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Abstract 

The main purpose of the present paper is to describe an investigation made on the 
optimization of the flexural capacity of steel structures by varying the stiffness and 
resistance of its associate semi-rigid joints. This optimisation process is made using 
a genetic algorithm developed and implemented in a structural analysis program, 
FTOOL/SRC, [1,2]. This algorithm was inspired in the optimum-use algorithm, 
incorporating the problem domain’s knowledge and leading to the development of a 
user-friendly system with consistent solutions. This paper describes in detail the 
formulation steps and procedures, and presents examples of semi-rigid steel portal 
frames. The purpose of the examples was to validate and prove the genetic algorithm 
efficiency towards an efficient bending moment distribution within the investigated 
semi-rigid steel structure. This purpose was fulfilled by varying the stiffness and the 
capacity of the adopted semi-rigid joints. 
 
Keywords: steel structure optimisation, semi-rigid joints, structural engineering, 
genetic algorithm, computational intelligence, structural steel joint design. 

1  Introduction 

Traditionally, structural design is made by trial-and-error procedures guided by 
design specifications and by the structural engineer’s experience and intuition. 
Meanwhile, continuous research on this field is being done to develop simple design 
tools aimed to help the structural designer to perform repetitive and time-consuming 
tasks. 

Among the structural optimisation techniques, math programming and genetic 
algorithms have been frequently used to generate economic and efficient structures. 
Genetic algorithms are often used for this purpose due to their intrinsic abilities to 
deal with problems without precise mathematical models, being capable of 
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performing global searches, representing the solutions in a simple form and allowing 
a natural and easy implementation of rules and auxiliary heuristics. 

The complete steel frame optimization involves a significant number of design 
variables that should be considered together with countless restrictions. To 
exemplify these aspects it is possible to mention the steel profile geometry variations 
(height, flanges, etc.), vertical and horizontal displacement restrictions, etc. 

The main goal of the present investigation is to develop and implement an 
optimization methodology for the design of 2D steel frames, in which the main 
variables are associated to the structural joint stiffness. The aim is to determine an 
ideal bending moment distribution that could lead to an efficient steel profile, 
avoiding situations such as the one depicted in Fig. 1, related to the use of hinged 
beam-to-column joints where the joint stiffness is zero. 

 
Figure 1: Steel frame (with hinged beam-to-column joints) bending moments. 

2  Semi-Rigid Connections 

Structural joints play a fundamental role in the global steel structures behaviour. The 
actual joint response is usually situated between two extremes: pinned and rigid. The 
rigid behaviour implies no change in the angle of members adjacent to the joint. On 
the other hand, flexible joints indicate that no bending moment transfer will occur 
among members connected by the joint. 

In the intermediate case, semi-rigid joints, the bending moment to be transferred 
among members will be a function of their relative rotation change. Consequently, 
in global structural analysis the joints not only affect the structural displacements but 
also interfere in the distribution and magnitude of their internal forces and/or 
moments in the entire structure. These aspects indicate that structural modelling, 
including semi-rigid joint effects, becomes imperative in order to represent the 
actual structural behaviour of current joints found in the design practice. 

3  Formulation/Modelling of the Optimisation Problem  

The investigated problem can be summarized in an optimization of the bending 
moment distribution present in steel portal frames. This optimization is made by 
varying the joint stiffness and is expressed by the expression: 
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where k is the semi-rigid joint stiffness, n is the number of semi-rigid joints, nelem is 
the number of structural bars and Mi and Mj are the bar element bending moments 
on the initial, i, and final, j, nodes. This function represents an optimization problem 
concerning the determination of a value close to the number of structural bars, 
nelem. In order to change this search algorithm into a minimization procedure, Eq. 
(1) is rewritten: 
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Using this approach, the problem is now formulated based on a minimization of the 
objective function. This is made by determining Mei and Mej that minimise the f(k) 
function, where Mei and Mej depend on the semi-rigid joint stiffness (k1, k2, ...,kn, 
variables). In order to better define the problem, additional restrictions were 
introduced on the stiffness search space. These restrictions, which can be defined by 
the user, limit the acceptable search space region, thus eliminating the infinite search 
space problem. 

