
DEVELOPMENT OF A CLASS IN THE CONTEXT OF OOP FOR
GENERIC MANAGEMENT OF MOUSE EVENTS IN A CANVAS IN

THE MATLAB ENVIRONMENT

Emersson Duvan Torres

Luiz Fernando Martha

emerssonto@gmail.com

lfm@tecgraf.puc-rio.br

Pontifı́cia Universidade Católica do Rio de Janeiro PUC-Rio

Rua Marquês de São Vicente, 225, Gávea, CEP 22451-900, Rio de Janeiro, RJ, Brazil

Abstract. Teaching of applied computer graphics is of great importance in computational sim-
ulation of engineering problems. Currently, many user-friendly computer softwares have im-
proved this work, as it is the case with MATLAB. The generation and manipulation of a geo-
metric model are very important steps in the computational simulation. The use of the mouse
allows these steps to become more interactive and easy to understand. For this reason, in this
work a generic class is developed in the context of object-oriented programming in the MATLAB
environment, which allows managing mouse events in a canvas. The objective of this OOP class
is to be used as a base class in the development of graphics and interactive apps in MATLAB,
mainly for educational purposes. To meet these expectations, the OOP was adopted, which en-
ables the creation of reusable codes. Allied to this technique, the Unified Modeling Language is
used, a graphic language that allows the visualization, construction and documentation of the
development of an object-oriented computational system. To determine the correct functioning
and practicality of the developed class, two interactive apps are implemented; the first to draw
frame structures in 2D and the second to demonstrate the functioning of the Mohr circle for
stress state.

Keywords: Object-oriented programming (OOP), Unified Modeling Language (UML), Mouse
events class, MATLAB

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering

P.O. Faria, R.H. Lopez, L.F.F. Miguel, W.J.S. Gomes, M. Noronha (Editors), ABMEC, Florianpolis, SC, Brazil,
November 5-8, 2017



OOP class for Generic Management of Mouse Events in MATLAB canvas

1 INTRODUCTION

Currently, the increasing evolution of computing has facilitated the resolution of problems
in several areas of engineering, becoming an indispensable tool of modeling and analysis. Prior
to the existence of advanced computing, these problems had a very time-consuming or even
impossible solution because of the high demand for calculations involved in their analysis.

In addition to calculations related to engineering problems, another difficulty that comput-
ing often faces is the modeling of these problems and their solutions. Several of these models
are too complex to be developed without the aid of computer graphics. At this point the com-
putational modeling process comes to facilitate the solution of existing problems. In this way,
it is possible to emphasize the importance of the generation and manipulation of a geometric
model. These processes become more reliable and easy to understand through visualization and
interaction with the mouse.

The processes of entering data and model manipulation in most programming environments
have become less interactive, since commands are usually used to perform these processes; This
work intends to change this situation by creating the possibility of using the mouse to perform
these activities in apps developed in the MATLAB environment.

To use the mouse in apps developed in MATLAB, in this work a generic class, called
Emouse, is developed in the context of Object Oriented Programming (OOP), which allows
the management of mouse events. To determine the correct functioning and practicality of
this class, two interactive apps are implemented in MATLAB software; The first, e-dles2D
(Draw Linear Elements Structure 2D), to draw frame structures in 2D; And the second, e-Mohr2
(Mohr’s circle for plane stress state), to demonstrate the operation of the Mohr circle.

Allied to the OOP technique, the Unified Modeling Language (UML) is used. This is a
graphical language that allows the visualization, construction and documentation of the devel-
opment of an object-oriented computational system.

The MATLAB environment is used because it is a tool that, among other factors, has high
flexibility and consistency, that allows to develop complex technical calculation apps quickly.
In addition, its simple language of easy understanding simplifies the implementation of compu-
tational strategies in engineering.

This work is divided into five sections. This first section, in addition to the introduction,
presents a small bibliographic review of educational apps developed in the context of OOP in
the MATLAB environment. In the second section, the main theoretical concepts used in the
development of this work are exposed; such as OO, UML and MATLAB. The third section
presents how the Emouse class was developed, with the description of the MATLAB functions
used and how it should be implemented in the creation of an app in MATLAB. In the fourth
section, the development of two apps that determine the correct operation and practicality of the
Emouse class is showed; the first to draw 2D frame structures and the second to demonstrate
the functioning of the Mohr circle. The fifth section presents conclusions and suggestions for
future work.

1.1 Bibliographic review

This section presents a small bibliographic review of works that develop apps, in the MAT-
LAB environment in the context of OOP, for engineering.

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering
R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017



E. D. Torres and L. F. Martha

Taking advantage of the context of OOP, web-based and other advanced computing tech-
nologies, in Peng (2002) an internet-enabled software framework was developed that facilitates
the use and collaborative development of a finite element structural analysis program. The soft-
ware is designed to give users and developers easy access to the analysis program and the anal-
ysis results. In addition, the framework serves as a common finite element analysis platform for
which researchers and software developers can build, test, and incorporate new developments.
MATLAB is used as a mechanism to build a simple post-processing service, which takes a data
file as input and then generates a graphical representation. The MATLAB GUI toolbox and
a standard web browser were used to create user interfaces that allows access and analysis of
results and project-related information.

