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Abstract. In a solid modeler, one of the most powerful tools to create three-dimensional 
objects with any level of geometric complexity is the application of Boolean set operations. 
They constitute intuitive and popular ways of combining solids, based on operations applied 
to sets. The main types of Boolean operations commonly applied to solids are: union, 
intersection and difference. In order to assure that the resulting objects have the same 
dimension as the original objects, without loose or dangling parts, a regularization process is 
usually applied after a Boolean operation. To regularize means to restrict the result in a way 
that only filling volumes are allowed. In practice, regularization is performed by classifying 
the topological elements and removing internal or lower dimensional structures. However, in 
many engineering applications, the adopted geometric model may contain idealized internal 
parts, as in the case of multi-region models, or lower dimensional parts, as in the case of 
solids that contain dangling slabs, which are represented as zero-thickness surfaces in the 
model. The objective of this work is the development of a generic algorithm that allows the 
application of Boolean set operations in a geometric modeling environment applied to finite 
element mesh generation. This environment adopts a non-manifold B-Rep representation that 
considers an undefined number of topological entities (group concept), works with objects of 
different dimensions, and works with objects not necessarily plane or polyhedral (parametric 
curved surfaces). The present paper discusses the implementation of this algorithm in a pre-
existing geometric modeler named MG, using the concept of object oriented programming 
and keeping the user interface simple and efficient. 
 
Keywords: Geometric Modeling, Non-manifold Solids, Boolean Operations, Boundary 
Representation, Mesh Generation 



1. INTRODUCTION 
 
 In geometric modeling for finite element analysis, the mesh is generated based on the 
geometric description of the model’s domain. Therefore, the creation of a geometric model 
that is able to reproduce real engineering objects that need to be studied is a crucial step 
within the set of procedures that have to be done in order to perform a complete analysis using 
the finite element method (FEM). 
 There are several approaches used by different modelers that deal with geometric 
modeling to make sure that a large number of models based on real objects can be generated. 
CSG-based systems use rigid motion transformations and Boolean operations directly to 
combine basic primitives creating more complex solids. These systems do not save explicit 
information related to the solids’ boundaries, but rather work with the concept of set of points 
in Euclidian space. Systems based on the B-Rep type of solid representation save explicit 
information about the boundaries of solids and the adjacency relationships between the 
topological entities of various dimensions that constitute these boundaries (e.g. vertices, edges 
and faces) (Hoffmann, 1989). 
 Using Boolean set operations (union, intersection and difference) to combine solids 
represented by boundaries (B-Rep) is not a trivial task, especially when dealing with curved 
primitives. The most common problems are related to accuracy, robustness and efficiency. 
 Numerical inaccuracies are a major problem in any system that has to manage 
simultaneously geometric and topological information. Since these systems must use floating-
point numbers to save coordinates of points, parametric or implicit equations of curves and 
surfaces, and to perform translations, rotations and other kinds of transformations applied to 
primitives, they are prone to errors due to the lack of precision in some operations. These 
errors, unfortunately, might lead to serious problems like crashes and impossible output 
information. Many solutions have already been proposed to deal with this problem, based on 
diverse concepts such as the use of model-based or machine tolerances (Shewchuk, 1997), 
interval arithmetic and the exact computation paradigm (Keyser et al, 2000). Until today, 
however, no system was completely able to solve all kinds of problems related to numerical 
inaccuracies in environments where curved primitives are allowed. 
 Robustness is a more relative concept, since it depends on the domain established for the 
problem in focus. The more restrictions are imposed on the operations used to create objects 
one wants to model, the more robust the modeler turns out to be. Creating a robust modeler 
without imposing restrictions on input and output objects and on the operations the user can 
perform with these objects is a very difficult task, and still remains a challenge to the 
developers of geometric modeling systems. 
 Efficiency might not seem to be a major problem when simple models are being 
constructed. But for complex models it can be a determinant factor for choosing between one 
or another geometric modeler and between one or another kind of solid representation. 
Modelers that are meant to deal with complex models containing non-linear primitives and a 
large number of objects must be implemented using optimized algorithms, which may take a 
reasonable amount of time to perform the necessary operations to generate the complete 
model. 
 There is still another problem when Boolean operations are applied to solids in a 2-
manifold environment: they do not form a closed set of operations. This means that even 
when the input data is composed by 2-manifold solids, it is not guaranteed that the result of 
the application of a Boolean operation over theses solids will be a valid solid representable in 
the same domain as the original solids. And even when it is, some intermediate stages may 
not be so. Depending on the way the modeler deals with these intermediate data, it might 
cause the system to abort the whole operation. Non-manifold representations are one way to 



