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Abstract. An algorithm for generating unstructured tetra-
hedral meshes of arbitrarily shaped three-dimensional
regions is described. The algorithm works for regions without
cracks, as well as for regions with one or multiple cracks.
The algorithm incorporates aspects of well known meshing
procedures, but includes some original steps. It uses an
advancing front technique, along with an octree to develop
local guidelines for the size of generated elements. The
advancing front technique is based on a standard procedure
found in the literature, with two additional steps to ensure
valid volume mesh generation for virtually any domain. The
first additional step is related to the generation of elements
only considering the topology of the current front, and the
second additional step is a back-tracking procedure with
face deletion, to ensure that a mesh can be generated even
when problems happen during the advance of the front. To
improve mesh quality (as far as element shape is concerned),
an a posteriori local mesh improvement procedure is used.
The performance of the algorithm is evaluated by application
to a number of realistically complex, cracked geometries.

Keywords. Advancing front; Crack analysis; Element
shape improvement; Finite elements; Mesh gener-
ation; Unstructured mesh

1. Introduction

An algorithm for generating unstructured tetrahedral
meshes for arbitrarily shaped three-dimensional
regions is described. The algorithm works for
regions without cracks, as well as for regions with
one or multiple cracks. The cracks may be embed-
ded or surface breaking.

The algorithm was designed to meet four specific
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requirements. First, the algorithm should produce
well shaped elements, avoiding elements with poor
aspect ratios. While the algorithm does not guarantee
bounds on element aspect ratios, care is taken at
each step to generate the best shaped elements poss-
ible. Empirical observations, described in Section 3,
show that the algorithm is largely successful in
meeting this requirement.

The second requirement is that the algorithm gen-
erates a mesh that conforms to an existing triangular
mesh on the boundary of the region. This is
important in the context of crack growth simulation,
because it allows remeshing to occur locally in a
region near a growing crack. That is, a relatively
small number of elements near the crack can be
deleted creating a void in the mesh. The crack is
extended, and then this algorithm can be used to
generate new elements that fill the void, and con-
form to the elements that were not removed. The
remeshed zone is small and localised, leading to
fast mesh generation and, for nonlinear problems,
minimises the amount of state information that needs
to be mapped between an old and new mesh. This
requirement matches the successful two-dimensional
algorithm previously developed for crack growth
simulations [1]. The algorithm, however, is not
restricted to small regions near cracks. The examples
shown in Sections 3 and 4 demonstrate its use for
meshing relatively large regions.

Many of the other meshing algorithms described
in the literature generate the mesh on a region’s
boundary along with the volume mesh. As implied
above, for the present algorithm a surface mesh is
a required input. The authors do not consider this
a significant limitation, however, because there are
a number of good surface triangular mesh generators
which can be used to generate the required surface
mesh (e.g. [2–5]).
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The third requirement of the algorithm is that it
has the ability to transition well between regions
with elements of highly varying size. In a crack
analysis, it is not uncommon for the elements near
the crack front to be two orders of magnitude
smaller than other elements in the problem. Some
other algorithms work best when all generated
elements have similar characteristic size. This is
clearly unacceptable for the crack case, and the
current algorithm has been designed to have good
size transition capabilities.

The fourth requirement is the specific modelling
capability for modelling cracks. This requirement
arises because cracks are usually idealised as having
no volume. That is, the surfaces representing the two
sides of a crack face are distinct, but geometrically
coincident. This means that nodes on opposite sides
of crack faces may have identical coordinates. The
algorithm must be able to discriminate between the
nodes and select the one on the proper crack face.

The current algorithm incorporates aspects of well
known meshing procedures, and includes some orig-
inal steps. It uses an Advancing Front Technique
(AFT), along with an octree to develop local guide-
lines for the size of generated elements. The AFT
is based on a standard procedure found in the
literature [6–11], with additional steps to ensure
valid volume mesh generation for virtually any
domain, including the ones with cracks. Special care
is taken during the advancing front procedure to
generate elements with the best shape possible.