The collaborative software developed in Peng (2002), in addition to MATLAB, used Java
to represent numerical data, in a convenient way to involve and transmit matrix-type data. In
order to incorporate MATLAB into the software structure it is necessary to deal with the com-
munication between the collaborative environments and to develop an object oriented system.
MATLAB contains a toolbox that allows to interpret the Java language through its own com-
mands, develop and execute programs that create and access to Java classes and objects. This
MATLAB capability enabled the system developed in Peng (2002) to bring Java classes into
the MATLAB environment, to construct objects from these classes, to call methods on Java
objects, and to save Java objects for later reloading, all performed with MATLAB functions and
commands. The OOP provides a layered software architecture that allows to establish a link
between MATLAB and Java.

In (Liu et al., 2003) a software framework was developed in the MATLAB environment
in the context of OOP, for structural analysis and design research, where different methods of
structural analysis and design procedures are studied. This app is designed to be generic for
different apps of structural analysis and optimization, design procedures, performance indexes
and analysis of methods. It was also implemented with the objective of meeting different types
of structural elements of non-linear properties. This software framework is implemented in
MATLAB because its language, of easy understanding, allows the use of the OOP and it has the
integrated capacity of processing and visualization. The organization that this software obtains
from the OOP allows the implementation of new classes in the creation of new apps without
the need of changing the general structure. The work presented in (Liu et al., 2003) describes
the interactions between the software modules in a UML sequence diagram and the software
classes are represented in the UML class diagrams.

An object-oriented approach to structural analysis and its implementation within a finite
element software developed in the MATLAB environment are presented in (Harahap et al.,
2007). The objective of the work was simplifying the data preparation and analysis cycle, and
to find a robust and economical structural configuration.

In (Jankovski et al., 2010) the toolbox JWM SAOSYS v0.42 (System of Analysis and Struc-
tural Optimization) was presented as an experimental prototype toolbox for the MATLAB envi-
ronment, developed in the context of the OOP. The toolbox is intended for numerical research
in the analysis and design of steel structures using the finite element method. In the presentation
of this toolbox the main classes and their methods are described in a UML class diagram, each
class inherits from a main class that contains the main methods necessary for the operation of the
system. In addition to its ease of use, according to (Jankovski et al., 2010), MATLAB features
numerous functional and technological facilities that make it an effective tool for designing an

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering

R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017



OOP class for Generic Management of Mouse Events in MATLAB canvas

experimental system.

OOP in the JWM SAOSYS toolbox allowed its tools to be used for the development of the
work presented in (Jankovski et al., 2011), in it the toolbox was updated and a new analysis
module (EPSOp-tim-SD) was created.

The Finite Cell Method is described in (Zander et al., 2014) as an extension of the finite
element method that combines the benefits of higher order finite elements with the fictitious
domain idea. In (Zander et al., 2014) the toolbox FCMLab, was developed in the context of the
OOP in the MATLAB environment, it was presented as an app and research tool of FCM, which
allows the rapid development of new algorithmic methods in the context of domain methods
higher order. In this work UML diagrams were used to describe the system components.

In (Kacprzyk et al., 2014) the Isogeometric Analysis was presented as a new formulation in
the Finite Element Method, the main objective of this work was the numerical implementation
of this method in the MATLAB environment. The OOP context was used to produce a more
generic tool for future investigations.

Practical examples of apps developed in the context of the OOP in the MATLAB environ-
ment with implementation of graphical interface are presented in (Guardia, 2015) and (Guerrero
et al., 2012). There are apps developed in the context of the OOP in the MATLAB in other areas
of engineering, for example the software presented in (Elmendorp et al., 2014).

2 CONCEPTS OF OO, UML AND MATLAB

This section presents basic concepts about Object Orientation (OO), Unified Modeling Lan-
guage (UML) and MATLAB, which were used in the development of this work.

2.1 Object-oriented

Software development with the OO approach consists of building independent modules or
objects that can be easily replaced, modified, and reused. It represents the real world view as a
collaborative system of objects. In this case, a software is a collection of discrete objects that
encapsulate data and operations to model real-world objects. The class describes a group of
objects that have similar structures and operations.

The OO approach enables better organization, versatility and reuse of source code, which
facilitates software updates and improvements. The OO approach is characterized by the use of
classes and objects, and other concepts that will be clarified below.

Classes and Objects

An object represents a real entity, a person, an animal, a house, anything that can be imag-
ined. An object also has characteristics and behaviors, for example, a car has model, type, year
of manufacture; As well as behaviors, going, stopping, turning. An object can be identified
from the methods and attributes that it has. According to Booch (1991), the objects involved in
a system are obtained through the decomposition of the system during the analysis process.