deal with this kind of problem. A modeler with a non-manifold environment allows the 
Boolean operations to form a closed set of operations (Weiler, 1986). In this kind of 
representation, solids with multiple regions (internal interfaces) and degenerate portions 
(shells, wires) are representable in a consistent way. Nevertheless, the implementation of a 
system that provides a non-manifold environment is a very complex task. 
 The focus of the work here described is the development of an algorithm to perform 
Boolean operations in non-manifold environments containing curved primitives of any type 
and dimension. The main idea was to adapt the basic concepts of other previously 
implemented and tested algorithms in order to make them as general as possible. By making 
them general we mean making them applicable to any kinds of objects with any shape or 
dimension, including dangling and loose parts. 
 Doing this was not a trivial task. We would like to stress that the algorithm proposed in 
the present paper has no intention to be the only possible way to deal with the combination of 
non-manifold solids through the application of Boolean operations. It is one possible way to 
manage the problem, which we believe to be very satisfactory for many engineering purposes 
(Arruda, 2005). Gardan & Perrin (1995) proposed an interesting method for reducing 3D 
Boolean operations to a 2D problem in manifold environments. 
 Common algorithms for Boolean operations in 3D would only consider volumes as 
possible input and output data. Our algorithm works normally with entities of different 
dimensions, since it treats separately each kind of topological entity. Cases where this kind of 
situation occur may be of interest when one wants to deal with parts of a model where one of 
the dimensions can be considered irrelevant in relation to the rest of the model (e.g. flat 
objects in which the thickness is too small compared to their length or width). They may also 
be of interest when we do not want to discard internal parts of solids, dangling or loose. These 
parts might represent restrictions to the domain (e.g. when a finite element mesh will be 
generated for the solid) or layers of a different kind of material, with physical or chemical 
properties different from the rest of the solid. Another example in the geological field is a set 
of faults that cross one or more horizons of soil layers. These faults are usually represented by 
planes, which penetrate the solids representing the soil layers. Some faults might not cross an 
entire horizon, becoming a dangling face in the interior of the solid representing the solid 
layer. 
 During the implementation of this algorithm in an existing geometric modeler, MG, we 
tried to keep in mind the three main problem sources described above, which can easily 
appear while performing any task that involves dealing with arbitrary geometry of solids and 
topological information concerning the boundaries of these solids.  
 Although the algorithm itself does not contain any specific procedure to treat inaccuracy 
problems, the use of appropriate model-based tolerances was crucial to make sure that in 
every stage of the algorithm there was consistency between the geometrical and the 
topological data.  
 Robustness was perhaps the most pursued objective. Since we wanted the algorithm to be 
as general as possible, without imposing restrictions on input or output data, we had to 
consider every particular case that could happen due to unusual or unlikely data (e.g. solids 
touching in a single vertex, faces belonging to the boundaries of three or more solids, face 
overlapping, internal structures such as dangling or loose faces and multiple internal shells). 
 Efficiency was also a main concern during this implementation. We wondered how it 
would be possible to create and implement such a general algorithm without the need for 
routines that could increase the total amount of time spent to solve the problem. As it will be 
possible to verify when the algorithm is presented, the main routine is extremely simple, 
consisting of three main sub-routines that divide the resolution of the problem into basic 
steps. However, the algorithm can only be applied after some initial conditions are satisfied. 



