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ABSTRACT

The main objective of structural design is to determine a structure that can carry the applied loads providing safety
and without undergoing excessive displacements. In general, it is not clear, a priori, what is the most efficient shape
that satisfies the above criteria requiring the smallest amount of material. In order to obtain this optimal structure the
topology optimization method can be applied. It consists in finding the best material distribution that minimizes some
performance measure (e.g.,the structural compliance). However, in some applications the optimal structure fails to meet
the safety criteria due to stress concentration. To overcome this problem, stress constraints must be taken into account
during the topology optimization process. In this work a sequential second order cone programming method is proposed
to efficiently incorporate the stress constraints into the optimization problem. This method is well known in the field
of limit analysis and it has shown to provide optimal solutions with very low computational cost. Numerical examples
are presented here to demonstrate the efficiency and applicability of the proposed second order cone programming method.
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1. INTRODUCTION

The main goal of structural engineering is design structures that are able to fulfill the safety cri-
terion, which is not collapse under the action of the applied loads, and the serviceability condition,
in other words avoid the appearance of great displacements. In addition, the structural design must
fulfill these conditions spending less material as possible. Frequently, it is obvious, a priori, which is
the most efficient design satisfying the above criteria requiring the smallest amount of material.

In order to aid the determination of such optimal design the techniques of structural optimiza-
tion might be employed [1]. Among these techniques lies the topology optimization, in which the
material distribution over a given domain is optimized. The most commonly used formulation for
topology optimization seeks the material distribution that has at most a specified volume and renders
the compliance its minimum [2, 3, 4, 5].

Although this formulation is well established and widely covered in the literature, the design pro-
vided, in some applications, fails to meet the safety criteria due to stress concentration [6]. Therefore,
several attempts are being made to determine a formulation for stress constrained topology optimiza-
tion [6, 7, 8, 9, 10, 11]. One of the main problems of this formulation is that in addition to the
nonlinearity within the equilibrium equation, the stress constraints represent additional sources of
nonlinearity to the optimization.

In this paper a sequential second-order cone programming method is proposed to efficiently incor-
porate the stress constraints into the optimization problem. This method is very well known in the
field of limit analysis [12, 13, 14, 15, 16] and it has shown to provide optimal solutions with very low
computational cost [17, 18, 19]. Numerical examples are presented here to demonstrate the efficiency
and applicability of the proposed second order cone programming method.

2. SECOND-ORDER CONE PROGRAMMING

The second-order cone programming (SOCP) is a modern optimization technique which belongs
to the extensive field of conic programming (CP). SOCP is capable of handling nonlinear convex
problems including linear, quadratic and second-order cone constraints. Hence, linear programming
(LP), convex quadratic programming (QP) and convex quadratically constrained quadratic program-
ming (QCQP) are all particular cases of SOCP. Robust and efficient primal-dual interior points are
available for SOCP, thus allowing for fast solutions of large scale-optimization problems. Further-
more, in [20] it is shown that a great variety of problems can be cast as SOCP problems, including
sums of norms, problems with hyperbolic constraints and robust linear programming.

Conic programming is a subfield of convex optimization that studies a class of structured convex
optimization problems called conic optimization problems. A conic optimization problem consists
of minimizing a convex function over the intersection of an affine subspace and a convex cone. A
general conic optimization problems may be stated as


min cTx

s.t.
Ax = b
x ∈K

(1)

in which, x are the design variables, Ax = b is a set of linear constraints and K is the convex cone
associated to the problem.

Some examples of conic programming are linear programming (LP), convex quadratic program-
ming (Convex QP), second-order cone programming (SOCP) and the semidefinite programming
(SDP). Figure 1 depicts the different subfields belonging to the conic programming.
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Figure 1. Conic programming subfields

Which one of these subfields is distinguished by the type of cone associated to the problem. In LP
problems the associated cone is the so-called R+ cone, which is defined as:

R+ = {x ∈ R|x≥ 0} (2)

Thereby, a general LP problem may be written as:
min cTx

s.t.
Ax = b
x≥ 0

or


min cTx

s.t.
Ax = b
x ∈ Rn

+

(3)

In SOCP problems the associated cone is called the second-order cone, also known as the ice-cream
or the Lorentz cone, which is defined as

K q = {x ∈ Rn|x1 ≥ ‖x2:n‖ ,x1 ≥ 0} (4)

Thus, a general SOCP problem may be written as
min cTx

s.t.
Ax = b
x1 ≥ ‖x2:n‖
x1 ≥ 0

or


min cTx

s.t.
Ax = b
x ∈K q

(5)

Both the R+ and the

K q

cones belongs to a class of cones called self-scaled, see [17]. In [21] the extension of the primal-dual
interior points algorithm for convex programming problems is presented. This formulation allows
robust and highly efficient numerical implementations for solving SOCP. According to [20], worst-
case theoretical analysis shows that the number of iterations required to solve a SOCP problem grows
at most as the square root of the number of design variables, while numerical experiments indicate
that the typical number of iterations ranges between 5 and 50, almost independent of the problem
size. This feature allows for the solution of large scale problems with minor computation expenses. A
step by step numerical implementation of the primal-dual interior-point algorithm for conic quadratic
optimization is introduced in [17].

