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Abstract 
This work describes the implementation of a plug-in that adds finite element pre- and post-processing 
capabilities to gOcad.  The gFEM plug-in implements an algorithm for generating unstructured tetrahedral finite 
element meshes in arbitrarily shaped three-dimensional regions.  This meshing algorithm incorporates aspects of 
well-known meshing procedures, but includes some original steps.  It uses an advancing front technique that 
generates good shape quality elements, along with an octree to develop local guidelines for the size of generated 
elements.  The advancing front technique is based on a standard procedure found in the literature with two 
additional steps to ensure valid volume mesh generation for virtually any domain.  The first additional step is 
related to the generation of elements only considering the topology of the current front and the second additional 
step is a backtracking procedure with face deletion, to ensure that a mesh can be generated even when problems 
happen during the advance of the front.  To improve mesh quality (as far as element shape is concerned), an a 
posteriori local mesh improvement procedure is used.  A description of the new object classes introduced in 
gOcad data structure for the implementation of the finite element meshing and result visualization capabilities is 
presented. 
 
 
1  Introduction 
 
It is well known that gOcad can be used in many applications.  This may be attributed to its modeling and 
visualization capabilities.  One natural application of gOcad is pre- and post-processing of three-dimensional 
finite element simulation.  This work describes the implementation of a gOcad plug-in, called gFEM, that adds 
capabilities to gOcad to act as a finite element mesh generator and as a finite element post-processor. 
 
Finite element simulation imposes severe shape restrictions to triangular and tetrahedral objects.  Shape quality 
is necessary to avoid numerical problems in a simulation.  This implies that element shape quality measures are 
necessary.  This topic is well represented in the literature [Joe 1991, Parthasarathy et al 1993, Liu & Joe 1994, 
Lewis et al 1996], and many unstructured mesh generation algorithms incorporate features to avoid generation of 
poor shape elements [Moller & Hansbo 1995, Chan & Anastasiou 1996, Rassineux 1998, Cavalcante Neto et al 
2001]. 
 
The proposed gFEM plug-in uses a meshing algorithm devised by Cavalcante Neto and co-authors that has been 
recently published [2001].  This algorithm was designed to meet specific shape requirements.  First, the 
algorithm should produce well-shaped elements, avoiding elements with poor aspect ratios.  While the algorithm 
does not guarantee bounds on element aspect ratios, care is taken at each step to generate the best-shaped 
elements possible.  Empirical observations, described in [Cavalcante Neto et al 2001], show that the algorithm is 
largely successful in meeting this requirement.  The second requirement is that the algorithm generates a mesh 
that conforms to an existing triangular mesh on the boundary of a solid region.  This is important in gOcad 
context because usually it is necessary to honor existing surface triangulations.  Finally, a third requirement of 
the algorithm is that it has the ability to transition well between regions with elements of highly varying size.  
Finite element simulations require high degree of element density in regions of high response gradients.  
Therefore, it is not uncommon to have in a same region different orders of magnitude of element characteristic 
sizes.  Some other algorithms work best when all generated elements have similar characteristic size, but the 
current algorithm has been designed to have good size transition capabilities. 
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The body of this paper is divided into six sections.  Sections 2 and 3 summarize the new gOcad objects 
implemented in gFEM plug-in.  MSolid class, which is similar to existing TSolid class, is used to represent a set 
of finite element mesh objects.  Each solid region has a distinct mesh, which is represented by an MMesh object.  
A new class, called Mesh3dTessellator, encapsulates the mesh generation algorithm.  Section 3 also describes 
the communication of gOcad with a finite element program, which is done through a neutral format file.  In 
addition, this section gives some insight on the representation of finite element simulation attributes and results.  
Section 4, which is the major part of this paper, describes the steps of the mesh generation algorithm in some 
detail.  Section 5 shows an application example of the new pre- and post-processing capabilities of gFEM plug-
in.  Finally, Section 6 gives some concluding remarks. 
 
 
2  The gFEM plug-in 
 
gFEM is a gOcad plug-in that provides new capabilities to the program, which may be used as a pre- and post-
processor for finite element analysis.  The plug-in is composed by a set of libraries with specific functions: 

mesh: Implements a new gOcad object that provides a 3D tessellation algorithm to generate unstructured 
tetrahedral finite element meshes, and an interface to link gOcad with finite element programs. 

gapi: Implements an API interface for the new object. 
gui: Modifies the standard gOcad interface to allow the communication with finite element programs 

through a neutral file. 
 