4  FTOOL/SRC Structural Joint Modelling 

Figure 2 presents the FTOOL/SRC [1,2] graphical interface used to model the semi-
rigid joints. In this figure it is possible to identify the spring icons representing the 
joints as well as their initial stiffness values. 

More details about the FTOOL/SRC program, the type of structural analysis 
implemented and available elements used to represent the semi-rigid joints can be 
found in Del Savio et al. [1,2]. 
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Figure 2: Semi-rigid joint pre-processing. 



4 

5  Genetic Algorithms 

Genetic algorithms were initially formulated by John Holland at the end on the 60’s 
inspired by Darwin’s evolution theory presented in the famous The Origin of Species 
[5]. Genetic algorithms constitute a versatile and robust class of tools used to solve 
optimisation problems, despite the fact that they could not be strictly considered as 
function minimisers, [6]. 

The use of genetic algorithms to minimise functions differs from the usual 
mathematical programming techniques in that they use a population of individuals, 
deal with possible codified solutions, employ probabilistic transition rules and do 
not require additional information about the objective function. 

The solution-search algorithm can be used in non-convex spaces, even in isolated 
sets, with non-convex and non-differentiable objective functions capable of dealing 
simultaneously with integer, real and logical variables. Genetic algorithms are not 
easily locked to local minima, as is the case of mathematical programming 
algorithms [5]. When these characteristics are applied to structural design, they can 
lead [7] to non-conventional solutions, generally not foreseen by structural engineers 
because they are non-intuitive solutions. 

6  Implementation Details 

This section describes the implementation details of a genetic algorithm based on 
Michalewicz [4], for the problem presented in previous sections. This algorithm 
incorporates the problem domain’s knowledge, resulting in a user-friendly system. 
The initial structural modelling generates a seed for the genetic algorithm, leading to 
more consistent solutions. 

6.1 Representation Scheme and Decoding 

Several representation types are possible, such as binary, real (floating point), etc. 
The selection of an appropriate representation type depends on the characteristics of 
the search space. 

The present investigation has adopted the real number representation, because it 
performs better in optimisation problems with variables on a continuous domain 
[10]. This is more relevant in large domains, where the binary representation 
requires the adoption of large chromosomes. 

The real number representation achieves faster performances by eliminating 
further decoding stages. The real representation is also more precise (depending on 
the computer) and has a property according to which two points that are close in the 
representation space are also close in the problem space. This fact implies that the 
chromosome should be defined by a list of semi-rigid joint stiffness, where the 
number of joints n defines the chromosome’s magnitude order, i.e.: 
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where i varies from 1 up to the number of elements of the population and m varies 
from 1 up to n. 

6.2 Fitness Function 

The fitness function is responsible for selecting individuals and determining their 
quality. In the present case this function is directly related to the objective function 
that requires minimization, i.e. the self-evaluation function, Eq.(2). 

6.3 Selection 

The genetic algorithm selection process selects individuals for reproduction. The 
selection is based on the individuals’ fitness, i.e., more apt individuals have a larger 
probability of being chosen for reproduction. Two selection techniques were 
implemented: relative fitness selection and linear normalization selection. 

The first implemented selection technique establishes that the probability pi of the 
individual i in the population being selected for reproduction is proportional to its 
relative fitness, i.e.: 
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where fi = f(ki) is assumed to be positive, and the population contains m individuals. 
Two drawbacks can be identified in this process: the appearance of super-

individuals and tight competition. The first case occurs when an individual presents 
much better fitness than the others, thus determining premature convergence. The 
second case happens when individuals present very similar fitness, leading to what 
corresponds to a very low selection pressure and a consequent stagnation of the 
search algorithm. 

In order to minimize these deficiencies, a second selection method by linear 
normalization was also implemented. In this method the individuals are initially 
classified according to their fitness. Later, these fitness values are changed according 
to the individual relative position. The best/worst individuals are associated to max 
and min fitness values, these two values being determined by the user. The other 
individuals have fitness values linearly distributed between min and max according 
to their relative position (i=1 corresponds to the worst individual). 
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The max and min values define the increment constant, a technique variable. As 
the increment constant increases, there is also an increase in the selection pressure 
over the best individuals. This method reduces the domain of super-individuals and 
increases the selective pressure over individuals with similar fitness values. 
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6.4 Genetic Operators – Real Codification 

With the representation of the population elements defined, the following step 
consisted in constructing the genetic operators that act on the genotypes to produce 
new individuals. Such operators are basically of two types: recombination 
(crossover) and mutation. 