Although there are many algorithms that have
been proposed in the literature in recent years, few
of them seem to address all four described require-
ments in a complete and satisfactory way for crack
propagation simulations, such as those undertaken
by the authors. One of the main contributions of
this work is the consideration of two additional
steps that, together with the standard AFT, helps to
ensure that the four requirements are satisfied for
most of the problems.

The advancing front method is divided into two
phases. One, called the geometry-based phase, is
based solely on the shape of the elements. In the
other phase, called the topology-based phase, the
optimal element shape criteria are raised, and the
algorithm tries to create valid tetrahedra based only
on topology, as in any advancing front method. This
two-phase AFT is another main contribution of this
work. To improve mesh quality (as far as element
shape is concerned), ana posteriori local mesh
improvement procedure is used.

The additional steps included in the current algor-
ithm, namely back-tracking procedures, are heuristic

attempts to avoid the problem of missing closure of
the advancing front algorithm. The necessity of these
procedures arises from the fact that, unlike triangu-
lation in two dimensions, the discretisation of any
given volume into tetrahedra is not formally ensured,
unless some additional steps are performed.

Several works in the literature have addressed the
solution to this problem recently. For example, the
work of Chan and Anastasiou [10] uses local mesh
regeneration based on the deletion of sliver tetra-
hedra in a post-processing step. Thea posteriori
back-tracking procedure of this work has the same
objective of that step, but uses a different algorithm.
In another recent work, Rassineux [11] also
optimises the mesh by reconstruction of sub-volumes
that are obtained by the deletion of a group of
tetrahedra. It is worth mentioning that, in this work,
the back-tracking procedure is not only used in a
post-processing stage to improve mesh quality, but
also during the advancing front phase, when a sub-
volume that cannot be subdivided into tetrahedra is
encountered. In this case, not only is the validity of
the mesh enforced, but mesh quality is also
improved.

Another important difference between the current
algorithm and those referred to above is that those
algorithms generate internal nodes inside the domain
in a prior step, while in this work, internal nodes are
generated simultaneously with element generation.
Rassineux [11] uses an octree procedure to generate
internal nodes prior to the element generation. The
current algorithm also uses an octree, but only as a
node-spacing function. This approach tends to have
a better control over the quality of the generated
mesh and, apparently, decreases the amount of heu-
ristic cleaning-up procedures.

Moreover, the current algorithm specifically
handles discontinuities in the domain or boundary
of the model, such as evolving cracks. The algorithm
has recently been used in realistic fracture simula-
tions such as those presented in the work of Carter
et al. [12].

The body of this paper is divided into three main
sections. The following section describes the steps
of the algorithm in some detail. Section 3 describes
empirical measures of the quality of the elements
generated for a number of examples. Section 4
describes empirical measures of the algorithm’s
asymptotic performance.

2. Description of the Algorithm

The input to the algorithm is a faceted description
of the boundary of a region to be meshed. This is
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given by a list of nodes defined by their coordinates,
and a list of triangular faces defined by their node
connectivity. This type of input can represent geo-
metries of any shape, including holes or cracks, and
it can be easily incorporated in any finite element
system.

The algorithm is organised in the following phases:

I. Octree generation
a. Initialisation based on boundary mesh.
b. Refinement to force a maximum cell size.
c. Refinement to provide minimum size dis-

parity for adjacent cells.
II. Advancing front procedure

a. Geometry-based element generation.
b. Topology-based element generation.
c. Element generation based on back-tracking

with face deletion.
III. Local mesh improvement

a. Laplacian smoothing with validity checks.
b. Quality evaluation and local back-tracking

with element deletion.

2.1. Octree Generation

The primary purpose for the octree is to generate
guidelines for the size of the elements generated
during the advancing front procedure. The element
size distribution through the region is inferred by
the size distribution in the input boundary mesh.

