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ABSTRACT 
Over the last few years various investigations related to the development of finite element 
formulations for semi-rigid steel portal frame design including the geometric non-linear 
response have been produced. On the other hand, it is suggested that, for a more precise semi-
rigid connection modelling, the axial and shear force effects should be incorporated to the 
usual bending deformations. These facts motivated the conception and development of a joint 
finite element that could accurately represent these effects as well as contemplated a possible 
interaction amongst these stiffness components. This element also enables joint elasto-plastic 
analysis to be performed based on their associated moment versus rotation curves. 
Consequently, the main aim of this paper is to describe in detail the proposed joint finite 
element and also its linear and non-linear formulations that incorporated the transversal 
deformations due to shear stresses. In order to validate and calibrate this element, and its 
associate formulation, a three storey semi-rigid steel portal frame proposed by Keulen et al. 
[4] was analysed and investigated. 

1 INTRODUCTION 
Various investigators have been developing geometric non-linear finite element systems for 
semi-rigid portal frame modelling. One of the most traditional approaches was proposed by 
Chan & Chui [5], using a hybrid finite element to characterise the semi-rigid joint response. 
This finite element was generated from a beam element with two additional rotation springs 
statically condensate at element ends. A similar deduction to Chan and Chui [5] will be 
presented for the determination of the stiffness matrix of the 2D beam finite element with 
condensed springs on its extremities as well as the equivalent nodal loading vector for 
uniformly distributed loads. 

One of the objectives of the present investigation is to consider the additional effects of the 
transversal forces on the usual flexural deformations of steel portal frames with semi-rigid 
connections. Additionally, the shear-bending interaction is also contemplated since this was 
not included in the original 2D beam finite element with condensed springs on its extremities 
where only the rotation stiffness was considered. The non-linear elasto-plastic behaviour of 
this joint element is considered through its associated moment versus rotation curve. Elasto-



plastic analyses of the global structure are performed introducing joint elements in points 
where probable plastic hinge could occur. 

The present paper presents the proposed joint finite element in terms of its linear and non-
linear formulations that considered the transversal deformations due to the shear stress effect. 
These effects are not coupled in the linear formulation. On the other hand, in the non-linear 
case the joint finite element is based on Timoshenko beam theory leading to a stiffness matrix 
with coupled stiffnesses. This formulation was developed under an Updated Lagrangian 
referential with an approach considering corotational displacements. 

The present element was implemented in the FEMOOP (Finite Element Method – Object 
Oriented Program) software. A more detailed description of the element implementation 
scheme and semi-rigid joint pre-processing and post-processing tools can be found in Del 
Savio et al. [1]. In order to calibrate and validate the non-linear joint finite element 
formulation, a three storey semi-rigid steel portal frame, Keulen et al. [4], is analysed and 
investigated. 

2 PLANE BEAM ELEMENT WITH SPRINGS ON ITS EXTREMITIES 

2.1 Stiffness Matrix 
The plane beam finite element and the adopted coordinate system are illustrated in Fig. 1, 
where the left and right elastic rotation springs are represented by: CL and CR. The schematic 
representation of the springs and hinges, Fig. 1, considers that the distance from the hinge to 
the nearest beam extremity is infinitely small. 

 

Fig. 1: 2-D Beam element with springs on its 
extremities. Global system. 

 

Fig. 2: 2-D Beam element with springs on its 
extremities. Auxiliary Global system. 

It is not possible to directly obtain the element stiffness matrix since the reference system 
coordinate number is insufficient to fully describe the actual element displacements. This fact 
led to the adoption of an auxiliary global coordinate system, Fig. 2. The element stiffness 
matrix is obtained in this system, and a static condensation of the internal degrees-of-freedom 
(DOF) 7 and 8 (Fig. 2) is made, leading to the Fig. 1 desired stiffness matrix. The Fig. 2 beam 
stiffness matrix was simply obtained with the aid of the local auxiliary coordinate system, Fig. 
3, where the beam element of Fig. 2 was decomposed in three well-known elements: two 
springs and a conventional beam element. 

 

Fig. 3: 2-D Beam element with springs on its extremities. Auxiliary Local system. 