 
3  The MSolid object 
 
A new gOcad object was implemented to support finite element mesh generation using gOcad.  The MSolid 
object was designed to have similar properties than current TSolid object, which is used to represent a solid 
inside gOcad.  The main differences are that MSolid implements a new mesh generation algorithm [Cavalcante 
Neto et al 2001] and holds a set of MMesh objects.  Each MMesh object represents a finite element mesh inside 
a single solid region.  The MSolid class derives from the AtomicGroup class, as can be seen in Figure 1.  
Alternatively, MSolid class could have been derived from TSolid class. 
 

 
Figure 1 – MSolid class inheritance diagram. 

 
The MMesh class derives from the Atomic class, as shown in Figure 2, and holds a tetrahedral mesh generated 
by the 3D tessellation algorithm.  The mesh generation algorithm is implemented in C and has its own data 
structure.  Therefore, a new object, called Mesh3dTessellator, was created to encapsulate the C code.  As 
described in Section 4, this algorithm generates a finite element mesh for a single solid region. 
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Figure 2 – MMesh class inheritance diagram. 

 
When a Mesh3dTessellator object is created, its constructor method builds up the input data needed by the mesh 
generation algorithm.  Basically, this consists of a list of triangles on the boundary of the target solid region.  As 
for the creation of a TSolid object, an MSolid object requires a set of closed TSurf objects for its creation.  Each 
closed TSurf object provides the list of triangles for the meshing algorithm.  A method of the TSurf object 
checks whether it forms a closed region, which is required by this algorithm.  From this input data, a 
Mesh3dTessellator object is created for each closed region.  Each Mesh3dTessellator object creates an MMesh 
object to hold the generated mesh, which in turn is attached to the list of MMesh objects of the corresponding 
MSolid object.  The generated mesh consists of a list of node coordinates and a list of tetrahedra defined by their 
node connectivity.  Finally, a conversion method is called to incorporate the generated mesh into gOcad data 
structure.  Each generated tetrahedron is a gOcad Tetra object. 
 
To make the new object accessible from the gOcad program interface, an implementation of CLI commands was 
made for the MSolid object.  In addition, all objects needed for visualization and input/output functions were 
implemented. 
 
3.1  Neutral File communication 
 
The communication between the gOcad application and a finite element program is made through an ASCII file 
in a neutral format, which is called Neutral File.  This file format is described in site http://suporte.tecgraf.puc-
rio.br/manuais/neutralfile and is used to represent both input data (mesh and simulation attributes) and output 
data (results) of a finite element simulation. 
 
Two new functions were implemented to provide interface between gOcad and the finite element program: the 
Neutral File export function and the Neutral File import function (Figure 3). 
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Export Import
 

Figure 3 – Interface functions to export and import Neutral Files. 

 
These two new interface functions were inserted in the File sub-menu on the gOcad’s main window.  When an 
option is chosen, the corresponding action is executed (Figure 4). 
 

Import Export
 

Figure 4 – Action functions to export and import Neutral Files. 

 
For either export or import actions, the Action object must deal with finite element simulation attributes.  These 
attributes must be translated to or from the Neutral File format.  The translation of nodal attributes is 
straightforward, since in gOcad attributes are attached to vertices.  This translation can be done by creating 
properties, in the gOcad model, that have direct correspondence with nodal attributes in the finite element model, 
such as: 

supp_x – nodal displacement is restricted in the global X direction. 
supp_y – nodal displacement is restricted in the global Y direction. 
supp_z – nodal displacement is restricted in the global Y direction. 
load_x – nodal force in the global X direction. 
load_y – nodal force in the global Y direction. 
load_z – nodal force in the global Z direction. 

These properties can be combined to result in finite element boundary conditions for a structural stress analysis. 
 
In order to set finite element material properties or any other property attached to elements, since the gOcad has 
only vertex properties, an extension of gOcad Tetra class was made having a new field to hold these properties 
(currently only material property was implemented).  Material properties are saved both in gOcad object ASCII 
file format and in Neutral File format. 
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The results of a finite element analysis may be defined at nodes or elements.  Nodal results are directly 
associated with vertex properties in the gOcad model.  Element results are usually specified at integration points.  
In this case, an extrapolation/smoothing process is performed to get the results at node points, and all finite 
element results are imported as vertex properties in gOcad.  Therefore, gOcad visualization tools may be used to 
show these results, and the program naturally works as a finite element post-processor. 
 