The octree generation involves three steps. In the
first step, the octree is initialised based on the input
data. In the other two steps, the octree is further
refined. Figures 1–4 are used to illustrate the process
of generating the octree, which for clarity, depict a
two-dimensional example using a quadtree. The

Fig. 1. Hypothetical two-dimensional model and its boundary
refinement.

reader can infer from the two-dimensional example
the analogous procedures that take place in three
dimensions, which are difficult to depict in a figure.
These procedures have been reported in several
works in the literature, for example in the work of
Shephard and Georges [13]. The point here is not
to explain how to generate an octree. This section
is included for the sake of algorithm completeness.

2.1.1. Octree Initialisation Based on Boundary
Mesh
Initially, a bounding cube is created based on the
maximum range of any of the three Cartesian coor-
dinates of the nodes in the input data. This is the
root cell of the octree. Figure 1 illustrates a hypo-
thetical two-dimensional input data represented by
the model and its boundary refinement. This model
has an edge crack on its right-hand side. At the
crack tip, the boundary is contracted as if it had
specially placed crack-tip elements. The boundary
model presents an increasing degree of refinement
from the left side to the right side.

In the first step of the octree generation, rep-
resented by the initialisation of the octree, each face
of the input boundary mesh is used to determine
the local depth of subdivision. The octree cell con-
taining the centroid of each input face is determined.
If the area of this cell’s face1 is larger than the area
of the boundary face, then this cell is subdivided
into eight smaller cells. This process is repeated
recursively, and finishes when the area of the cell’s
face is smaller than a constant times the area of the
boundary face. In this implementation, a factor of
0.4 was used. The use of this factor is recommended
by other work found in the literature [13] to avoid
excessive refinement in the octree generation. This
process is repeated for all faces of the input data.
The results are illustrated for the two-dimensional
example in Fig. 2.

2.1.2. Octree Refinement
The previous step can leave large octree cells in
the interior of the region. In a second step, the
octree is refined to guarantee that no cell in the
interior is bigger than the largest cell at the bound-
ary. This will avoid excessively large elements in
the domain interior. Figure 3 shows the resulting
quadtree after this operation for the two-dimen-
sional example.

The octree is further processed in a third step, to
force only one level of refinement between neigh-

1 Each cell is a cube that has equal six faces, so any face can
be used.
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Fig. 2. Initial quadtree of two-dimensional model.

bouring cells. This enforces a natural transition
between regions of different degrees of refinement.
This operation is performed by traversing the octree
and examining the level of refinement between
adjacent cells. If the difference is more than one
level, the appropriate cells are refined until the
criterion is satisfied. Figure 4 shows the quadtree
generated for the two-dimensional example after
this procedure.

2.2. Advancing Front Technique

The advancing front technique starts with a surface
that bounds a region. Volume elements are
‘extracted’ or ‘pared’ from the region one at a time.
As each element is extracted, the bounding surface is
updated and the process is repeated. The procedure
terminates when the entire region is meshed, or when
one or more internal unmeshed cavities remain, from
which valid elements cannot be extracted.

In the present algorithm, the advancing front pro-
cess is divided into three phases to ensure generation
of valid volume meshes. In the first phase, a
geometry-based element generation is pursued to

generate elements of optimal shape. After this ideal
phase is exhausted, and no more optimal elements
can be generated, a topology-based element gener-
ation takes place, trying to create valid, but not
necessarily well shaped, elements in the remaining
region. In the last phase, a back-tracking procedure
is used to delete element faces that are preventing
the algorithm from completing a mesh.

2.2.1. Geometry-Based Element Generation
Ideally, the entire mesh would be generated in the
geometry-based phase. However, this depends upon
the geometry and topology of the given boundary
model and, from our experience with the present
algorithm, is strongly related to the shape quality
of the given boundary mesh.

Boundary contraction lists.The process starts with
the creation of the initial advancing front, which is
formed by the given boundary mesh. The current
boundary mesh is stored in two separate lists. The
first is a list of active faces, which includes all
boundary mesh faces that have not been used in an
attempt to generate valid tetrahedra. The other is a
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Fig. 3. Quadtree of two-dimensional model after forcing biggest cell size at boundary.

list of rejected faces, that is the faces that failed in
the generation of elements for the current phase.
Initially, all faces of the given boundary mesh are
stored in the first list, which is the list used in the
geometry-based generation phase.