An object can have a state defined as an attribute, for example, a car can have the state ”off”
or ”on”, which may be the response to one of its behaviors or methods, for example ”turn on”.

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering
R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017



E. D. Torres and L. F. Martha

Classes are species of objects assemblers, which define their characteristics as, the proper-
ties and functions that the object possesses. This way of programming allows the user to solve
problems using real world concepts.

Booch (1991) defines class as a set of objects that have a common structure and behavior.
Also defines that a single object can be called as an instance of a class.

According to (Rumbaugh et al., 2005), an object is a discrete entity with a defined boundary
and an identity that encapsulates state and behavior. Also defines class as a collection of objects
that share the same attributes, operations, methods, relationships, and behavior.

Thus, according to (Seabra et al., 2015), an object is an abstract entity, which has a bound-
ary defined by its class and meaning for the application. The instance of a class is an object and
a class represents an abstraction of the similar characteristics of a given set of objects.

Attributes and Methods

A class contains attributes and methods, which are, respectively, characteristics and rou-
tines that can be executed by an object of this class. An instance can be differentiated from
the others by the combination of attributes and methods, which define its identity, its state and
behavior. Methods and attributes of a class are defined during system design. For example,
with the ”car” class you can create a ”jeep” object, which has the ”color” attribute, the ”carry”
method.

According to (Rumbaugh et al., 2005), an attribute is the description of a repository of a
given type of data in a class. Each object can have a certain value for the attribute. A method is
the implementation of an operation. It specifies the algorithm or procedure that results from the
operation.

Attributes are local variables that store values of an object’s characteristics. Methods are
the activities, actions, or operations performed by a class. A method can receive parameters and
return values. Returns values can indicate the success of the operation or the resulting value.

Thus, methods are the functions that an object can perform and attributes are everything an
object has as a variable.

Inheritance and Polymorphism

Inheritance is a feature that allows to given class to inherit the characteristics of another
class, called parent class or superclass. The descendant class, called the child class, acquired all
methods and attributes of the parent class.

According to O’Docherty (2005), the importance of inheritance in implementation is sum-
marized in:

• Inheritance supports a richer and more powerful modeling. It benefits the entire develop-
ment team as it provides greater code reuse power.

• Inheritance enables define information and behaviors in one class and share them with
anothers. This results in less code to write.

• Inheritance is natural. This is one of the most important reasons for OO to be in the first
place.

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering

R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017



OOP class for Generic Management of Mouse Events in MATLAB canvas

Inheritance can be single or multiple. It is single when a class inherits from only one
superclass, however, it is multiple when inherites from several classes. This last one, although,
is little diffused and of complex use, its implementation in MATLAB is possible, serving as
another benefit to the programmer.

The polymorphism is a feature of OO which means the ability to modify methods inherited
from a superclass. That is, by inheriting the attributes or methods from a superclass, these
can be redeclared in the new class. In a purely OO language, all non-private variables and all
methods can be modified through this feature.

Encapsulation is another concept used in OOP, this is the act of hiding to the user the
internal processes of an object, class or method.

2.2 Unified Modeling Language

The unified modeling language (UML) according to (Booch et al., 1998) is a standard
graphical language for visualizing, specifying, constructing, and documenting OO systems.
This very expressive OO modeling language addresses all the views needed to develop and
deploy the software system. With its embedded vocabulary, graphic symbols, and rules, the
UML simplifies the complex process of software design and facilitates communication with an
explicit model.

According to (Weilkiens et al., 2006), the UML can be defined with a metamodel, the prefix
”meta” is used because the language is defined as level below the user’s level of utilization, that
is, the specification of this language is performed with the proper use of the language.

According to Booch (1991), the vocabulary of UML includes three components: items,
relationships, and diagrams. The UML items are classified into four categories:

• Structural items, are the nouns of UML models, such as a class, rendered as a rectangle
graphically, usually including its name, attributes, and operations.

• Behavioral items, are the dynamic parts of UML models to represent the behavior over
time and space. An interaction is a behavior that comprises a set of messages exchanged
among a set of objects within a particular context to accomplish a purpose. Graphically,
a message is rendered as a directed line, including the name of the operation.

• Grouping items, are the organizational parts of UML models. One example is the pack-
age.

• Annotational items, are the explanatory parts of UML models. A primary example is a
note that comments about the element in a model. It is rendered as a rectangle with a
dog-eared corner, together with a comment.

Classes relate to each other, allowing information sharing and the association of methods to
accomplish specific tasks. According to the purpose of the relationship, there are four kinds of
relationships in the UML: dependency, association, generalization, and realization (Weilkiens
et al., 2006), as described below:

• Association: describes a set of links, that is, connections among objects. Graphically,
an association is rendered as a solid line, possibly directed. This relationship have a
subclassification:

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering
R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017



E. D. Torres and L. F. Martha

– Aggregation, representing a independence relationship between a whole and its
parts. In the destruction of the whole, the parts can still exist. Graphically, is ren-
dered as a solid line with a hollow diamond on the container class side.

