Reliability-Based Design Optimization of Space Trusses

Prof. Luiz Eloy Vaz, UFRJ, Brazil Dr. Anderson Pereira, PUC-Rio, Brazil Prof. Luiz Fernando Martha, PUC-Rio, Brazil

Motivation

This paper deals with uncertainties and optimization in the design of space trusses. It considers the geometric nonlinear behaviour of the structure.

- **Uncertainties** are inevitable due to the random nature of the material properties and loads.
- **Optimization** is necessary to obtain an economical design.

RBDO

DDO

RBDO

o min f(**h,p**)

• min $f(\mathbf{h},\mathbf{p})$ • $g_i(\mathbf{h},\mathbf{p}) > 0$

- $P_t P(g_i(\mathbf{x}, \eta) < 0) > 0$
- h design variables (areas and/or coordinates) in the optimization problem
- **p** parameters in the optimization problem
- **x** random variables in the reliability analysis
- $\boldsymbol{\eta}$ deterministic parameters in the reliability analysis

Reliability Analysis

Methods for the structural reliability analysis allows for the determination of the probability of failure (pf) of a given structure.

$$pf = \int_{g(\mathbf{x}, \boldsymbol{\eta}) \leq 0} f_{\mathbf{x}}(\mathbf{x}) d\mathbf{x}$$

f (x) - multi-variable probability density function

- x random variables
- η determiníistic parameters
- $g(\mathbf{x}, \boldsymbol{\eta}) \leq 0$ failure domain
- $\beta = \Phi^{-1}[1-pf]$ reliability index

Reliability Analysis (cont.)

Performance Function

 $g(\mathbf{x}, \boldsymbol{\eta}) = \delta_{max} - \delta(\mathbf{x}, \boldsymbol{\eta})$

Transformation from the original to the normal standard space of the random variables

This transformation is performed using the Nataf Transformation.

FORM/SORM

original space - x

standard normal space – u

RBDO

Deterministic Design optimization (DDO)

 $\begin{array}{ll} \mbox{\it Minimize} & f(\mathbf{h},\mathbf{p}) \\ \mbox{\it subjecto to} & g_i^D(\mathbf{h},\mathbf{p}) \geq 0 \quad i=1...nr \\ & \mathbf{h}^l \leq \mathbf{h} \leq \mathbf{h}^u \quad i=1...n \end{array}$

Reliability-Based Design Optimization (RBDO)

Search for the point on G(u) = 0closest to the origin

Search the smallest value of G for a given target radius β

Algorithms for Searching the MPP

RIA	PMA					
$\begin{array}{ll} \textit{Minimize} & \ \mathbf{u}\ \\ \textit{Subject to} & G_i(\mathbf{u}, \boldsymbol{\eta}) = 0 \end{array}$	$\begin{array}{ll} \textit{Minimize} & G_i(\mathbf{u}, \boldsymbol{\eta}) \\ \textit{Subject to} & \ \mathbf{u}\ = \beta_{t_i} \end{array}$					
HLRF iHLRF	SQP IP					
SQP IP						

RIA – Reliability Index Algorithm

PMA – Performance Measure Algorithm

$$\begin{array}{ll} \text{Minimize} & \|\mathbf{u}\| \\ \text{Subject to} & G(\mathbf{u}) \leq 0 \end{array}$$

4. RBDO – Sensitivities

the sensitivities are performed analytically both for the PMA and RIA formulations