Given its numerical efficiency and stability, SOCP has been successfully applied to large scale limit
analysis problems [14, 22]. SOCP may be applied to limit analysis since several yield criteria can be
casted into a second-order cone constraint [12, 13, 23]. In this paper this efficient representation of
the material yield criteria is coupled with the stress constrained topology optimization. Therefore,
this cast of material yield criteria into second-order cone constraints is herein reviewed.
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3. MATERIAL YIELD CRITERIA AS SECOND-ORDER CONES

All the most common yield criteria used in practice are amenable to be cast into semidefinite conic
form, while in some particular cases the criteria may be cast into second-order cone constraints. It is
presented in [23] the conic representation of several yield criteria found in the literature. Particularly,
the Mohr-Coulomb, Rankine and Tresca criteria are representable as positive semidefinite cones,
while the von Mises and Drucker Prager criteria may be rewritten as second-order conic constraints.
For clarification purposes, the casting of the von Mises yield criterion into a second order cone is
herein demonstrated.

The von Mises criterion states that yielding begins when the octahedral shearing stress reaches a
critical value σy, the material yield stress. For a plane stress state the criterion is given as

τoct =
√

σ2
xx +σ2

yy−σxxσyy +3τ2
xy ≤ σy (6)

in which, τoct is the octahedral shearing stress, σxx, σyy and τxy are the Cauchy stress tensor compo-
nents.

Eq. 6 may be rewritten in matrix form as

τoct =
√

σTMσ ≤ k (7)

in which,

M :=

 1 −0.5 0
−0.5 1 0

0 0 3

 ; σ :=

σxx
σyy
σxy

 (8)

Since matrix M is positive definite a Cholesky factorization is proven to exists, thus Eq. 7 is
restated as

τoct =
√

σTMσ =
√

σTLTLσ =
√

yTy≤ σy⇔‖y‖ ≤ σy (9)

in which,

y = Lσ (10)

Defining x as

x =
[
σy y1 y2 y3

]
(11)

it is straightforward to see that x in the four dimensional cone, as defined in Eq. 4, implies that the
yield criterion is verified. Explicitly, the von Mises criterion for plane stress is restated as

C V M =
{

x ∈ R4|x1 ≥ ‖x2:4‖ ,x1 ≥ 0
}

(12)

in which, the second-order cone C V M is known as the von Mises cone.

4. STRESS CONSTRAINED TOPOLOGY OPTIMIZATION

Density-based topology optimization with stress constraints focuses in determining the best mate-
rial distribution that minimizes the weight of a structure while satisfying given yield criteria. In order
to enforce the stress constraints, the most common approach employed in the literature is the so-called
direct method. This approach relies on limiting the stresses on given points of each finite element,
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possibly the integration points. However, density-based topology optimization with stress constraints
usually relies on a fine discretization of the domain, thus leading to a great number of design vari-
ables as well as a large number of stress constraints. In order to solve such a large-scale optimization
problem, in [24] the authors propose the use of the Augmented Lagrangian method, while in [7] a
mathematical programming method developed by the authors themselves is proposed.

Other author propose methods that seek to reduce the number of constraints by using the so-called
aggregating functions, such as the P-norm [6], and the KS-function [25], thus making the problem
amenable to be solved using general non-linear algorithms. However, these ad hoc methods can lead
to poor control of the local behavior of the stresses, thus impairing the solution of the problem. In
the present work a procedure based on the solution of a sequence of SOCP subproblems, in which the
stress constraints are rewritten as second-order cones, is proposed. It is noteworthy that, since SOCP
is able to solve large scale problem efficiently, this procedure is particularly suitable when the local
method is employed. In the following the step-by-step of the procedure is introduced.

The topology optimization problem addressed in this paper is stated as find the density field which
renders the minimum volume such that the yield criterion is met for the elastic stresses in all stress
control points, e.g. gauss points. In other words,

min
ρ

n
∑

i=1
ρiVi

with K(ρ)u = f

s.t.
fy
(
σ j,σy

)
≤ 0 ∀ j = 1...m

0 < ρi ≤ 1 ∀i = 1...n

(13)

in which, ρi and Vi are, respectively, the density and the volume of the ith element, K(ρ) is the global
stiffness matrix, u is the displacement used to calculate the stresses, f is the load vector, fy

(
σ j,σy

)
is

an implicit function representing a given yield criterion surface, σ j is a vector containing the stresses
of the jth stress control point and σy is the material yield stress.

