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Abstract 
This paper describes an algorithm for transport of sediments in a 3D numerical simula-

tion of depositional processes in platform, slope, and basin environments.  The algorithm is 
based on quantitative concepts of Sequence Stratigraphy, as primary control mechanisms 
of the sedimentary strata architecture, and on a 2D, steady-state, Navier-Stokes flow.  The 
objective of this simplified analysis, which is performed in each step of the sedimentation 
simulation, is to obtain a velocity field distribution within the simulation area, which is 
represented by a regular grid.  The velocity field is calculated from boundary conditions 
along the cross-shore (sediment aport velocity) and long-shore directions (field stream 
velocity), and from the bathymetry of the region.  The velocity field is used to calculate, by 
means of a Runge-Kutta interpolation method, stream-lines that determine the direction of 
sediment transport. 

 
 

1 INTRODUCTION 

Sedimentary Geology deals with the 
physical, chemical and biological proc-
esses that affect the formation of sedi-
mentary rocks.  One of its main focuses 
lies in the determination of parameters 
and processes that control the in-fill of 
sedimentary basins.  For this, the devel-
opment of a geologic model is necessary 
(Popp, 1998). 

A geologic model may be classified ac-
cording to the parameters and processes 
that are considered in its representation 
(Figure 1): 
•  Conceptual model: theoretical, based 

on premises and qualitative descrip-
tions; 

•  Interpretative model: based on the 
correlation of data and space associa-
tion; 

•  Physical model: based on an experi-
mental or physical simulation; 

•  Mathematical model: based on 
mathematical/numerical algorithms. 

In simple cases, the use and formula-
tion of an interpretative or conceptual 
model might be sufficient.  However, for 
situations that require synchronous or 
quantitative answers, the benefits of nu-
merical modeling in general justify its use 
in spite of its intrinsic complexity.  

Numerical geologic modeling adopts 
two distinct approaches (Figure 2).  In the 
first, called forward modeling, the simula-



tion of the evolution of a sedimentary 
basin is performed from the past to the 
present days.  The initial conditions are 
defined by a group of parameters and 
specified processes.  The objective of the 
simulation is to obtain a final sedimentary 
architecture, which is then compared to 
the interpretative model. 
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Figure 1 – Types of geologic models and 
involved processes.  Adapted from Fac-

cion (2002). 
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Figure 2 – Classification of the Programs 
of Numeric Simulation in Geology with 
relationship to the sense of Modeling.  

Adapted from Faccion (2002). 
 

In the second approach, called back-
ward modeling, the objective is to find 
the parameters and processes that deter-
mine the current sedimentary architecture, 

which is based on data interpretation.  In 
the latter case, the processes and parame-
ters are obtained using, for example, 
backstripping or restoration techniques 
(Tearpock & Bischke, 1991; Ferraz, 
1993, Santi, 2002). 

The simulation performed in this work 
is in the direct modeling group.  The 
simulation is based on quantitative con-
cepts of Sequence Stratigraphy, as pri-
mary control mechanisms of the sedimen-
tary strata architecture, and on a fluid 
flow numerical analysis for sediment 
transport. 

Figure 3 shows the main stages of the 
algorithm developed in present simulation 
for transport and deposition of siliciclas-
tic sediments.  The focus of this paper is 
the algorithm of sediment transport in the 
formation of sedimentary basins.  As a 
goal, this algorithm should consider the 
following aspects: 
•  Varying aport of sediment supply 

along the shore line; 
•  Influence of sea bottom bathymetry 

(platform slope, canyons, etc.) in 
sediment transport; 

•  Cross-shore currents. 
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Figure 3 – Main stages of present sedi-

mentation simulation. 
 



1.1 Geologic processes used in the 
simulation 

According to Vail (1987), the main 
processes that control the patterns of 
strata and distributions of lithologies fa-
cies in sedimentary basins are (Figure 4): 
tectonic subsidence, variation of the sea 
level (eustatic curve), and sediment sup-
ply. 