– Composition, representing a dependence relationship between a whole and its parts.
In the destruction of the whole, the parts no longer make sense and cease to exist.
Graphically, is rendered as a solid line with a solid diamond on the container class
side.

• Generalization: a (inheritance) relationship in which objects of the specialized class, the
child, are substitutable for objects of the generalized class, the parent. A generalization
relationship is rendered as a solid line with a hollow arrowhead pointing to the parent.

• Dependency: a semantic relationship between two elements, where a change to one el-
ement may affect the semantics of the another element, the dependent element. Graph-
ically, a dependency is rendered as a dashed arrowhead pointing to the independent ele-
ment.

• Realization: a semantic relationship between classes where one class specifies a contract
and another class guarantees to carry it out. A realization relationship is rendered as a
dashed line and a hollow arrowhead.

The graphical representation of the UML items and relationships is shown in Figure 1.

Figure 1: UML items and relationships (Liu, 2003).

A UML diagram is the graphical presentation of a set of elements, often rendered as a
connected graph of vertices, items and arcs, relationships. The UML includes several kinds of
diagrams. The most common kind is a class diagram that shows a set of classes, interfaces, their
collaborations and relationships. An activity diagram, shows the stages or steps for completion
of a particular activity in the system. An interaction diagram consists of a set of objects and their
relationships, including the messages that may be dispatched among them. There can be two
types of interaction diagrams: a sequence diagram emphasizes the time-ordering of messages
and a collaboration diagram emphasizes the structural organization of the objects that send and
receive messages.

2.3 MATLAB
MATLAB is a numerical analysis and data visualization software with graphical and pro-

gramming capabilities. Although its name means Matrix Laboratory, its purposes are currently
wider. This software was created as a program for mathematical operations with matrices, but
later it became a very useful and flexible computational system. It includes an integrated devel-
opment environment, such as object-oriented programming constructs.

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering

R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017



OOP class for Generic Management of Mouse Events in MATLAB canvas

Its language is based on a simple mathematical language, making its work environment
easy to use. Thus MATLAB is a tool and a programming language of high level, and has as
main functions: construction of graphs and compilation of functions, manipulation of specific
functions of calculation and symbolic variables. In addition, this software has built-in functions
to perform many operations, and a large number of auxiliary libraries (Toolboxes) that can be
added to enhance these functions.

OOP in MATLAB

OOP is a formal programming approach that combines data and associated actions (meth-
ods) into logical structures (objects). This approach increases the ability to manage the com-
plexity of software when developing apps and structures that use data with very large sizes.

MATLAB’s OOP capabilities allows develop complex technical calculation apps at high
speed. It is possible to define classes and apply OO design patterns in MATLAB that allow reuse
of code, inheritance, encapsulation, and reference behavior without having to pay attention to
the usual low-level tasks required in other languages.

MATLAB OOP involves the use of:

• Class definition files, which allow the definition of properties, methods, and events.

• Classes with reference behavior, which help to create data structures such as linked lists.

• Transmitters and receivers, which allow to monitor the actions and changes of the object
properties.

GUI MATLAB

GUIs, also known as graphical user interfaces or user interfaces, allows simple control of
software app developed in MATLAB to eliminate the need of writing commands in order to
interact with an app.

MATLAB apps are self-contained MATLAB programs with a graphical GUI user interface
that automates a task or a calculation. A GUI typically contains controls such as menus, tool-
bars, buttons, and sliders. MATLAB allows to create owns apps with custom user interfaces to
allow other users to use them.

GUIDE (GUI development environment) provides tools for designing user interfaces for
custom app. It is possible to graph the users interface using the GUIDE design editor. Then,
GUIDE automatically generates a MATLAB code to construct the interface, this code can be
modified to program the behavior of the app.

It is possible to create MATLAB code that defines all component properties and behaviors
in order to have more control over the design and development. MATLAB contains a built-in
functionality that allows to create the GUI for an app programmatically. Also, it has the ability
to add dialog boxes, user interface controls such as buttons and sliders, and containers such as
panels and button groups (GUI components).

Callback Functions

Each type of GUI component has actions that can be exercise on it. It is possible to associate
each of these actions with a callback function. A callback function is defined as the response to
an action that a GUI component will perform when the user activates it.

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering
R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017



E. D. Torres and L. F. Martha

When a GUI is created in MATLAB, the GUIDE environment automatically generates a
file with the callback functions related to the principals events that can occur with each GUI
component of the interface.

3 EMOUSE CLASS

The Emouse is an abstract class, developed in the MATLAB environment, to facilitate the
development of applications that handle mouse events on canvas (axes: the drawing area of a
GUI application in MATLAB).

The abstract Emouse class presents, in addition to the constructor method, four private
concrete methods (implemented) and three abstract methods that must be implemented by the
client user. Its use is achieved by creating a client subclass that inherits its properties and
implements the three abstract methods.