 
4  Mesh generation algorithm 
 
The current algorithm incorporates aspects of well-known meshing procedures and includes some original steps.  
It uses an advancing front technique (AFT), along with an octree to develop local guidelines for the size of 
generated elements.  The AFT is based on a standard procedure found in the literature [Peraire et al 1988, Lohner 
& Parikh 1988, Jin &Tanner 1993, Moller & Hansbo 1995, Chan & Anastasiou 1996, Rassineux 1998] with 
additional steps to ensure valid volume mesh generation for virtually any domain.  Special care is taken during 
the advancing front procedure to generate elements with the best shape possible. 
 
The input to the present mesh generation algorithm is a faceted description of the boundary of a region to be 
meshed.  This is given by a list of nodes defined by their coordinates, and a list of triangular faces defined by 
their node connectivity.  This type of input can represent geometries of any shape, including holes, and it can be 
easily incorporated in any modeler or finite element system.  The algorithm is organized in the phases listed in 
Figure 5. 
 

Quality evaluation and local backtracking with element deletion

Laplacian smoothing with validity checks

Local mesh improvement

Refinement to provide minimum size disparity for adjacent cells

Initialization based on boundarymesh

Octree generation

Refinement to force a maximum cell size

Quality evaluation and local backtracking with face deletion

Geometry-based element generation

Advancing front procedure

Topology-based element generation

 
Figure 5 – Outline of mesh generation algorithm. 
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The primary purpose for the octree is to generate guidelines for the size of the elements generated during the 
advancing front procedure.  The element size distribution through the region is inferred by the size distribution in 
the input boundary mesh.  The octree generation involves three steps.  In the first step, the octree is initialized 
based on the input data.  In the other two steps, the octree is further refined.  Figure 6 is used to illustrate the 
process of generating the octree, which, for clarity, depicts a two-dimensional example using a quadtree. 
 

 
 

 

 
 
 

(a) 

 

 
(b) 

 
 

 
(c) 

 
 

 
(d) 

Figure 6 – Generation of background octree structure from given boundary mesh (2D example). 

 
Initially, a bounding cube is created based on the maximum range of any of the three Cartesian coordinates of 
the nodes in the input data.  This is the root cell of the octree.  Figure 6-a illustrates a hypothetical two-
dimensional input data represented by the model and its boundary refinement.  The boundary model presents an 
increasing degree of refinement from the left side to the right side.  In the first step of the octree generation, 
represented by the initialization of the octree, each face of the input boundary mesh is used to determine the local 
depth of subdivision.  The octree cell containing the centroid of each input face is determined.  If the area of this 
cell’s face is larger than the area of the boundary face, then this cell is subdivided into eight smaller cells.  This 
process is repeated recursively and finishes when the area of the cell’s face is smaller than a constant times the 
area of the boundary face.  In this implementation a factor of 0.4 was used.  The use of this factor is 
recommended by other work found in the literature [Shephard & Georges 1991] to avoid excessive refinement in 
the octree generation.  This process is repeated for all faces of the input data.  The results are illustrated for the 
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two-dimensional example in Figure 6-b.  The previous step can leave large octree cells in the interior of the 
region.  In a second step, the octree is refined to guarantee that no cell in the interior is bigger than the largest 
cell at the boundary.  This will avoid excessively large elements in the domain interior.  Figure 6-c shows the 
resulting quadtree after this operation for the two-dimensional example.  The octree is further processed in a 
third step, to force only one level of refinement between neighboring cells.  This enforces a natural transition 
between regions of different degrees of refinement.  Traversing the octree and examining the level of refinement 
between adjacent cells perform this operation.  If the difference is more than one level, the appropriate cells are 
refined until the criterion is satisfied.  Figure 6-d shows the quadtree generated for the two-dimensional example 
after this procedure. 
 