The list of active faces is sorted by the area of
the faces. This ensures that the first face selected
from this list will always be the face with the
smallest area. This has been recommended by other
authors [6] to prevent large elements from penetrat-
ing into regions with small area faces.

It was also found convenient for some phases in
the algorithm to have an additional data structure
that holds a list of adjacent boundary faces for
each node on the current advancing front. This data
structure is initialised for all the nodes of the given
boundary mesh. The data structure is updated as the
boundary contraction procedure progresses.

Generation of optimal elements.In the geometry-
based element generation phase, the current bound-
ary mesh advances by trying to form tetrahedra
based mainly on geometrical considerations. At each
step, a triangular boundary face, referred to as the

base face, is chosen from the list of active faces.
This face has the smallest area in the current front,
and its normal points to the interior of the region
to be meshed. The current front is represented by
all existing faces at a certain time of the algorithm.

The procedure for generating a tetrahedron in this
phase is explained by means of Fig. 5. This pro-
cedure is divided into the following steps:

I The optimal locationN1 for the vertex of the
tetrahedron to be formed is determined with the
help of the octree. The octree cell containing the
centroid M of the base face is determined. The
optimal point N1 lies on a line perpendicular to
the base face passing through this centroid. The
distance from the optimal point to the base face
centroid is equal to the octree cell size.

I The optimal point defines a search region where
the vertex of the new tetrahedron may be located.
This region is a sector of a sphere whose centre
is the optimal point, and whose radius is pro-
portional to the octree cell size. In the current
implementation, a proportionality constant of 1.0
was adopted. This sphere defines an upper bound
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Fig. 4. Quadtree of two-dimensional model after forcing maximum of one level of difference.

Fig. 5. The determination of a tetrahedron in three-dimensions.

for the distance between the target vertex of the
tetrahedron and the centroid of the base face. A
lower bound is also defined to ensure that the
generated tetrahedron will have volume greater
than the smallest acceptable volume. In the cur-
rent implementation, this lower bound is defined
by a tetrahedron with height equal to 1/10 of the
distance betweenN1 and M. The optimal region

is used for two reasons. First, to ensure shape
quality of the elements to be generated, and sec-
ondly, to ensure that new internal nodes will be
created only when it is strictly necessary, and
always in good positions. Figure 5 shows, based
on the bounds described, that pointsQ1 and Q2
are acceptable for forming a new tetrahedron,
while points Q3, Q4 and Q5 are not.

I If no existing node is inside the optimal region,
a new node is inserted at the optimal locationN1
and an element is generated using this node. If
only one node exists in the region, this node is
used to generate the element. If more than one
node is found in the region, they are ranked
according to the solid angle that they will create
with the base face. The node that will create the
largest solid angle is used to generate the element.
The solid angle is evaluated by projecting the
base face onto a unit sphere with centre at vertex
i and computing the area of the spherical polygon
thus determined [14], as shown in Fig. 6.

I Additional geometric checks are performed to
ensure that the faces of the new element do not
intersect any existing face of the advancing front.
If this is the case, the element is rejected.
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Fig. 6. The definition of a solid angle for a vertexi of a tetra-
hedron.

I For crack problems there might be two or more
nodes with the same coordinates. Figure 7 illus-
trates this case for a two-dimensional example at
the left-hand side. This figure also shows a three-
dimensional situation, at the right-hand side. The
algorithm selects the proper node using a simple
test which is based on the lists of adjacent bound-
ary faces of the nodes on the advancing front.
When two candidate nodes at the crack surface
are selected to form an element, the node which
lies on the same side of the base face with respect
to the crack surface is chosen. The normals to
the crack faces adjacent to the selected nodes are
used to perform this test. This check assumes
that all crack surfaces are smooth.