3.1 figure and axes Objects

When a figure is made in MATLAB, two objects are created. The first one called figure, is
the window where the results are drawn, this object has properties like color, name, position,
etc. Of these attributes the most important for the development of the Emouse class are:

• CurrentPoint, current position of the mouse in the axes of the figure object. This attribute
is used in the eMouseMove concrete method of the Emouse class.

• SelectionType, attribute that provides information about the last mouse button pressed
inside the figure window. This information indicates the type of selection made: right,
left or center button. This attribute is used in the eButtonDown concrete method of the
Emouse class.

The object figure also presents some methods, among these methods the most important,
for the development of the class Emouse, are:

• WindowButtonMotionFcn, callback function that is executed whenever the user moves
the mouse inside the figure window.

• WindowButtonDownFcn, callback function that is executed whenever the user presses a
mouse button inside the figure window.

• WindowButtonUpFcn, callback function that is executed whenever the user releases a
mouse button.

These callback functions are implemented in the constructor method of the Emouse class.

The second object created when a figure is made in MATLAB is called axes, which contains
the properties of the drawing space (canvas) that is inside the figure window. This object has
attributes such as the axis limit, font size, background color etc. Among these attributes the
most important, for the development of the class Emouse, is:

• CurrentPoint, current position of the mouse in the axes of the axes object. This attribute
is used in the eMouseMove concrete method of the Emouse class.

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering

R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017



OOP class for Generic Management of Mouse Events in MATLAB canvas

3.2 Attributes of the Emouse class

The Emouse class has the following attributes, which store the information that is obtained
with a mouse event:

• dialog: contains a figure object associated to mouse events.

• canvas: contains a current axes object associated to mouse events.

• mouseButtonMode: defined as a variable of type string, but that works like a boolean,
because it presents two states: ’up’ when the mouse buttons are not pressed, and ’down’
when one of the mouse buttons is pressed. This attribute is initialized in the ’up’ state.

• whichMouseButton: determines which of the mouse buttons was pressed, it is defined
as a string variable, displays the following states: ’left’ to the left button, ’rigth’ to the
right button, ’center’ to the center button, and ’none’ when none button is pressed. This
attribute also defines whether the user presses the left button twice consecutively with the
’double click’ state. This attribute is initialized in ’none’ state.

• currentPosition: contains the current position of the mouse on the canvas; it is defined as
an array of 1x2 order, where the variable 1x1 presents the X coordinate and the variable
1x2, the Y coordinate.

3.3 Methods of the Emouse class

The Emouse class has the following methods, which update its attributes to manage mouse
events:

• Constructor method, intended to initialize an object of this class, its input parameters
are a figure object and an axes object. This method sets the units property of the target
figure (dialog) to pixels and associates the mouse button down, mouse move, and mouse
button up events on the target figure with the private eButtonDown, eMouseMove, and
eButtonUp methods, respectively.

For the development of the Emouse class, three events were considered:

- When the mouse is in motion, the mouseMove method is called. This event is imple-
mented by using the following line of code:

set(this.dialog, ’WindowButtonMotionFcn’, @this.eMouseMove);

- When a mouse button is pressed, the eButtonDown method is called. This event is
implemented by using the following line of code:

set(this.dialog, ’WindowButtonDownFcn’, @this.eButtonDown);

- When the mouse button is released, the eButtonUp method is called. This event is
implemented by using the following line of code:

set(this.dialog, ’WindowButtonUpFcn’, @this.eButtonUp);

• eButtonDown: this method is a callback function associated with mouse button down
event on the target canvas. It finds, in the list of axes (canvases) of the target figure
(dialog), the axes (canvas) in which the button down position is located. The method also
determines which button was pressed, updates the whichMouseButton property with this

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering
R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017



E. D. Torres and L. F. Martha

information, sets the mouseButtonMode property to ’down’, sets the current position to
the mouse button down position, and calls the abstract downAction method.

• eMouseMove: this method is a callback function associated with mouse move event on
the target figure (dialog). It sets the current position to the current mouse position on the
target axes (canvas) and calls the abstract moveAction method.

• eButtonUp: this method is a callback function associated with mouse button up event on
the target figure (dialog). It sets the mouseButtonMode property to ’up’, sets the current
position to the mouse button up position on the target axes (canvas), and calls the abstract
upAction method.

• clean: this method clears the attributes of the class and assigns them the initial data.

The Emouse class also has the following three abstract methods that must be implemented
by the client user:

• downAction: this method must be implemented with the procedures to be performed
when the user presses a mouse button.

• moveAction: this method must be implemented with the procedures to be performed
when the user moves the mouse.

• upAction: this method must be implemented with the procedures to be performed when
the user releases the mouse button that was pressed.

3.4 Use of the Emouse class

To use the Emouse class, follow the steps below:

1. Create a subclass that inherits from the Emouse class.

2. Implement new attributes in the properties of this subclass if they are required for the app
development, for example, an attribute that counts the number of times a mouse button
has been pressed.