The advancing front technique starts with a surface that bounds a region.  Volume elements are “extracted” or 
“pared” from the region one at a time.  As each element is extracted, the bounding surface is updated and the 
process is repeated.  The procedure terminates when the entire region is meshed, or when one or more internal 
unmeshed cavities remain, from which valid elements cannot be extracted.  In the present algorithm, the 
advancing front process is divided into three phases to ensure generation of valid volume meshes.  In the first 
phase, a geometry-based element generation is pursued to generate elements of optimal shape.  After this ideal 
phase is exhausted, and no more optimal elements can be generated, a topology-based element generation takes 
place, trying to create valid, but not necessarily well shaped, elements in the remaining region.  In the last phase, 
a backtracking procedure is used to delete element faces that are preventing the algorithm from completing a 
mesh. 
 
Ideally, the entire mesh would be generated in the geometry-based phase.  However, this depends on the 
geometry and topology of the given boundary model and is strongly related to the shape quality of the given 
boundary mesh.  The process starts with the creation of the initial advancing front, which is formed by the given 
boundary mesh.  The current boundary mesh is stored in two separated lists.  The first is a list of active faces, 
which includes all boundary mesh faces that have not been used in an attempt to generate valid tetrahedra.  The 
other is a list of rejected faces, that is, with the faces that failed in the generation of elements for the current 
phase.  Initially, all faces of the given boundary mesh are stored in the first list, which is the list used in the 
geometry-based generation phase. 
 
In the geometry-based element generation phase, the current boundary mesh advances by trying to form 
tetrahedra based mainly on geometrical considerations.  At each step, a triangular boundary face, referred to as 
base face, is chosen from the list of active faces.  All existing faces represent the current front at a certain time of 
the algorithm.  The procedure for generating a tetrahedron in this phase is explained by means of Figure 7.  The 
optimal location N1 for the vertex of the tetrahedron to be formed is determined with the help of the octree.  The 
octree cell containing the centroid M of the base face is determined.  The optimal point N1 lies on a line 
perpendicular to the base face passing through this centroid.  The distance from the optimal point to the base face 
centroid is equal to the octree cell size.  The optimal point defines a search region where the vertex of the new 
tetrahedron may be located.  This region is a sector of a sphere whose center is the optimal point and whose 
radius is proportional to the octree cell size.  In the current implementation proportionality constant of 1.0 was 
adopted.  This sphere defines an upper bound for the distance between the target vertex of the tetrahedron and 
the centroid of the base face.  A lower bound is also defined to ensure that the generated tetrahedron will have 
volume greater than the smallest acceptable volume.  In the current implementation, this lower bound is defined 
by a tetrahedron with height equal to 1/10 of the distance between N1 and M.  The optimal region is used for two 
reasons.  First, to ensure shape quality of the elements to be generated and, second, to ensure that new internal 
nodes will be created only when it is strictly necessary and always in good positions.  Figure 7 shows, based on 
the bounds described, that points Q1 and Q2 are acceptable for forming a new tetrahedron, while points Q3, Q4, 
and Q5 are not.  If no existing node is inside the optimal region, a new node is inserted at the optimal location 
N1 and an element is generated using this node.  If only one node exists in the region, this node is used to 
generate the element.  If more than one node is found in the region, they are ranked according to the solid angle 
that they will create with the base face.  The node that will create the largest solid angle is used to generate the 
element.  The solid angle is evaluated by projecting the base face onto a unit sphere of center at the candidate 
node and computing the area of the spherical polygon thus determined [Carvalho & Cavalcanti 1995].  
Additional geometric checks are performed to ensure that the faces of the new element do not intersect any 
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existing face of the advancing front.  If this is the case, the element is rejected.  Once a valid tetrahedron is 
generated for the current base face, the list of active faces is updated.  When there are no more faces in the list of 
active faces, the algorithm tries to generate elements using the faces that were rejected previously.  Some base 
faces that failed previously might now work because the front has changed with the addition of elements.  A 
similar procedure is mentioned in the literature [Moller & Hansbo 1995].  The geometry-based element 
generation phase ends when either there are no faces left in the boundary contraction lists (in which case an 
optimal mesh was generated), or when a rejected face fails a second time. 
 

Q1 Q2 Q3

Q5 Q4

N1

R

H

MA
B

C

Optimal
region

= size of the
octree cell

Points in the front
Ideal position  

Figure 7 – The determination of a tetrahedron in the advancing front procedure. 