$$\begin{split} \underline{\mathbf{PMA}} & \left(\mathbf{u}_{i}^{*} = \mathbf{u}_{i\beta=\beta_{t_{i}}}^{*}\right) \\ g_{i}^{R} &= G_{i}^{D}(\mathbf{u}_{i\beta=\beta_{i}}^{*}, \eta), \quad i = 1...nr \\ \frac{dg_{i}^{R}(\mathbf{h}, \mathbf{p})}{d\mathbf{h}} &= \frac{dg_{i}^{P}(\mathbf{h}, \mathbf{p})}{d\mathbf{h}} = \frac{dG_{i}(\mathbf{u}_{i}^{*}, \eta)}{d\mathbf{h}} \begin{cases} \frac{dG_{i}(\mathbf{u}_{i}^{*}, \eta)}{d\mathbf{h}} = \frac{dG_{i}(\mathbf{u}_{i}^{*}, \eta)}{d\eta} \\ \frac{dG_{i}(\mathbf{u}_{i}^{*}, \eta)}{d\mathbf{h}} = \nabla_{\mathbf{u}}G_{i}(\mathbf{u}_{i}^{*}, \eta)\frac{\partial T(\mathbf{x}_{i}^{*}, \theta)}{\partial \theta} \end{cases} \\ \\ \underline{\mathbf{RIA}}\left(\mathbf{u}_{i}^{*} &= \mathbf{u}_{iG(\mathbf{u})=0}^{*}\right) \\ g_{i}^{R} &= \beta_{i} - \beta_{t_{i}}, \quad i = 1...nr \\ \frac{dg_{i}^{R}(\mathbf{h}, \mathbf{p})}{d\mathbf{h}} = \frac{d\beta_{i}(\mathbf{h}, \mathbf{p})}{d\mathbf{h}} = \frac{1}{\|\nabla_{\mathbf{u}}G_{i}(\mathbf{u}_{i}^{*}, \eta)\|} \frac{dG_{i}(\mathbf{u}_{i}^{*}, \eta)}{d\mathbf{h}} \\ \\ g_{i}^{R} &= P_{t_{i}} - P_{i}, \quad i = 1...nr \\ \frac{dP_{f_{i}}(\mathbf{x}, \eta)}{d\mathbf{h}} &= -\varphi\left(-\beta_{i}(\mathbf{h}, \mathbf{p})\right) \frac{d\beta_{i}(\mathbf{h}, \mathbf{p})}{d\mathbf{h}} \\ \end{split}$$

RBDO of Space Trusses

$$\begin{array}{ll} \mbox{Minimize} & f(\mathbf{h},\mathbf{p}) & \mathbf{h} \in \Re^n \\ \mbox{subject to} & \begin{array}{l} g_i^R(\mathbf{h},\mathbf{p}) \geq 0 & i=1...l \\ h_i^l \leq h_i \leq h_i^u & i=1...n \end{array} \text{ } f(\mathbf{h},\mathbf{p}) = V(\mathbf{h},\mathbf{p}) = \sum_{i=1}^{ne} A_i(\mathbf{h},\mathbf{p}) l_i(\mathbf{h},\mathbf{p}) \\ \end{array}$$

$$g_i^R(\mathbf{x}, \eta) = P_{t_i} - P_{f_i}(\mathbf{x}, \eta), \qquad i = 1...nr$$

$$\beta_{t_i} = -\Phi^{-1}(P_{t_i})$$

$$g_i^R(\mathbf{x}, \eta) = \beta_i(\mathbf{x}, \eta) - \beta_{t_i}, \qquad i = 1...nr$$

$$g_i^R(\mathbf{x}, \eta) = g_i^P(\mathbf{x}, \eta) = G_i(\mathbf{u}_{i\,\beta=\beta_{t_i}}^*, \eta), \qquad \mathbf{PMA}$$

RBDO of Space Trusses

Performance Functions

- maximum allowed displacement

 $g(\mathbf{h},\mathbf{p}) = 1 - \frac{|q_i(\mathbf{h},\mathbf{p})|}{q^a}$

- maximum allowed yield / critical stress

yield stress

$$g(\mathbf{h}, \mathbf{p}) = 1 - \frac{|\sigma_i(\mathbf{h}, \mathbf{p})|}{\sigma^a} \begin{cases} \sigma^a = \min[\sigma^0, \sigma^{cr}] \\ \sigma^{cr} = \frac{\pi^2 E I_{min}}{Al} \end{cases} \text{ Euler critical stress}$$