For the particular case of the von Mises yield criterion the problem may be written as
min

ρ

n
∑

i=1
ρiVi

with K(ρ)u = f

s.t.
√

σ jτMσ j−σy ≤ 0 ∀ j = 1...n
0 < ρi ≤ 1 ∀i = 1...n

(14)

Taking the first order Taylor’s series expansion of stresses with respect to the design densities:

σi (ρ0 +∆ρ)≈ σi (ρ0)+∇σi (ρ0)∆ρ (15)

in which, ρ0 is the material distribution of the current iteration.
Substituting the approximation of equation 15 into the stress constraints of equation 14 gives√

(σi (ρ0)+∇σi (ρ0)∆ρ)TLTL(σi (ρ0)+∇σi (ρ0)∆ρ)−σy ≤ 0 (16)

Thereby, employing the aforementioned casting of the von Mises stresses into second-order conic
constraints, the solution to the problem in Eq. 13 may be found by subsequently solving the following
SOCP subproblem

min
∆ρ,y,k

n
∑

i=1
(∆ρi +ρ0i)Vi

with Ku = f

s.t.
y j = L

(
σ j (ρ0)+∇σ j (ρ0)∆ρ

)
∀ j = 1...n∥∥y j

∥∥≤ σy ∀ j = 1...n
−ρ0i < ∆ρi ≤ 1−ρ0i ∀i = 1...n

(17)
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From a practical point of view, each subproblem seeks to approximate the real problem through a
quadratic conic model which in turn must be solved in order to determine a step of the optimization.
In general, this class of sequential optimization algorithms can be implemented using either the linear
search or the trust-region method [26]. The line search method requires a great number of evaluations
of both the objective function and the constraints of the problem. Thus, since each evaluation of
the topology optimization problem requires a complete structural analysis, this method leads to an
expensive computational alternative. On the other hand, the trust-region requires only one step of the
structural analysis per iteration, thus alleviating much of the computational effort involved in each
optimization step.

The trust-region method can be naturally coupled to subproblem of Eq. 17 by simply introducing
the following second-order cone constraint

‖∆ρ‖ ≤ r (18)

in which, r is the trust-region radius.
The constraint (1.18) restrains the subproblem solution to the ball of radius r. Hence, a key ingre-

dient of the method is the choice of the radius for the trust-region per subproblem. In general, this
choice is based on the agreement between the real problem and the quadratic conic model adopted.
In the present work, the model is based on the approximation of the von Mises stresses per iteration
of the real problem, thus the agreement is given by the following rate:

ε :=

∥∥∥∥∥∥
√

σ j(ρ0 +∆ρ)τMσ j (ρ0 +∆ρ)−
√

σ j(ρ0)
τMσ j (ρ0)∥∥y j

∥∥−√σ j(ρ0)
τMσ j (ρ0)

∥∥∥∥∥∥
∞

(19)

Based on this agreement rate a simple algorithm [26] may be employed to adjust the trust-region
radius and also to accept or reject the step in each iteration of the optimization procedure.

5. RESULTS

In order to attest the correctness of the proposed approach some numerical examples were run and
the results are presented hereafter. The sequential approach was implemented in MATLAB and the
subproblems were solved using MOSEK.

5.1 The MBB-beam

The MBB-beam is a benchmark example in topology optimization. It consists of a simply sup-
ported beam with a mid-span applied load. It is shown in Figure 2 the model, considering symmetry,
used in the analysis. The adopted material has YoungâĂŹs modulus 71 GPa, PoissonâĂŹs ratio 0.33
and yield limit 350MPa; the applied load is 1,500 kN; the plate thickness is 1 mm; and the geometry
of the plate is given by L = 100 mm.

The obtained results are shown in Figure 3 for a mesh with 300 elements. In Figure 4 it is shown
the corresponding penalized stress field. In order to verify that the proposed optimization scheme is
mesh independent the problem is analyzed with a more refined mesh. The optimum topology for a
finer mesh of 1200 elements is presented in Figure 5. Furthermore, the penalized stress field of this
finer mesh is illustrated in Figure 6.

It may be observed that the results present a qualitative resemblance of topology. Therefore, the
optimization methodology presented âĂŞ sequential second-order cone programming approach âĂŞ
has proved itself to be a stable numerical procedure for the stress constrained topology optimization.
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Figure 2. Geometry of the MBB problem [6]

Figure 3. Optimum topology for a 300 elements mesh
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Figure 4. Penalized stress field for a 300 elements mesh

Figure 5. Optimum topology for a 1200 elements mesh
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Figure 6. Penalized stress field for a 1200 elements mesh

6. CONCLUSIONS

The second-order cone programming approach has successfully allowed an aggregation free for-
mulation for stress constrained topology optimization. Therefore, this formulation provides more
accurate results, since the stress constraints are met everywhere in the structural domain.

However providing quality results, the computational efficient were below expected for practical
problems. It failed the expectation that the optimization would be as fast as it is in limit analysis
problems. Nevertheless, it is hoped that this results can be bettered using a warm-start strategy based
on the solution of the previous subproblemâĂŹs solution. In addition, it was observed that the matrix
concerning the variables in limit analysis is sparser than the one in the elastic formulation, which
might have hold back the solver performance.
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