Using these three stiffness matrices the local auxiliary system element stiffness matrix is: 
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where kL , kR and kN are the stiffness matrices of the left and right springs and the 2-D beam 
element. This simple idea led to the beam stiffness matrix in terms of the auxiliary global 
coordinate system: 

 AKAK AuxiliarLocal
T

AuxiliarGlobal ⋅⋅=  (2) 

where A is the cinematic incidence matrix that transforms the displacements from Fig. 2 
coordinate system (auxiliary global system) into Fig. 3 coordinate system (local auxiliary 
system). Having the element stiffness matrix in terms of the global auxiliary system of Fig. 2 
in hand, the equivalent stiffness matrix for Fig. 1 system can be obtained using static 
condensation principles applied to the 7 and 8 internal DOF of Fig. 2. This strategy enables 
only the external DOF to be directly considered through which the compatibility of 
displacements and the substructure equilibrium against the other structures parts are enforced. 
The matrix representation of the substructure equilibrium, Fig. 2, is expressed in terms of: 
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where the subscripts e and i are respectively related to the external and internal parts. In this 
equation pe and pi are force vectors applied to the internal/external dofs while de and di are 
internal/external displacements. Finally, ke,e, ke,i, ki,e and ki,i are sub-matrices of the Fig. 2 
element stiffness matrix KGlobal Auxiliar. Fig. 1 element stiffness matrix after the static 
condensation is: 
 ( )[ ]eiiiieee kkkkK ,

1
,,, ⋅⋅−= −  (4) 

2.2 Equivalent Nodal Loads 

Due to the static condensation of the internal nodes (7 e 8) the equivalent nodal load vector 
was also affected. The same method earlier described is used applying the static condensation 
principle to the equivalent nodal loads. From a uniformly distributed load acting on Fig. 3(b) 
element, and knowing beforehand its equivalent load, the equivalent load vector for the 
elements of Fig. 3 can be determined. When this is applied to Fig. 2 element DOF the 
following nodal load vector is generated: 

 { }TAuxiliarGlobal qLqLqLqLS 12/12/02/002/0 22−−−=  (5) 

Condensating the internal DOF (7 and 8), Fig. 2, this expression can be written in terms of the 
equivalent loads, i.e.: 
 ( ) íiiiee pkkpS ⋅⋅−= −1

,,  (6) 

This yields the expression for the equivalent nodal load vector for Fig. 1 element when 
submitted to a uniformly distributed load. 

3 JOINT FINITE ELEMENT FORMULATION 

The proposed joint finite element, Fig. 4, has the main objective of modelling a semi-rigid 
connection in linear and non-linear structural analysis. 
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Fig. 4: Joint finite element 

3.1 Linear Formulation 

The stationery potential energy principle was used to formulate the joint element stiffness 
matrix and the corresponding equilibrium equation. The total potential energy functional, Π, 
is expressed in two parts: 
 VU +=Π  (7) 

where U is the strain energy and V is the potential of the external forces. The strain energy, U, 
can be expressed in terms of the spring stiffnesses and their respective relative displacements 
as: 
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in which: ∆x=u1-u2, ∆y=v1-v2 and ∆z=θ1-θ2. The potential of the external forces is: 
 ( ) ( )222222111111 θθ MvQuPMvQuPV ++−++=  (9) 

where the subscripts 1 and 2 are related to the initial a final nodes, while u, v, θ represent 
respectively the axial displacement, transversal displacement, and rotation and P, Q and M 
represent respectively the axial, transverse and moment forces. Applying the total potential 
energy principle, the equilibrium equations can be determined from the stationary condition 
of the functional Π. The stiffness matrix and the internal loading vector can be derived from 
the strain energy, equation (8): 
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3.2 Non-Linear Formulation 

The non-linear formulation for the joint element was developed in a Total Lagrangian 
referential using a corotational approach for the displacements. The stiffness matrix and the 
internal load vector are evaluated on the total natural displacement space, i.e., referenced to a 
continuously updated axis system, Fig. 5. The total natural displacement vector has 3 parts: 
 [ ]Tnnnn uu 212 θθ=  (12) 

These values are calculated from the below expressions, as can be seen in Fig. 5: 
 ,0

2 LLu tt
n −= ∆+  ,11 rn θθθ −=  rn θθθ −= 22  (13) 
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Fig. 5: Geometrical relationships of the corotational referential 

where 0L is the initial elementary length and t+∆tL is the elementary length in the current 
equilibrium configuration, i.e.: 
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The rigid body rotation, θr can be evaluated through: 
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A classic Timoshenko beam element, with two nodes was used to define the total potential 
energy in terms of total natural displacements. Linear interpolations were used to evaluate the 
displacements u and v, and the rotation θ: 
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The curvature k, the shear strain γ, and the axial deformation ε are defined by: 
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The strain energy, U, can be expressed in terms of the spring stiffnesses and the total natural 
displacements as: 
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The external forces work can be written as: 
 ( ) ( )222211 nnnnnn MuPMV θθ +−=  (22) 

