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This paper is concerned with the analysis of framed structures with inextensible and rigid members, i.e.
members without axial and bending strains. Rigid and inextensible members may be useful in educa-
tional software because they capture the essence of the structural behavior with a reduced the number of
variables. In addition, they allow a comparison with results obtained by hand calculation using classical
structural analysis methods. There are three main approaches to constraint handling: transformation,
penalty function and Lagrange multiplier methods [1,2,3]. The transformation methods, also known as
master-slave elimination, use each constraint to eliminate one equilibrium equation, reducing the num-
ber of degrees of freedom. However, this approach does not allow the determination of axial forces in
inextensible member or bending moments in rigid members. The implementation of the penalty func-
tion method is trivial, since physically it corresponds to assign a very large number to the axial stiffness
(EA) of inextensible members and a very large number to the bending stiffness (EI) of rigid members.
However, as the penalty factor increases, the stiffness matrix becomes increasingly ill-conditioned, lead-
ing to large solutions errors. This paper presents a methodology for considering structural member
deformation constraints using Lagrange multipliers. It consists of adding strain constraints into the total
potential energy minimization, leading to a quadratic programming problem. In addition, this approach
is very suitable for computational implementation because it does not affect the generic characteristic of
a matrix structural analysis. The solution gives rise to one Lagrange multiplier per constraint, which is
essential for computing member internal forces. However, there are situations in which inextensible and
rigid member constrains may be redundant, which prevents the determination of dependent Lagrange
multipliers. In these cases, it is not possible to determine internal forces in the members with redundant
constraints. Although not implemented, a special treatment is indicated for determining member internal
forces in these situations.
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