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ABSTRACT

The results obtained with density-based topology optimization method are usually comprised of a discrete density
field that represents the optimal material distribution within the structure. Although this technique leads to an optimal nu-
merical solution, human intervention is often needed to obtain a practical design. One of the main steps towards obtaining
the final design involves the computational modeling of the structure in order to perform further numerical simulations to
verify the design criteria. This step may involve handwork and often reveals itself as a cumbersome and error-prone task.
To circumvent this problem, several procedures are available in the literature concerning the geometrical interpretation of
density-based results. However, none of them fully address the computational modeling i.e. geometric definition; attribute
management; and discretization. This work proposes the use of the Half-Edge Topological Data Structure to automati-
cally build 2D models from the interpreted geometric data. This data structure is particularly suitable since it is capable
of handling complete planar subdivision, i.e., a subdivision of a two-dimensional space in which the entire space is filled
with topological faces (no empty planar regions). Several numerical examples are present to demonstrate the efficiency
and robustness of the proposed scheme.
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1. INTRODUCTION

Topology optimization address the problem of finding the best material distribution, within the
design space, which optimizes a given performance measure (e.g.,the structural compliance) subject
to a set of design constraints (e.g. stress constraints). This methodology can handle a wide set of
constraints while still providing high-performance and low-cost designs, thus presenting itself as an
attractive tool for industrial design purposes.

As a matter of fact, this technique has been widely employed in real-life structural applications
including the optimization of aircraft wings [1], automotive components [2] and design of reinforced
concrete structures [3]. However, as noted in [4], density-based topology optimization solutions are
often considered as conceptual, given that a post-processing stage is needed to obtain a manufac-
turable design. This step usually involve handwork [5] and often reveals itself as a cumbersome and
error-prone task.

To circumvent this problem, several procedures are available in the literature concerning the shape
extraction of topology optimization results. For example, in [6], the authors propose an automated
procedure which integrates the interpretation of density-based topology optimization results with the
additive manufacturing technology, colloquially known as 3D printing. In such work, the density
contours of the optimal result are obtained by interpolation of density nodal values, thus leading to
tessellated surfaces which are directly outputted to suitable additive manufacturing file formats. Alter-
natively, in [7], representative cross-sections are used for reconstructing the 3D topology optimization
results. Each cross section is interpreted as a two-dimensional result in which the interpolated density
nodal values are appropriately fitted by splines. One of the main advantage of such approach is that it
leads to a computer-aided design (CAD) model which may used for latter design stages as well as for
additive manufacturing purpose. A common drawback inherent to such procedures, as noted in [6], is
that interpreted results are no longer optimal and may also not comply with the given design criteria,
thus slightly deteriorating the topology optimization solutions.

In order to assess such degradations, further numerical simulations must be performed, thus requir-
ing the computational modeling of the final designs. To fulfill such requirement, this work proposes
the use of the Half-Edge Topological Data Structure to automatically build models from the inter-
preted geometric data. In addition, to demonstrate the flexibility of such modeling, a linear elastic
analysis of the interpreted results is carried out. A brief overview of each stage involved in the pro-
posed approach is introduced throughout the text.

2. TOPOLOGY OPTIMIZATION

In the field of structural optimization, structural parameters are manipulated in order to render a
performance measure its optima and satisfy a set of constraints. The performance measure, as well
as the constraints, may be cost related or a structural response. Topology optimization is a branch of
structural optimization in which the material distribution within a structure is optimized. The standard
formulation of topology optimization is: find the material distribution that minimizes the compliance
subject to a volume constraint, which is a bounded amount of material to distribute [8].

In the density-based topology optimization, the material distribution is modeled using a domain
discretization. In this approach, the design variables are the density associated to each element within
the discretization. The structural response, required by the optimization, is most commonly found
using the finite element method, which also requires a domain discretization [9]. In this case, the
domain discretization is often the same for density interpolation and finite element analysis.

Theoretically speaking, the density may only be zero or one, which means there is material in this
element of the discretization or not. However, this problem would be discrete and not suitable for
most optimization method available. In order to overcome this hurdle, a continuum density between
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zero and one is allowed and the solution is subsequently penalized so that the final solution tends to
one or zero. This approach is known as Solid Isotropic Material with Penalization (SIMP) [10].

This formulation provides interesting results and has been widely used in literature. However, its
results consist in a collection of density values through the domain, which may give the impression
of topology but, in fact, does not possess a single piece of topological information. For instance, it
is illustrated in Figure 1 the result of the benchmark MBB-beam problem for density-based topology
optimization, in order to illustrate the typical result obtained from this technique.