 
The objective of topology-based element generation phase of the algorithm is to force the generation of valid 
tetrahedra if possible, even if the new elements do not satisfy the bounds used in the previous phase for element 
shapes.  This phase starts when a boundary face fails twice in trying to generate an optimal element.  The list of 
rejected faces of the previous phase is now considered as a list of active faces and, similarly to the geometry-
based phase, a list of rejected faces is created for faces that eventually fail in generating valid tetrahedra.  In the 
topology-based element generation phase, any node close to the current base face is selected and stored in a list 
of candidate nodes.  The node that forms the best solid angle with the base face is chosen for the generation of 
the new tetrahedron.  If the faces of this tetrahedron do not intercept any other face of the current advancing 
front, the element is created and the boundary is accordingly contracted.  As in the geometry-based phase, the 
topology-based phase ends either when the list of active faces is empty or when a face of the advancing front is 
rejected twice due to intersection problems. 
 
Sometimes the procedures performed in the previous phases are not sufficient to generate a valid mesh.  The 
contracted boundary might end up in one or more polyhedra that cannot be meshed (cannot be subdivided into 
tetrahedra).  One possible solution to this problem is to insert a node in the interior of a contracted region.  
Connecting this node to the region triangular boundary faces can then form valid elements.  There are cases, 
however, in which such a construction is not possible.  For example the resulting polyhedron might not have a 
“kernel region” in which any point is visible through a straight line from all its vertices.  It is interesting to 
observe that this problem has no counterpart in two dimensions: any non-self-intersecting polygon can be 
triangulated with no need to insert additional vertices. 
 
In the present algorithm, the solution to this problem is to locally modify the advancing front, deleting already 
generated adjacent tetrahedra until a “near” convex non-meshed polyhedron is formed.  The procedure used to 
transform an ill-shaped polyhedron into one with a visible kernel is as follows.  The boundary of the ill-shaped 
polyhedron related to a current base face is identified.  A visibility test is performed.  This consists of computing 
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the coordinates of the polyhedron centroid and counting the number of intersections that would occur, for each 
of the polyhedron’s faces, if lines were drawn from the centroid to all of the polyhedron’s vertices.  If there is at 
least one intersection for any of the polyhedron’s faces, the polyhedron must be modified.  Removing the 
element attached to the face that has the highest number of intersections does this.  This process is repeated until 
the centroid is visible from all nodes of the polyhedron.  It is possible that the process of finding a “near” convex 
polyhedron may fail if faces to be removed are part of the original boundary mesh.  When this occurs, the 
elements attached to internal faces with non-zero intersection counts are deleted and the element extraction 
procedure is restarted.  If this polyhedron is still not meshable, the algorithm fails and terminates.  In principle, it 
is possible to create a boundary input mesh that forces failure of the algorithm.  Such a failure, however, has not 
yet been observed for several realistic input boundary meshes tested so far. 
 
In the last two phases of the advancing front technique, poorly shaped tetrahedral elements might be generated.  
Two a posteriori local mesh modification procedures were implemented to improve mesh quality.  The first is a 
conventional nodal relocation smoothing technique, which is based on node coordinates averaging, with validity 
checks.  The second is a backtracking procedure, similar to the last phase of the advancing front technique, that 
deletes faces of poorly shaped elements to create a region where elements with better shape can be generated.  
The local mesh improvement procedures imply that element shape quality measures are necessary.  Basically, 
any shape quality metric may be used.  In the present case, the metric adopted is a normalized ratio between the 
root mean square of the lengths of the edges of a tetrahedron, and the volume of the tetrahedron [Weatherill & 
Hassan 1994].  This metric generates a good quality measure and is computationally efficient.  The range of 
valid values varies from one to infinity ([1, ∞]) and the optimal value for the regular tetrahedron is 
approximately 8.5. 
 
The objective of the backtracking procedure is to delete element faces surrounding a “bad” element to create a 
local polyhedron that can be remeshed with better-shaped elements.  A local polyhedron to be meshed is created 
by deleting all elements adjacent to the “bad” element.  This is illustrated by means of Figure 8, which shows a 
two-dimensional analogous case.  After the creation of the local polyhedron, an attempt is made to generate 
elements by inserting a new internal node in the polyhedron’s centroid, as shown in Figure 8.  If this does not 
work, the backtracking procedure described before is employed. 
 