I Once a valid tetrahedron is generated for the
current base face, the list of active faces is
updated. This is done through the following steps.

Fig. 7. Selection of a candidate node at a crack surface.

First, the base face is removed from the list.
Then, for the other faces of the element: each
face is deleted if it coincides with a face already
in the list, or the face is inserted in the list as a
new one. The insertion is done maintaining the
ordering of the list of active faces according to
face area.

I Due to geometric bounds imposed by the current
front, there are situations in which the algorithm
fails to form a valid tetrahedron for the current
base face. In these cases, the current base face is
removed from the list of active faces and is stored
in the separate list of rejected faces. It might
happen that a face is subsequently removed from
this latter list if it is used to form part of a valid
tetrahedron for an adjacent base face.

I When there are no more faces in the list of active
faces, the algorithm tries to generate elements
using the faces that were rejected previously.
Some base faces that failed previously might now
work because the front has changed with the
addition of elements. A similar procedure is men-
tioned in the literature [9]. The geometry-based
element generation phase ends when either there
are no faces left in the boundary contraction lists
(in which case an optimal mesh was generated),
or when a rejected face fails a second time.

2.2.2. Topology-Based Element Generation
The objective of this phase of the algorithm is to
force the generation of valid tetrahedra, if possible,
even if the new elements do not satisfy the bounds
used in the previous phase for element shapes. The
topology-based element generation phase starts when
a boundary face fails twice in trying to generate an
optimal element. The list of rejected faces of the
previous phase is now considered as a list of active
faces and, similar to the geometry-based phase, a
list of rejected faces is created for faces that eventu-
ally fail in generating valid tetrahedra.

In the topology-based element generation phase,
any node close to the current base face is selected
and stored in a list of candidate nodes. The node
that forms the best solid angle with the base face
is chosen for the generation of the new tetrahedron.
If the faces of this tetrahedron do not intercept any
other face of the current advancing front, the
element is created and the boundary is accordingly
contracted. As in the geometry-based phase, the
topology-based phase ends either when the list of
active faces is empty or when a face of the advanc-
ing front is rejected twice due to intersection prob-
lems.
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2.2.3. Element Generation Based on Back-
tracking with Face Deletion
Sometimes the procedures performed in the previous
phases are not sufficient to generate a valid mesh.
Consider the polyhedra shown in the centre of Fig.
8. The only possible way of generating a solid
tetrahedral mesh inside this polyhedron is inserting
a new node in its center. Valid elements can then
be formed by connecting this node to the triangular
boundary faces. There are cases, however, in which
such a construction is not possible, as with the
polyhedron on the left-hand side of Fig. 8. This
polyhedron does not have a ‘kernel region’ in which
any point is visible through a straight line from all
its vertices [15]. In the present algorithm, the sol-
ution to this problem is to locally modify the
advancing front, deleting already generated adjacent
tetrahedra until a ‘near’ convex non-meshed poly-
hedron is formed. It is interesting to observe that
this problem has no counterpart in two dimensions.
It can be proven [16] that any non-self-intersecting
polygon can be triangulated with no need to insert
additional vertices.

Fig. 8. Transformation of a polyhedron into a convex one.

Fig. 10. Mesh for housing example.

The procedure used to transform an ill-shaped
polyhedron into one with a visible kernel is as
follows:

I The boundary of the ill-shaped polyhedron related
to a current base face is identified.

I A visibility test is performed. This consists of
computing the coordinates of the polyhedron cen-
troid, and counting the number of intersections
that would occur, for each of the polyhedron’s

Fig. 9. Two-dimensional back-tracking procedure to remesh around
a ‘bad’ element.
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faces, if lines were drawn from the centroid to
all of the polyhedron’s vertices.

I If there is at least one intersection for any of
the polyhedron’s faces, the polyhedron must be
modified. This is done by removing the element
attached to the face that has the highest number
of intersections. This process is repeated until the
centroid is visible from all nodes of the poly-
hedron.