We emphasize that these conditions are not restrictions to the input data. They are only meant 
to make sure that the topological information that will be passed to the algorithm is consistent 
with the kind of treatment that will be given to it. Unfortunately, in some cases, the 
application of these initial conditions can be the most time-demanding task of the entire 
procedure. That is because these initial conditions include the intersections between all 
surface patches present in the model (which can have a very complex geometric description) 
and multiple-region detection. 
 In Section 2, we describe the main concepts used in this work and in previous work 
related to geometric modeling in non-manifold environments, and the application of Boolean 
set operations on B-Rep solids. In Section 3, we present the algorithm for applying Boolean 
set operations on B-Rep non-manifold solids, describing the initial conditions of applicability 
of the algorithm and the basic procedures to be done according to the desired operation. In 
Section 4, we show some examples of the application of the algorithm over objects modeled 
in MG and we discuss some limitations of the modeler. Finally, in Section 5 we present the 
conclusions with a summary of the main difficulties found during the implementation of the 
algorithm. 
 
2. MAIN CONCEPTS AND PREVIOUS WORK 
 
 Geometric modeling, as described by Weiler (1986), involves the creation, manipulation, 
maintenance and analysis of the representations of geometric shapes of two- and three-
dimensional objects. It has application in many different areas, such as film production, 
design of mechanical parts for industry, scientific visualization, etc. The present work focuses 
on the reproduction of objects for engineering purposes. 
 Although during the evolution of modeling systems geometric modeling was the most 
recent kind of approach used as a base for their construction, there are today several works 
related to this approach, such as those by Weiler (1988), Rossignac & O’Connor (1990), 
Rossignac & Requicha (1991), Cavalcanti, Carvalho & Martha (1997), and Lira (2002). 
 B-Rep is a kind of representation totally based on the concept of topology. It focuses on 
the existence and inter-relationship among topological elements, such as vertices, edges, 
faces, loops, shells and solids. Detailed description of B-Rep-based systems can be found in 
Mäntylä (1988). 
 Non-manifold is a term used in geometric modeling referring to situations that are not 2-
manifold (Weiler, 1986). In a non-manifold environment, a cone touching a surface in only 
one point, more than two faces meeting at a common edge and a wire emanating from a single 
point of a surface are possible topological situations. Cavalcanti (1992) defines a non-
manifold solid as the immersion of several manifold solids in ℜ3, allowing them to intersect 
one another but restricting the intersections to the dimensions 0 or 1. The objects are 
topological varieties, but their immersion in ℜ3 allows the geometric coincidence of distinct 
topological structures. 
 Systems that provide non-manifold environments are difficult and complex to implement, 
and there is not a large number of them available. The potential of non-manifold modeling has 
not yet been totally explored, and the amount of systems being developed based on this kind 
of representation has been increasing. 
 Boolean set operations are common set operations used to combine solids in order to 
create more complex objects. The main Boolean operations and their common definitions are: 

• Union: the resulting solid occupies the space previously occupied by all the original 
solids. 

• Intersection: the resulting solid occupies the space previously occupied 
simultaneously by all the original solids. 



• Difference: the resulting solid occupies the space previously occupied by one of the 
original solids that the other solids did not occupy. 

 Examples of these operations applied to two solids can be seen in Fig. 1. 
  

 
(a) 

 

 
(b) (c) (d) (e) 

 
Figure 1- Examples of Boolean operations applied to a box and a cylinder: a) original solids; 

b) union; c) intersection; d) difference between box and cylinder; e) difference between 
cylinder and box. 

 
 Obviously, these definitions must be extended in order to provide the necessary 
generality we desire to our algorithm. The extended definitions will be presented in a later 
section. 
 There are many works about Boolean set operations, in CSG-based systems as well as in 
B-Rep-based systems. Interesting reading concerning this matter can be found in works by 
Gandan & Perrin (1995), Sun & Hu (2001) and Requicha & Voelcker (1984). Keiser et al 
(2004) present the combination of curved primitives through the application of Boolean 
operations using the concept of boundary evaluation and exact arithmetic, and show some 
very expressive results. 
 
