
1 INTRODUCTION 

1.1 Generalities 

Under certain circumstances, beam-to-column joints 
can be subjected to the simultaneous action of bend-
ing moments and axial forces. Although, the axial 
force transferred from the beam is usually low, it 
may, in some situations attain values that signifi-
cantly reduce the joint flexural capacity. These con-
ditions may be found in: vierendeel girder systems 
(widely used in building construction because they 
take advantage of the member flexural and compres-
sion resistances eliminating the need for extra diago-
nal members); regular sway frames under significant 
horizontal loading (seismic or extreme wind); irregu-
lar frames (especially with incomplete storeys) under 
gravity/horizontal loading; and pitched-roof frames. 

On the other hand, with the recent escalation of 
terrorist attacks on buildings, the study of progres-
sive collapse of steel framed building has been high-
lighted, as can be seen in Vlassis et al. (2006). Ex-
amples of these exceptional conditions are the cases 
where structural elements, such as central and/or pe-
ripheral columns and/or main beams, are suddenly 
removed, sharply increasing the joint axial forces. In 
these situations the structural system, mainly the 
connections, should be sufficiently robust to prevent 
the premature failure modes that may lead to pro-
gressive structural collapse. 

Unfortunately, few experiments considering the 
bending moment versus axial force interactions have 
been reported. Additionally, the availabe experi-
ments are associated with a small number of axial 
force levels and associated bending moment versus 

rotation curves, M-φ. Nevertheless, a question still 
remains on how to incorporate these effects into a 
structural analysis. There is a need for M-φ curves, 
associated with numerous axial force levels, which 
accurately represent the joint rotational stiffness. 

This has led to the development of an approach to 
incorporate any moment versus rotation curve from 
tests including the axial versus bending moment in-
teraction, as well as its evaluation and validation 
against experiments. This approach is not only re-
stricted to the use of experiments, but can be applied 
to results obtained analytically, empirically, me-
chanically, and numerically. 

As this approach is exclusively based on the use 
of M-φ curves, it can be easily incorporated into a 
nonlinear semi-rigid joint finite element formulation 
because the moment versus axial force interaction is 
associated with a specific M-φ curve. The nonlinear 
joint finite element formulation does not change. It 
only requires a rotational stiffness update procedure. 
This approach has been used to improve the joint fi-
nite element model proposed by Del Savio (2004) 
and Del Savio et al. (2004, 2005), which was ini-
tially based on the semi-rigid joint force independ-
ence. 

1.2 Component Method 

The component method consists of relatively simple 
joint mechanical models, based on a set of rigid and 
spring components. The component method, intro-
duced in Eurocode 3 (2003), can be used to deter-
mine the joint’s resistance and initial stiffness. Its 
application requires the identification of active com-
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ponents; evaluation of the force-deformation re-
sponse of each component; and the subsequent as-
sembly of the active components for the evaluation 
of the joint moment versus rotation response. 

The Eurocode 3 (2003) component method per-
mits the evaluation of the semi-rigid joint’s rota-
tional stiffness and moment capacity when subjected 
to pure bending. However, this component method is 
still not able to calculate these properties when, in 
addition to the applied moment, an axial force is also 
present. Eurocode 3 (2003) suggests that the axial 
load may be disregarded in the analysis when its 
value is less than 10% of the beam’s axial plastic re-
sistance, but provides no information for cases in-
volving larger axial forces. Even though, the Euro-
code 3 (2003) component method has not considered 
the axial force, its general principles could be used 
to cover this situation, since it is based on the use of 
a series of force versus displacement relationships, 
which only depend on the axial force level, to char-
acterize any component behaviour. 

1.3 Background: Experimental and theoretical 
models 

The study of the semi-rigid characteristics of beam 
to column connections and their effects on frame be-
haviour can be traced back to the 1930s, Li et al. 
(1995). Since then, a large amount of experimental 
and theoretical work has been conducted both on the 
behaviour of the connections and on their effects on 
the complete frame performances. 

Despite the large number of experiments, they do 
not cover all possible connection ranges. As an al-
ternative to tests, different methods have been pro-
posed by researchers to predict bending moment ver-
sus rotation curves. These methods are usually 
classified as: empirical, analytical, mechanical 
(component-based approaches) and numerical (finite 
element). 

Recently, several researchers have paid special at-
tention to joint behaviour under combined bending 
moment and axial force. The investigators concluded 
that the presence of the axial force in the joints 
modifies their structural response and, therefore, 
should be considered. A number of experimental 
works deserve mention:  

- Guisse et al. (1997) performed tests on six pro-
totypes of column bases with extended endplates 
with bolts placed outside of the beam height and six 
tests on flush endplates with bolts inside the beam 
height. In these tests, the compressive axial force 
was first applied and kept constant during the test 
while the bending moment was subsequently in-
creased up to failure. 