The accommodation, that is, the avail-
able space for potential accumulation of 
sediments in the basin, is function of the 
eustatic variation and subsidence (Fig. 5). 

 
Figure 4 – Geologic processes responsi-
ble for the formation of sedimentary ba-

sins. 
 

Available space for accomodation

Sea Level

Su
bs

id
en

ce
E

us
ta

tic
C

ur
ve

A
va

ila
bl

e
sp

ac
e

fo
r

A
C

C
O

M
O

D
A

T
IO

N

(-)

(-)

(+)

(+)

embasament
Sediment

Adapted from Posamentier et al. 1998.

Available space for accomodation

Sea Level

Su
bs

id
en

ce
E

us
ta

tic
C

ur
ve

A
va

ila
bl

e
sp

ac
e

fo
r

A
C

C
O

M
O

D
A

T
IO

N

(-)

(-)

(+)

(+)

embasament
Sediment

Adapted from Posamentier et al. 1998.

 
Figure 5 – Available space generated by 
the relation between sea level variation 

and subsidence.  Adapted from Posamen-
tier et al. (1998). 

 
With the parameters and geologic proc-

esses defined, the next stage in the simu-

lation is to determine the velocity field 
that will be used to transport the sedi-
ments.  This is described in the next sec-
tions. 

 

2 FORMULATION 

This work adopts a hydrodynamic ap-
proach for sediment transport that simpli-
fies the actual fluid flow in the real phe-
nomenon.  Rather, a net distribution of 
velocities is considered in each time step 
of the sedimentation simulation. 

The derivation of the fluid flow equa-
tions, in the context of this work, consid-
ers an elementary area inside the mass of 
a fluid in movement, with forces acting at 
opposite faces, as shown in Figure 6. 
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Figure 6 – Elementary area for the deriva-

tion of fluid flow equations. 
 
In a general case, the governing fluid 

flow equations (Navier-Stokes) are de-
fined according to the following types of 
physics assumptions: 
•  Conservation of mass (continuity 

equation); 
•  Newton's second law (momentum 

conservation); 
•  Energy conservation. 

In the present simplified approach, a 
2D fluid flow analysis is considered, as-
suming that the transport of sediments 
will just be made in the directions x and y 
(cross-shore and long-shore directions, 
respectively).  That is, it is assumed that 
the velocity field at each point does not 
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vary along the vertical z direction.  Since 
temperature variation in not considered in 
this simplified analysis, energy conserva-
tion equations are not used in the formu-
lation of the problem.  An incompressible 
and non-viscous fluid flow is admitted. 

With the simplifications described 
above and using the elementary area of 
Figure 6, conservation of mass results in 
the following continuity equation, where 
d is the water depth, and u and v are the 
components of the velocity vector in the 
directions x and y, respectively. 
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Newton's second law results in the fol-

lowing momentum conservation equa-
tions in directions x and y, respectively, 
where xθsin  and yθsin  are the inclinations 
of the sea bottom in each direction: 
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2.1 Fluid flow analysis 
Combining eqs. (1), (2), and (3) results 

in eq., (4), which is a Poisson type differ-
ential equation written in Cartesian coor-
dinates (Fortuna, 2000; Carvalho, 2003): 
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In eq. (4), ( )yxf ,  is the sea bottom 

bathymetry and φ  is the flow velocity 
potential: 
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Eq. (4) is discretized using the Finite 
Difference Method, in which differential 
terms are substituted by difference terms 
as follows: 
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Similarly, the finite difference versions 
of eqs. (5) and (6) may be written as: 
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In this finite difference approach, gra-

dients are computed using the nodal 
grouping shown in Figure 7. 
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Figure 7 – Nodal grouping used in the 

finite difference discretization. 
 

The solution to this type of Boundary 
Value Problem (BVP) is obtained speci-
fying conditions of the dependent variable 
at the border Rδ  of the simulation area R. 

It is important to observe that, in this 
work, the boundary conditions are not 
defined in terms of velocity potential.  
Rather they are defined in the form of a 
velocity vector at each boundary cell of 
the discretized area. 