3. THE ALGORITHM FOR BOOLEAN OPERATIONS 
 
 This section presents the proposed algorithm for Boolean operations on non-manifold and 
B-Rep solids (in fact, the algorithm works for primitives of any dimension, not only for 
solids). As previously commented, this algorithm consists in three main stages. The first stage 
is the classification of the topological entities; the second stage is the application of the 
desired Boolean operation over these entities, based on the classification previously made for 
each entity; and the third stage consists in regularizing the result, if requested by the user. 
 The advantage of using a non-manifold domain to apply the Boolean operations lies in 
turning them into a closed set of operations. This means that the application of these 
operations over entities representable in a pre-established domain generates results also 
representable in that same domain. Therefore it is not necessary to impose restrictions or to 
use approximations to guarantee the validity of the result. 



 Even the regularization process, which consists in eliminating from the result of a 
Boolean operation all the entities of lower dimensions that remained loose or dangling, may 
not be sufficient to assure the representation of the result in a manifold modeling 
environment. 
 There are two important issues to be considered before the presentation of the algorithm 
itself. The first one is regarding the concept of boundary that will be used in this work. We 
consider the boundary of a topological entity all topological entities hierarchically inferior to 
it (entities of lower dimensions) that define its contour and that can be obtained by adjacency 
relationships through its data structure. The boundary of an entity can contain several 
disconnect portions, but each portion must form a connected and closed set of entities of 
lower dimensions. For example, the edges and vertices of the external loop of a face and those 
of an internal loop of the same face constituted of a closed and alternated cycle of edges and 
vertices are part of the face boundary. However, a wire edge loose in the interior of a face 
constituting an internal loop formed only by this one edge is not considered as part of the face 
boundary. The same reasoning can be used for the faces belonging to an internal shell of a 
solid. If they form a closed set of faces, constituting a smaller region inside the main region, 
they are considered as part of its boundary. But an internal shell constituted by one or more 
faces without forming a closed region is not considered as part of the solid’s boundary. This 
particular definition of the boundary concept does not imply that these internal loose or 
dangling structures cannot be used as input data for the algorithm of Boolean operations. It 
only means that when we refer to the boundaries of entities in some parts of the algorithm, we 
are not including these structures. 
 The second issue to be considered is the definition of the concept of group of entities. In 
our context, a group is defined as a set of topological entities forming a sub-set of the studied 
model. Groups may contain vertices, edges, surface patches (faces) and regions. A group can 
contain several entities with different dimensions, including dangling entities or entities 
completely loose in space.  
 For each topological entity, there must be a way of accessing its adjacent entities with 
levels of topological hierarchy immediately above and below its own. For instance, it must be 
possible to access the edges and regions adjacent to a given face. Obviously, this constitutes a 
sufficient set of adjacency relationships, since any other desired adjacency relationship can be 
obtained from them (Weiler, 1986). 
 The Boolean operations will always be applied to two groups of entities at a time. The 
two groups must be under the same topological framework. Each group can possess any 
number of topological entities. These entities must be pre-processed to meet the conditions of 
applicability of the algorithm, which will be presented in the next subsection. 
 
3.1 Conditions of applicability of the algorithm 
 
 The conditions of applicability of the algorithm are established to guarantee an essentially 
topological treatment of the problem. Generally speaking, the pre-processing of the input data 
is made to assure that vertices, edges and faces do not intersect but only touch each other, yet 
not necessarily along the boundaries of these elements (e.g. the end of an edge can touch the 
interior of a face). This means that any kinds of intersections between points, curves and 
surface patches must be calculated before applying the algorithm, by dividing the respective 
entities into two or more entities of the same type and creating the topological elements 
(vertices, edges and faces) that will satisfy the non-intersection properties presented below: 

• Regions belonging to the same group cannot intersect each other, unless along their 
boundaries. However, regions belonging to different groups may have common 
volumes. 



• A face can only intersect another face along the boundary of at least one of the two 
faces. 

• Edges cannot intersect each other unless at their end points. 
• Edges cannot intersect faces unless at the edges’ end points. 
• Vertices must be spatially distinct. 