Figure 8 illustrates the transformation of a poly-
hedron into a convex one after an ‘intersected’ face
is deleted. In this example, a line drawn from node
b to the centroid intersects faceacd. This results in
the removal of the element formed by nodesa, b,

Fig. 11. Mesh detail showing an embedded crack for housing example. (a) above: detail of the crack region; (b) left: mesh of the crack
region; (c) right: mesh of the crack region with the crack face mesh.

c and d. The resulting polyhedron is shown in the
centre of Fig. 8. This figure also shows the tetra-
hedral elements generated after the insertion of a
node at the centroid of the transformed polyhedron.

It is possible that the process of finding a ‘near’
convex polyhedron may fail if faces to be removed
are part of the original boundary mesh. When this
occurs, the elements attached to internal faces with
non-zero intersection counts are deleted and the
element extraction procedure is restarted. If this
polyhedron is still not meshable, the algorithm fails
and terminates. In principle, it is possible to create
a boundary input mesh that forces failure of the
algorithm. Such a failure, however, has not yet been
observed for ‘non-contrived’ input, i.e. for all the
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realistic input boundary meshes, such as the ones
shown in Sections 3 and 4, tested so far.

2.3. Local Mesh Improvement

In the last two phases of the advancing front tech-
nique, poorly shaped tetrahedral elements might be
generated. This section describes twoa posteriori
local mesh modification procedures implemented to
improve mesh quality. The first is a conventional
nodal relocation smoothing technique, which is
based on node coordinates averaging, with validity
checks. The second is a back-tracking procedure,
similar to the last phase of the advancing front
technique, that deletes faces of poorly shaped
elements to create a region where elements with
better shape can be generated.

The local mesh improvement procedures imply
that element shape quality measures are necessary.
This topic is well represented in the literature [17–
27]. The metric adopted in this work is a normalised
ratio between the root mean square of the lengths
of the edges of a tetrahedron, represented bySrms

5 !1
6O5
i50

S2
i , whereSi is the length of an edge, and

the volumeV of the tetrahedron [25]:

g 5 S3
rms/V (1)

This metric generates a good quality measure and
is computationally efficient. The range of valid
values varies from one to infinity ([1,̀ ]) and
the optimal value for the regular tetrahedron is
approximately 8.5.

2.3.1. Laplacian Smoothing with Validity
Checks
A smoothing technique is used to improve mesh
quality by relocating nodes within a patch. A general
formulation for this technique is given through Eq.
(2), which is a generic form of a weighted Laplacian
function [28]:

Xn11
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In Eq. (2), m is the number of nodes connected
to nodeO, XO is the position of nodeO at smoothing
iteration n, viO is the weighted function between
nodes i and O, and f is a relaxation parameter
which is normally set in the interval [0, 1]. In

theory, this generic smoothing technique provides
the relaxation of interior nodes of a volume mesh
and results in a mesh of better quality. In three-
dimensions, however, the technique will occasionally
result in invalid elements with negative volumes. It
has been suggested that reducing the value of the
relaxation coefficientf is a way decreasing the
chances that this problem will occur [27]. There are
cases, however, in which this alone does not
improve quality of the entire mesh. In this work, a
value of f 5 0.5 was adopted, and the smoothing
procedures is repeated five times. At each smoothing
step, after computing the new position of each
internal node, a consistency test is performed. This
test verifies whether any adjacent element will have
a negative volume considering the new node pos-
ition, in which case the relocation of this node is
not performed in the current step.

2.3.2. Quality Evaluation and Local Back-
tracking with Element Deletion
Laplacian smoothing is not sufficient to improve
mesh quality. In this work, a back-tracking pro-
cedure is adopted to further improve the quality of
a generated volume mesh. This approach can also
be used for any mesh; it is not specific to the
current meshing algorithm.

The back-tracking procedure consists of deleting
an element that is classified as a poorly shaped
element and a group of elements in its vicinity. The
classification of ‘bad’ tetrahedra is based on a speci-
fied measure, which in this work is theg metric,

Fig. 12. Mesh for gear example.