 

 
 

Figure 8 – Backtracking procedure to remesh around a “bad” element (2D example). 
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5  Example 
 
An example is presented to illustrate the gFEM plug-in for finite element analysis.  The example is a cube with 
5.0 m of side and is composed by a material with the following properties: 

Elasticity modulus: E = 100.0 MPa 
Poissoon ration: ν = 0.3 
Specific weight: γ = 0.027 MN/m3 

 
To complete the finite element model, it is necessary to define boundary conditions and loading.  A gravitational 
load is considered and the following displacement restrictions (supports) are used: 

Side X = 0 and X = 5 is not allowed to move in the X direction; 
Side Y = 0 and Y = 5 is not allowed to move in the Y direction; 
Side Z = 0 is not allowed to move in the Z direction. 

 
Figure 9 shows the original model geometry and its deformed configuration, in which the displacements values 
are scaled by a factor of 50. 

  
 

Figure 9 – Cube example with original geometry and deformed configuration. 
 
Stress results of this analysis are shown in Figure 10.  The principal stresses on the model boundary are shown in 
this figure. 
 

 
Figure 10 – Principal stress contour on model boundary. 
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6  Conclusion 
 
A gOcad plug-in, called gFEM, was described in this paper.  This plug-in adds capabilities to gOcad to act as a 
finite element mesh generator and as a finite element post-processor.  Basically, the plug-in creates a class called 
MSolid that implements a new tetrahedral mesh generation algorithm, which may be used as an alternative to 
existing TSolid class.  This algorithm has been recently published [Cavalcante Neto et al 2001] and has the 
following characteristics: 
•  It avoids producing elements with poor aspect ratios. 
•  It generates meshes that conform to existing triangular meshes on the boundary of a domain. 
•  It generates meshes that exhibit good transitions between regions of different element sizes. 
 
The algorithm uses an advancing front technique (AFT), along with an octree to develop local guidelines for the 
size of generated elements.  Although there are many algorithms that have been proposed in the literature in 
recent years, few of them seem to present the above characteristics in a complete satisfactory way.  One of the 
reasons for this is the consideration of two additional steps.  These steps, namely backtracking procedures, are 
heuristic attempts to avoid the problem of missing closure of the advancing front algorithm.  The necessity of 
these procedures arises from the fact that, unlike triangulation in two dimensions, the discretization of any given 
volume into tetrahedra is not formally ensured, unless some additional steps are performed. 
 
The advancing front method is divided into two phases.  One, called the geometry-based phase, is based solely 
on the shape of the elements.  In the other phase, called topology-based phase, the optimal element shape criteria 
are raised and the algorithm tries to create valid tetrahedra based only on topology, as in any advancing front 
method.  This two-phase AFT differentiates this algorithm from other AFT-based meshing algorithms.  To 
improve mesh quality (as far as element shape is concerned), an a posteriori local mesh improvement procedure 
is used. 
 
Several works in the literature have addressed the solution to this problem recently.  For example, the work of 
Chan and Anastasiou [1996] uses local mesh regeneration based on the deletion of sliver tetrahedra in a post-
processing step.  The a posteriori backtracking procedure of the present algorithm has the same objective of that 
step, but uses a different algorithm.  In another recent work, Rassineux [1998] also optimizes the mesh by 
reconstruction of sub-volumes that are obtained by the deletion of a group of tetrahedra.  It is worth mention that, 
in the present algorithm, the backtracking procedure is not only used in a post-processing stage to improve mesh 
quality but also during the advancing front phase, when a sub-volume that cannot be subdivided into tetrahedra 
is encountered.  In this case, not only the validity of the mesh is enforced but also mesh quality is improved. 
 
Another important difference between the current algorithm and the ones referred to above is that those 
algorithms generate internal nodes inside the domain in a prior step, while in the present algorithm internal nodes 
are generated simultaneously with element generation.  Rassineux uses an octree procedure to generate internal 
nodes prior to the element generation.  The current algorithm also uses an octree, but only as a node-spacing 
function.  This approach tends to have a better control over the quality of the generated mesh and, apparently, 
decreases the amount of heuristic cleaning-up procedures. 
 
The gFEM plug-in also extends gOcad to communicate with a finite element analysis program.  This 
communication is done through ASCII files in a neutral format.  This neutral file is used for both sending input 
data to finite element analysis and receiving simulation data from the analysis.  Since in gOcad properties are 
attached to vertices, finite element results, usually specified at integration points, are extrapolated to nodal points 
and locally smoothed so that they can be visualized using gOcad graphics tools. 
 
A simple example was presented to illustrate the capabilities of the gFEM plug-in. 
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