- Wald et al. (2000) conducted two tests on beam-
to-beam and beam-to-column joints. The loading 
system adopted a proportional increase of axial force 
and bending moment. However, a test without axial 

forces was not performed, making it difficult to as-
sess the axial force influence on the joint response. 

- Lima et al. (2004) and Simões da Silva et al. 
(2004) performed tests on fifteen prototypes, i.e. 
eight flush and seven extended endplate joints. All 
the tests adopted a loading strategy consisting of an 
initial application of the total axial force (tension or 
compression), held constant during the entire test, 
and the subsequent incremental application of the 
bending moment. 

Regarding the theoretical models recently devel-
oped to predict the behaviour of beam-to-column 
joints under bending moment and axial force, it is 
possible to mention: 

- Jaspart (1997, 2000), Finet (1994) and Cerfon-
taine (2001, 2004) have applied the principles of the 
component method to establish design predictions of 
the M-N interaction curves and initial stiffness. 

- Simões da Silva & Coelho (2001), based on the 
same general principles, have proposed analytical 
expressions for the full non-linear response of a 
beam-to-column joint under combined bending and 
axial forces. 

- Sokol et al. (2002) proposed an analytical model 
to predict the behaviour of joints subjected to bend-
ing moment and axial force for proportional loading. 

Table 1 presents a summary of recent studies car-
ried out to investigate joint behaviour when sub-
jected to bending moment and axial force. 
 
Table 1.  Summary of studies of joints subjected to bending and 
axial force, Lima et al. (2004). __________________________________________________ 
Authors           Analysis type  __________________________________________________ 
Finet (1994)         AM* 
Jaspart (1997, 2000)      AM* and ET** 
Cerfontaine (2001, 2004)     AM* 
Simões da Silva & Coelho (2001)  AM* 
Simões da Silva et al. (2001)   AM* 
Lima (2003)         ET** 
Wald & Svarc (2001)      AM* 
Sokol et al. (2002)       AM* _________________________________________________ 

*  AM = Analytical model. 
**  ET = Experimental tests. 

2 CORRECTION FACTOR 

2.1 Concepts of the Correction Factor 

The Correction Factor has initially been proposed by 
Del Savio et al. (2006) to consider the bending mo-
ment versus axial force interaction, by scaling origi-
nal moment values present in the moment versus ro-
tation curves (disregarding the axial force effect). 
This strategy shifts this curve up or down depending 
on the axial force level. However, as it only modifies 
the bending moment axis, it is not able to fully de-
scribe the bending moment versus rotation associ-
ated with different axial force levels. This fact is 
highlighted when the joint is subject to a tensile ax-



ial force, where there is a significant difference, 
principally, in terms of initial stiffness. 

Aiming to improve the Correction Factor’s basic 
idea, the Correction Factor was divided into two 
parts: one for the moment axis and another for the 
rotation axis. Both corrections are in principle inde-
pendent, and do not depend on the moment versus 
axial force interaction diagram, as was the case for 
the initial idea presented by Del Savio et al. (2006). 
It is now only a function of the moment versus rota-
tion curves for different axial force levels. 

2.2 Evaluation of the Correction Factor 

As previously noted, there are two corrections, one 
to the moment axis and another to the rotation axis. 

As a general approach, the Correction Factor for 
the moment axis is evaluated in terms of the bending 
moment versus rotation curves considering the axial 
force effect. Using the design bending moment ratio 
and considering the axial force effect, the Correction 
Factor for the moment axis, CFM, can be evaluated 
by: 

CF
M

=
M

int

M
max

M
int

= f Mxφ (N
i
)( )

M
max

= f Mxφ (0.0)( )
 (1) 

where Mxφ = bending moment versus rotation curve; 
Mint = design bending moment for the M-φ(Ni) con-
sidering the axial force; Mmax = design bending mo-
ment for cases without axial forces; and Ni = axial 
force present in the i interaction. Mint and Mmax can 
be determined according to Eurocode 3 part 1.8 
(2003), through the intersection between two straight 
lines, one parallel to the initial stiffness and another 
parallel to the M-φ post limit stiffness, Figure 1. 
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Figure 1. Correction Factors parameters for the moment and ro-
tation axis. 

 
Similarly, the rotation axis Correction Factor, 

CFφ, is evaluated using the design rotation ratio, i.e.: 

CF
φ

=
φ

int

φ
max

φ
int

= f Mxφ (N
i
)( )

φ
max

= f Mxφ (0.0)( )
 (2) 

where φint = design rotation related to Mint; and φmax 
= rotation related to Mmax. Both design rotations are 
found by tracing a horizontal straight line at the de-
sign moment level until it reaches the M-φ curve. At 
this point a vertical straight line is drawn until it in-
tersects the rotation axis, Figure 1. 

