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a b s t r a c t

A generalised component-based model for semi-rigid beam-to-column connections including axial force
versus bending moment interaction is presented. The detailed formulation of the proposed analytical
model is fully described in this paper, as well as all the analytical expressions used to evaluate the model
properties. Detailed examples demonstrate how to use this model to predict moment–rotation curves for
any axial force level. Numerical results, validated against experimental data, form the basis of a tri-linear
approach to characterise the force–displacement relationship of the joint components. The relationship
of the present development to key prior studies of this topic is also explained.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The continuous search for the most accurate representation
of structural behaviour depends directly on detailed structural
modelling, including the interactions between all the structural
elements, linked to the overall structural analysis procedures,
such as material and geometric non-linear analysis. This strategy
permits a more realistic modelling of connections, instead of the
usual pinned or rigid assumptions. This idea is crucial to advance
towards a better overall structural behavioural understanding,
since joint response is well-described by the moment–rotation
curve. However, this approach requires a complete knowledge of
semi-rigid joint behaviour, which is, for some situations, beyond
the scope of present knowledge e.g. the influence of axial forces
on the joint bending moment versus the rotation characteristic.
In addition to permitting the most accurate structural modelling,
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the use of semi-rigid joints has several practical advantages
such as those identified in [1]: economy of both design effort
and fabrication costs; beams may be lighter than in simple
constructions; reduction of mid-span deflection due to the
inherent stiffness of the joint; connections are less complicated
than in continuous construction; frames are more robust than
in simple construction; and for an unbraced frame, additional
benefits may be gained from semi-continuous joints in resisting
wind loadingwithout the extra fabrication costs incurredwhen full
continuity is adopted.
Under certain circumstances, beam-to-column joints can be

subjected to the simultaneous action of bending moments and
axial forces. Although the axial force transferred from the beam
is usually low, it may, in some situations attain values that
significantly reduce the joint flexural capacity. These conditions
may be found in: structures under fire situations where the effects
of beam thermal expansion and membrane action can induce
significant axial forces in the connection [2]; Vierendeel girder
systems (widely used in building construction because they take
advantage of the member flexural and compression resistances
eliminating the need for extra diagonal members); regular sway
frames under significant horizontal loading (seismic or extreme
wind); irregular frames (especiallywith incomplete storeys) under
gravity/horizontal loading; and pitched-roof frames. In addition,
due to the recent escalation of terrorist attacks on buildings, the
investigation of progressive collapse of steel framed buildings
has been highlighted, as can be seen in [3]. Examples of these
exceptional conditions are the cases where structural elements,
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Nomenclature

li distance from joint spring/row i to the beam bottom
flange centre

b1 model first bar representing the beam end
b2 model second bar representing the column flange

centreline
bfwc beam flange and web in compression
bt bolts in tension
bwt beam web in tension
cfb column flange in bending
cwc column web in compression
cws column web in shear
cwt column web in tension
d lever arm: distance from the loading application

centre to the rigid link
di system displacements, i = 1 . . . 4: ub1, θb1, ub2, θb2
e distance from the loading application centre to the

beam bottom flange
epb endplate in bending

f ybr,i yield strength of the joint bolt-row i

f ycp joint component yield capacity
f ucp joint component ultimate capacity
fi force in spring/row i

f yi yield capacity of spring/row i

f ui ultimate capacity of spring/row i
ri tangent effective stiffness of spring/row i
kbbf elastic stiffness of the beam bottom flange
kbr1,2,3 elastic stiffness of bolt-rows 1, 2 and 3 respectively
kbtf elastic stiffness of the beam top flange
kecp joint component elastic stiffness

kpcp joint component plastic stiffness
kucp joint component reduced strain hardening stiffness
klcbf compressive link elastic stiffness associated with

the beam bottom flange
klctf compressive link elastic stiffness associated with

the beam top flange
klt tensile link elastic stiffness associatedwith the lever

arm
klt1,2,3 tensile link elastic stiffness associatedwith the bolt-

rows 1, 2 and 3, respectively
rei elastic effective stiffness of spring/row i

rpi plastic effective stiffness of spring/row i

rui reduced strain hardening effective stiffness of
spring/row i

nbr number of joint bolt-rows
nc row/spring component number
ns model spring/row number
nsb1 spring/row number between the model first and

second bars
ub1 first bar displacement
ub2 second bar displacement
ui absolute displacement of spring/row i (first bar)
uli absolute displacement of spring/row i (second bar)

Capital letter

Ci spring/row i vertical coordinates
F internal loading vector
Fi terms of the internal loading vector, i = 1 . . . 4
Fbbf row compressive yield capacity (beam bottom
flange)

Flinkt rigid link tensile capacity, which joins the second
bar to the supports

FRd joint component design strength
K model/joint stiffness matrix
K e joint elastic stiffness
K p joint plastic stiffness
K u joint ultimate stiffness
Kij terms of the model stiffness matrix, i = 1 . . . 4 and

j = 1 . . . 4
M bending moment applied to the connection
M f bending moment referred to a 0.05-rad joint final

rotation
Mu bending moment that leads the joint to failure
My bending moment that leads the joint to yielding
Mubr,i bending moment that leads to failure of the joint

spring/row i, located between the first and second
bars

Mybr,i bending moment that leads to yielding of the joint
spring/row i, located between the first and second
bars

Mufr,i bending moment that leads to failure of the joint
spring/row i, located between the second bar and
supports

Myfr,i bending moment that leads to yielding of the joint
spring/row i, located between the second bar and
supports

Mj,lim limit bending moment of spring/row j, located
between the first and second bars

N axial force applied to the joint
Npl axial plastic capacity of the beam
P axial load applied to the connection
U system strain energy
W load total potential

Greek letters

α1,2,3,4 coefficients of Eq. (41)
η1,2,3,4 coefficients of Eq. (41)
θ joint rotation
θu joint rotation capacity necessary to develop the joint

plastic bending moment
θ y joint rotation capacity necessary to develop the joint

yield bending moment
θ f joint final rotation (assumed to be equal to 0.05 rad)
θb1 first bar rotation
θb2 second bar rotation
κ stiffness coefficient (Eq. (18))
λ stiffness coefficient (Eq. (18))
µp plastic stiffness strain hardening coefficient
µu ultimate stiffness strain hardening coefficient
ξ stiffness coefficient (Eq. (23))
ρ stiffness coefficient (Eq. (18))
υ stiffness coefficient (Eq. (26))
ϕ stiffness coefficient (Eq. (27))
χ1 stiffness coefficient (Eq. (23))
χ2 stiffness coefficient (Eq. (20))
ψ stiffness coefficient (Eq. (20))
ω1 stiffness coefficient (Eq. (23))
ω2 stiffness coefficient (Eq. (20))

Capital letter

∆i spring/row i relative displacement
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∆br,i spring/row i relative displacement located between
the first and second bars

∆fr,i spring/row i relative displacement located between
the second bar and the supports

∆
y
i relative displacement that leads to yielding of the

model spring/row i
∆ui relative displacement that leads to failure of the

model spring/row i
Z stiffness coefficient (Eq. (25))
Π total potential energy functional
X stiffness coefficient (Eq. (22))
Ω stiffness coefficient (Eq. (22))

such as central and/or peripheral columns and/or main beams,
are suddenly removed, abruptly increasing the joint axial forces.
In these situations the structural system, mainly the connections,
should be sufficiently robust to prevent the premature failure
modes that may lead to a progressive structural collapse.
Unfortunately, few experiments considering the bending mo-

ment versus axial force interactions have been reported. Addition-
ally, the available experiments are related to a small number of
axial force levels and associated bending moment versus rotation
curves. Recently, some mechanical models have been developed,
see Section 1.2, to deal with the bending moment-axial force in-
teraction. However these models are still not able to accurately
predict the jointmoment–rotation curves, thereby restricting their
incorporation in full analysis procedures. There is, therefore, a need
to develop the mechanical model for semi-rigid beam-to-column
joints including the axial force versus bendingmoment interaction,
based on the principles of the component method, Eurocode 3 [4].
The next sections present a detailed formulation of this generalised
mechanical model including a proposal for joint component char-
acterisation, as well as examples of its application and validation
against experimental tests. However, in order to fully set the scene
for these developments a bibliographical review containing a brief
description of the most important available techniques to predict
joint structural behaviour and the most important laboratory tests
is presented.