6.4.1   Recombination Operators 

Crossover is the primary operator in GAs and the key to their success [8]. This led to 
the implementation recombination operators like the arithmetic crossover and 
others. The arithmetic crossover performs a linear recombination of two genitors as 
defined by two chromosomes: 
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that are defined by 

 21*1 )1( mmm kkk λλ −+=  and 12*2 )1( mmm kkk λλ −+=  (8) 

where m varies from 1 up to n (number of semi-rigid joints) and λ is defined as a 
random value present in a 0 to 1 interval. 

6.4.2   Mutation Operators 

Due to the real codification, several alternatives arise for the development of specific 
mutation operators in the investigated problem. Two types of mutation were selected 
and implemented: real mutation and self-adjusted mutation. 

Real mutation randomly selects an element )( i
mk  in the chromosome )( iC , having 

its value changed to [ ]upperlowerk i
m ,* ∈  (a user-defined range of values) if the 

probability check is true. 
The self-adjusted mutation searches for a close solution based on random changes 

in both directions (+-e): 
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where max and min are user-defined boundaries for the domain of the i
mk  variable, 

m varies from 1 up to n variables (number of semi-rigid joints) and ∆ is a random 
number ∈ [0,1]. This strategy makes the tuning magnitude vary randomly according 
to the ∆ value. 

6.4.3   Operator Roulette  

The operator roulette technique was implemented in the system. In this strategy, all 
operators (mutation and crossover) are selected and applied according to the weight 
parameterization technique that linearly varies throughout the evolution. 

With this technique, using independent operators, several genetic operators can 
be incorporated to the system. However, not all operators are used at the same time 
and with the same intensity. For example, it is intuitive that the crossover operator’s 
rate is larger in the first generations, where the population is still scattered on the 
search space, thus allowing a faster search by taking advantage of promising 
solutions. After several generations, the individuals tend to present, in most cases, 
similar characteristics. An increase in the mutation rate at this stage of the evolution 
will lead to a dispersion of the population by bringing new genetic material for the 
development of the fittest individuals. 
 

  
(a) Genetic Operators, Normal 

Technique 
(b) Genetic Operators, Roulette 

Technique 
Figure 3: Genetic algorithm’s configuration parameters 

 
The operator roulette randomly chooses one operator for mutation or for 

recombination related to each new individual created in the reproductive process. 
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The initial and final weights of the operators, as well as the interpolation rate, are 
user-defined algorithm parameters (Fig. 3). 

In the genetic algorithm configuration strategy (Fig. 3), if the operator roulette 
technique is chosen (Fig. 3b), all operators are automatically selected to be presented 
to the roulette, with an application probability of 100%. The probability field shows 
the operator application probability. The fields related to weight initial and weight 
end indicate the initial and final weights that are linearly interpolated along the 
evolution. The weights, in a certain evolution, are used as the probability of 
selecting an operator. The global sum of all the weights is constant at every step and 
equal to 100%. 

6.5 Reproduction 

Reproduction techniques determine the individual substitution criteria in a 
population to produce the next generation. In this investigation the elitist population 
change and the population partial replacement without duplicated individuals were 
implemented. 

6.5.1   Elitist replacement of the entire population 

In this technique, all chromosomes are replaced. The fittest chromosome of the 
current population is copied to the next, after mutation and crossover. The use of this 
technique reduces the random effect of the selection process and guarantees that the 
best individual of the future generations is better or equal to its equivalent in the 
previous one [10]. 

6.5.2   Partial replacement of the population without duplicated individuals 

The technique of partially replacing the population without duplicated individuals 
was created from the standard partial population replacement technique. In this case 
n individuals are generated to replace the worst individuals in the current population. 
The number of replaced individuals is known as GAP (see section 6.5.3). 