With the Correction Factors evaluated for both 
the moment (Equation 1) and rotation (Equation 2) 
axes, they are incorporated into the joint structural 
response considering the moment versus axial force 
interaction, modifying the M-φ curve for the zero ax-
ial force case, i.e.: 

Mxφ(N = 0) → Mxφ(N i)

Mxφ(N i) = Mxφ(MN= 0 ⋅ CFM ,φN= 0 ⋅ CFφ )
 (3) 

Basically, the M-φ point coordinates, for the case 
without axial forces, are multiplied by the Correction 
Factors, where CFM and CFφ, multiply the moment 
and the rotation axis coordinates, respectively. 

However, using only a pair of Correction Factors 
throughout the whole M-φ curve, for the case with-
out axial forces, does not provide a good approxima-
tion to M-φ curve considering the axial force, be-
cause it is very sensitive to the adopted initial 
stiffness and post-limit stiffness angles.  

This motivated the division of the M-φ curve into 
three segments with different pairs of Correction 
Factors. This division was made for two-third, one, 
and 1.1 times the design moment, as shown in Fig-
ure 2. 
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Figure 2. Correction Factor strategy approach using a three 
segment division of the M-φ curve. 

 
With this division, the Correction Factors cannot 

be applied as presented in Equation 3. This is justi-
fied, in fact, because they would provoke two abrupt 
variations of stiffness throughout the approximate 
M-φ curve at around the point of intersection of the 
approximate curve with the vertical lines at the 
points φ2/3d and φd, Figure 3. This is due to the use of 
three different pairs of Correction Factors. 
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Figure 3. Approximate M-φ curve using three Correction Factor 
pairs. 

 
To avoid the problem of abrupt alterations of 

stiffness presented in Figure 3, it is proposed, in Fig-
ure 4, to use a tri-linear representation of the M-φ 
curve. 
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Figure 4. Tri-linear representation of the M-φ curve approach. 

 
With this tri-linear approach, Figure 4, the mo-

ment levels of the required M-φ curve, associated to 
a certain axial force level (Ni), can be evaluated by: 

M
p
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i
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 (4) 

where Mp = evaluated moment for the new M-φ; 
MN,p = moment on the reference M-φ curve consider-
ing the axial force; M0,p = moment on the reference 
M-φ curve without axial forces; and N = axial force 
load level associated to the reference M-φ curve. 

Likewise, the rotations of the evaluated M-φ 
curve, for the associated Ni, can be calculated by: 
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 (5) 

where φp = evaluated rotation for the new M-φ curve; 
φN,p = rotation on the reference M-φ curve consider-
ing the axial force; and φ0,p = rotation on the refer-
ence M-φ curve without axial force effects. 

3 APPLICATION OF THE CORRECTION 
FACTOR 

3.1 Uses and input of the Correction Factor 

The main focus of the proposed Correction Factor 
was to determine M-φ curves for any axial force 
level from the M-φ curve for zero axial force. The 
quality of the approximations obtained will depend 
on quality of M-φ used as input to the method. This 
method requires three M-φ curves, one disregarding 
the axial force effect and two considering the com-
pression and tension axial force effects.  

3.2 Example of application and validation 

The goal of this section is to demonstrate how to use 
the Correction Factor method to obtain M-φ curves 
for any axial force level, as well as to validate it, us-
ing experimental tests carried out by Lima et al. 
(2004) and Simões da Silva et al. (2004), on eight 
flush endplate joints. The geometric properties of the 
flush endplate analysed, the M-φ curves describing 
the experimental behaviour of each test, and the 
bending moment versus axial force interaction dia-
gram are shown in Figures 5-7, respectively. 
 
 

 
 
Figure 5. Flush endplate joint layout, Simões da Silva et al. 
(2004). 
 
 



0

10

20

30

40

50

60

70

80

90

100

0 15 30 45 60 75 90

Rotation (mrad)

EC3

FE1 (N = 0)

FE3 (N = -4% Npl)

FE4 (N = -8% Npl)

FE5 (N = -20% Npl)

FE6 (N = -27% Npl)

FE7 (N = -20% Npl)

FE8 (N = +10% Npl)

FE9 (N = +20% Npl)

 
 
Figure 6. Experimental moment versus rotation curves, Simões 
da Silva et al. (2004). 
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Figure 7. Flush endplate bending moment versus axial force in-
teraction diagram, Simões da Silva et al. (2004). 