1.1. Component method

The component method entails the use of relatively simple
joint mechanical models, based on a set of rigid links and spring
components. The component method – introduced in [4] – can
be used to determine the joint’s resistance and initial stiffness. Its
application requires the identification of active components, the
evaluation of the force–deformation response of each component
(which depends on mechanical and geometrical properties of the
joint) and the subsequent assembly of the active components for
the evaluation of the joint moment versus rotation response.
Nowadays, using the Eurocode 3 [4] component method, it is

possible to evaluate the rotational stiffness and moment capacity
of semi-rigid joints when subject to pure bending. However, this
component method is not yet able to calculate these properties
when, in addition to the applied moment, an axial force is also
present. Eurocode 3 [4] suggests that the axial load may be
disregarded in the analysis when its value is less than 5% of
the beam’s axial plastic resistance, but provides no information
for cases involving larger axial forces. Although the component
method does not consider the axial force, its general principles
could be used to cover this situation, since it is based on the use
of a series of force versus displacement relationships, which only
depend on the component’s axial force level, to characterise any
individual component’s behaviour.
1.2. Background

The study of the semi-rigid characteristics of beam to column
connections and their effects on frame behaviour can be traced
back to the 1930s, [5]. Since then, a large amount of experimental
and theoretical work has been conducted both on the behaviour
of the connections and on their effects on complete frame
performance. Despite the large number of experiments, few of
them consider the bendingmoment versus axial force interactions.
This section has attempted to provide a summary of the

techniques currently available to predict the joint structural
behaviour, as well as a brief discussion of some experimental tests,
focusing on the study of joint behaviour under combined bending
moment and axial force using mechanical models.

1.2.1. Experimental
A detailed discussion of all available experimental tests is

beyond the scope of this paper; a compilation of the experiments
is, however, available in [6]; [7, SERICON I] and [8, SERICON
II]. Recently, several researchers have paid special attention to
joint behaviour under combined bending moment and axial force.
Guisse et al. [9] carried out experiments on twelve column bases,
six with extended and six with flush endplates. Wald and Svarc
[10] tested three flush endplate beam-to-beam joints and two
extended endplate beam-to-column joints; however there is no
reference to tests made with only bending moment, which is vital
to access the influence of the axial force in the joint response.
Lima et al. [11] and Simões da Silva et al. [12] performed tests on
eight flush endplate joints and seven extended endplate joints. The
investigators concluded that the presence of the axial force in the
joints modifies their structural response and should, therefore, be
considered in the joint structural design.

1.2.2. Theoretical models
As an alternative to tests, other methods have been proposed to

predict bending moment versus rotation curves. These procedures
range from a purely empirical curve fitting of test data, passing
through ingenious behavioural, analogy and semi-empirical tech-
niques, to comprehensive finite element analysis, [13].

1.2.2.1. Mathematical formulations (empirical models). The first
attempt at fitting a mathematical representation to connection
moment–rotation curves dates back to the work of Baker [14]
and Rathbun [15], who used a single straight-line tangent to
the initial slope, thereby overestimating connection stiffness at
finite rotations. In the 1970s the use of bilinear representations
was introduced by Lionberger & Weaver [16] and Romstad &
Subramanian [17]. These recognised the reduced stiffness at higher
rotations, however it was only acceptable for certain joint types
and for applications where only small joint rotations are likely.
Kennedy [18], Sommer [19] and Frye & Morris [20] proposed
polynomial representations that recognised the curved nature,
but required mathematical curve fitting and consideration of a
family of experimentalmoment–rotation curves. Ang&Morris [21]
replaced the polynomial representation by a Ramberg & Osgood
[22] type of exponential function that has the advantage of always
yielding a positive slope, but is also dependent on mathematical
curve fitting. Multi-linear representations were proposed by
Moncarz & Gerstle [23] and Poggi & Zandonini [24] to overcome
the obvious limitation of the bilinearmodel in that it could not deal
with continuous changes in stiffness in the knee region. B-spline
techniques were suggested by Jones et al. [25] as an alternative to
polynomials as a means of avoiding possible negative slopes. Lui &
Chen [26] used an exponential representation that despite being
complex could readily be incorporated in analytical computer
programmes [27]. Although it is possible to closely fit virtually
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any shape of moment–rotation curve, purely empirical methods
possess the disadvantage that they cannot be extended outside
the range of the calibration data. This is particularly important
for joints such as endplates where the change in geometrical and
mechanical properties of the connection may lead to substantially
different behaviours and collapse mechanisms [13]. Aiming to
overcome this limitation, Yee & Melchers [28], Kishi et al. [29,
30] and Chen & Kishi [31] proposed models linking curve fitting
approaches to some formof behaviouralmodel, but thesewere still
dependent on a mathematical curve fitting.
Focusing on finite element analysis, Richard et al. [32] used a

type of formula already developed by Richard & Abbott [33] to
represent data generated by finite element analyses in which the
constitutive relations of certain of the joint components, e.g. bolts
in shear, were directly obtained from subsidiary tests.
Each of themodels discussed so farmay only be used to describe

the joint behaviour under a single application of a monotonically
increasing load. However, some of them were modified and/or
adapted to represent the performance of certain connection types
under cyclic loading, as can be seen in the work done by Moncarz
& Gerstle [23], Altman et al. [34] and Mazzolani [35].
Aiming to incorporate a limited set of experiments including

the axial versus bending moment interaction into a structural
analysis, Del Savio et al. [36] developed a consistent and simple
approach to determinemoment–rotation curves for any axial force
level. Basically, this method works by finding moment–rotation
curves through interpolations executed between three required
moment–rotation curves, one disregarding the axial force effect
and two considering the compressive and tensile axial force effects.
This approach can be easily incorporated into a nonlinear joint
finite element formulation since it does not change the finite
element basic formulation, only requiring a rotational stiffness
update procedure.

1.2.2.2. Simplified analytical models. Several authors have applied
the basic concepts of structural analysis (equilibrium, compatibil-
ity and material constitutive relations) to simplified models of the
key components in various types of beam-to-column connections
[13]. Lewitt et al. [37] provided formulae for the load–deformation
behaviour of double web cleat connections in both the initial and
the final plastic phases; however these models needed to be used
in conjunction with knowledge of the connection rotation centre.
Chen & Kishi [31] and Kishi et al. [29,30] considered the behaviour
ofweb cleats, flange cleats and combinedweb and flange cleat con-
nections where their resulting values of initial connection stiffness
and ultimate moment capacity were utilised in a Richard type of
power expression [33] to represent the resultingmoment–rotation
curve. Assuming that the behaviour of the whole joint may be
obtained simply by superimposing the flexibilities of the joint
components (member elements, connecting, elements, fasteners)
Johnson & Law [38] proposed a method for the prediction of the
initial stiffness and plastic moment capacity of flush endplate con-
nections, however no comparison was conducted against exper-
imental results. Based on the same philosophy, Yee & Melchers
[28] developed a method for bolted endplate eave connections
in which an exponential representation was assumed, which de-
pends on four parameters where only one is dependent on test
data. Richard et al. [39] proposed a four-parameter formula to de-
scribe the load–deformation and moment–rotation relationship
for bolted double framing angle connections. This model is com-
posed of a rigid bar and a nonlinear spring, representing the angle
segments in either tension or compression. The moment–rotation
behaviour of the connections is determined through an iterative
procedure by satisfying equilibrium and compatibility conditions.
A similar approachwas developed andused by Elsati & Richard [40]
in a computer-based programme to validate the model against the
test results of a variety of connection types for both composite and
steel beamconnections. A three-parameter exponentialmodelwas
suggested by Wu & Chen [41] to model top and seat angles with
andwithout double web angle connection and due to its simplicity
it could be implemented in the analysis of semi-rigid frames. In the
same year, Kishi & Chen [42] proposed a semi-analytical model to
predict moment–rotation curves of angle connections, which later
was extended by Foley & Vinnakota [43] for unstiffened extended
endplate connections. Although these methods require a few key
parameters, the use of test data is normally necessary to calibrate
some of their coefficients. A wider discussion about some of these
methods can be found in [13,44].

1.2.2.3. Finite element analysis. Numerical simulation started be-
ing used as a way to overcome the lack of experimental results;
to understand important local effects that are difficult to measure
with sufficient accuracy, e.g. prying forces and extension of the
contact zone, contact forces between the bolt and the connection
components; and to generate extensive parametric studies. The
first study into joint behaviour making use of the FEM was exe-
cuted by Bose et al. [45] related to welded beam-to-column con-
nections, where an incremental analysis was performed, including
in the formulation plasticity, with strain hardening, and buckling.
The comparison with available experimental results showed sat-
isfactory agreement, but only the critical load levels were consid-
ered. Since then, several researchers have been using the FEM to
investigate joint behaviour, such as: Lipson & Hague [46] — single-
angle bolted-welded connection; Krishnamurthy et al. [47] —
extended endplate connections; Richard et al. [48] — double-angle
connection; Patel & Chen [49] —welded two-side connections; Pa-
tel & Chen [50] — bolted moment connection; Kukreti et al. [51]
— flush endplate connections; Beaulieu & Picard [52] — bolted
moment connection; Atamiaz Sibai & Frey [53] — welded one-side
unstiffened joint configuration. More recently, focusing on 3D fi-
nite element models the following works can be mentioned: Sher-
bourne & Bahaari [54], Bursi & Jaspart [55,56], Yang et al. [57],
Cardoso [58], Citipitioglu et al. [59], Coelho et al. [60], and Maggi
et al. [61].