The population partial replacement without duplicated individuals inherits the 
elitism property from the standard partial population replacement. This implies that 
the population tends to be kept constant, thus allowing the use of less conservative 
operators such as uniform crossover [10]. By not allowing the presence of 
duplicated individuals, this technique guarantees the better performance of the GA 
intrinsic parallelism, according to which n different points in the search space are 
evaluated at every cycle. However, this implies an overhead for the detection of 
duplicated individuals and for the creation of new elements. 

The standard partial population replacement technique and the partial population 
replacement without duplicated individuals are denominated by some authors [10] as 
Steady-state and Steady-state without duplicates, respectively. However, according 
to Wu, Chow and Mitchell [8][9], Steady-state reproduction is only related to the 
replacement of one or two individuals at a time. 
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6.5.3   Generation Gap - GAP 

GAP is a parameter that controls the percentage of the population to be replaced at 
every generation. The GAP value in traditional GAs is equal to 1.0 (100%), 
indicating that all of the population is replaced at every generation. Additionally, the 
population structure could be corrupted and fit individuals fail to be transferred to 
the next generation, leading to a decrease in the convergence rate [8]. 

According to Wu and Chow [8], to avoid problems related to the use of a GAP 
equal to 1.0 (100%) a small GAP should be used, i.e.: 

 
PN

GAP 2
=  (11) 

where Np is the number of individuals in the population. This means that only two 
individuals are selected for reproduction and the two newly generated individuals 
replace the worst individuals in the population. This strategy leads to a significant 
reduction in the number of evaluations of the objective function and, consequently, 
reduces the number of structural analyses to be performed by the FEMOOP program 
[3]. 

Generally these two newly-created individuals have a higher fitness than the 
worst individuals in the current population. Additionally, even if a large population 
could still be kept, the algorithm should still have sufficient power for performing 
the evolution. 

Even with the previously described GAP value defined by Wu and Chow [8], a 
variable GAP strategy was implemented here to allow the user to have more 
flexibility. The GAP value defined in the graphical interface presented in Fig. 3 
(reproduction technique: Steady-state without duplicated) is represented in terms of 
the percentage of individuals to be replaced at every generation. 
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Figure 4: Evaluation algorithm for each individual. 
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7  Individual Evaluation Process 

Figure 4 depicts the algorithm procedure for each individual. The evaluation of each 
individual consists in the automatic modeling of the structure made with the 
FTOOL/SRC program, with the design variables defined by the chromosome (Eq. 
4). From this modeling a neutral file is created to be transferred to the finite-element 
structural analysis program FEMOOP [3]. This program calculates the internal 
stresses, forces and displacements, and transfers them to another neutral file. This 
new file is used by the FTOOL/SRC [1,2] program, which presents its results 
graphically and determines the bending moment distribution at the bar elements, 
making the chromosome evaluation (Eq. 3) and directing these values to the genetic 
algorithm. 

8  Numerical Examples 

In this section, two numerical optimization examples of the implemented genetic 
algorithm are presented. The first example is related to a simple semi-rigid steel 
frame while the second involves a vierendeel girder system, both semi-rigid. 

Both examples adopted: ten experiments with 50 generations each; a population 
of 50 individuals; the selection technique including an accumulated relative 
evaluation; steady-state reproduction with a GAP value of 50; and the operator 
roulette technique. The initial/end weights of the operators were, respectively, 30-
10, 40-30, 15-10 and 15-50, for a single-point crossover, an arithmetic crossover, a 
real mutation and a self-adjusted mutation. The limits of the search domain for the 
problem variable were, for the semi-rigid steel frame, zero (hinge) and 1.0e+08 
(rigid), while the vierendel beam example used zero as the lower limit and two upper 
limits of 1.0e+16 and 1.0e+08. 

8.1 Semi-Rigid Steel Frame 

The optimization was made on a 16 meter span frame, 6 meters high, subjected to a 
100 kN vertical load at the beam centre span and to a 10 kN horizontal load located 
at the top of the first column, as represented in Fig. 5(a). 
 