 Some pertinent observations must be made concerning the non-intersection properties. It 
is possible to notice that spatially coincident entities, that is, entities with exactly same 
geometric description and boundary, are not allowed. If two or more entities like edges and 
faces coincide, they must be reduced to only one entity (we call that fixing the model). 
Moreover, in order to consider face overlapping without disobeying the properties described 
above, the following procedure has to be adopted: first the intersection between the faces is 
calculated. The intersection curves are either the existing edges of the faces’ boundaries or 
segments originated from these edges. Then, these faces are destroyed and new faces are 
created in such a way that these new faces are simply adjacent to each other. This is possible 
because the original edges are divided into new edges (new vertices are also created wherever 
it is necessary). 
 Region detection is also necessary for closed volumes to be treated as regions. This is 
necessary because the user may be interested in treating a closed and connected set of faces 
just as a hollow shell, instead of as a region. 
 There are no restrictions concerning the geometry of the analyzed model. If all the 
conditions commented in this subsection are satisfied, the algorithm will work using 
exclusively the topological information available. 
 
3.2 Description of the algorithm 
 
 The algorithm that will be presented is based on the one proposed by Mäntylä (1988) for 
Boolean operations in B-Rep representations. However, just the central idea of Mäntylä’s 
algorithm was used, since it is only applicable to polyhedral manifold solids. Besides, 
Mäntylä’s algorithm works only with two solids at a time, while our algorithm works with the 
concept of group defined above. 
 The proposed algorithm for Boolean operations in non-manifold B-Rep representations is 
summarized in Fig. 2, for two target groups named A and B. 
 



 
Figure 2– Algorithm for Boolean operations in B-Rep representations. 

 
 The first step corresponds to the pre-processing stage. All intersections between surfaces 
and curves must be computed and all regions must be detected. The second step consists in 
storing in some appropriate data structures (such as lists or vectors) the topological entities 
belonging to each group, along with all the topologically inferior entities that form their 
boundaries or that remain dangling or loose in their interiors (these cases apply to faces or 
regions). Every topological entity must be stored only once. There must be separate lists to 
store entities in different groups and with different dimensions (e.g. a list containing the 
vertices of group A and another list containing the vertices of group B). 
 The third step consists in determining the common entities present in both groups. These 
entities must be stored in another list (which will be referred to as common_ent). 
 The fourth step consists in classifying the entities stored. The entities from one group are 
classified before the entities from the other group. We will use the notation AinB, AoutB and 
INTERS to indicate, respectively, an entity from group A that is located inside any region of 
group B, an entity from group A that is located outside all regions of group B, and an entity 
belonging to the common_ent list.  
 It is indispensable that methods for point location (point in region and point on face) are 
available, or else the classification stage will be impracticable. The descriptions of some 