1.2.2.4. Mechanical models (component-based approaches). Me-
chanical models have been developed by several researchers for
the prediction of moment–rotation curves for the whole range of
connections/joints, where the number of physical governing pa-
rameters is rather limited. These models have also been confirmed
as an adequate tool for the study of steel connections; however
their accuracy relies on the degree of refinement and accuracy of
the assumed load–deformation laws for the principal components.
The determination of such characteristics requires a complete un-
derstanding of the behaviour of single components, as well as of
the way in which they interact, as a function of the geometrical
and mechanical factors of the complete connections, [13].
Wales & Rossow [62] effectively introduced the use of

mechanical models, or rather, a component-based method, when
they developed a model for double web cleat connections, Fig. 1,
in which the joint was idealised as two rigid bars connected by a
homogeneous continuum of independent nonlinear springs. Each
nonlinear spring was defined by a tri-linear load–deformation
law obtained via the analysis of numerical models for the whole
connection. Both bendingmoment and axial forcewere considered
to act on the connection and coupling effects between the two
stress resultants were then included in the joint stiffness matrix.
Comparisons were made with a single test by Lewitt et al. [37]
aiming to validate the philosophy. An important feature of this
model is to account for the presence of the axial force. Results
obtained by Wales & Rossow [62] indicate that greater attention
should be given to such axial forces, as a factor affecting the
response of beam-to-column connections.
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Fig. 1. Connection and mechanical model for web cleat connections, [62].

Fig. 2. Mechanical model for flange and web cleated connections, [64].

Kennedy & Hafez [63] used a technique of connection discreti-
sation to describe the behaviour of header plate connections. T-
stub models were used to represent the tension and compression
parts of the connection. Although this model had provided good
agreement with comparisons done against the author’s own tests
for ultimate moment capacity, the prediction of the corresponding
rotations were not as accurate.
Chmielowiec & Richard [64] extended the model proposed

by Wales & Rossow [62] to predict the behaviour of all
types of cleated connections only subjected to bending and
shear, Fig. 2. Mathematical expressions were adopted for the
force–deformation relationships of the double angle segments
and later calibrated by curve fitting against experimental results
obtained by the same author. Comparisonswith experimental data
from a different series of connection tests in general confirmed the
accuracy of the method.
An extensive investigation into the response of fully welded

connections was conducted by Tschemmernegg [65], where the
mechanical model of Fig. 3 was proposed. In this model, springs
A are meant to account for the load introduction effect from the
beam to the column, while springs B simulate the shear flexibility
of the column web panel zone. Thirty tests were carried out,
using a wide range of beam and column sections, making possible
a calibration of the mathematical models assumed to describe
the spring element properties. The moment–rotation curves for
fully welded connections were determined via the model for all
possible combinations of beams and columns made of European
rolled sections IPE, HEA and HEB. This model was extended by
Tschemmernegg & Humer [66] for endplate bolted connections by
adding new springs (Fig. 4, springs C), to take into account the
new sources of deformation. Thismodelwas also calibrated against
experimental tests with good results.
Fig. 3. Mechanical model for full welded joints, [65].

Fig. 4. Mechanical model for bolted joints, [66].

For 10 years, since the proposed model by Wales & Rossow
[62] considering the bending moment and axial force interaction,
nothing had been done in terms of these coupled effects until
Madas [67] despite the fact that Wales & Rossow noted that
greater attention should be given to such axial forces, as a factor
affecting the response of beam-to-column connections.Madas [67]
extended themechanical model proposed byWales & Rossow [62]
to flexible endplate, double web angle and top and seat angle
connections including both bare steel and composite connections.
Fig. 5 shows the idealized beam-to-column connection used
by Madas [67]. This model presented good agreement with
experimental results; however it was not evaluated against
experiments including the axial force versus bending moment
interaction.
Based on preliminary studies carried out by Finet [68], Jaspart

et al. [69] and Cerfontaine [70] developed a numerical approach
aiming at analysing the joint behaviour from the first loading
steps up to collapse, Fig. 6, subjected to bending moment and
axial force. This approach is idealised by a mechanical model
comprising extensional springs, Fig. 6(b). Each spring represents
a joint component by exhibiting non-linear force–displacement
behaviour, Fig. 6(c). Nunes [71] compared the experimental results
obtained by Lima [72] for flush and extended endplate joints to the
analytical results using the Cerfontaine [70] analytical model. This
study pointed out some problems in the joint behaviour prediction
using this analytical model, such as an overestimation of the initial
stiffness in the majority of the cases, as well as variations between
over and underestimation of the final moment capacity for some
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Fig. 5. Identification of beam-to-column connection, [67].
(a) Beam-to-column joint. (b) Mechanical model. (c) Component behaviour.

Fig. 6. Mechanical model, [69].
cases. These discrepancies were more pronounced for the cases in
which the joints were subjected to bending moments and tensile
axial forces.
A simplified mechanical model was suggested by Pucinotti [73]

for top-and-seat and web angle connections as an extension of
Eurocode 3 [74] to take into account the web cleats and hardening
contributions. Comparisons against experimental tests showed
that this model is able to estimate the initial stiffness accurately;
however the final flexural capacity prediction is slightly erratic.
Using the same general principles, Simões da Silva & Coelho

[75] formulated analytical expressions for the full non-linear
response of a welded beam-to-column joint under combined
bending moment and axial force. Each bi-linear spring of this
model was replaced by two equivalent elastic springs using
an energy formulation and a post-buckling stability analysis. A
comparison was made against a welded joint only subjected to
bending moments and the results presented a good agreement
with the experiments.
Sokol et al. [76] developed an analytical model to predict

the endplate joint behaviour subjected to bending moment
and axial force interaction. This model was tested against
two sets of experiments with flush endplate beam-to-beam
joints and extended endplate beam-to-column joints carried
out by Wald & Svarc [10]. In general, the results involving
moment–rotation comparisons provided rather close agreement
with the experimental tests, however, for all the analysed cases,
the initial stiffness was overestimated whilst the final moment
capacity was underestimated.
Lima [72] and Simões da Silva et al. [12] proposed mechanical

models for extended (Fig. 7) and flush (Fig. 8) endplate joints,
respectively. Following, basically, the same idea and also based
on Madas [67], Ramli-Sulong [77] also developed a component-
based connection model, Fig. 9, for flush and extended endplate,
top-and-seat and/or web angles, and fin-plate connections. These
models basically consist of two rigid bars representing the column
centreline and the beam end, connected by non-linear springs
that model the joint components. Furthermore, these authors
included the compressive components (for instance, cwc—column
web in compression, Figs. 7, 8 and 9) at the same location as
the bolt rows and the tensile components (for example, cwt—
column web in tension, Figs. 7 and 8) at the same location as
the flanges (compressive rows). Proposed models by Lima [72]
and Simões da Silva et al. [12] were tested against their own
experimental tests. Although these models presented satisfactory
results in terms of ultimate flexural capacity, the prediction of
the initial stiffness, for the case of different axial load levels,
was not accurate, predicting almost the same initial stiffness for
the whole set of evaluated cases, Figs. 10 and 11. Regarding
Ramli-Sulong’s model [77,2], neither comparison has been done
against experimental moment–rotation curves nor parametric
analysis involving different axial force levels, which are needed to
evaluate this model in terms of quality of moment–rotation curve
prediction for moment-axial interaction. On the other hand, this
model was shown to be able to predict, with a good accuracy,
the experimental moment–rotation curves, disregarding the axial
effect. Comparisons made at elevated temperature with available
tests also presented a good agreement.
Urbonas &Daniunas [78] proposed a componentmethod exten-

sion for endplate bolted beam-to-beam joints under bending and
axial forces. However the procedure for joint moment–rotation
curve prediction is only applicable and valid within the elastic
regime of structural behaviour. Numerical tests were executed by
the authors with a three-dimensional joint modelling using finite
elements with the goal to validate this model. The results obtained
for the beam-to-beam joint initial stiffness were close to the finite
element analysis.
Table 1 presents a summary of the mechanical models for

predicting joint behaviour discussed in this section.
Despite the continuous development and improvement of

analytical models to predict the behaviour of joints under bending
moment and axial force, there are still problems in the prediction
of themoment–rotation curves, such as the joint initial stiffness for
different axial force levels, as can be seen, for example, in Figs. 10
and 11 or in [71]. The magnitude of this problem increases when



1882 A.A. Del Savio et al. / Journal of Constructional Steel Research 65 (2009) 1876–1895
Fig. 7. Spring model for extended endplate joints, [72].
Fig. 8. Spring model for flush endplate joints, [72].
Fig. 9. Nonlinear spring connection model, [77].
joints are subjected to tensile axial forces. This problem relates to
the ability of these models to deal with moment-axial interaction,
and consequently changes of the compressive centre, before the
first component yields. If themodel isworking on the linear-elastic
regime, without reaching any component yield (i.e. the component
stiffness is also working linearly), the modification of the joint
stiffness matrix, only due to the geometric stiffness changes, will
be insignificant. From this point upwards to the onset of first
component yield, thesemodels are not able to represent accurately
the joint initial stiffness for any level of axial load and bending
moment while working on the linear-elastic regime. Aiming to
overcome this limitation, a mechanical model is proposed in
this paper, which allows modifications of the compressive centre
position even before reaching the first component yield, i.e. in the
linear-elastic regime.
2. Generalised mechanical model for beam-to-column joints
including the axial-moment interaction

The generalised model proposed for semi-rigid beam-to-
column joints including the axial force versus bending moment
interaction is depicted in Fig. 12. This model, based on the
component method, contains three rigid bars representing the
column centreline (support bar), the column flange centreline
(second bar, b2) and the beamend (first bar, b1). These rigid bars are
connected by a series of springs that model the joint components.
The stiffness of these springs (rows) are representing by ri, whilst
ui and uli are the absolute displacements of springs i referred to the
first and second bars, respectively. Ci are the vertical coordinates of
spring i.
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Table 1
Summary of the mechanical models to predict the joint behaviour.

