry ratios c0/b0 = {0.5, 0.7, 0.8, 0.9, 0.95, 1.0}, and
crack growth exponents m = {2, 3, 4}

It was found that crack bifurcation can reduce the SIF
to about 0.63 of its original value, however soon after the
branches start propagating this value stabilizes at 0.75 as
long as the branches are approximately symmetrical. It was
also shown that very small differences between the lengths
of the bifurcated branches are sufficient to cause the shorter
one to eventually arrest as the longer branch returns to the
pre-overload propagation conditions. The process zone size
was found to be smaller for lower bifurcation angles and for
branches with greater asymmetry, in both cases due to the
increased shielding effects on the shorter branch. The
retardation zone was reduced as well for materials with
higher crack growth exponents, due to the increased
difference between the crack growth rates of the longer and
shorter branches.

The proposed equations, besides capturing all above
described phenomena, can be readily used to predict the
propagation behavior of branched and kinked cracks in an
arbitrary structure, as long as the process zone is small
compared to the other characteristic dimensions. From these
results, it was shown that crack bifurcation may provide an
alternate mechanistic explanation for overload-induced
crack retardation, in special to explain load interaction
effects under (closure-free) high R ratios.

It should be recognized however that the presented
mixed-mode equations are only accurate if the kink length
greatly exceeds the size scale of the microstructural
inhomogeneities and the size of the near-tip plastic zone.
But assuming that the entire crack-front deflects uniformly,
the specimen thickness itself may provide the size scale
requirements for the validity of the presented equations, as
the calculated SIF may be averaged considering the
(several) grains present along the thickness. Otherwise, if
the crack deflections vary significantly along the thickness,
then further modeling including Mode III effects should be
considered.
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