algorithms for point location can be found in works by De Berg et al (1997) and Preparata & 
Shamos (1990). 
  Three new structures can be created. Each structure should store a reference to a 
topological entity with one specific dimension (0, 1 or 2) and an enumerable type, for 
example, which will store the entity’s classification. Then, three new lists can be created, one 
for each type of structure created previously. These lists will store, respectively, all the 
vertices from both groups with their respective classification, all the edges from both groups 
with their respective classification and all the surface patches from both groups with their 
respective classification. 
 Classifying a vertex means testing it against all the regions from the other group (the 
group that does not contain this vertex). If the vertex belongs to the common_ent list, it is not 
necessary to test it; its classification will be INTERS. 
 Classifying an edge means checking the classification already given to its vertices. If the 
edge belongs to the common_ent list, it is not necessary to test it; its classification will be 
INTERS. If at least one of the vertices is inside any region of the other group or outside all 
regions of the other group, the edge will be classified in the same way as the vertex. If both 
vertices are classified as INTERS, then any point belonging to the edge, except for its ends, 
must be tested against the regions of the other group. The classification of the edge will be the 
same given to the point. 
 Classifying a face (surface patch) means checking the classification already given to the 
vertices belonging to its outer loop. If the face belongs to the common_ent list, it is not 
necessary to test it; its classification will be INTERS. If at least one of the vertices is inside 
any region of the other group or outside all the regions of the other group, the face will be 
classified in the same way as the vertex. If all the vertices are classified as INTERS, then any 
point belonging to the interior of the face must be tested against the regions of the other 
group. The classification of the face will be the same given to the point. 
 It is important to emphasize that the point in region and point on surface geometric 
algorithms used in the classification stage must be called only if necessary. Tests with the 
bounding boxes surrounding the point and the region/surface should be done first, for 
efficiency (this implicates the use of model-based tolerances). 
 In the fifth step of the algorithm, the classified topological entities are stored in separate 
lists. 
 In essence, applying Boolean operations over the groups’ entities means removing 
vertices, edges and faces that are not part of the result, according to their classification. Since 
we are working in a non-manifold environment, every single entity has to be considered as 
being a part of the result or not, because we are not only interested in results that have the 
same dimension of the input entities. Therefore, the sixth step of the algorithm consists in 
removing undesirable faces, edges, and vertices. The order in which this occurs is important: 
first the undesirable faces are removed, then undesirable edges, and lastly, undesirable 
vertices. 
 Table 1 summarizes the sixth step of the algorithm for Boolean operations, which may be 
considered the main contribution of this work (Arruda, 2005). Entities with different 
dimensions are separated, and the table shows which of these entities should be removed, 
according to the Boolean operation that is being applied. Some of the terms used need more 
detailed explanation: 

• boundA means the number of regions of group A bounded by the face. 
• theta is the angle (in degrees) between the normal vectors of one face in relation to 

the two solids that the face bounds. 
• DangOrLoose means an edge that is located in the interior of a face, dangling or 

loose. 



• Loose means a vertex that is loose in the interior of a face. 
• facebound means the number of faces bounded by the edge. 
• edgebound means the number of edges incident to the vertex. 
• insideA means that the face is inside any region of group A. 
• outsideA means that the face is outside all regions of group A. 
• resbound means the number of regions formed after the conclusion of the Boolean 

operation, which are bounded by the face. 
 

Table 1. Boolean operations algorithm: entities that should be removed. 
 

 
 
Regularization of the result. Regularizing the result of a Boolean operation means to 
eliminate from the result all the entities of lower dimensions, in such a way that only filling 
volumes are allowed. This means that the only entities that should remain after the process of 
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regularization are the faces belonging to the boundary of a given region, the edges of the 
boundaries of these faces, and the vertices at the ends of these edges. Therefore, loose or 
dangling edges and faces and loose vertices that might eventually appear on the result of a 
Boolean operation must be removed if the user requires the regularization process. 
 Regularized Boolean operations are important in applications that intend to avoid a subset 
of the non-manifold results that can be obtained by applying Boolean operations on manifold 
objects. They are also important in processes where only filling volumes are relevant or 
meaningful, as in industrial processes for constructing mechanical parts. In these processes, 
entities of lower dimensions, such as faces or edges, are not representable because they have 
null width. 
 The regularization procedure can be described as follows:  

• Using the resulting entities of the application of a Boolean operation, the region 
detection algorithm is called. This means having access to lists of faces belonging to 
the boundary of each formed region. 

• The faces that are not part of any of those lists must be removed, because they are 
loose or dangling faces. 

• The edges that do not belong to the boundary of any remaining face must be removed. 
• The vertices that do not belong to the boundary of any remaining face must be 

removed. 
 
4. RESULTS 
 
 In this section we present some results we have obtained by implementing the algorithm 
described in the previous section in the MG modeler (Coelho, 2000 and Lira et al, 2002). It is 
important to emphasize that tools for surface intersection and for point location (point in 
region and point on surface) must be available in the modeler where the algorithm is being 
implemented. First, some manifold outputs are shown to demonstrate the validity of the 
algorithm in a manifold environment. Then, we present some non-manifold results generated 
by applying Boolean operations over manifold solids and over topological entities with 
different dimensions (e.g. faces and solids). 
 