Using the strain energy equation (21) the stiffness matrix and the internal load vector could be 
obtained in terms of corotational coordinates: 
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Finally, the internal load vector and the element stiffness matrix, in global coordinates, can be 
obtained by applying successive differentiations i.e.: 
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4 NUMERICAL EXAMPLE 
In this section comparisons were made with Keulen et al. results [4], for a three storey steel 
portal frame using full moment versus rotation curves and a bi-linear approximation. This 
approximation uses a well-known simplified joint representation named half initial secant 
stiffness method. The portal frame spanned 7.2 metres, with 10.8 metres of height, Fig. 6, [8]. 
The beam and column sections used, respectively, IPE360 and HEA260 steel profiles. The 
beam-to-column connections are bolted flush endplates, Fig. 7. The horizontal load aF 
represents wind load, Fig. 6, but is also used to take into account imperfections and second 
order effects. The a-factor is taken as 0.15. The beam transverse load w is equal to 1/6 of the 
vertical joint load F. 

In order to evaluate the non-linear joint finite element formulation two geometric non-linear 
analysis of the mentioned structure where performed including the joint plastification. The 
difference between the analyses was related to the considered moment versus rotation curve 
associated with the joint structural response. The first analysis used a complete moment 
versus rotation curve while the second adopted a bi-linear approximation, Fig. 8. 

The Keulen et al. [4] considered two analyses: a Reference Analysis using ANSYS version 
5.5. To obtain the reference solution, a second-order elastic-plastic frame analysis is used. 
Plastic hinges in the beams are modelled using rotational spring elements at locations where 
plastic hinges are expected to occur. These rotational spring elements have a rigid-plastic 
characteristic neglecting the influence of normal and shear forces on the plastic moment 
capacity. Fig. 8 illustrates the spring properties used for the base joints, eaves joints and the 
beam springs. The second analysis, Half Initial Secant Stiffness Approach, modelled the 
portal frame using a bi-linear moment versus rotation curve considering half of the joint 
secant initial stiffness. 
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Fig. 6: Multistorey frame [4] 
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Fig. 7: Beam to column joint details [4] 

It can be observed in Figures 9 to 11 that the lateral displacements at the third, second and 
first storey level, obtained with the proposed formulation, are very similar to Keulen et al [4], 
thus demonstrating the adequacy of the proposed connection element, Del Savio [1]. 
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Fig. 8: Moment versus rotation curves [4] 

Load versus Lateral Displacement - Third Storey

0

50

100

150

200

250

300

350

400

450

500

0 25 50 75 100 125 150 175 200 225 250 275 300 325

Lateral displacement (mm)

A
pp

lie
d 

lo
ad

 (k
N

)

Reference Analysis
Half Initial Method
Connection Finite Element (Full)
Connection Finite Element (Bi-Linear)

Fig. 9: Load versus deformation diagram 

Load versus Lateral Displacement - Second Storey
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Fig. 10: Load versus deformation diagram 

Load versus Lateral Displacement - First Storey
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Fig. 11: Load versus deformation diagram 

 



5 FINAL CONSIDERATIONS 
Linear and non-linear formulations for the proposed joint finite element have been tested with 
success, Del Savio [2]. Typical application example of the joint element use in single storey 
steel frames with semi-rigid connection can be found in Del Savio et al. [1]. In order to 
validate the joint finite element stiffness matrix modification procedure in a non-linear 
analysis, a more complex structure was investigated, Keulen et al. [4]. 

The modification of the connection element stiffness matrix, Del Savio [2], in terms of the 
lateral displacements of the three storeys, when used in a non-linear structural analysis, 
produced results close to the Reference Analysis [4], (second order elasto-plastic analysis), 
and better than the Half Initial Secant Stiffness Approach [4]. This is evident in Figs. 9 to 11, 
up to the onset of yielding of the structure. From this point on, as expected, there is a slight 
difference of results. This difference of results was expected since only the geometric and 
joints non-linearities were considered in the present analysis. 

The non-linear semi-rigid joint finite element formulation presented in the present paper was 
developed considering the shear force influence (Timoshenko). However, this effect was not 
considered in the calibration examples because their main aim was to only investigate the 
influence of the joint rotation stiffness over the global portal frame structural response. This 
fact also explains why the normal force effect was also not taken into account in the analysis. 
The shear and normal stiffness were not considered by the use of a rigid link for their 
associate degrees of freedom. This strategy did not modify their values inside the 
implemented joint element. Alternatively, only the bending moment transmission capacity 
was altered, according to the moment versus rotation curve adopted in the joint element. 
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