- global critical load

$$g(\mathbf{h},\mathbf{p}) = \lambda_{cr}(\mathbf{h},\mathbf{p}) - \lambda^a$$

Structural Analysis

PUC

•Referencial – Total Lagrangian

incremental-iterative scheme

Structural Analysis

Examples of RBDO

Example 1-10 bar Plane Truss

x	Description	Туре	Momen.	Inital value	h	Pres. work	Stocki et. al [73]
X ₁	Cross-section area - el. 1 constant δ (5%)	LN	$E(X_1)$ $\sigma(X_1)$	20.00	h_1	29.22	28.85
X_2	Cross-section area - el. 2 constant δ (5%)	LN	$E(X_2)$ $\sigma(X_2)$	20.00	h_2	13.04	18.57
X_3	Cross-section area - el. 3 constant δ (5%)	LN	$E(X_3)$ $\sigma(X_3)$	20.00	h_3	40.34	40.21
X_4	Cross-section area - el. 4 constant δ (5%)	LN	$E(X_4)$ $\sigma(X_4)$	20.00	h_4	25.30	16.40
X_5	Cross-section area - el. 5 constant δ (5%)	LN	$E(X_5)$ $\sigma(X_5)$	20.00 1.0	h_5	5.09	5.09
X_6	Cross-section area - el. 6 constant δ (5%)	LN	$E(X_6)$ $\sigma(X_6)$	20.00	h_6	5.09	5.09
X7	Cross-section area - el. 7 constant δ (5%)	LN	$E(X_7)$ $\sigma(X_7)$	20.00 1.0	h_7	5.09	6.03
X_8	Cross-section area - el. 8 constant δ (5%)	LN	$E(X_8)$ $\sigma(X_8)$	20.00 1.0	h_8	24.22	24.60
X_9	Cross-section area - el. 9 constant δ (5%)	LN	$E(X_9)$ $\sigma(X_9)$	20.00	h_9	10.70	5.75
X10	Cross-section area - el. 10 constant δ (5%)	LN	$E(X_{10}) = \sigma(X_{10})$	20.00 1.00	h_{10}	30.41	35.53
X11	Young modulus for all elements	LN	$E(X_{11}) = \sigma(X_{11})$	21000.0 1050.0			
X_{12}	Yield stress for all elements	LN	$E(X_{12}) = \sigma(X_{12})$	21.0 1.0			
X13	x coordinate - node 1	Ν	$E(X_{13}) = \sigma(X_{13})$	720.0			
X14	y coordinate - node 1	Ν	$E(X_{14}) = \sigma(X_{14})$	360.0 2.0	h ₁₁	150.0	150.0

. . .

. . .

<u> </u>	a acordinata nada (-	$F(\mathbf{V}, \cdot)$	260.0	-		
X 10	x coordinate - node 4	N	$E(A_{19})$	300.0			
			$\sigma(X_{19})$	2.0			
Y	y coordinate - node 4	N	$E(X_{20})$	0.0	h	99.11	25.2
A 20		14	$\sigma(X_{20})$	2.0	14	22.11	35.5
V.	Nodal load P_1	CU	$E(X_{21})$	100.0			
A 21		GO	$\sigma(X_{21})$	20.0	1		
Y	Nodal load P_2	LN	$E(X_{22})$	50.0			
A 22		TIA	$\sigma(X_{22})$	2.5			

. . .

Minimize	$V(\mathbf{h}, \mathbf{p})$				
subject to	$\beta_i(\mathbf{x}, \boldsymbol{\eta}) \geq 3.7$	$i = 1, \ldots, 11$			
	$5.09 \text{ cm}^2 \le h_k \le 76.4 \text{ cm}^2$	$k = 1, \ldots, 10$			
	$150.0 \text{ cm} \le h_k \le 450.0 \text{ cm}$	k = 11, 13			
	$-100.0 \text{ cm} \le h_k \le 100.0 \text{ cm}$	k = 12, 14			

vertical displacement of node $2(q_2^2)$

$$g_1(\mathbf{q}(\mathbf{h}, \mathbf{p})) = 1 - \frac{|q_2^2(\mathbf{h}, \mathbf{p})|}{q^a}$$

where $q^a = 3.5$ cm.