3. Implement a constructor method for this subclass that initializes the inheritance of the
Emouse class. This method must have as input arguments a figure object and an initial
axes (canvas) object that should be supplied to the Emouse class in the inheritance.

4. Implement the abstract methods of the Emouse class in this subclass. New methods can
be implemented in this subclass, if they are necessary for the app, for example, a method
that incorporates the use of a keyboard button.

5. When it is necessary to use the mouse events, create an object of the new subclass and
providing a figure object and an initial axes object that will be associated with the mouse
events.

4 APPS DEVELOPED WITH THE EMOUSE CLASS

As examples of use and to determine the correct functioning of the Emouse class, two apps,
that need the management of mouse events, have been developed; The first , named e-dles2D, is
used to draw frame structures in 2D and the second, called e-mohr2, to demonstrate the behavior
of the Mohr circle for plane stress state.

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering

R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017



OOP class for Generic Management of Mouse Events in MATLAB canvas

In these two apps the MATLAB inpolygon function is used, which determines whether
a point is located inside or on the edge of a polygonal region. Its input parameters are the
coordinates of the point, and two vectors (x and y) with the coordinates of the points that make
up the polygonal region. A boolean is obtained as the output parameter, ’true’ if the point is
inside the polygon and ’false’ otherwise.

4.1 e-dles2D

The e-dles2D (Draw Linear Elements Structure 2D) app allows to draw frame structures
in 2D, it has two types of main entities, nodes and linear elements, the latter representing bar
elements.

In the development of this app were created nine classes and one subclass, the following
is a short description of each of the classes implemented. A simple GUI has also been imple-
mented, that allows to execute objects from the classes that initialize the app, and control the
functionality of GUI entities.

Figure 2: Definition of attributes and methods of the e-dles2 app classes.

• dlesEm: this subclass inherits the attributes of the Emouse class and implements its ab-
stract methods of mouse events for the purpose of the app.

• eNode: this class allows to instantiate objects that represent nodes of a frame structure,
its main methods are to draw and to delete a node of the canvas.

• eElement: this class allows to instantiate objects that represent bars of a frame structure,
its main methods are to draw and to delete a bar of the canvas.

• eDrawMode: this class contains the app draw modes, presents methods that draw, with
the mouse, the entities (nodes or bars) according to the actions performed with the mouse.

• eElementComp: this class allows defining an object to create and draw bars on the canvas,
taking into account any modifications that may occur with the bars due to very close or
collinear entities.

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering
R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017



E. D. Torres and L. F. Martha

• eSelectMode: this class contains the entities selection modes on the canvas, presents
methods that allow to select existing entities on the canvas with the mouse.

• eDeleteObj: this class contains no attributes, and contains a single method, in addition to
the constructor, that allows to delete selected entities on canvas.

• eSelectObj: this class allows to recognize if the mouse is near to an entity on the canvas,
and find the midpoint of a bar type entity.

• eNode2CrossedElements: this class allows to create a node at the intersection of two bar
elements.

• eViewCanvas: this class allows to manipulate the canvas, moving it in the horizontal or
vertical direction, increasing or decreasing the zoom and adjust it so that the entire drawn
frame structure is visible on the canvas.

The definition of attributes and methods and the relationship of the previous classes are
presented in Figures 2 and 3, respectively.

Figure 3: Class diagram of the e-dles2D app.

Graphical interface of the e-dles2D app

Figure 4 shows the graphical interface developed for the e-dles2D app. The following is
described the operation of this interface:

Node button (1), allows to create and drawing a node on canvas at coordinates clicked with
the mouse.

Element button (2), allows to create and drawing a bar element on canvas, selecting two
points on canvas with the mouse.

Select button (3), allows to select, with the mouse, one or more entities drawn on canvas. It
is possible accumulate selected entities by holding the shift button on the keyboard, or also by
creating a rectangle with the mouse that surrounds the desired entities.

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering

R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017



OOP class for Generic Management of Mouse Events in MATLAB canvas

Figure 4: Graphical interface of the e-dles2D app.

Intersection bar button (4), allows to find a node at the intersection of two selected inter-
sected bar elements.

Delete button (5), allows to delete the selected entities from the memory and erase them
from the canvas.

Pan up button (6), allows to move the image on canvas upwards.

Pan down button (7), allows to move the image on canvas downwards.

Pan left button (8), allows to move the image on canvas to the left.

Pan right button (9), allows to move the image on canvas to the right.

Zoom in button (10), allows to decrease the portion of the canvas view.

Zoom out button (11), allows to increase the portion of the canvas view.

Fit world button (12), allows to adjust the canvas so that the drawing is visible in its entirety.

Open button (13), allows to open an e-dles2D model.

Save button (14), allows to save an e-dles2D model.

Section 1, presents the x and textity coordinates of the current position of the mouse on
canvas. In addition, it contains the decimal places menu, which lets select the number of decimal
places of these coordinates. For example, Figure 4 shows that the mouse is near to the center
point of element 3, with the coordinates (4.5, 1.0) with one decimal place.