(a) MBB-beam problem setting [11] (b) Density-based topology optimization result

Figure 1. Typical density-based topology optimization result

In addition, regarding practical application, the structural safeness and serviceability must be ver-
ified. Unfortunately, the output density field of a density-based topology optimization does not pro-
vide the wherewithal for further analyses.Therefore, in order to assess the suitability of the design
provided by the density-based topology optimization, an interpretation procedure, such as the one
presented herein, is fundamental. Furthermore, some examples show that topology optimization may
not suffice, requiring modifications in order to determine the final design. Such modifications might
be performed manually or by means of a shape optimization, which is preferable; both approaches
can profit greatly from the interpreted model.

3. DENSITY CONTOURS

Several approaches towards recovering geometric information from density-based topology opti-
mization results are available in the literature. According to [7], such approaches may be divided in
three main categories: image interpretation approach [12], geometric reconstructing approach [13]
and density contour approach [14]. The image interpretation approach relies on computer vision
technologies and image processing techniques. Specifically, the "gray" density results are initially
converted to black-and-white images for which the boundary may be obtained by suitable image
processing algorithms. In the geometric reconstruction approach, the boundaries are represented by
mathematical geometric reconstruction routines based on computer-aided design (CAD) techniques.
The density contour approach is based on contour plotting techniques of continuous scalar fields.
Such techniques rely on the interpolation of nodal values in order to identify the iso-contours.

In this work, we employ the density contour approach in order to obtain a reliable and automated
process towards identifying piecewise linear representations of the structure’s boundaries. Likewise in
stress recovery techniques for FEM, the first stage of this process is to obtain density values ρi at each
of the mesh’s nodes. This step is usually performed by suitable extrapolation of each element’s density
values ρ(i) to its neighboring nodes. In the simplest case, i.e. each element has a constant density
value, this process reduces to a simple averaging of the density values of the elements connected to a
given node. A simple example of such process is depicted in Figure 2.

With the nodal values in hand, it is then straightforward to identify the discrete points of a given
contour line by simple linear interpolation. In addition, if the elements’ edges are traversed in a ori-
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Figure 2. Interelement averaging

ented fashion, the straight line segments of the contour may be readily obtained by simply connecting
the interpolated points. Figure 3 depicts the procedure for a single element( in this case the element’s
edges are traversed in a counter clock-wise orientation).

Figure 3. Nodal interpolation

After performing such procedure for every element of the mesh, the real contour line is roughly
sketchted by a sequence of connected straight lines segments. For instance, Figure 4 depicts the
density contour plot for the topology optimization result of the MBB beam problem, while Figure 5
illustrates the approximated contour line for a density level of 0.35.

Although the boundaries’ geometry has been be roughly sketched, the data obtained by such pro-
cedure is only enough for visualization purposes. As a matter of fact, such data is comprised of a list
of disjoints straight line segments for which topology information can only be inferred by human vi-
sual interpretation. Therefore, the next stage consists of sending such list of segments to the half-edge
data structure, which is able to automatically obtain such informations.
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Figure 4. Density plot for the MBB problem

Figure 5. Interpretation for the MBB problem

4. HALF-EDGE

The half-edge topological data structure was first introduced by Mantyla [15] with the main pur-
pose of introducing a topological data structure for solid modeling. Although the half-edge data
structure has proved itself to be a powerful tool in handling, storing and saving solid models, it re-
vealed to be only applicable for manifolds geometries. In order to overcome this hurdle, different
topological data structures have been proposed [16, 17, 18, 19, 20].

In three dimensions, 2-manifold means that a small sphere intersecting the solid may only be
divided into two subsets. Even though half-edge has drawbacks in representing three dimensional
solids, it can still be handful for two-dimensional planar models. In other words, the half-edge data
structure is capable of representing planar subdivisions in which a small circle is divided into many
subsets.

This data structure concentrates a great amount of data within the topological entity called half-
edge, which is an oriented edge within a loop of a face. Therefore, most topological queries are
performed using information stored in such entity. In summary, the half-edge data structure has the
following topological entities: vertices; edges; half-edges; faces; loops; and solids. The linkage of
these entities is, thus, crucial to the consistency of the topological data.