85An Algorithm for 3D Mesh Generation

Eq. (1). For each element of the generated mesh,
the quality measureg is evaluated. If the value of
this metric is outside a pre-defined range, the
element is classified as a poorly shaped element.
The lower and upper bounds of this range are
defined empirically, based on experiments and obser-
vations. In this work, the lower bound value is 5.0
and the upper bound is the ‘optimal’ metric value
of 8.5 multiplied by a factor of 30.

The objective of the back-tracking procedure is
to delete element faces surrounding a ‘bad’ element
to create a local polyhedron that can be remeshed
with better shaped elements. A local polyhedron to
be meshed is created by deleting all elements adjac-

Fig. 13. Mesh detail showing an embedded crack for gear example. (a) above: detail of the crack region; (b) left: mesh of the crack
region; (c) right: mesh of the crack region with the crack face mesh.

ent to the ‘bad’ element. This is illustrated by
means of Fig. 9, which shows a two-dimensional
analogous case.

After the creation of the local polyhedron, an
attempt is made to generate elements by inserting a
new internal node in the polyhedron’s centroid, as
shown in Fig. 9. If this does not work, the back-
tracking procedure described before is employed.

It has been observed that better results are
obtained if back-tracking/regeneration is interleaved
with smoothing. In the current implementation these
are repeated five times.
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3. Mesh Quality

In this section, a study of the quality of the meshes
generated by the proposed algorithm is presented.
A a metric is used, which is defined by 3Ri/Rc,
where Ri and Rc are the radii of the inscribed and
circumscribed spheres, respectively. This metric is
equal to 1.0 for an optimal element, and sliver
elements have values lower than 0.1. Thea metric,
instead of the metricg described in the previous
section, and used within the algorithm, was adopted
in the present study because its interpretation is
more intuitive, and it is more widely referenced in
the literature.

In this study, three models are considered: a
portion of a housing, a portion of a spiral-bevel
gear, and a portion of a turbofan hub (Figs 10–15).
All three examples contain small surface cracks.

Histograms of the number of the elements gener-
ated in various ranges ofa are shown in Figs 16–
18. These figures show the distributions both before
(left bar) and after (right bar) the application of the
quality improvement procedures (back-tracking and
smoothing). Table 1 presents some statistics related
to a for the three examples.

It can be seen that the majority of the elements
are all located in the range [0.7, 0.8], which rep-
resents well-shaped elements, even before the appli-
cation of the quality improvement procedures. How-

Fig. 14. Mesh for turbofan example.

ever, there are a significant number of elements
(1.76–3.77%) witha values lower than 0.1, which
represent undesirable elements. After the application
of the quality improvement procedures, the number
of poorly-shaped elements drops significantly (0.49–
0.90%). It is important to mention that most of these
poorly-shaped elements are located in the interior of
the model, away from the crack front or stress
concentration regions, where better elements are
desirable. This happens because as the algorithm
advances from the boundary, it is very likely that
the better elements will be generated near it, where
the geometry-based phase can be employed.

4. Mesh Generation Performance

A formal analysis of the computational complexity
of the proposed algorithm would be very difficult,
especially considering input data specific steps such
as back-tracking. Nevertheless, a realistic estimate
of the expected performance of the algorithm is
very important for its practical use. In this section
an informal empirical study of the algorithm per-
formance is presented.

A computational complexity ofO(NlogN) has
been reported in the literature for advancing front
techniques, N being the number of generated
elements [7,29]. It has also been reported that a
performance ofO(NplogN), with p slightly larger
than one, is a more realistic measure [8,9]. This
computational complexity is used here.

For the present study, six discretisations for two
geometries were considered. The first example is a
torus, where the first and the final meshes are shown
in Fig. 19. A similar problem was also analysed by
other work [8], and aCNplogN performance was
reported. The second example is a cube with an
inclined interior cylindrical void. The first and final
meshes are also shown in Fig. 21. Performance was
measured as the wallclock time for the program
running on an IBM 43P workstation, Model 260.