maximum allowed yield / critical stress

$$g_i(\mathbf{h}, \mathbf{p}) = 1 - \frac{|\sigma_{i-1}(\mathbf{h}, \mathbf{p})|}{\sigma_{i-1}^a(\mathbf{p})} \quad i = 2, \dots, 11,$$

h	pres. work	Stocki et. al [73]
h_1	29.22	28.85
h_2	13.04	18.57
h_3	40.34	40.21
h_4	25.30	16.40
h_5	5.09	5.09
h_6	5.09	5.09
h7	5.09	6.03
- h ₈	24.22	24.60
$-h_9$	10.70	5.75
h_{10}	30.41	35.53
h ₁₁	150.0	150.0
h_{12}	98.74	10.1
h ₁₃	245.83	259.9
h ₁₄	22.11	35.3

In the present paper, 18 iterations, 1875 structural analyses and 875 sensitivity analyses were necessary to reach the convergence to the solution.

Example 2-24 bar Dome

x	Description	Туре	Momen.	Initial value	h	Pres. work	Stocki et. al [73]
X_1	Cross-section area - el. 1-6 constant δ (5%)	LN	$E(X_1)$ $\sigma(X_1)$	20.00 1.0	h1	19.398	19.371
X_2	Cross-section area - el. 7-12 constant δ (5%)	LN	$E(X_2)$ $\sigma(X_2)$	20.00 1.0	h_2	13.655	13.712
X_3	Cross-section area - el. 13-24 constant δ (5%)	LN	$E(X_3)$ $\sigma(X_3)$	20.00 1.0	h_3	14.239	14.239
X_4	Young modulus for all elements	LN	$E(X_4) = \sigma(X_4)$	21000.0 1050.0			
X_5	Yield stress for all elements	LN	$E(X_5) = \sigma(X_5)$	21.0 1.0			
X_6	x coordinate - node 1	Ν	$E(X_6) = \sigma(X_6)$	0.0			
X_7	y coordinate - node 1	Ν	$E(X_7) = \sigma(X_7)$	0.0			
X_8	z coordinate - node 1	Ν	$E(X_8)$ $\sigma(X_8)$	82.16 1.0			

...

...

		1	·/			
Xa	x coordinate - node 7	N	$E(X_{24})$	125.0		
24		- 1	$\sigma(X_{24})$	1.0		
Xor	y coordinate - node 7	N	$E(X_{25})$	-216.51		
1125			$\sigma(X_{25})$	1.0		
V	z coordinate - node 7	N	$E(X_{26})$	62.16		
A26		14	$\sigma(X_{26})$	1.0		
You	Nodal load P	CII	$E(X_{27})$	20.0		
A27		90	$\sigma(X_{27})$	3.0		

...

 $\begin{array}{ll} \mbox{Minimize} & V(\mathbf{h},\mathbf{p}) \\ \mbox{subject to} & & \beta_i(\mathbf{x},\boldsymbol{\eta}) \geq 3.7 & i=1,\ldots,25 \\ & & \beta_{26}(\mathbf{x},\boldsymbol{\eta}) \geq 4.7 \\ & & 3.13 \ {\rm cm}^2 \leq h_k \leq 30.76 \ {\rm cm}^2 & k=1,\ldots,10 \end{array}$

In the present work, 6 iterations, 1671 structural analyses and 831 sensitivity analyses were necessary to reach the convergence to the solution.

Final Comments

• A computational tool which performs the RBDO of space trusses is presented.

The design variables are the mean values of the nodes coordinates and/or the areas of the cross sections.

Geometric nonlinear behaviour is considered in the structural analysis.

Sensitivities analyses are performed analytically.

The tool integrates modules of mathematical programming algorithms, geometric nonlinear structural analysis, sensitivity analysys and reliability analysis.

Two basic formulations for the RBDO problem were implemented, namely, the RIA and the PMA. The PMA presented a better performance.

• The performance of the computer program became much more efficient when information of the anterior reliability analysis is used in a new iteration of the optimization process leading to a significant reduction in the number of total iterations.

• Nonlinear structures were successfully optimized even when presenting great displacements and limit points.

Joint Probability Function