Section 2, shows the length of a bar element being drawn. Also displays the name and
geometric properties of the entity that is below the mouse. For example, Figure 4 shows the
properties of element 3, which is below the mouse.

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering
R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017



E. D. Torres and L. F. Martha

4.2 e-Mohr2

The e-Mohr2 (Mohr’s circle for plane stress state) app allows to observe the behavior of the
Mohr circle in a plane stress state. In this app, the stress components of the current state may
be adjusted through the interactive manipulation with the mouse of some control points. This
app is based on the educational software (Martha et al., 2004).

In the development of this app were created seven classes and four subclasses, the following
is a short description of each of the classes and subclasses implemented. A simple GUI has also
been implemented, it allows to execute objects from the classes that initialize the app, control
the functionality of GUI entities, and enter input data for the Mohr circle.

Figure 5: Definition of attributes and methods of the e-Mohr2 app classes.

• MohrEm: this subclass inherits all attributes of the Emouse class and implements its
abstract methods of mouse events to allow interaction with the Mohr circle control points
on canvas.

• eLine: this class contains a method that allows to draw a line on canvas, with a certain
color and thickness.

• eCircle: this class contains a method that allows to draw a circle on canvas, with certain
radius, center, color and thickness.

• eArc: this class contains methods that allow to draw an circle arc on canvas with certain
radius, center, color, and thickness.

• exLine: this class contains methods that allow to draw a line on canvas from a starting
point in the direction of a defined angle.

• MohrInput: this class only contains attributes and the constructor method, it is used to
store and update the input data required for the Mohr circle.

• MohrStress: this subclass inherits the attributes of the MohrInput class, and it has the
methods that calculate the Mohr circle stresses.

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering

R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017



OOP class for Generic Management of Mouse Events in MATLAB canvas

Figure 6: Class diagram of the e-Mohr2 app.

Figure 7: Activity diagram of the e-Mohr2 app.

• MohrControlPoints: this subclass inherits the attributes of the MohrInput class, and it has
methods that allow to determine if the mouse is near to a the Mohr circle control point.

• MohrPlot: this subclass inherits the attributes of the MohrInput class, and it has methods
that allow to draw the Mohr circle on canvas.

• dirPlot: this class has the methods that allow to draw the arrows that define the direction
of a certain stress acting on the Mohr circle.

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering
R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017



E. D. Torres and L. F. Martha

Figure 8: Fragment (SD Mouse Events MC) of the sequence diagram of the e-Mohr2.

• eQuad: this class has the methods that allow to draw the stresses of the Mohr circle acting
on an infinitesimal element according to the inclination plane.

The definition of attributes and methods and the relationship of the previous classes are
presented in Figures 5 and 6, respectively.

Figure 7 shows the activity diagram of the e-Mohr2 app. This diagram allows to observe
the actions and the communication developed by five actors: the user, the graphical interface

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering

R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017



OOP class for Generic Management of Mouse Events in MATLAB canvas

(GUI), a mouse event manager module, a calculation module and a draw module. These last
three actors represent the classes described above. This diagram provides an overview of the
operation of the app and its interaction with the user.

The sequence diagrams obtained for the developed apps are very extensive, for this reason
and to illustrate the implementation of the abstract methods of mouse events of the class Emouse
by a subclass, only a fragment of the sequence diagram of the e-Mohr2 app is presented in
Figure 8, where the MohrEm subclass performs a message exchange during the operation of the
app.

Graphical interface of the e-Mohr2 app

Figure 9 shows the graphical interface developed for the e-Mohr2 app. The following is
described the operation of this interface:

Figure 9: Graphical interface of the e-Mohr2 app.

Section 1, allows to edit the input data σx, σy and τxy. In addition, it contains the plane
stress state checkbox, that allows to show or not show the plane state stresses on canvas. In
this section also is ploted the plane state stresses of the Mohr circle acting on an infinitesimal
element.

Section 2, allows to edit the angle of inclination of the action plane of the stress θ, in
degrees, by entering text or by means of a slide bar. In addition, it displays the output data
σθ and τθ. And it contains the checkbox stresses on an inclined plane, that allows to show or

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering
R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017



E. D. Torres and L. F. Martha

not show the stresses that act on the inclined plane on canvas. In this section an infinitesimal
element is also ploted with the stresses acting on an inclined plane of the Mohr circle.

Section 3, presents the output data σ1, σ2, θp, in degrees e τm. In addition, it contains the
principal stress checkbox, that allows to show or not show the principals stresses on the canvas.
In this section also is ploted the principal stress of the Mohr circle acting on an infinitesimal
element.

In the lower-left corner, the interface presents the checkbox τ axis, that allows to show or
not show the τ axis on the canvas.

Figure 9 allows to observe the control points of the Mohr circle. The points (σy, 0) and
(σx, 0) (blue color) can be dragged with the mouse to the right or to the left. The points (σy,
τxy) and (σx, -τxy) (blue color) can be dragged with the mouse up or down. And finally, the
point (σθ, τθ) (green color) can be dragged with the mouse around the circle of Mohr. When
one of these points is modified, the changes that occur are displayed on the canvas and the GUI.