Authors (Reference) Joint/Connection type Forces

Wales & Rossow [62] Double web cleat connections Bending moment and axial force
Kennedy & Hafez [63] Header plate connections T-stub: axial force
Chmielowiec & Richard [64] All types of cleated connections Bending moment and shear
Tschemmernegg [65] Welded connections Bending moment
Tschemmernegg & Humer [66] Endplate bolted connections Bending moment
Madas [67] Flexible endplate, double web angle and top and seat angle connections Bending moment and axial force
Jaspart et al. [69] and Cerfontaine [70] Extended and flush endplate connections Bending moment and axial force
Pucinotti [73] Top-and-seat and web angle connections Bending moment
Simões da Silva & Coelho [75] Welded beam-to-column joints Bending moment and axial force
Sokol et al. [76] Endplate joints Bending moment and axial force
Lima [72] Extended endplate joints Bending moment and axial force
Lima [72] and Simões da Silva et al. [12] Flush endplate joints Bending moment and axial force
Ramli-Sulong [77] Flush and extended endplate, top-and-seat and/or web angles, and fin-plate connections Bending moment and axial force
Urbonas & Daniunas [78] Endplate bolted beam-to-beam joints Bending moment and axial force
Fig. 10. Numerical simulations of the moment–rotation curves for the extended
endplate joints, [72].

Fig. 11. Numerical simulations of the moment–rotation curves for the flush
endplate joints, [12].

Due to the generalised formulation developed in this work, the
model is able to represent any kind of connection, since the joint
can be modelled according to the scheme shown in Fig. 12. The
following sections present the adopted behaviour for each joint
component as well as the complete formulation of this generalised
mechanical model.

2.1. Characterisation of the joint components

The behaviour of each component of the joint is given by a
force–deformation relationship, which may be characterised, for
example, by a bi-linear, tri-linear or even a non-linear curve.
Simões da Silva et al. [79], based on Kuhlmann et al. [80], classified
the endplate joint components according to their ductility:
- Componentswith high ductility, Fig. 13(a): columnweb inshear
(assuming no occurrence of local buckling), column flange in
bending, endplate in bending and beam web in tension.
- Components with limited ductility, Fig. 13(b): column web
in compression, column web in tension and beam flange in
compression.
- Components with brittle failure, Fig. 13(c): bolts in tension and
welds.

However, some comments are necessary regarding this classi-
fication:

- Eurocode 3 [4] considers a rigid-plastic behaviour for beamweb
in tension.
- Lima [72] verified a ductile behaviour for the beam flange in
compression in his experiments.
- Welds are not considered in the joint rotation stiffness
evaluation according to Eurocode 3 [4].

In this work, a tri-linear approach for the force–deformation
relationship is suggested and used for all the joint components
as shown in Fig. 14. The component elastic stiffness, kecp, and
the component yield strength, f ycp, are calculated according to the
Eurocode 3 [4] component method. On the other hand, for the
component plastic stiffness, a strain hardening stiffness kpcp is
evaluated as:

kpcp = µ
pkecp. (1)

The component reduced strain hardening stiffness, kucp, referred to
the component material fracture, is:

kucp = µ
ukecp (2)

whereµp andµu are the strain hardening coefficients, respectively,
for the plastic and ultimate stiffness, which depend on the
component type. Based on the classification suggested by Simões
da Silva et al. [79], briefly discussed in this paper, and curve
fitting executed on the experimental tests carried out by Lima
[72], Table 2 presents the values adopted for the strain hardening
coefficient for each joint component.
The component ultimate capacity, f ucp, is determined, for each

component, using the ultimate stress instead of the yield stress in
equations present in [4].
For the case when the component related to the column web

panel in shear is activated, i.e. when unbalanced moments exist in
the connection, and the beam top flange and bottom flange of the
connection are in compression, this componentwill be divided into
two equal springs (one for the beam top flange and another for the
beam bottom flange) characterised by its usual stiffness and yield
and ultimate strengths divided by two.
The generalised mechanical model formulation, described in

the next section, uses an effective stiffness for each model
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Fig. 12. Proposed generalised mechanical model for semi-rigid joints.
(a) High ductility. (b) Limited ductility. (c) Brittle failure.

Fig. 13. Constitutive laws of the endplate joint components, [79].
row/spring i referred to the bolts and beam flanges, which is
evaluated as:

ri =

r
e
i =

1
nc∑
j=1

1
kecp

or rpi =
1

nc∑
j=1

1
kpcp

or rui =
1

nc∑
j=1

1
kucp

 (3)

wherenc is the component number that contributes to the stiffness
ri of the row/spring i. The spring/row stiffness depends on the
force–deformation relationship of each joint component that is
evaluated according to the proposed procedure described in this
section.

2.2. Generalised mechanical model formulation

The stationary potential energy principlewas used to formulate
the model stiffness matrix and the corresponding equilibrium
equation. The total potential energy functional,Π , is:

Π = U −W (4)

where U is the system strain energy and W is the load total
potential. The system strain energy can be expressed in terms
of the tangent stiffness ri, Eq. (3), of the spring i, and relative
displacements,∆i, as:

U =
1
2

ns∑
i=1

ri∆2i (5)

where ns is the system spring number. Assuming small displace-
ments, the relative (∆i) and absolute (ui and uli) displacements for
the system presented in Fig. 12 can be evaluated as:

Bar 1 Bar 2
∆i = ui − uli ∆i = ui
ui = ub1 − Ci sin(θb1) ui = ub2 − Ci sin(θb2)
uli = ub2 − Ci sin(θb2)

(6)

where Ci is the spring vertical coordinate i regarding the
load application line. The spring coordinates above the loading
application linemust have a positive signwhile the springs located
below the loading application line should attain a negative sign. θb1
and ub1, θb2 and ub2 are the rotations (θbi) and displacements (ubi)
of bars 1 and 2, respectively.
The system load total potential is, Fig. 12:

W = P(ub1 − ub2)+Mθb1 (7)

where P is the axial load andM is the bending moment. Using the
total potential energy principle, the equilibrium equations can be
derived from the functional stationary conditionΠ (Eq. (4)),

∂Π

∂di
= 0; di = ub1, θb1, ub2, θb2 (8)

the stiffness matrix, Kij, and internal load vector, Fi, can be derived
using Eq. (5),

Kij =
∂2U
∂di∂dj

; di = ub1, θb1, ub2, θb2 (9)

Fi =
∂U
∂di
; di = ub1, θb1, ub2, θb2. (10)
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Fig. 14. Force–displacement curve for components in tension and compression.

Table 2
Values adopted for the strain hardening coefficients, µ.

Designation — Component Plasticµp Ultimate µu

1—Column web in shear 0.500 0.217
2—Column web in compression 0.300 0.130
3—Column web in tension 0.300 0.130
4—Column flange in bending 0.200 0.087
5—Endplate in bending 0.100 0.043
7—Beam or column flange and web in compression ∞ ∞

8—Beam web in tension ∞ ∞

10—Bolt in tension 0.600 0.261

Approximating the trigonometric expressions in Eq. (6) to the
first order, the model stiffness matrix, Fig. 12, for any spring
number at any position can be evaluated as:

K11 =
nsb1∑
i=1

ri K12 = −
nsb1∑
i=1

riCi K13 = −K11 K14 = −K12

K22 =
nsb1∑
i=1

riC2i K23 = −K12 K24 = −K22

Symmetric K33 =
ns∑
i=1

ri K34 = −
ns∑
i=1

riCi

K44 =
ns∑
i=1

riC2i


(11)

where K11 and K33 are the matrix terms related to the axial
deformations of the beam-to-column connection; K12 and K34
are associated with the interaction between the axial and the
rotational deformations; K22 and K44 are correlated with the
rotational deformations; ns and nsb1 is the number of springs of
the model and between the first and second bars, respectively. The
internal loading vector is:

F =
[
P M 0.0 0.0

]T
. (12)

Due to the simplicity of this mechanical model formulation, it
can be easily incorporated into a nonlinear semi-rigid joint finite
element formulation, only requiring a tangent stiffness update
procedure of each joint spring.
Regarding the first order approximations for the trigono-

metric expressions used in the generalised mechanical model
formulation, Section 5 presents the error evaluation for these
approximations versus joint rotations.