10 kN

8 m

16 m

8 m

6 
m

Ib = 21500 cm
Ab = 76 cm²
Ic = 9460 cm
Ac = 110 cm²

4

4

1

2 3 4

5

K2 K3

K4K1

(a) Frame supports and loads. (b) Idealized structural model. 
Figure 5: First steel frame example. 
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This structure was modelled varying its joint stiffness values. Figure 5(b) depicts 
the idealized structural model with springs to represent the joint elements. In this 
model k2 and k3 represent the beam-to-column joint stiffness, and k3 and k4 represent 
the base plate connection stiffness. Initially a pinned configuration was used in the 
beam-to-column joint while the base plate adopted an intermediate stiffness related 
to the column stiffness, EIc/Lc, where Ic and Lc represent the column inertia and 
length. 

These joint stiffness values were used as the seeds of the genetic algorithm. 
Figure 6(a) illustrates the semi-rigid joint initial modelling and Fig. 6(b) depicts the 
associate frame bending moment distribution. 
 

 
 
 

 
(a) (b) 

Figure 6: (a) Initial semi-rigid joint stiffness values; (b) associate bending moment 
distribution. 

 
Figure 7 shows the GA final results in terms of the optimised bending moment 

distribution and associate semi-rigid joint stiffness values. 
 

 
 

 

 
(a) (b) 

Figure 7: (a) Final GA semi-rigid joint stiffness values; (b) associate bending 
moment distribution. 

 
A simple comparison can be made between the initial modelling values (Fig. 6) 

and the final GA results (Fig. 7). A significant improvement can be clearly seen. The 
initial bending moment values at the centre span and supports changed from 400 
kNm and zero in the initial configuration to 271.91 kNm (centre span) and 123.91 
kNm and 32.27 kNm (left and right supports) in the final GA results, as can be seen 
in Fig. 7(b). 

A random exhaustive search procedure was used to calibrate the efficiency of the 
GA results. An average performance curve was produced for the exhaustive search 
procedure with the same number of iterations used in the GA method already 
described. These results are presented in Fig. 8. 
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When the GA results are compared with the random search procedure (Fig. 8), 
the GA method converged, at the 26th generation, to a value of 0.295 while no 
convergence was found with the other method. This fact demonstrates that the GA 
method has a better performance than the random search procedure. 

8.2 A Vierendeel Girder Semi-Rigid Structural System 

The second example concerned the optimisation of a 12-meter span vierendeel 
structural system, one meter height. The columns (vertical elements) and beams 
(horizontal elements) were, respectively, HEB240 and IPE240 steel profiles. Figure 
9 presents (a) the rigid joint initial modelling used as seeds of the GA, and (b) the 
associate frame bending moment distribution. 
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Figure 8: Genetic algorithm and random search comparison (ten experiments). 

 

(a) 

(b) 
Figure 9: (a) Initial semi-rigid joint stiffness values; (b) associate bending moment 

distribution. 
 
Figure 10 depicts the GA final results in terms of the optimised bending moment 

distribution and associate semi-rigid joint stiffness values. These results were 
obtained, as previously mentioned, by varying the joint stiffness values. Figures 11 
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and 12 illustrate the GA performance in terms of an average curve of the best 
evaluations in ten experiments and of the best evaluations in 100 individuals 
associated to one experiment. 

When the initially rigid modelling (Fig. 9a) is compared to the GA final results 
(Fig. 10a) it is evident that the GA method led to semi-rigid joint configurations 
with associate stiffness values significantly smaller than the rigid joint values. The 
new joint stiffness configuration led to a considerable improvement of the bending 
moment distribution. Detailed results of these comparisons are presented in Tab. 1. 

A close inspection of Fig. 11 indicates that the search for the best average 
evaluations is influenced by the limits of the variable search space. When the search 
space was limited by zero and 1.0e+16, the GA method led to an average evaluation 
of 3.539. Alternatively, when the search space was limited by zero and 1.0e+8, the 
GA method conducted to an average evaluation of 0.668. 
 

(a) 

(b) 
Figure 10: (a) Final GA semi-rigid joint stiffness values; (b) associate bending 

moment distribution. 
 