 
The experimental data, Figure 6, provides the 

necessary input for the Correction Factor method. 
The minimum input is composed of two M-φ curves, 
disregarding and considering either the tension or 
compression axial force. The flush endplate joint, 
tested by Simões da Silva et al. (2006), exhibited a 
decrease in the moment resistance for the tensile ax-
ial forces whilst achieving the highest moment resis-
tance for the compression axial force of 20% of the 
beam plastic resistance (see Figure 7, FE7). There-
fore, three M-φ curves: FE1 (N = 0); FE7 (N = -257 
kN, -20% Npl), and FE9 (N = 250 kN, +20% Npl), 
where Npl is the beam axial plastic resistance, have 
been used. These three experimental curves and their 
tri-linear approximations are shown in Figure 8. 

Tri-linear M-φ curves, Figure 8, are used to define 
paths between each curve at points 2/3Md, Md and 
1.1Md, Figure 9. These paths will be used to guide 
the Correction Factor throughout the range of axial 
force levels to determine the required set of M-φ 
curves. 
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Figure 8. Tri-linear approach for the experimental M-φ curves. 
 
 

0

10

20

30

40

50

60

70

80

90

100

0 15 30 45 60 75 90

Rotation (mrad)

FE1 (N = 0): tri-linear

FE7 (N = -20% Npl): tri-linear

FE9 (N = +20% Npl): tri-linear

2/3 Md

Md

1.1 Md

+250 to 0 kN

0 to -257 kN

 
 
Figure 9. Paths used to define the way to find any M-φ curve 
contained within these limits imposed on the Correction Factor. 

 
Subsequently, Figures 10-12 show the results ob-

tained using the Correction Factor approach for three 
experimental M-φ curves: FE8, FE3 and FE4. The 
evaluated M-φ curve requires two M-φ reference 
curves defining the maximum and minimum limit 
for the associated axial force level. Figure 13 gives 
the complete results of the Correction Factor ap-
proach. 
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Figure 10. FE8 M-φ curve approximation, considering a tension 
force of 10% of the beam axial force plastic resistance. 
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Figure 11. FE3 M-φ curve approximation, considering a com-
pression force of 4% of the beam axial force plastic resistance. 
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Figure 12. FE4 M-φ curve approximation, considering a com-
pression force of 8% of the beam axial force plastic resistance. 
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Figure 13. Final Correction Factor approach curves. 

4 RESULTS AND DISCUSSION 

Three experimental M-φ curves, by Lima et al. 
(2004) and Simões da Silva et al. (2004), were sub-
jected to the Correction Factor concept, as can be 
seen in Figures 10-11. 

Figure 10 illustrates an approximation for FE8 M-
φ curve that considers a tension force of 10% of the 
beam axial force plastic resistance. This approxima-
tion was obtained from two tri-linear M-φ curves, 
disregarding and considering a tension force of 20% 

of the beam axial force plastic resistance. This ap-
proximation was very close to FE8 M-φ test curve. 

Figures 11 and 12, present approximations for 
FE3 and FE4 M-φ curves that consider compression 
forces of 4% and 8% of the beam axial force plastic 
resistance, respectively. These approximations were 
obtained from two tri-linear M-φ curves, disregard-
ing and considering a compression force of 20% of 
the beam axial force plastic resistance. The ap-
proximation acquired for FE4 M-φ curve, Figure 12, 
was relatively close to the experimental curve. How-
ever, for FE3 M-φ curve, Figure 11, the obtained es-
timation was not as good. This was due to the differ-
entiable behaviour of this experimental curve when 
compared to the others. It is possible to observe in 
Figure 7 that there is an increase in the flush end-
plate joint moment capacity from FE1 M-φ curve (N 
= 0% Npl) to FE7 M-φ curve (N = -20% Npl). How-
ever, within this range, with 4% beam compression 
force plastic resistance the final moment is larger 
than the maximum moment obtained with the 8% 
test. A possible reason for that could be related to 
problems with this specific experimental test, i.e., 
measuring errors, eccentricities in the construction 
and assembly of this test, etc.  

5 CONCLUSIONS 

The main goal of this work was to present an ap-
proach to determine any moment versus rotation 
curve from experimental tests, including the axial 
versus bending moment interaction. It can also be 
applied to results obtained analytically, empirically, 
mechanically, and numerically. Due to its simplicity 
and the fact that its basis is M-φ curves that already 
consider the moment versus axial force interaction, it 
can be easily incorporated into a nonlinear semi-
rigid joint finite element formulation. The use of the 
proposed approach does not change the basic formu-
lation of the non-linear joint finite element, only re-
quiring a rotational stiffness update procedure. 

This approach is a simple and accurate way of in-
troducing semi-rigid joint experimental test data into 
structural analysis, through of M-φ curves. 

Application and validation of this approach to ob-
tain M-φ curves for three axial force level, using ex-
perimental tests carried out by Lima et al. (2004) and 
Simões da Silva et al. (2004), on eight flush endplate 
joints, were performed with results close to the ex-
periments. 
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