A least square fit of the measured times to the
equation time 5 CNplogN was performed for the
two geometries. The resulting fitting parameters are
C 5 0.0000629 andp 5 1.21 for the torus, andC
5 0.000269 andp 5 1.25 for the cube. These are
plotted in Figs 20 and 22.

It can be seen from the plots of Figs 20 and
22 that, in both cases, these equations model the
performance of the algorithm well over the range
of mesh sizes studied. However, the parameters
computed for the two models differ greatly,
especially for the values ofC. The rate of generation
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Fig. 15. Mesh detail showing an embedded crack for turbofan example. (a) above: detail of the crack region; (b) left: mesh of the crack
region; (c) right: mesh of the crack region with the crack face mesh.

Fig. 16. Histogram of element quality for housing example. Fig. 17. Histogram of element quality for gear example.
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Fig. 18. Histogram of element quality for turbofan example.

for the torus is on the order of 150–200 tetrahedra
per second, which is acceptable, while the rate of
the cube is on the order of 20–80 tetrahedra per
second, which is a relatively ‘low rate’. This high-
lights the influence of the input data in the perform-
ance of the algorithm. As expected, longer runtimes
are required for more complex input geometries.
Nevertheless, this ‘low’ rate indicates that it would
be very useful to use some auxiliary data structure
for search operations, such as trees, to optimise the
element generation for some models.

5. Conclusions

An algorithm for generating unstructured tetrahedral
meshes for arbitrarily shaped three-dimensional
regions was described. The algorithm incorporates
aspects of well known meshing procedures, and
includes some original steps. The algorithm works
for regions without cracks as well as for regions
with one or multiple cracks. The algorithm was
designed to meet four specific requirements:

I It should avoid producing elements with poor
aspect ratios.

Table 1. Statistical values related to the quality for all examples

Example Histogram #Elements aavg amin amax

Housing Before 16463 0.675 0.025 0.729
Housing After 17043 0.696 0.023 0.740
Gear Before 17386 0.684 0.025 0.738
Gear After 16990 0.699 0.033 0.742
Turbofan Before 9628 0.668 0.018 0.733
Turbofan After 10046 0.692 0.022 0.741

I It can generate meshes which conform to existing
triangular meshes on the boundary of a domain.

I It generates meshes which exhibit good transitions
between regions of different element sizes.

I It works properly for cases where distinct bound-
ary nodes are geometrically coincident (e.g. nodes
on opposite faces of a crack).

The input to the algorithm is a triangular surface
mesh, which describes the domain to be meshed.
The steps in the algorithm are as follows:

I An octree is generated to control the distribution
of node points generated in the interior.

I A two-pass advancing front procedure is used to
generate elements. On the first pass, elements are
generated based on geometrical criteria, which
produce well shaped elements. On the second
pass, elements are generated based only on the
criterion that they have valid topology.

I If the advancing front procedure cannot proceed,
a back-tracking strategy is employed where some
elements are deleted, and the advancing front
is restarted.

I Once a valid mesh is generated, the quality of
the element shapes is improved by the use of
standard Laplacian smoothing, and by locally
deleting poorly shaped elements and those adjac-
ent to them, and then restarting the boundary con-
traction.

A number of realistic examples were presented
to demonstrate the distribution in the quality of the
generated elements. It was shown that only a small
percentage (0.49–0.90%) of the total generated
elements are poorly shaped. These poorly shaped
elements are usually located in the interior of the
model, away from the crack front and stress concen-
tration regions where better elements are desired.

Two examples were presented to determine em-
pirical measures of the algorithm performance. It
was shown that the algorithm has the expected
performance for practical applications, although
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Fig. 19. Initial and final discretisations of a torus.

auxiliary search structures, such as trees, could be
used in order to improve the algorithm’s perform-
ance.

Fig. 20. Generation times for the torus.

Fig. 21. Initial and final discretisations of a cube with a
cylindrical void.



90 J.B. Cavalcante Netoet al.

Fig. 22. Generation times for the cube with a cylindrical void.
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