2.2.1. Analytical expressions: displacements and rotations
This section presents the analytical expressions for the

displacements and the rotations of the proposed generalised
mechanical model, Fig. 12. The main goal is to generate equations
for the evaluation of these properties without executing a
mechanical model numerical analysis.
Rewriting the equilibrium equations, Eq. (8), based on the

symmetric stiffness matrix, Eq. (11), provides the complete
equilibrium equations as a function of six stiffness terms, K11, K12,
K22, K33, K34 and K44,

K11ub1 + K12θb1 − K11ub2 − K12θb2 = P (13)
K12ub1 + K22θb1 − K12ub2 − K22θb2 = M (14)
−K11ub1 − K12θb1 + K33ub2 − K34θb2 = 0.0 (15)
−K12ub1 − K22θb1 + K34ub2 + K44θb2 = 0.0. (16)

Isolating θb2 from the equilibrium Eq. (16),

θb2 (ub1, θb1, ub2) = κub1 + λθb1 − ρub2 (17)

where,

κ =
K12
K44
; λ =

K22
K44
; ρ =

K34
K44

. (18)

Substituting θb2, Eq. (17), into the equilibrium equation (15),
and isolating ub2,

ub2 (ub1, θb1) =
ω2ub1 + χ2θb1

ψ
(19)

where,

ψ = 1−
K 234
K33K44

; ω2 =
K11
K33
−
K34K12
K33K44

;

χ2 =
K12
K33
−
K34K22
K33K44

.

(20)

Substituting θb2, Eq. (17), into the equilibrium equation (14),
and after substituting ub2, Eq. (19), and subsequently isolating ub1,

ub1 (θb1,M) =
Mψ − θb1X

Ω
(21)

where,

Ω = ω1ψ + ω2ξ ; X = χ1ψ + χ2ξ (22)

ξ =
K22K34
K44

− K12; ω1 =
K12
K44

(K44 − K22);

χ1 = K22 −
K 222
K44

.

(23)

Substituting θb2 (Eq. (17)) into the equilibrium equation (13),
ub2 (Eq. (19)), then ub1 (Eq. (21)), and subsequently isolating
θb1 generates the expression for the joint rotation (or first bar
rotation), for any axial force and bending moment level:

θb1 (P,M) =
PΩ −Mϑψ

Z
(24)

where,

Z = ϕΩ − ϑX (25)

ϑ = K11 −
K 212
K44
+

(
K11K44 − K34K12
K33K44 − K 234

)(
K12K34
K44

− K11

)
(26)

ϕ = K12 −
K12K22
K44

+

(
K12K44 − K34K22
K33K44 − K 234

)(
K12K34
K44

− K11

)
. (27)

Substituting θb1 (Eq. (24)) into Eq. (21) leads to the joint
horizontal displacement (first bar horizontal displacement):

ub1 (P,M) =
P
ϑ

(
1−

ϕΩ

Z

)
+
Mϕψ
Z

. (28)

Substituting θb1 (Eq. (24)) and ub1 (Eq. (28)) into Eq. (19)
produces the following expression for the second bar’s horizontal
displacement:

ub2 (P,M) =
P
ψ

[
ω2

ϑ

(
1−

ϕΩ

Z

)
+
χ2Ω

Z

]
+
M
Z
(ϕω2 − ϑχ2).(29)



1886 A.A. Del Savio et al. / Journal of Constructional Steel Research 65 (2009) 1876–1895
Finally, substituting θb1 (Eq. (24)), ub1 (Eq. (28)) and ub2 (Eq. (29))
into Eq. (17) leads to the expression for the second bar’s rotation:

θb2 (P,M) =
P
Z

{
κ

ϑ
(Z− ϕΩ)+ λΩ

−
ρ

ψ

[ω2
ϑ
(Z− ϕΩ)+ χ2Ω

]}
+
M
Z
[κϕψ − λϑψ − ρ (ϕω2 − ϑχ2)]. (30)

With Eqs. (24) and (28)–(30) it is possible to evaluate all the
joint displacements and rotations for any interaction level between
axial force and bending moment, as well as, the forces in each
spring:

fi = ri∆i (31)

where ri and ∆i are, respectively, the stiffness (Eq. (3)) and the
relative displacement (Eq. (6)) of each spring.

2.2.2. Limit bending moments
For the correct use of the component method prior knowledge

of which model rows (bolts and flanges) are in tension and/or
compression is needed due to their effect on the evaluation of the
joint rotation and flexural capacity. In the usual Eurocode 3 [4]
mechanical model for joints subjected only to bending moment
actions, a straightforward procedure is used to identifywhich rows
are in compression and/or tension. However, when additional axial
forces act on the joint, the identification whether each row is in
tension or compression is not known in advance. This fact implies
in the determination of the limit bendingmoment for the proposed
mechanical model, Fig. 12, the need to identify when the row
forces change from compression to tension or vice-versa. With
these results in hand, it is possible to adopt a consistent component
distribution to be used following the Eurocode 3 [4] principles. The
limiting bending moment, for each j-spring (component) located
between the first and second bars, can be obtained by isolating, ub1
from Eq. (6),

ub1 = ∆j + Cj sin(θb1)+ ub2 − Cj sin(θb2) (32)

substituting ub1 into the two first equilibrium equations, of Eq. (8),

∂Π

∂ub1
= 0 (33)

∂Π

∂θb1
= 0. (34)

This is followed by isolating θb1 from the first equilibrium equation
Eq. (33), then substituting it into the second equilibrium equation
Eq. (34) and making the relative displacement (∆j) equal to zero,
and finally isolating the bendingmoment to generate the following
expression for the j-spring limit bending moment:

Mj,lim = P


nsb1∑
i=1
riC2i − Cj

(nsb1∑
i=1
riCi

)
Cj

(nsb1∑
i=1
ri

)
−

nsb1∑
i=1
riCi

 = P (K22 + CjK12CjK11 + K12

)
. (35)

It is worth noting that Eq. (35) depends only on the axial
load applied to the connection, and the stiffness and the vertical
coordinates of springs located between the first and second bars.
There is no significant influence of springs located between the
second bar and supports on the limit bending moment evaluation.
According to Eq. (35), for instance, for the first spring (j = 1),

for M < M1,lim all rows are compressed; M = M1,lim first spring
axial force is equal to zero; andM > M1,lim there are both tension
and compression rows.
2.2.3. Moments that cause the joint rows and the joint to yield and
reach failure
In this section analytical equations are derived, from the

analytical expressions presented in Section 2.2, for the evaluation
of bending moments that cause the model springs/rows and the
joint to both yield and fail, for any axial force level.
The displacement∆yi that causes themodel spring/row i to yield

is obtained by isolating∆i from Eq. (31), and setting fi equal to the
weakest component yield strength of spring/row i, f ycp,

∆
y
i =

f ycp
rei
. (36)

Similarly, the displacement∆ui that causes the model spring/row i
to fail is,

∆ui =
f ucp
rpi

(37)

where rei and r
p
i are the elastic and the plastic stiffness of

the spring/row i, respectively, given in Eq. (3). The relative
displacement of spring/row i located between the first and second
bars, from Eq. (6), is,
∆br,i = ub1 − Ci sin(θb1)− (ub2 − Ci sin(θb2)). (38)
Approximating the trigonometric expressions in Eq. (38) to

the first order; then substituting ub1 (Eq. (28)), θb1 (Eq. (24)),
ub2 (Eq. (29)) and θb2 (Eq. (30)) into it; and making the relative
displacement (∆br,i) equal to ∆

y
i (Eq. (36)) and subsequently

isolating the bending moment generates the expression that
causes the i-spring/row, located between the first and second bars,
to yield:

Mybr,i =
∆
y
i + P (−α1 + α2 − Ci(α3 − α4))

η1 − η2 + Ci(η3 + η4)
. (39)

Similarly, making the relative displacement (∆br,i) equal to ∆ui
(Eq. (37)), the expression for the bending moment that causes the
i-spring/row, located between the first and second bars, to fail is
produced:

Mubr,i =
∆ui + P (−α1 + α2 − Ci(α3 − α4))

η1 − η2 + Ci(η3 + η4)
(40)

where the coefficients of Eqs. (39) and (40) are:

α1 =
1
ϑ

(
1−

ϕΩ

Z

)
α2 =

1
ψ

[
ω2

ϑ

(
1−

ϕΩ

Z

)
+
χ2Ω

Z

]
α3 =

1
Z

{
κ

ϑ
(Z− ϕΩ)+ λΩ −

ρ

ψ

[ω2
ϑ
(Z− ϕΩ)+ χ2Ω

]}
α4 =

Ω

Z
η1 =

ϕψ

Z
η2 =

ϕω2 − ϑχ2

Z
η3 =

κϕψ − λϑψ − ρ (ϕω2 − ϑχ2)

Z
η4 =

ϑψ

Z
.

(41)

Following the same idea, now, for spring/row i located between
the second bar and supports, the relative displacement, from
Eq. (6), is,
∆fr,i = ub2 − Ci sin(θb2). (42)
Approximating the trigonometric expressions in Eq. (42) to

the first order; then substituting ub2 (Eq. (29)) and θb2 (Eq. (30))
into it; and making the relative displacement (∆fr,i) equal to ∆

y
i
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Fig. 15. Proposed prediction of the bending moment versus rotation curve for any
axial force level.