4.1 Manifold outputs 
 
 Applying Boolean operations over simple primitives like cylinders, boxes and spheres 
may lead us to more complex solids of innumerous shapes. It is possible to appreciate some of 
these solids in Fig. 3. 
 
 
 
 
 
 



 

 
 

Figure 3- Examples of manifold solids obtained by applying Boolean operations over simpler 
primitives. 

 
 Figure 4 shows all the stages of the creation of a pile and the generation of a mesh of 
tetrahedrons for the solid that represents it. First, a union operation between two boxes and a 
cylinder is performed. Then, a new cylinder is inserted in the model and subtracted from the 
solid generated by the union operation. The last step is the generation of a finite element mesh 
of tetrahedrons for the solid generated after the difference operation. We must emphasize that 
each solid that will serve as input data for a Boolean operation must be recognized as a closed 
region and that all the intersections between surface patches must be calculated before the 
application of any Boolean operation. 

 
 
 
 
 
 



 

  

(a) (b) (c) 

  

 

(d) (e) (f) 
 

Figure 4- Creation of a pile: a) primitive solids; b) primitive solids after intersection between 
surface patches; c) union operation between boxes and cylinder; d) insertion of a new 

cylinder; e) Difference between the solid generated in c) and the new cylinder; f) Generation 
of the mesh of tetrahedrons for the resulting solid (pile). 

 



 Figure 5 shows an example of Boolean operations applied to two solids bounded by 
generic NURBS surfaces. Figure 5a shows the original solids (a “twisted cube” and a 
“bottle”) with all the intersections between surfaces already computed. Figure 5b shows the 
intersection between these two solids. Figure 5c shows the difference operation between the 
“twisted cube” and the “bottle”. 
 

  
(a) 

  
(b) 

  
(c) 

 
Figure 5- Intersection and difference between two solids bounded by NURBS surfaces. 

 
 



4.2 Non-manifold outputs 
 
 Sometimes, even when the input data are representable in a manifold environment, the 
output data may not be so. That is the case of the results shown in Fig. 6. In the first example, 
some dangling faces are part of the result (faces that are not part of the boundary of any solid). 
In the second example, there are two solids touching each other through a common edge. This 
edge is adjacent to four different faces. 
 

 
 

 
Figure 6- Non-manifold results obtained by applying Boolean operations over manifold solids. 

 
 Figure 7 shows an example of the application of Boolean operations over entities of 
different dimensions. This means we have selected two groups of entities, one containing only 
faces and the other containing a solid. 
 

 
 

Figure 7- Boolean operations applied over entities of different dimensions. 
 
 
 



4.3 The modeler’s limitations 
 
 Although our algorithm intends to cover all possible cases, including particular or 
pathological ones, such as face overlapping or faces and solids touching each other at a single 
point, it is not fair to say that a correct implementation of the algorithm in a modeler that 
provides a non-manifold environment is enough to guarantee that every single case will be 
able to be represented. Since the algorithm depends on the existence and correct functioning 
of two specific tools, intersection of curved primitives and region detection, it will not 
generate the expected results if the pre-processing stage experiences some kind of problem. 
These two tools, especially the intersection of curved primitives, are very difficult to 
implement or to be found already implemented in a robust way. 
 Besides these two tools, the algorithm also depends on the existence and correct 
functioning of two geometric algorithms, point in region and point on face. Even though these 
geometric algorithms are not very difficult to implement or even to be found in some 
geometrical libraries available, they might not be efficient enough to guarantee the generation 
of the result in a reasonable amount of time. 
 Our experience shows that there are always some cases where the intersection algorithm 
fails due to some particularity not considered before. Since it is based on the convergence of 
the Newton-Raphson method, there are always cases where the algorithm does not converge, 
or where it takes too long to converge (exceeding the maximum allowable number of 
iterations), or where the tolerance used is not appropriate to the specific case being processed. 
Therefore, some particular cases such as a face touching the interior of another face along an 
edge or face overlapping may cause the algorithm to fail. 
 Figure 8 shows an example where the intersection algorithm has failed. The model 
consists of two cylinders with the same base radius and the same height, arranged in space in 
such a way that they interpenetrate. As it can be seen, this interpenetration is made in a 
particular way, so that several faces only touch each other at single points. 
 