In order to consistently build such topological model, the half-edge data structure is manipulated
by means of the so-called Euler operators [21], which are appropriately designed as to satisfy the
Euler-Poincaré formula:

V −E +F− (L−F)−2(S−G) = 0 (1)

in which V is the number of vertices; E is the number of edges; F is the number of faces; L is the
number of loops; S is the number of solids; and G is the number of genus. Table 1 demonstrates some
of the possible Euler operators and the changes they make upon the model.
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Table 1. Some Euler operators

Operator Name Meaning V E F L S G
MVFS Make a vertex, a face and a solid +1 +1 +1 +1
MVR Make a vertex and a ring (loop) +1 +1
MEV Make an edge and a vertex +1 +1

MEKL Make an edge and kill a loop +1 -1
MEF Make an edge and a face +1 +1 +1

Following this idea, the model’s constructive procedure relies on progressively calling the proper
Euler operators according the desired changes to the model. An example of such construction is
depicted in Figure 6.

Figure 6. Constructive procedure of a simple parallelogram

This topological data structure plays a crucial role in the framework presented in this work for the
interpretation of topology optimization results. Since the density contour algorithm outputs a list of
disjoint line segments, the half-edge data structure is used to bring these line segments together into
a consistent model.

When the first segment is inserted, the MVFS operator is called to initialize the model. For the
subsequent segments, a geometrical search must be carried out in order to locate coincident vertices
to use MEV or MEF operator. The decision between MEV and MEF depends on whether one or
both vertices of a segment exist in the model . When no vertex is found the operation is performed
by initially calling MVR and subsequently MEV. It is worth noting that an auxiliary geometric data
structure, the R-Tree [22], is used to speed up such geometric queries.

Once all the line segments have been inserted into the half-edge data structure, the model possess
all topological information needed for the interpretation. Specifically, the geometry of the internal
loops (holes), and the outer loop (boundary), are properly arranged in lists of coordinates oriented
counterclockwise. This way, such lists may be readily outputted for the next stage where the piecewise
linear boundaries will be smoothed by means of a B-spline curve fitting procedure.
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5. B-SPLINE CURVE FITTING

Curve fitting address the problem of finding a curve, or algebraic function, which has the best fit
to a series of data points. This process may be carried out by either interpolation, where the data
points are exactly fitted, or the so-called smoothing approach, which relies on minimizing a given
error measure, usually the square deviation.

In the context of this work, the curve fitting stage is responsible for obtaining curves which
smoothly represents a sequence of points ci (i = 1 . . .r) of open/closed polygons obtained in the pre-
vious stage. In order to directly communicate with the CAD design, cubic B-splines are chosen as the
fitting curves. Furthermore, given the low accuracy due to the linear interpolation of the density nodal
values, the smoothing approach is considered superior for the purposes of this stage. In the following,
we give a brief review on B-splines. Afterwards, the curve fitting problem is stated.

5.1 B-splines

A two-dimensional dth-degree B-spline curve may be defined as the following linear combination

s(t) =
n

∑
i=1

Bi,d (t)pi (2)

where pi = (xi,yi) are the control points and Bi,d (t) are the so-called B-splines blending functions,
given as

Bi,0 (t) =
{

1, if t ∈ [ti, ti+1)
0, otherwise

Bi,d (t) =
t− ti

ti+d− ti
Bi,d−1 (t)+

ti+1+d− t
ti+1+d− ti+1

Bi+1,d−1 (t)
(3)

in which
(
t j
)n+d+1

j=1 are the elements of a sequence of non-decreasing real numbers t called the knot
vector, this is

t = {t1, t2, · · · , tn+d+1} , ti ≤ ti+1 (4)

A B-spline may also be define as a piecewise polynomial curve of the form

s(t) =


fd+1 (t,p1, · · · ,p1+d) t ∈ [td+1, td+2)
fd+2 (t,p2, · · · ,p2+d) t ∈ [td+2, td+3)

...
...

fn (t,pn−d, · · · ,pn) t ∈ [tn, tn+1]

(5)

where the dth-degree polynomials fi (t,pi, · · · ,pi+d) are given by the following recurrence relation

fi,0 (t) = pi

fi,d−r+1 (t) =
ti+r− t
ti+r− ti

fi−1,d−r (t)+
t− ti

ti+r− ti
fi,d−r (t)

(6)

for i = d− r+1, . . . ,n and r = d,d−1, . . . ,1.
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This piecewise polynomial feature ensures that the B-spline curve is C ∞ continuous inside each
knot interval. In addition, the smoothness at the joints

(
t j
)n

j=d+2 results from the following theorem
[? ]:

Theorem 1. Suppose that the number ti+1 occurs m times among the knots
(
t j
)m+d

j=1−i1 with m some
integer bounded by 1≤ m≤ d +1, i.e.

ti < ti+1 = . . .= ti+m < ti+m+1 (7)

then the spline s(t) has continuous derivatives up to order d−m at the join ti +1.