 

Element Node i Node j Node i Node j Node i Node j Node i Node j
1 1,000E+16 1,000E+16 2,644E+06 8,911E+07 -44,10 46,00 -44,10 46,20
2 1,000E+16 1,000E+16 2,216E+06 7,786E+07 -38,90 51,20 -37,70 48,40
3 1,000E+16 1,000E+16 9,318E+02 6,448E+07 23,30 -6,70 3,50 -4,30
4 1,000E+16 1,000E+16 9,981E+07 9,242E+07 77,70 -72,40 78,80 -73,00
5 1,000E+16 1,000E+16 1,000E+16 1,000E+16 44,10 -44,00 44,10 -44,00
6 1,000E+16 1,000E+16 8,257E+07 3,006E+07 -44,00 46,00 -44,00 45,80
7 1,000E+16 1,000E+16 1,000E+16 1,000E+16 -84,80 84,90 -85,90 83,90
8 1,000E+16 1,000E+16 1,002E+07 4,561E+07 -38,80 51,10 -40,10 53,80
9 1,000E+16 1,000E+16 1,000E+16 1,000E+16 -27,90 27,90 -19,50 44,90

10 1,000E+16 1,000E+16 9,832E+07 6,270E+07 23,30 -6,70 34,30 -17,80
11 1,000E+16 1,000E+16 1,000E+16 1,000E+16 84,30 -84,40 94,20 -83,10
12 1,000E+16 1,000E+16 4,738E+07 5,534E+07 77,60 -72,30 76,30 -71,90
13 1,000E+16 1,000E+16 1,000E+16 1,000E+16 72,30 -72,40 71,90 -73,00

Stiffnes of Joints (kNm/rad) Bending Moments (kNm)
Rigid Semi-Ridid Rigid Semi-Ridid

 
 

Table 1: Comparison between initial modelling (Fig. 9) and final GA results (Fig. 
10). 
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The Best Fitness Average (10 Experiments)
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Figure 11: Comparison between genetic algorithm and random search (ten 

experiments). 
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Figure 12: Comparison between genetic algorithm and random search (one 

experiment, for a population of 100 individuals). 
 

In the comparisons made in Figs. 11 and 12 the GA demonstrated a superior 
performance than the random search procedure. When the best evaluation achieved 
with the use of the random search procedure (2.364) compared with the GA method 
(0.113), a difference of 2.251 is found (Fig 12). If this process is repeated for the 
results of Fig. 11, differences of 2.042 and 0.969 were found for the search space 
with superior limits of 1.0e+08 and 1.0e+16. These results, as well as the results of 
the previous example, validate the GA implementation as well as the adopted 
methodology used in the problem evaluation function. 

9  Conclusions 

The present investigation is centered in a non-conventional semi-rigid joint stiffness 
optimisation procedure where individuals were evaluated to generate an optimum 
bending moment distribution for a structure. This search methodology, varying the 
joint stiffness values, was applied to two different examples. Three important points 
deserve to be highlighted: 
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1) The best solution was always associated to the genetic algorithm when 
compared to a random search procedure. The difference between these two 
methods is amplified when the variable search space is increased. This 
difference was also magnified by increasing the structural problem 
complexity. 

2) A significantly better bending moment distribution was achieved when the 
objective function adopted in the present implementation was globally 
applied to the investigated problems. 

3) The second example (vierendel structural system) pointed out that the semi-
rigid solution performance, found with the GA method, led to better results 
than the usually adopted rigid solution. The semi-rigid joints created a 
balanced moment distribution with smooth transition between the sagging 
and the hogging moment regions. 

An optimum bending moment distribution is a direct consequence of an adequate 
choice of the structural joint stiffness. This is usually a complex procedure when 
made manually due to the tedious and significant amount of work required to define 
a joint stiffness combination that could lead to a balanced bending moment 
distribution. The use of genetic algorithms considerably simplified this process, 
leading to the determination of bending moment distributions that could generate 
efficient and economic steel structures. 

The results of the examples here presented indicated that the implemented GA 
procedure and associated methodology are efficient, representing an important 
contribution to the development of steel frame structural design with semi-rigid 
joints. 

The future steps of this investigation will contemplate the implementation of 
some evaluation functions usually adopted in practice, which generally minimises 
the structure weight and consequently its final costs. Additionally, new restrictions 
will be incorporated to the system, related for instance to displacements and stresses 
present in structural elements. 
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