(Eq. (36)) and subsequently isolating the bending moment
produces the expression that causes the i-spring/row, located
between the second bar and supports, to yield:

Myfr,i =
∆
y
i + P (−α2 + Ciα3)

η2 − Ciη3
. (43)

Similarly, making the relative displacement (∆fr,i) equal to ∆ui
(Eq. (37)) leads to the following expression for the bending
moment that causes the i-spring/row, located between the second
bar and supports, to fail:

Mufr,i =
∆ui + P (−α2 + Ciα3)

η2 − Ciη3
(44)

where the coefficients of Eqs. (43) and (44) are given in Eq. (41).
Finally, the joint yield bendingmoment can be calculated as be-

ing theminimumyield bendingmoment given in Eqs. (39) and (43),

My = min{Mybr,i → Eq. (39),Myfr,i → Eq. (43)} (45)

and the joint plastic bending moment as being the minimum
plastic bending moment evaluated by Eqs. (40) and (44),

Mu = min{Mubr,i → Eq. (40),Mufr,i → Eq. (44)}. (46)

The joint rotational capacities, θ y and θu, referred to the joint
yield and plastic bending moments are, respectively,

θ y =
PΩ −Myϑψ

Z
(47)

θu =
PΩ −Muϑψ

Z
. (48)

For a given joint rotation (θ ) and axial force (N), it is also
possible to calculate the corresponding joint bending moment by
isolating it from Eq. (24),

M =
PΩ − θZ
ϑψ

. (49)

The analytical expressions developed in this section provide
all the necessary information to predict bending moment versus
rotation curves for any axial force level applied to the joint.

2.3. Prediction of bending moment versus rotation curve for any axial
force level

Based on the equations previously developed, Fig. 15 presents
an approach to characterise bending moment versus rotation
curves considering the bending moment versus axial force
interaction.
For each moment–rotation curve, the first point (θ y, My)

defines the joint initial stiffness corresponding to the attainment
of the weakest component yield while the second point (θu, Mu)
is obtained when the weakest component reaches its ultimate
strength. The third point (θ f , M f ) depends on the joint assumed
final rotational capacity for the moment–rotation curve. In this
work a 0.05-rad joint final rotation was adopted based on studies
for both frames and individual restrained member. The joint
rotations required at maximum load have shown that behaviour
at rotations beyond 0.05 rad, often much less, has little practical
significance, [13].
Summarising, the points of the moment–rotation curve are:

Pnt 1 θ y → Eq. (47); My → Eq. (45)
Pnt 2 θu → Eq. (48); Mu → Eq. (46)
Pnt 3 θ f = 0.05 rad; M f → Eq. (49).

(50)

It is worth highlighting that more points could have been used
to describe the bendingmoment versus rotation curve because, for
instance, before reaching the joint plastic bending moment other
joint rows might start yielding by generating new points between
the first and second points (Eq. (50)) changing the joint stiffness
matrix. However, for simplicity of the approach and examples
described in Section 3, three points were adopted.

2.4. Lever arm d

The lever arm d represents the tensile rigid link position that
unites the second bar to the supports, as can be seen, for instance,
in Fig. 16. On Fig. 16, kbr1, kbr2, kbr3 represent the elastic stiffness
of bolt-rows 1, 2 and 3, respectively; kbbf is the elastic stiffness of
the bottom flange of the beam; klcbf is the compressive rigid link
associatedwith the bottom flange of the beam; and klt is the elastic
stiffness of the tensile rigid link referred to the lever arm.
The evaluation of this lever arm d is needed when a

mechanical model is adopted as in Fig. 16, where the first
bolt rows are in tension, i.e., the beam top flange is not
under compression. According to Del Savio et al. [81], the joint
initial stiffness is strongly influenced by this lever arm d. Based
on this fact, an approach is here presented for evaluation of
this lever arm d which is divided into two equations: one
for compressive forces (Section 2.4.2) and another for the
complementary cases disregarding axial forces and/or considering
tensile forces (Section 2.4.1) applied to the joint.

2.4.1. Lever arm evaluation for the complementary cases disregarding
axial forces and/or considering tensile forces applied to the joint
Considering the support reactions and the applied loads, Fig. 16,

the system force equilibrium can be evaluated as:

Fbbf − Flinkt = P. (51)

The system moment equilibrium at the beam bottom flange is:

Flinkt (d+ e)+ Pe = M (52)

where Fbbf is the row compressive yield capacity referred to the
beam bottom flange; Flinkt is the rigid link tensile capacity that
joins the second bar to the supports; d and e are, respectively, the
distances from the loading application centre to the rigid link and
the beam bottom flange.
AssumingM to be equal to the yield bendingmoment of the first

bolt-row Mybr,1 given in Eq. (39), Fbbf , P and e are already known,
the problem variables are Flinkt and d. Then, isolating Flinkt from
Eq. (51), substituting it into Eq. (52), and then isolating d leads to
the expression for the lever arm position:

d =
Pe−Mybr,1
P − Fbbf

− e (53)

which also satisfies the condition where Fbbf andM
y
br,1 simultane-

ously reach the yield.
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Fig. 16. Proposed generalised mechanical model for semi-rigid joints – lever arm d.
2.4.2. Lever arm evaluation for compressive forces applied to the joint
The lever arm d for these cases is evaluated as the ratio between

the sum of bending moments referred to the bolt-rows and the
axial force at the beambottom flange and the sumof forces referred
also to the bolt-rows and the axial force minus the distance from
the load application centre to the beam bottom flange:

d =

nbr∑
i=1
f ybr,ili + Pe

nbr∑
i=1
f ybr,i + P

− e (54)

where nbr is the number of joint bolt-rows, f ybr,i is the yield strength
of bolt-row i and li is the distance from joint bolt-row i to the beam
bottom flange centre.
The lever arm d evaluated in either Eq. (53) or Eq. (54) take

into account the change of the joint compressive centre position
according to the axial force levels and bending moment applied
to the joint, before the yield of the first weakest component is
reached.

3. Application of the proposed generalised mechanical model

Application of the generalised mechanical model, developed in
Section 2, to predict the joint behaviour requires the following
steps:
(a) Generation and adoption of a joint model in consonance with
the generalised mechanical model presented in Fig. 12.

(b) Joint design according to Eurocode 3 [4].
(c) Characterisation of the joint components: force–displacement
relationship of each component according to the approach
suggested in Section 2.1.

(d) Identification of all the possible situations (model for compres-
sion, tension, tension/compression) given that loading may
vary from pure bending to pure compressive/tensile axial force
with all intermediate combinations. These intermediate com-
binations are derived from the adopted model in step (a).

(e) Evaluation of the limit bending moments for the adopted
models in step (d), with the aid of Eq. (35), to define the
application domains of each one.

(f) Evaluation of the lever arm d according to the proposed
procedure in Section 2.4, Eq. (54) for compressive forces and
Eq. (53) for either tensile forces or without axial forces,
considering the change of the joint compressive centre
position.
(g) Prediction of bending moment versus rotation curves for
each axial force level, according to the approach described in
Section 2.3.

It is worth highlighting that the incorporation of this approach
into a nonlinear semi-rigid joint finite element formulation does
not require steps (d) and (e), because the complete joint modelling
already considers all the possible situations of loading through
each component force–displacement characteristic curve. In order
to explain how each step is evaluated, six extended endplate joints
tested by Lima et al. [11] were modelled.

3.1. Extended endplate joints

Starting with the application of step (a) previously described
and using the extended endplate joint properties, Fig. 17, the
following mechanical model was adopted, Fig. 18. In Fig. 18, kbr1,
kbr2, kbr3 represent the elastic stiffness of bolt-rows 1, 2 and 3,
respectively. klt1, klt2, klt3 are the elastic stiffness of the tensile rigid
links referred to the bolt-rows 1, 2 and 3, respectively. kbtf and kbbf
are the elastic stiffness of the top and bottom flanges of the beam.
klctf and klcbf are the compressive rigid links associated with the
top and bottom flanges of the beam. klt is the elastic stiffness of
the tensile rigid link referred to the lever arm.
Next step (b), with the joint material (Table 3) and geometric

(Fig. 17) properties, the theoretical values of the strength and initial
stiffness for the extended endplate joint components are evaluated
according to Eurocode 3 [4] and are presented in Table 4.
With the evaluated properties of the joint components,

the characterisation of the force–displacement relationship for
each component can be calculated according to the proposed
formulation. Table 5 presents the results of this step (c).
Based on the adopted mechanical model, step (a), Fig. 18, four

derived models are identified and presented in Fig. 19. These four
models, referred to step (d), are able to deal with the eight load
situations presented in Table 6. For the experimental tests used
in this section, only three load situations depicted in Table 6 were
necessary:
- Number 3, where only bending moment is applied to the joint

and the proposed model presented in Fig. 19(c) is sufficient to
model the joint.
- Number 5, where a compressive axial force is applied to the

joint followed by a bending moment increase. This situation uses
the proposed models depicted in Fig. 19(a) and (c).
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Fig. 17. Extended endplate joint, [11].
Fig. 18. Proposed mechanical model.
Table 3
Steel mechanical properties.