5 CONCLUSIONS

A class in the context of OOP for generic management of mouse events on a canvas in the
MATLAB environment was developed. Using this class, two engineering apps, that need the
management of mouse events on a canvas, were developed in the MATLAB environment in the
context of OOP. The development of these apps highlights the generic property of this class.

The OOP context was employed in this work, because it provides a simple and reusable
maintenance code that favors the creation of new functionalities. When an OO system is de-
veloped, the UML can improve its understanding by providing graphical documentation of the
behavior of the system.

The developed class can be used at the implementation of MATLAB apps, in the context
of OOP, besides visualization, creation, and manipulation of models, aiming to be educational
graphic-interactive tools. As a result of the mouse interaction these processes become quite
better comprehended.

The proposal for future work includes: implementing the events that occur with the mouse
scroll button; Implement mouse events that consider three dimensions; Create a more complete
version of the e-dles2D app, where can be set boundary conditions and geometric and constitu-
tive properties of the elements.

However, the future work has a wider view, because the class obtained is a potential tool to
develop, in the MATLAB environment, educational graphic-interactive softwares.

ACKNOWLEDGEMENTS

The authors are grateful to the Department of Civil Engineering of the PUC-Rio for their
support to research. The first author is grateful to CAPES for the financial support.

REFERENCES

Booch, G., 1991. Object-oriented Analysis and Design with Applications. Addison-Wesley.

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering

R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017



OOP class for Generic Management of Mouse Events in MATLAB canvas

Booch, G., Rumbaugh, J., & Jacobson, I., 1998. The unified modeling language user guide.
Addison-Wesley.

Elmendorp, R., Vos, R., & La Rocca, G. 2014. A conceptual design and analysis method for
conventional and unconventional airplanes. In: ICAS 2014, Proceedings of the 29th Congress
of the International Council of the Aeronautical Sciences, St. Petersburg.

Guardia, J., 2015. Desarrollo en Matlab de software de cálculo de placas por MEF. Universitat
Politècnica de Catalunya, Barcelona.

Guerrero, L., Pizano, D., & Thomson, P., 2012. Desarrollo e implementación de una interfaz
gráfica para el programa de elementos finitos FEM. In: 22th Jornadasaie.

Harahap, I., Jr, V., & Mustapha, M., 2007. A new approach of structural analysis in conjunc-
tion with structural design and optimization. Mission-Oriented Research: PETROCHEMICAL
CATALYSIS TECHNOLOGY, vol. 5, n. 2, pp. 32-42.

Jankovski, V., & Atkočiūnas, J., 2010. Saosys toolbox as Matlab implementation in the elastic-
plastic analysis and optimal design of steel frame structures. Journal of Civil Engineering and
Management, vol. 16, n. 1, pp. 103-121.

Jankovski, V., & Atkočiūnas, J., 2011. Biparametric shakedown design of steel frame structures.
Mechanics, vol. 17, n. 1, pp. 5-12.

Kacprzyk, Z., & Ostapska-Łuczkowska, K., 2014. Isogeometric Analysis as a New FEM
Formulation-Simple Problems of Steady State Thermal Analysis. Procedia Engineering, vol.
91, pp. 87-92.

Liu, W., Tong, M., Wu, X., & Lee, G., 2003. Object-oriented modeling of structural analysis
and design with application to damping device configuration. Journal of computing in civil
engineering, vol. 17, n. 2, pp. 113-122.

Martha, L., Carbono, A., Pereira, A., Ramires, F., Dalcanal, P., & Rodrigues, R., 2004. e-Mohr:
Ferramenta educacional para cı́rculo de Mohr. [software, v. 1.0]. Projeto Final CIV2802,
Departamento de Engenharia Civil, Pontifı́cia Universidade Católica do Rio de Janeiro.

O’Docherty, M., 2005. Object-oriented analysis and design: Understanding system develop-
ment with UML 2.0. John Wiley Sons Ltda.

Peng, J., 2002. An Internet-enabled software framework for the collaborative development of a
structural analysis program. PhD thesis, Stanford University/California.

Rumbaugh, J., Jacobson, I., & Booch, G., 2005. The Unified Modeling Language Reference
Manual. Pearson Education.

Seabra, J., 2013. UML - Unified Modeling Language: Uma ferramenta para o Desing de
Software. Editora Ciência Moderna Ltda.

Weilkiens, T., & Oestereich, B., 2006. UML 2 Certification Guide - Fundamental Intermediate
Exams. Morgam Kaufmann Publishers.

Zander, N., Bog, T., Elhaddad, M., Espinoza, R., Hu, H., Joly, A., ... & Parvizian, J., 2014.
FCMLab: A finite cell research toolbox for MATLAB. Advances in engineering software, vol.
74, pp. 49-63.

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering
R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017