 
 

Figure 8- Particular case that causes the intersection algorithm to fail. 
 
5.4 Efficiency and robustness 
 
 It is difficult to talk about the efficiency and the robustness of the algorithm without 
considering the efficiency and robustness of the intersection and region detection algorithms. 
We also have to consider the geometric algorithms used for point location, which also might 
fail or be more time-demanding than expected. 
 We believe the algorithm itself is very robust, since it is able to deal with any possible 
situation, including peculiar ones, in which the topological entities have unusual adjacency 



relationships, at least considering real-world models. The algorithm also proved to be quite 
efficient for most analyzed models. Even for big and complex models, depending on the 
number of times the algorithms for point location had to be called, the results were generated 
in a very satisfactory amount of time. 
 Nevertheless, considering all the necessary steps for the complete functioning of the 
algorithm, from the pre-processing of input data to the generation of results, there are some 
determining factors that might deteriorate the efficiency and robustness of the algorithm: 

• Geometric complexity of the primitives present in the model 
• Number of intersections between surfaces 
• Number of closed regions present in the model 
• Number of times the point location (particularly the point in region) algorithms have 

to be called 
 Thus, it is not simple to make absolute statements about these matters, since they depend 
on the auxiliary algorithms that have to be linked to the main algorithm when implementing it 
on a pre-existing geometric modeler. 
 
6. CONCLUSIONS 
 
 We have presented an algorithm for Boolean operations in non-manifold environments 
and for curved primitives with any level of complexity and any dimension. The algorithm was 
implemented in a pre-existing geometric modeler for finite element solid mesh generation, 
named MG, which allows the creation of non-linear curves and surfaces using the NURBS 
representation (Piegl, 1991) and (Piegl & Tiller, 1999). MG works with a hybrid data 
representation in which every model, besides being represented by the modeler’s internal data 
structure, can have another representation given by the CGC library (Cavalcanti, 1997), 
whenever the model needs to be topologically tied up. 
 The main idea behind the development of this algorithm was making it as general as 
possible in order to deal with any situation, even when the input data adjacency relationships 
were very peculiar, such as two surfaces touching each other at one single point, two solids 
touching each other along a common edge, or surface overlapping. The group concept was 
presented, meaning a set of topological entities of any dimension gathered together to be 
combined with entities belonging to another group through a Boolean operation. 
 To achieve the level of generality desired, some initial conditions had to be imposed in 
order to guarantee an essentially topological treatment of the problem. These initial conditions 
implicate pre-processing the input data to assure that all topological entities just touch each 
other (even if not along their boundaries) and that all regions have been detected before 
calling the algorithm. 
 The algorithm is very simple and intuitive, and its implementation in any B-Rep-based 
system should not require much time or a very large number of code lines. However, the 
system must incorporate non-linear primitive intersection, region detection and point location 
algorithms in order to assure the correct functioning of the Boolean operations algorithm. 
 The results obtained with the MG modeler were very satisfactory. Several tests were 
performed, using manifold and non-manifold input data and leading to manifold and non-
manifold output data, yet not respectively. The algorithm proved to be quite efficient when the 
complexity of the model was not too high. By high model complexity we mean: presence of a 
significant number of high-degree curved primitives; a considerable number of surface 
intersections; a considerable number of closed regions; too many topological vertices of one 
group located inside the regions of the other group; and presence of surface overlapping. 
However, when these situations occurred, pre-processing always seemed to be the slowest 
step of the whole procedure. This means that if the Boolean operations algorithm proposed in 



this work were implemented on another system with more efficient algorithms for surface 
intersection and region detection, the same model would be processed much faster. 
 Some work can be done to improve the efficiency of the point location and the surface 
intersection algorithms, in order to make our algorithm for Boolean operations faster. The 
elimination of numerical errors is also a line of research that must be carefully studied to 
avoid inconsistencies between geometry and topology. The algorithm can also be 
implemented as a class library, to be applied in different geometric modelers. 
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