The formulation of the discrete eq. (7) 
for each cell of the grid, also considering 



boundary conditions, results in a system 
of equations, whose coefficients form a 
symmetric pentadiagonal matrix.  It has 
five bands, and contains a band of zeros 
between the two off-diagonal non-zero 
bands on either side. 

The solution of this equation system 
may be obtained by iterative or direct 
methods.  In direct methods, the zero 
bands must be included in the calcula-
tions and they will fill with non-zero 
numbers during the matrix decomposi-
tion.  With large matrices, this procedure 
may become costly.  Iterative methods, 
on the other hand, may be programmed to 
skip the zero terms.  Details on those 
methods can be seen in Fortuna (2000). 

In the present work, the system of 
equations is solved using a Gauss-Seidel 
iterative method, resulting in the velocity 
potential in all the cells of the grid.  Using 
relationships (8) and (9), the components 
of the velocity vector are computed in 
each cell. 

Figure 8 and 9 show an example of the 
implemented strategy.  This example con-
sists of a region with a varying bathym-
etry, with an imposed parallel boundary 
velocity field (Figure 8).  Figure 9 shows 
the velocity field obtained by the steady-
state fluid flow analysis. 
 

 
Figure 8 – Bathymetry contours and par-

allel boundary velocity field. 
 

 
Figure 9 – Computed velocity field of 

example of Figure 8. 

2.2 Streamline computation 
In the present sedimentation simulation 

strategy (Figure 3), after computing the 
velocity field, it is necessary to evaluate 
the trajectories inside the grid through 
which the sediments will be transported.  
In the visualization and analysis of fluid 
flow, it is common to evaluate those tra-
jectories as streamlines (Martinez, 1995).  
Streamlines are, in an instant of time,  
tangent at all points to the velocities.  
Each streamline has the same velocity 
potential. 

The determination of streamlines in the 
present simulation consists of solving an 
Initial Value Problem (IVP), in which the 
initial value of each streamline is a point 
(x, y) at the shore border of the simulation 
area, as shown the Figure 10.  This initial 
point (x, y) is associated to a velocity vec-
tor that corresponds to the input boundary 
cross-shore velocity used in the flow 
analysis. 
 

streamlineStreamline beginstreamlineStreamline begin

 
Figure 10 – Streamline starting at a point 

at the shore border. 
 



Several numerical methods exist to de-
termine streamline trajectories (Boyce, 
1992).  This work uses a Runge-Kutta 
interpolation method of the fourth order 
proposed by Royer (2001).  This method 
combines accuracy, simplicity and is easy 
to implement.  The errors are of O(h5), 
where h is the step size. 

In this work, the IVP streamline prob-
lem may be formulated as: given a known 
streamline point (xn,yn), the objective is to 
calculate the position (xn+1,yn+1) of the 
next point.  This results in the following 
expressions: 
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),(),(1 yxuyxk =  is the value of component 
x of the velocity vector; 

),(),(1 yxvyxm =  is the value of component 
y of the velocity vector, 
 

The other factors are: 
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The values ),( yxu  and ),( yxv  are calcu-

late using a bilinear interpolation.  Con-
sidering a cell of the grid that has a scalar 

property α defined at each vertex, the 
bilinear interpolation of this property at 
any location inside of the cell is defined 
as a combination of four bilinear coeffi-
cients according to the expression: 
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where ][ib  are the bilinear coefficients of 
the vertices of a cell.  For a pair of para-
metric coordinates (ξ,η) (Figure 11) of 
the evaluation point, the values of the 
bilinear coefficients are: 
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Figure 11 – Parametric coordinates of the 
vertices of a cell used for the bilinear in-

terpolation. 
 

Figure 12 shows streamlines that were 
computed by the method described in this 
section for the example shown in Figures 
8 and 9. 

 
Figure 12 – Streamlines of the example of 

Figures 8 and 9. 