Specimen Yield strength (MPa) Ultimate strength (MPa) Young’s modulus (MPa) Ratio yield/Ultimate

Beam Web 363.40 454.30 203,713 1.250
IPE 240 Flange 340.14 448.23 215,222 1.318
Column Web 372.02 477.29 206,936 1.283
HEB 240 Flange 342.95 448.79 220,792 1.309
Endplate 369.44 503.45 200,248 1.363
Bolts 900.00 1000.00 210,000 1.111
Weld – 576.00 210,000 –
- Number 6, where a tensile axial force is first applied to the
joint with a subsequent bending moment application. In this case,
the proposed models in Fig. 19(b) and (c) are utilised.
Before analysing the adopted mechanical models in Fig. 19, it

is necessary to identify each model applicability domain, which
depends on whether the joint components are subjected to either
compression or tension, for a given combination of bending
moment and axial force. This is done by evaluating the limit
bendingmoments (Mlim), step (e), for the adoptedmodels in Fig. 19
with the aid of Eq. (35), relative to the experimental axial force
levels. This step does not require a knowledge of the lever arm
position d since the yield of joint bolt-rows is not affected by this
position. In this case, only the joint rotation and the joint row yield
corresponding to the beam flanges are affected. The results of the
limit bending moment evaluations are illustrated in Table 7. For
the EE1 experiment (load situation number 3, Table 6) any bending
moment applied to the joint model, Fig. 19(c), induces tension
on the joint first bolt row and compression on the beam bottom
flange. For the EE2, EE3 and EE4 experimental tests (load situation
number 5, Table 6), the limit bending moment, which induces
tension on the beam top flange is obtained by using the proposed
mechanical model shown in Fig. 19(a). For the EE6 and EE7 tests
(load situation number 6, Table 6), the limit bending moment,
which leads the third bolt row to compression, is calculated by the
proposed mechanical model illustrated in Fig. 19(b).
Based on these limit bending moments, an appropriate

mechanical model can then be adopted from those shown in
Fig. 19. For instance, for EE4 test if the bending moment applied to
the joint were smaller than 34.55 kN m, Table 7, the compressive
model presented in Fig. 19(a) should be used. For larger values the
tensile–compressive model should be utilised. On the other hand,
if the proposed mechanical model, Fig. 18, were implemented into
a nonlinear structural analysis program, where each component
was described by its force–displacement characteristic curve,
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Table 4
Theoretical values of the resistance and initial stiffness of the extended endplate joint components, Fig. 17, evaluated according to Eurocode 3 [4].

Component f ycp (kN) kecp (kN/mm) f yi (kN) rei (kN/mm)

Beam top and bottom flange (compression)
cwc 656.7 2133.6 321.3 464.8
bfc 541.6 ∞ kbtb /kbbf
cws 321.3 594.3

Beam bottom flange
cwc 656.7 2133.6 541.6 763.4
bfwc 541.6 ∞ kbbf
cws 642.5 1188.6

First bolt row (h = 267.1 mm)

cwt 533.2 1476.3 289.8 607.7
cfb 311.3 8499.7 kbr1
epb 289.8 4223.1
bt 441.0 1630.6

Second bolt row (h = 193.1 mm)

Considered individually
cwt 445.4 1476.3 218.6 575.0
cfb 218.6 8498.7 kbr2
epb 326.9 3026.1
bwt 492.3 ∞

bt 441.0 1629.6
cwc 366.9
bfwc 251.6
cws 352.8
Bolt-row belonging to the bolt group: bolt-rows 2+ 1
cwt 735.1
cfb 508.4
epb 616.7

Third bolt row (h = 37.1 mm)

Considered individually
cwt 410.3 1476.3 33.3 554.7
cfb 311.3 8498.7 kbr3
epb 320.3 2538.9
bwt 413.2 ∞

bt 441.0 1629.6
cwc 148.3
bfwc 33.3
cws 134.2
Bolt row belonging to the bolt group: bolt rows 3+ 2
cwt 350.8
cfb 663.4
epb 623.9
bwt 764.7
Bolt row belonging to the bolt group: bolt rows 3+ 2+ 1
cwt 918.7
cfb 878.8
cws 898.2
Fig. 19. Proposed mechanical model for each analysis stage.
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Table 5
Characterisation of the extended endplate joint components, Fig. 17, according to the approach given in Section 2.1.

Component f ucp (kN) kpcp (kN/mm) kucp (kN/mm) f ui (kN) rpi (kN/mm) rui (kN/mm)

Beam top and bottom flange (compression)
cwc 842.6 640.1 278.3 412.2 202.9 88.2
bfc 695.4 ∞ ∞ kbtb /kbbf
cws 412.2 297.2 129.2

Beam bottom flange
cwc 842.6 640.1 278.3 695.4 308.3 134.0
bfc 695.4 ∞ ∞ kbbf
cws 824.4 594.3 258.4

First bolt row (h = 267.1 mm)

cwt 684.2 442.9 192.6 394.9 160.3 69.7
cfb 407.5 1699.7 739.04 kbr1
epb 394.9 422.3 183.6
bt 490.0 977.8 425.1

Second bolt row (h = 193.1 mm)

Considered individually
cwt 571.4 442.9 192.6 286.1 139.4 60.6
cfb 286.1 1699.7 739.0 kbr2
epb 445.5 302.6 131.6
bwt 615.4 ∞ ∞

bt 490.0 977.8 425.1
cwc 466.8
bfwc 320.1
cws 448.8
Bolt row belonging to the bolt group formed by bolt rows 2+ 1
cwt 943.2
cfb 665.3
epb 840.3

Third bolt row (h = 37.1 mm)

Considered individually
cwt 526.5 442.9 192.6 42.3 128.1 55.7
cfb 407.5 1699.7 739.0 kbr3
epb 436.5 253.9 110.4
bwt 516.6 ∞ ∞

bt 490.0 977.8 425.1
cwc 188.7
bfwc 42.3
cws 170.7
Bolt row belonging to the bolt group formed by bolt rows 3+ 2
cwt 1178.7
cfb 1150.2
epb 1223.9
bwt 956.0
Bolt row belonging to the bolt group formed by bolt rows 3+ 2+ 1
cwt 1178.7
cfb 1150.2
epb 1223.9

f ucp is given in Section 2.1, k
p
cp and kucp are given in Eqs. (1) and (2), respectively.
these joint components would be automatically activated or
deactivated according to its compressive/tensile characteristic
(Fig. 14), without the need to previously define a model for each
load situation as shown in Fig. 19 and Table 6.
The proposed mechanical models presented in Fig. 19(c) and

(d) require the evaluation of the lever arm d, step (f). Table 7
presents the lever arm d positions evaluated for the mechanical
model shown in Fig. 19(c), where Eq. (54) is used for compressive
forces applied to the joint and Eq. (53) is utilised for all the
other complimentary cases. Regarding the mechanical model in
Fig. 19(d), the lever arm d positions were not calculated since they
were not considered in the Lima et al. [11] experiments.
Finally, with the steps (a) to (f) evaluated for the adoptedmodel

in Fig. 19, it is possible to predict the bending moment versus
rotation curves for each axial force level, step (g), used in the
experimental tests carried out by Lima et al. [11]. Table 8 presents
the values evaluated for each moment–rotation curve, according
to the approach described in Section 2.3. Point 1 (θ y, My), Table 8,
defines the onset of the joint yield and is evaluated in Eq. (50),
by using the yield strength (Table 4, f yi ) and the elastic effective
stiffness (Table 4, rei ) for rows i. Point 2 (θ

u, Mu) represents the
joint ultimate capacity and is obtained by utilising Eq. (50) and the
ultimate strength (Table 5, f ui ) and the plastic effective stiffness
(Table 5, rpi ) for rows i. Point 3 (θ

f , M f ), Eq. (50), is obtained by
adopting a 0.05-rad final rotation for the joint and the reduced
strain hardening effective stiffness (Table 5, rui ) for rows i. With
these results in hand, the results of each analysis compared to
their equivalent experimental tests are illustrated in Fig. 20(a)
to (f). Subsequently, Fig. 21 presents the whole set of numerical
results.

4. Results and discussion

Six experimental moment–rotation curves, of Lima et al. [11],
were used to validate the proposed mechanical model in Section 2
as well as to demonstrate its application.
Fig. 20(a) illustrates the comparisons between the proposed

model and the EE1 test moment–rotation curve that was only
subjected to bending moments. For this case, the point that
characterises the joint initial stiffness was defined at 2/3 of Mjrd
(joint design bending moment) according to Eurocode 3 [4]—tri-
linear approach, being the point Mjrd defined by yielding of the
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(a) EE1 test versus proposed model versus Eurocode 3 [4]. (b) EE2 test versus proposed model.

(c) EE3 test versus proposed model. (d) EE4 test versus proposed model.

(e) EE6 test versus proposed model. (f) EE7 test versus proposed model.