Therefore, if no knots are repeated along the knot vector, the B-spline curve is ensured to be, at
least, C d−1 continuous over its entire parametric space. This flexibility allows for the construction
of curves of almost any shape by appropriately choosing its degree, control points and knots. Hence,
this feature makes the B-spline well-suited for curve fitting and data approximation purposes.

This flexibility also allows for the construction of smooth closed curves. A closed dth-degree
B-spline is achieved by imposing C d−1 continuity between its initial and end parameters. Such con-
ditions may be written as

dks(ts)
dtk = dks(te)

dtk k = (1, . . . ,d−1) (8)

where ts and te are the initial and end parameters.
In this work, the closed B-splines are defined over periodic knot vectors, given as

ti =
i−(d+1)
(n+d) i = (1, . . . ,n+d +1) (9)

Due to this choice, the continuity conditions of equation (1.7) is achieved by wrapping the first and
last d control points, this is

p j = pn−d+ j j = (1, . . . ,d) (10)

5.2 B-spline smoothing

The best fitting closed dth-degree B-spline s(t), with control points pi i = (1 . . .n), to a sequence of
points ci (i = 1 . . .r) of a closed polygon is obtained by minimizing the square distance sum f between
the curve and the data points, this is

 min f =
n
∑

i=1
‖s(ui)− ci‖2

s.t. dks(ts)
dtk = dks(te)

dtk

(11)

where ui (i = 1 . . .n) is an arbitrary set of parameters on the interval [ts, te].
In this work we define such parameters by means of the chord length parametrization method [23],

which gives

u1 = 0;

ui =

i
∑

j=2
‖c j−1−c j‖

n
∑

j=2
‖c j−1−c j‖

; i = (2, . . . ,n−1)

un = 1;

(12)
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The problem in equation 11 may be rewritten in the following matrix form{
min f = ‖Ap− c‖2

s.t. Np = 0
(13)

where

Ai j = B j,d (ui)
i = (1, . . . ,r)
j = (1, . . . ,n) (14)

and

Ni j =
di−1B j,d (ts)

dt i−1 −
di−1B j,d (te)

dt i−1
i = (1, . . .d)
j = (1, . . .n) (15)

By expanding the squared norm of equation 13, the problem may be explicitly given as the follow-
ing equality constrained quadratic program{

min f = pT Qp+bT p
s.t. Np = 0 (16)

for which the solution may be readily obtained by solving the following system of linear equations[
Q NT

N 0

][
p
λ

]
=

[
b
0

]
(17)

where

Q = AT A; b =−2AT c (18)

and λ is a set of Lagrange multipliers.
The fitting of open B-splines is carried out in a similar fashion, except that the problem constraints

are given as

s(ts) = c1; s(te) = cr ; (19)

which ensures that the fitting B-spline interpolates the initial and end points of the open polygon.
In order to assess the efficacy of such scheme, the smoothing of leftmost internal loop, obtained

in the previous stage, is carried out. The smoothing is performed by using cubic B-splines with 15
control points. Figure 7 shows the results of the smoothing procedure.

Figure 7. Smoothing result
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6. RESULTS

To demonstrate the flexibility of such modeling, a linear elastic analysis of the interpreted result
is carried out by the finite element method. It is worth mentioning that the main cumbersome steps
towards this analysis, such as the mesh generation and boundary conditions enforcement, may be
readily overcome by making use of the topological information provided by the half-edge data struc-
ture. Figure 8 and 9 illustrates, respectively, the results for the displacements and von Mises stresses
for the final model.

Figure 8. Displacement result

Figure 9. von Mises stress plot

7. CONCLUSIONS

This work has proposed an automated process towards the interpretation of density-based topology
optimization results. In this framework, the half-edge plays a central role by appropriately providing
topological information for the geometric interpreted result. Furthermore, the flexibility of the pro-
posed modeling allows for a straightforward integration with the smoothing curve stage as well as
with the analysis step. Also, the curve fitting by B-splines has proven to be an efficient and accurate
procedure for obtaining smooth curves for a high-level description of the interpreted results. Another
great asset of this choice is that a computer-aided design model of the interpreted result may be readily
recovered, thus allowing for latter manual modification of the model.

It is important to point out that the proposed approach is also particular suitable for the integration
of topology and shape optimization methods. This integration allows for a complete framework for
the designing of high performance structures, which may be readily manufactured. Such integrated
framework is currently underdevelopment by the authors.
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