 

2.3 Sediment deposition 
The next step in the present sedimenta-

tion simulation (Figure 3) is the transport 
and deposition of sediments.  In the 
transport and deposition of sediments 
along the streamlines, it was considered 
that each streamline receives a volume 
fraction of the total discharge of sedi-
ments.  That fraction is divided according 
to three grain sizes: sand, silt and clay. 
With the volumes of each of them defined 
for each streamline, the transport / deposi-
tion process can be initiated. 

During this process, particles travel 
along the streamlines, starting from the 
shore border where the sediment is sup-
plied.  Each streamline is defined by a set 
of points.  At each point, there is an at-
tempt to deposit each lithologic fraction 
coming along the streamline.  Deposition 
depends not only on available space but 
also on the bottom bathymetry gradient.  
To take this into account, it is admitted 
that the streamline also follows the bot-
tom bathymetry gradient.  This gradient is 
compared to a stability angle for deposi-
tion of each lithologic fraction (sand, silt 
and clay) (Carvalho, 2002). 
 

3 EXAMPLES 

Figures 13, 14, and 15 show three 
models with streamlines computed by the 
method described in the previous section.  
One may observe that the streamlines 
follow the low bathymetry of the simula-
tion area.  In the figures, the map of col-
ors indicates the bathymetry: hot (dark) 
colors show high bathymetry values and 
cold (light) colors show low bathymetry 
values. 
 

 
Figure 13 – Example A: bathymetric con-

tour and a streamline of a model with 
dimensions 100km x 300 km. 

 

 
Figure 14 – Example B: bathymetric con-
tour and a set of streamlines of a model 

with dimensions 100km x 300 km. 
 

 
Figure 15 – Example C: bathymetric con-
tour and a set of streamlines of a model 

with dimensions 100km x 300 km. 
 

Figure 16 shows an example of the 
sedimentation process in an area of 100 
km along the coast line and 250 km bas-
inwards.  The bathymetry of this area was 
modified to simulate platform, slope and 
deep basin environments and to empha-
size some canyons at the border the plat-
form, one of them related to the occur-
rence of a river represented by a high 
value of sediment supply at the shore 
border.  Contourite currents at the base of 
continental slope and the occurrence of 



salt domes are also simulated in this ex-
ample.  Time span of simulation was of 
25 million years.  The simulation was 
divided into 8 steps. Figure 17 shows the 
streamlines in the first step.  Figures 18, 
19, 20, and 21 show the deposition of 
sediment at the end of some steps of the 
simulation. 
 

 
Figure 16 – Example D: bathymetric and 

characteristic of the model. 
 

 
Figure 17 – Streamlines of the first step 

of simulation. 
 

 
Figure 18 – Deposition at the end of first 

step. 

 
Figure 19 – Deposition at the end of sec-

ond step. 
 

 
Figure 20 – Deposition at the end of third 

step. 
 

 
Figure 21 – Deposition at the end of 

simulation. 
 

4 CONCLUSIONS 

This paper describes an algorithm for 
the transport of sediments in a simulation 
of formation of sedimentary basins.  The 
algorithm considerers a net steady-state 
Navier-Stokes fluid flow in each step of 
simulation.  In addition, it assumes a two-
dimensional fluid flow in which the ve-
locity is constant along the water depth. 



The idea of this simulation is not to re-
produce the actual physical phenomenon.  
Instead, the adopted approach tries to 
incorporate in the simulation the main 
global parameters that govern the sedi-
mentation problem in the stratigraphic 
scale: sediment aport, subsidence and sea 
level variation.  The simplified fluid flow 
analysis for sediment transport is consis-
tent with the type and time scale of the 
simulation. 

Boundary conditions consist of long-
shore and cross-shore transport velocities.  
Sediment transport is performed with the 
aid of streamlines that are generated in 
each step of the simulation.  It was ob-
served that the streamlines accompany the 
flow according to imposed boundary 
conditions and to the bathymetry of the 
sea bottom. 

Therefore, the present algorithm was 
successful in considering non-uniform 
sediment supply along the shore line, the 
influence of sea bottom bathymetry in 
sediment transport, and cross-shore cur-
rents. 
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