Fig. 20. Comparisons between experimental moment–rotation curves, by Lima et al. [11], and predicted curves by using the proposed mechanical model.
Table 6
Load situations applied to the joint and their respective mechanical models.

No Load situations Mechanical model (s)
Bending moment Axial force

1 – +P Compressive, Fig. 19(a)
2 – −P Tensile, Fig. 19(b)
3 +M – Tensile–compressive, Fig. 19(c)
4 −M – Compressive–tensile, Fig. 19(d)
5 +M +P Fig. 19(a) and (c)
6 +M −P Fig. 19(b) and (c)
7 −M +P Fig. 19(a) and (d)
8 −M −P Fig. 19(b) and (d)

+P and −P are compressive and tensile axial forces applied to the joint,
respectively.+M is the bending moment that compresses the beam bottom flange
and tensions the beam top flange, whilst−M is the bending moment that tensions
the beam bottom flange and compresses the beam top flange.

endplate in bending. The initial stiffness is slightly overestimated
by 10% by the mechanical model whilst the flexural capacity
is rather over-predicted by 14%, Table 9. In comparison with
Eurocode 3 [4] the proposed mechanical model overestimates
the initial stiffness and the flexural capacity by 7% and 12%,
respectively. The discrepancies between the Eurocode 3 [4] and
the proposed mechanical model results are due to a different
assumption for the joint rotation centre, which for Eurocode 3
[4] is assumed at the beam bottom flange while for the proposed
approach it is given by lever arm d evaluated according to the
proposed procedure in Section 2.4.
Fig. 20(b), (c) and (d) present comparisons between the

proposed model and moment–rotation curves of EE2, EE3 and EE4
tests that respectively consider compressive forces of 10%, 20% and
27% of the beam axial plastic capacity. For these three compressive
cases, the joint initial stiffness was defined by yielding of the beam
bottom flange in compression. Very good correlation between the
experimental tests and numerical results was obtained, Table 9.
Fig. 20(e) and (f) illustrate the results for EE6 and EE7

moment–rotation curves that respectively consider tensile forces
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Table 7
Applicability of each model,Mlim , and evaluation of lever arm d according to the experimental axial force levels.

Experimental data Mlim (kN m), Eq. (35) Lever arm (mm)
Test N (kN) Compressive Fig. 19(a) Tensile Fig. 19(b) Tensile-compressive Fig. 19(c)

EE1 (only M) 0.00 NAa NAa 0.00 toM f Eq. (53): 79.28
EE2 (+10% Npl) 135.94 0.0 to 18.12 NAa 18.12 toM f Eq. (54): 86.34
EE3 (+20% Npl) 193.30 0.0 to 25.77 NAa 25.77 toM f Eq. (54): 79.60
EE4 (+27% Npl) 259.20 0.0 to 34.55 NAa 34.55 toM f Eq. (54): 73.05
EE6 (−10% Npl) −127.20 NAa 0.0 to 15.96 13.73 toM f Eq. (53): 46.57
EE7 (−20% Npl) −257.90 NAa 0.0 to 32.36 27.84 toM f Eq. (53): 24.33

‘‘+’’ indicates compressive axial forces and ‘‘−’’ tensile axial forces.M f is given in Eq. (50).
a NA= not applicable.
Table 8
Values evaluated for the prediction of the moment–rotation curves for different axial force levels.

Point EE1 (onlyM) EE2 (+10%Npl) EE3 (+20%Npl) EE4 (+27%Npl) EE6 (−10%Npl) EE7 (−20%Npl)
θ M θ M θ M θ M θ M θ M
(mrad) (kN m) (mrad) (kN m) (mrad) (kN m) (mrad) (kN m) (mrad) (kN m) (mrad) (kN m)

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 8.2 105.3 7.2 97.4 7.0 90.1 6.7 83.0 9.6 93.5 11.1 81.4
2 23.6 135.1 21.4 128.2 20.8 119.9 20.1 111.8 26.4 118.3 29.5 102.7
3 50.0 137.3 50.0 143.3 50.0 138.0 50.0 132.8 50.0 107.7 50.0 83.6

Points 1, 2 and 3 defined in Eq. (50). For EE1 (onlyM) has also a point at 2/3Mjrd , i.e., at 3.5-mrad rotation and 90.0-kN m bending moment.
Table 9
Comparisons between the experimental and the proposed model initial stiffness and the experimental and the proposed model design moment.

Tests Initial stiffness (kN m/rad) Design moment (kN m)
Model Exp Mod/Exp % Model Exp Mod/Exp %

EC 3 (onlyM) 24,055 23,467 1.03 −3 121 119 1.02 −2
EE1 (onlyM) 25,785 23,467 1.10 −10 135 119 1.14 −14
EE2 (+10% Npl) 13,445 13,554 0.99 1 128 125 1.02 −2
EE3 (+20% Npl) 12,885 13,169 0.98 2 120 118 1.02 −2
EE4 (+27% Npl) 12,369 12,538 0.99 1 112 113 0.99 1
EE6 (−10% Npl) 9,771 9,274 1.05 −5 118 116 1.02 −2
EE7 (−20% Npl) 7,317 6,829 1.07 −7 103 101 1.02 −2

Negative percentage means overestimated value of X% whilst positive percentage indicates underestimated value of X%. Joint design moment is determined according to
Eurocode 3 [4], through the intersection between two straight lines, one parallel with the initial stiffness and another parallel with the moment–rotation curve post-limit
stiffness.
Fig. 21. Prediction of six moment–rotation curves for different axial force levels.

of 10% and 20% of the beam axial plastic resistance. For these
last two cases the joint plasticity was governed by yielding of the
endplate in bending, followed by yielding of the beam bottom
flange in compression. An accurate prediction of the initial stiffness
and flexural capacity are observed, Table 9. However, as the tensile
force increases to 20% of the beam axial plastic resistance, a slight
difference is exhibited overestimating the initial stiffness by 7%,
Fig. 20(f). For both cases of tensile forces evaluated by the proposed
mechanical model, the joint failures before reaching a 0.05-rad
rotation.
Fig. 21 illustrates the set of numerical resultswhere it is possible

to observe that the extended endplate joint subjected both to
compressive and tensile forces has its initial stiffness and flexural
capacity decreased as either compressive or tensile force increases.
This reduction in the initial stiffness ismore pronounced for tensile
forces applied to the joint. Additionally it is worth highlighting
that the joint initial stiffness is strongly influenced by the rigid
link lever arm d. Joints possessing similar rigid link lever arms d
exhibited a small variation of the initial stiffness as can be seen on
the compressive force numerical results, Fig. 21: P = +10%Npl,
P = +20%Npl and P = +27%Npl.
Generally the global behaviour of the numerical moment–

rotation curves, obtained by using the generalised mechanical
model proposed in this work, is in agreement with the test curves,
Lima et al. [11], producing numerical results that closely approx-
imate the initial stiffness and flexural resistance, Table 9. These
small discrepancies might be attributed to the simplifications
made in the generalised mechanical model as well as possible in-
accuracies in the assumed material and geometrical properties.

5. Conclusions

Based on the general principles of the component method,
a generalised mechanical model was proposed to estimate the
endplate joint behaviour when both bending moments and axial
forces are present. This mechanical model is able to deal with
three basic requirements for the joint performance: strength,
stiffness and deformation capacity. Application and validation of
this mechanical model, using experimental tests executed by Lima
et al. [11] on six extended endplate joints, was performed and led
to accurate prediction of the experiment’s key variables.
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Fig. 22. First-order approximations error magnitudes versus joint rotation.

The utilization of this generalised mechanical model is simple
and provides an approach to estimate the bending moment
versus rotation curve for any axial force level. The tri-linear
characterisation of the joint components suggested in this
work was shown to be capable of reasonable approximations
for the moment–rotation curve construction. However, further
experimental examination and numerical analysis using different
ranges of joints to check the validity and application of the
proposed strain hardening coefficients, Table 2, beyond the scope
of joints studied in this work is desirable.
The approach proposed for evaluation of lever arm d, Sec-

tion 2.4, takes into account the change of the joint compressive
centre according to the axial force levels and bending moment ap-
plied to the joint. This strategy was responsible for a satisfactory
estimation for the joint initial stiffness, even before yielding of the
first weakest component was reached.
First order approximations for the trigonometric expressions

were used throughout the generalised mechanical model for-
mulation. In this way, Fig. 22 presents the error due to these
approximations versus joint rotations. According to Nethercot &
Zandonini [13], rotations beyond 0.05 rad have little practical sig-
nificance. This rotation was assumed as being the joint final rota-
tion. For this value it is possible to observe in Fig. 22 an error of
0.002%. This indicated that the developed equations are accurate
for the usual problems involving beam-to-column joints.
Some topics requiring further research have been identified in

the process of developing and applying the proposed mechanical
model. These include extension of the model to composite joints;
to prove mathematically if the suggested lever arm position
evaluation accurately represents the variations in the joint
compressive centre position as a function of the joint loads; and
further experimental investigations associated with a wider range
of axial force magnitudes and different joint layouts.
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